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Hidden and mirage collective modes in two dimensional

Fermi liquids

Avraham Klein @®'®, Dmitrii L. Maslov? and Andrey V. Chubukov'

The longstanding view of the zero sound mode in a Fermi liquid is that for repulsive interaction it resides outside the particle-hole
continuum and gives rise to a sharp peak in the corresponding susceptibility, while for attractive interaction it is a resonance inside
the particle-hole continuum. We argue that in a two-dimensional Fermi liquid there exist two additional types of zero sound:
“hidden” and “mirage” modes. A hidden mode resides outside the particle-hole continuum already for attractive interaction. It does
not appear as a sharp peak in the susceptibility, but determines the long-time transient response of a Fermi liquid and can be
identified in pump-probe experiments. A mirage mode emerges for strong enough repulsion. Unlike the conventional zero sound, it
does not correspond to a true pole, yet it gives rise to a peak in the particle-hole susceptibility. It can be detected by measuring the
width of the peak, which for a mirage mode is larger than the single-particle scattering rate.
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INTRODUCTION

Zero-sound (ZS) is a collective excitation of a Fermi liquid (FL)
associated with a deformation of the Fermi surface (FS)'™. The
dispersion of the ZS mode w = v,g encodes important
information about the strength of correlations, as was demon-
strated in classical experiments on 3He®. Conventional wisdom
holds® that for a strong enough repulsive interaction in a given
charge or spin channel, ZS excitations are anti-bound states which
live outside the particle hole continuum (v,s > v¢) and appear as
sharp peaks in spectroscopic probes, while for attractive interac-
tion they are resonances buried inside the continuum. Possibly the
best known example of a resonance is a Landau-overdamped
mode near a Pomeranchuk transition'™*®7'6, These qualitative
notions are consistent with rigorous results for a 3D FL'™*%,

In this paper we report on two unconventional features of ZS
excitations in a clean 2D FL. First, for relatively weak attraction, ZS
modes with any angular momentum [ are not the expected
overdamped resonances but rather sharp propagating modes
with v, > vi. However, a spectroscopic probe will not show a peak
at w = v,q. Second, for sufficiently strong repulsion, ZS modes
with /=1 appear as peaks in a spectroscopic measurement with
Vzs > Vg, but the modes are not the true poles of the dynamical
susceptibility and, as a result, are not the longest lived excitations
of the system. We argue that these two features come about

because the charge (c) and spin (s) susceptibilities x,°<5) (g, w) in the
angular momentum channel | are nonanalytic functions of
complex w with branch points at w = #vgg, which arise from
the threshold singularity at the edge of the particle hole
continuum. Accordingly, )(,C(S)(q, w) is defined on the complex w
plane with branch cuts, located slightly below the real axis in the
clean limit (see Fig. 1). In 3D, x™® (g, w) near a branch point has
only a weak logarithmic non-analyticity. In 2D, however, the non-
analyticity is algebraic (v/x). In this situation, the analytic structure

ofx,c(s) (g, w) is encoded in a two-sheet genus 0 algebraic Riemann

surface (a sphere)'”"°. It has a physical sheet, on which X,C(S) (q,w)
is analytic in the upper half-plane by causality, and a nonphysical

sheet. The ZS modes appear as poles of)(,c(s) (g, w). Both the genus
and the number of ZS poles are topological invariants of

X,c(s)(q,w), which remain unchanged as the poles move on
continuous trajectories over the complex plane. However, to pass
smoothly through a branch cut, a ZS pole must move from the
physical to unphysical sheet and vice versa. We show that, for
relatively weak attractive interaction, the propagating pole is on
the physical sheet, but below the branch cut. Consequently, it
cannot be analytically extended to the real w axis of the physical

sheet and does not give rise to a sharp peak in Im)(,c(S> (g, w) above
the continuum. We label such a mode as “hidden”. It is similar to
the “tachyon ghost” plasmon that appears in an ultra-clean 2D
electron gas once retardation effects are taken into account®®?’,
For sufficiently weak repulsive interaction in channels with /=1,
the pole is located above the branch cut but, when the interaction
exceeds some critical value, the pole moves through the branch
cut to the unphysical Riemann sheet. Although the pole is now
below the branch cut, it does gives rise to a peak in x/(g, w)
because the pole can be continued back through the branch cut
to the physical real axis. We label such a mode as “mirage”.
Hidden and mirage modes cannot be directly identified
spectroscopically by probing Imx,c<5>(q, w), as hidden modes do
not appear in such a measurement at all, while mirage modes do
appear but cannot be distinguished from conventional modes. We
argue, however, that they can be identified by studying the
transient response of a 2D FL in real time, i.e, by analyzing
ch(s) (g, t) extracted from pump-probe measurements, which have
recently emerged as a powerful technique for characterizing and
controlling complex materials?*°, At long times, the response
function X,C(S)(q, t) is the sum of contributions from the ZS poles
and the branch points. One can readily distinguish a conventional
ZS modes from a mirage one via )(,c(s) (g, t) because a conventional
ZS mode is located above the branch cut and decays slower than
the branch point contribution, while a mirage mode decays faster.
As a result, the response of a FL hosting a mirage mode undergoes
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Fig. 1 Trajectories of the poles of xf(s)(q,w) on the two-sheeted Riemann surface of complex s = w/vgq. a | = 0 surface. Blue circles:
overdamped ZS mode; magenta circles: hidden mode; orange circles: propagating ZS mode. b / = 1 surface. Blue circles: damped ZS mode;
magenta circles: hidden mode; orange circles: propagating ZS mode; green circles: mirage mode. For clarity, additional poles on the
unphysical sheet are not shown (see the “Methods” section). In both figures, solid (dashed) circles denote the poles on the physical
(unphysical) Riemann sheet. Solid (dashed) blue arrows denote the direction of poles’ motion on the physical (unphysical) sheet with

increasing F,C(S).
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Fig.2 Time evolution of conventional ZS and mirage modes. The
figure depicts the time evolution of xﬁ(s)(t*) for a conventional ZS
mode at F{®) =0.2 (orange) and a mirage mode at F.® =8.0
(green). The modes correspond to the orange and green circles in
Fig. 1b. The conventional mode displays an underdamped behavior
with decay constant y,s <y and oscillation period T = 27/s,, < 27 at
all times. The mirage mode decays with y,; >y and crosses over to
oscillations  with period T*=2m at a crossover time
teross & (Vs — ¥) . Inset: a zoomed-in view showing the crossover
at t*~ teoss X- ) (t*) is multiplied by e/ to enhance visibility. The
solid line is added to the data points for clarity. The disorder
strength is y =0.2.

a crossover from oscillations at the ZS mode frequency to
oscillations at the branch point frequency w = vgq at some t =
toross (see Fig. 2). The detection of a hidden mode is a more subtle
issue as this mode does not appear on the real frequency axis, and
x,c(s) (g, t) at large t always oscillates at w = v¢q. However, we show
that in the presence of the hidden pole the behavior of x,c(5>(q, t)
changes from cos(vgqgt + 11/4) /t'/? at intermediate t to cos(veqt —
m/4)/t3/? at the longest t, and the location of the hidden pole can
be extracted from the crossover scale t. o between the two
regimes (see Fig. 3a).

RESULTS

Zero-sound modes in 2D

A generic bosonic excitation of a FL with angular momentum / and
-1

dispersion w(q) is the solution of (x,c“)(q, w)> = 0. ZS excita-

tions are the modes with linear dispersion w = v,sq in the limit
g < kg, where kg is the Fermi momentum. The quasiparticle
susceptibility at small w and g but fixed w/vig = s is expressed
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(s

solely in terms of Landau parameters F,C ) in the charge or spin

sectors' 571415 An explicit form of (g, w) is rather cumber-
some but becomes much simpler if one of the Landau parameters,

F,C(S), is much larger than the others. Up to an irrelevant overall
factor, for this case we have

Xi(5)
()5 o A
T+Fx(s)

where x(s) is the quasiparticle contribution from states near the
FS, normalized to x/(0) = 1. The general structure of x/(s) can be
inferred from the particle-hole bubble of free fermions with
propagators Go(k,w) = (w +iy/2 — vi(Jk| — k)" and form-
factors f(6) at the vertices, where 60 is the angle between k and
q fo =1, and f(8) = V2cosl0 (v/2sinl6) for the longitudinal
(transverse) channels with />1. (The longitudinal/transverse
modes correspond to oscillations of the FS that conserve/do not
conserve its area.) However, to properly specify the position of the
pole with respect to the branch cut one must include vertex
corrections due to the same scattering processes that give rise to
the iy term in G (refs '>3"). This is true even in the clean limit
y — 0. To be specificc we assume that extrinsic damping is
provided by short-range impurities, and account for the corre-
sponding vertex corrections in all subsequent calculations. We
study the case | = 0 as an example of a hidden mode, and the case
=1, with f,(6) = v/2 cos 6, as an example of a mirage mode. (The
| = 1 transverse mode has recently been discussed in refs '>'6),

For I = 0, xo(s) with vertex corrections due to impurity scattering
included is given by'>?'

M

is
Xo(s) =1+ —F—rx—,
° 1— (s—}—iy)2 -y @

where y = y/vgq. Observe that (i) xo(s) vanishes at ¢ — 0 and finite
w and y, as required by charge/spin conservation, and (ii) xo(s) has
branch cuts at s = £x— iy, x> 1, see Fig. 1. From Eq. (1), the

equation for the pole is 1+ F5®y,(s) = 0. For F$®) >0 and y <1,
the two poles are located at w = veq(xs, — iy,,), Where s, =
(1 +FN) /1427 > 1 and v, = y(1+F3™)/(1 + 25 <.
These are conventional ZS poles above the branch cut, which give
rise to a peak in ImxS (g, ) at w = ves,q. For —1<FS® < —1/2,
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Fig. 3 Time evolution of hidden and damped modes. a-c show the time dependence )(,C(” (g,t) for a system hosting: a A hidden mode at

F$'®) = —0.125 (magenta circles in Fig. 1a). The gray lines show the characteristic power-law decays « t /2, t *2. b A damped / = 1 mode at
Ff(s) = —0.9 (blue circles in Fig. 1b). At even longer times (not shown), the period of oscillations approaches 2m. ¢ A hidden /| = 1 mode at
Fﬁ(s) = —0.121 (magenta circles in Fig. 1b). d The numerically extracted variation of the phase shift between the two regimes of the hidden

mode described in the text (solid), and the analytic prediction (dashed), for Fg<s> =0.03.

the two poles are located along the imaginary s axis, one on the

physical Riemann sheet, at s, = —i(1 — |FS®[)/1/2|FS®)| - 1, and
the other on the unphysical Riemann sheet. This is another
conventional behavior — the ZS is Landau overdamped, and at
F(c,<5> — —1 its frequency vanishes, signaling a Pomeranchuk
instability®'®. The hidden ZS mode emerges at —1/2<F: <0,
Here the two modes are again located near the real axis, at
W = veq(sy — iyp), where s, = (1 — [FS®))/1/1 = 2/F5®| > 1 and
Vo =y(1 = [FS))/(1 = 2/FS9]) > y. Since sp> 1, the ZS mode is
formally outside the continuum, i.e,, it is an anti-bound state, even
though the interaction is attractive (F(c)<5) <0). However, because
Yn >V, the pole is located below the branch cut. Since a pole
cannot pass smoothly through the cut without moving to a
different Riemann sheet, a hidden pole does not give rise to a
peak in Imy“®) (g, w) at w = v¢spg. The evolution of the poles with
F$*) is depicted in Fig. 1a.
For / = 1 one finds:

14 s+iy

V1= (s+iy)? 3)

v

! 1—(s+iy)’

Xi(s)=1+2s

In this case too, a hidden pole exists for attractive interaction, in
the interval —1/9<F$®) <0. In addition, a new type of behavior
emerges for F*) >0. Namely, x5/ has a conventional ZS pole
above the branch cut only for a finite range O<Fﬁ(s) <FT, where
F™ = 3/5 in the clean limit. At F{®) = F™ the pole merges with the
branch cut and, for larger Fﬁ“), it moves below the branch cut and,
simultaneously, to the unphysical Riemann sheet. We call this pole
a “mirage” one because although it is located on the unphysical

Riemann sheet, it can be connected to the physical real axis
through the branch cut. As a result, the pole gives rise to a sharp

peak in Imxﬁ(s)(q, w); however, the width of the mirage mode, ym,
is larger than y.

Detection of hidden and mirage modes

We argue that hidden and mirage modes can be observed
experimentally by analyzing the transient response of a FL which,
for an instantaneous initial perturbation, is described by the

Published in partnership with Nanjing University

susceptibility in the time domain, x*/(q,t). At first glance, it
seems redundant to study X,C(S)(q7t), which is just a Fourier
transform of x® (g, w) for real w, expressed via Imx"¥ (g, w) as
X (g,t>0) = (2/m) [ sin(wt)imy"®)(q,w) by causality. A hid-

den mode does not give rise to a peak in Im)(,c(s)(q,w) for real w,
while the peak due to a mirage mode is essentially indistinguish-
able from that due to a conventional ZS mode. However, we will

show below that there are subtle features in Imx<® (g, w) for
hidden and mirage modes that manifest themselves in the time
evolution of ch(s) (g,1).

Our reasoning is based on the argument that x,c(s)(q, t) can be
obtained by closing the contour of integration over w on the
Riemann surface. A choice of the particular contour is a matter of
convenience, but a contour can always be decomposed into a part
enclosing the poles in the lower half-plane (either on the physical
or unphysical sheet) and a part connecting the branch points on
the Riemann sphere. For both conventional and mirage modes the
second contribution at long times comes from the vicinity of the

branch points and behaves as x*' (g, t) o cos(t* — 1/4)e " t73/2,
where t* = vgqt. The pole contribution behaves as
x®(q,1) o sin(sat*)e ", where a = zs, h, m. For a conventional

ZS mode y, < y, and the long-t behavior of)(,c(s) (g, t) is dominated
by oscillations at the ZS frequency. For a mirage mode y,,, > y, and
the oscillations associated with the mirage mode decay faster than
the ones associated with the branch points. We illustrate this

behavior in Fig. 2, which depicts xﬁ(s)(q, t) at intermediate and

long times for FS®) = 0.2 and F$®) = 8, which correspond to the
cases of a conventional and mirage ZS mode, respectively.
Alternatively, of course, the mirage mode may be identified from
the width of the ZS peak if an independent measurement of y is
available.

For a hidden mode, the situation is more tricky as the pole
contribution is cancelled out by a portion of the branch cut
contribution and so a hidden pole does not contribute directly to
x29(g,t). The only oscillations in x5*(g,t) are due to the branch
points, with a period T = 271/veq. However, a more careful study
shows (see “Methods”) that in the presence of a hidden pole the
branch point contribution undergoes a crossover between two
types of oscillations with the same period: at intermediate t,

X7 (a.t) o cos(t* +m/4)/(t*)/,  while at longer t,

npj Quantum Materials (2020) 55
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x9(g, 1) o cos(t* — m/4)/(t*)*/%. We illustrate this behavior in
Fig. 3a. Note that both the t-dependence of the envelope changes
and the phase is shifted by /2. The crossover scale t . is
determined by the position of a hidden pole in relation to the

branch point. For small F;( it is just t, = [sh — (1 —iy)|"'; this
relation is verified numerically in the Methods section. Hence, a
hidden pole can be extracted from time-dependent measure-
ments even though it does not show up in spectroscopic probes.

For completeness, we also briefly discuss the behavior of
X3¥ (g, t) in the range —1 < F5®) < —1/2, where the pole is Landau
overdamped even in the absence of disorder, i.e, w = —iveqyys'”
In this situation, dynamics at intermediate t is dominated by a
non-oscillatory, exponentially decaying pole contribution, while
dynamics at longer t is dominated by algebraically decaying
oscillations arising from the branch points, with the period T = 271/

(veq). The crossover time is (t%..)~" = (v,s —y) " to logarithmic

accuracy. We also present the results for xﬁ(s)(q,t) in two

representative regimes of F* <0. As shown in Fig. 1b, the | = 1
poles travel in the complex plane, starting from w = 0 at the

Pomeranchuk instability point Fﬁ(s) = —1 and arriving at the lower
edge of the branch cut at F<®) = —1/9. Near FS®) = —1, the poles
are close to the real axis and, accordingly, x?“)(q, t) displays

weakly damped oscillations (Fig. 3b). When Fﬁ@ crosses the critical
value of —1/9, the poles transform into hidden ones, and
oscillations are now controlled by the branch points (Fig. 3c). As
a final remark, we also verified that the behavior does not change

qualitatively for a more realistic case when two Landau

parameters, F ) and F have comparable magnitudes.

DISCUSSION

In this work we argued that ZS collective excitations in a 2D FL
have two unexpected features. First, for any angular momentum /

and for the Landau parameter F,C(S) in some negative range, a ZS
mode is not a damped resonance inside a particle-hole
continuum, as is the case in 3D, but a propagating mode with

velocity larger than vg. In the clean limit, a ZS pole of )(,C(S)

located arbitrary close to the real axis, but still below the branch
cut, which hides the pole. Such a “hidden” mode does not
manifest itself in spectroscopic probes but can be identified by
transient, pump-probe techniques. Second, for /=1 and positive

F,C(S> above some critical value, a ZS pole moves from the physical
Riemann surface to the unphysical one and becomes a “mirage”

one. In this situation, Im)(,c(s)(q, w) still has a peak at the pole
frequency in the clean limit. However, the long-time behavior of

X,c(s> (g, t) is now determined by the branch points rather than by
the pole.

The existence of hidden modes in 2D can be traced to the fact
that in 2D the branch points associated with the particle-hole
threshold are algebraic. The consequence of this is that the poles

<(s)

move continuously on the Riemann surface as F;* is varied. This

<)
and vanishingly small damping. In this case, the poles of)(,‘(s) (g, w)
are near the branch points: w = v,sq(£1 — iy) with v, = ve and y <
1. Then the form of branch point singularity determines the

trajectory of the pole as F<®

feature is best seen for the case of weak interaction (\F,c(

is varied. For the square-root branch
point, the pole’s trajectory is described by (w/veq) — (1 —iy)
o —y? + (F,C(5>) +2iyF®, which gives rise to hidden modes. (To
see this for | = 0 mode, note that the equation for the pole,
following from Egs. (1) and (2), is reduced for small |F§®)| < 1 to

npj Quantum Materials (2020) 55

(1 +z) —1—iy= where z = (w/vgq) — (1 — iy). For small
z, this gives the requrred trajectory.) In contrast, in 3D the cut is
logarithmic and poles move discontinuously'®. For example, in the
| = 0 channel in 3D the pole position moves from above the

branch cut for F$® > 0 to the imaginary axis for F§*) <0 (ref. ©). We
also stress that in our calculations we always assumed w > vgqy,
which corresponds to the collisionless regime. In the opposite
limit of w < yvgq, there is no hidden mode.

The existence of mirage modes for /=1 but not for /| = 0 is a
consequence of the fact that the | = 0 channel represents the
response function of a conserved quantity (total particle number
or spin), while the /= 1 channels represent the response functions
of the quantities which are not conserved in the presence of even
infinitesimally weak disorder (for example, /| = 1 corresponds to
the charge or spin current). As a result, the free susceptibility xo =
Xi—o in the long wavelength limit (y > 1) must have a diffusion
pole with small magnitude, s = 1/(2iy). Because of this constraint,
the pole in xo(s) remains above the branch cut for all values of

Fg(s). For /=1, there are no constraints limiting the damping term.
The result of this is that the imaginary part of the ZS frequency

grows with increasing repulsion F¢*), and at some critical F{*® the
pole frequency crosses the branch cut. We note in passing that the
difference between the /| = 0 and /=1 channels is not special to
2D, although 2D is a more natural setting to search for a mirage

mode, since the pole positions move continuously on the

Riemann surface as a function of F,C(S). Indeed, it can be shown
that there is a mirage mode in the 3D / = 1 longitudinal channel as
well. (The calculation is analogous to the one for the 2D case. The

pole equation is 1+ F<¥y, (s) = 0, where y;(s) is the particle-hole
bubble with vertex corrections from impurities, with a form factor

=+1/3cosf. We find that the crossover to a mirage mode
occurs for vanishing y at F" = 0.44.)

In more general terms, our work establishes that dynamics of a
2D FL, even of an isotropic and Galilean-invariant one, is
determined not just by the poles of its response functions, but
also by topological properties encoded in the Riemann surfaces
defined by those functions. Here we studied the simplest case,
where the Riemann surface is a closed sphere. There exist more
complex cases, e.g., for two bands with different Fermi velocities,
Vi1 and Vg, there are four branch points in the complex plane, at
w = *Vg1q, +Ve,q, and the associated Riemann surface is a torus.
In such cases, one should expect new topological features of ZS
excitations.

A few remarks about real systems. First, our results apply to
both neutral and charged FLs, with a caveat that for charged FLs
the | = 0 charge mode becomes a plasmon®?. Second, to observe
a ZS mode, one needs to either employ finite-q versions of the
pump-probe techniques, e.g., time resolved RIXS*® and neutron
scattering®, or spatially modulate/laterally confine 2D electrons.
The most readily verifiable prediction is the hidden mode in the
spin channel, which occurs for 0 < F§ < —1/2. Previous measure-
ments on a GaAs/AlGaAs quantum el indicate that F for
this system is exactly in the required range.

METHODS
In this section we present the details of our calculatrons of the charge/spin
susceptibility in the time domain, )E g,t), and discuss the analytic

structure of the Riemann surface ofx In Section A we discuss the
framework to calculate x;¥(q,t) for a generlc 'in the charge or spin
channel. In Sections B and C we give detailed derivations of x;'* (g, t) in
the / = 0 and the / = 1 longitudinal channels and briefly discuss how these
calculations can be extended to arbitrary /. In Section E we show that the
results, discussed in the main text, i.e. the existence of conventronal
hidden, and mirage poles, also hold when two Landau parameters, Fo°
and F; <(s) , have comparable magnitudes.
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Throughout this section, we assume an isotropic system, such that at
low enough momenta and frequency the fermionic dispersion can be
approximated as w = & — u = Ve(|k| — kg), where vg is the renormalized
Fermi velocity vF0 m/m* and m* is the FL effective mass. We assume that
single-particle states are damped by impurity scattering and that the
damping rate, y, is small compared to Fermi energy. We also assume that
the temperature T is low enough such that the quasiparticle damping rate
can be neglected, but still higher than the critical temperature of a
superconducting (Kohn-Luttinger) instability.

Dynamical susceptiblities x*® (g, w) and x™ (g, t)

In this section we provide details of our calculations of the response
functions in the frequency and time domains, x;'* (g, w) and x;**' (g, t). We
assume that typical frequencies and momentum transfers are small, i.e.,
g < ki and w < Eg. In this limit the response of a FL to a weak external
perturbation comes predominantly from quasiparticles near the FS. The
quasiparticle contribution to the dynamical susceptibility was obtained by
Leggett back in 1965 (ref. *”). To get it diagrammatically, one needs to sum
up series of bubble diagrams coupled by quasiparticle interactions. For the
case when one Landau parameter dominates, the quasiparticle contribu-
tion to " (g, w) has the form

Xi(s) A
1+ F,c<s)x,(s) - Veq

Here the Landau parameter F; is the properly normalized /'th moment of
the antisymmetrized four-fermion vertex, vi is the (renormalized)
thermodynamic density of states, and x(s) is the retarded free-fermion
susceptibility in the I'th channel. The subscript gp makes explicit the fact
that this is only the quasiparticle response. The full X,c<5)(q,w) differs from
(4) by an overall factor, which accounts for renormalizations by fermions
with higher energies, and also contains (for a non-conserved order
parameter) an additional term, which comes solely from high-energy
fermions®”. These additional terms are relevant for the full form of the
susceptibility near Pomeranchuk instabilities towards states with special
order parameter'®'>383° put not for collective modes studied in this paper.
The expression for the free-fermion susceptibility x(s) in the presence of
impurity scattering is obtained by (a) evaluating a particle-hole bubble
using propagators of free fermions with fermionic frequency w shifted to
w-+iy and (b) summing up the ladder diagrams for the vertex
renormalizations due to impurity scattering. The detailed form of x(s)

Xeo)(q, w) = v )

Im(s) Re(s)

>
[ ]

Fig. 4 Integration contour to obtain xf(s)(t*). The integration
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depends both on the channel angular momentum / and its polarization
(longitudinal/transverse). For a detailed derivation of Eqg. (4) and explicit
forms of x(s) we refer the reader to refs '*'>3!, Here we just state the final

results for X;(;‘),(s) and focus on calculating its time-domain form. To

shorten the notations, henceforth we skip the subindex “gp” in X;(;),(q, w),
as we did in the main text.
(T)he retarded time-dependent susceptibility is a Fourier transform of
(s
X (q,w):

Cdw _, ©ds
X/C(S> (g,t) = Kxﬂe—lwrxlc(s)(q’w) _ qulee—lsr Xf(S) (5)7 (5)
where t* = vggt. In physical terms, xf(s)(q, t) describes a response of the
order parameter in the /'th charge or spin channel to a pulse-like excitation
of the form he™'9"5(t).

To evaluate Eq. (5), it is convenient to close the integration contour in
the complex plane. As discussed in the main text, X,C *(s) has two types of
singularities in complex s plane, both of which contribute to the result of
integration. First, it has a set of poles s, which can be either on the physical
or unphysical sheet. To be concrete, in the subsequent calculations for / =
0, 1 we will label by s; the pole in the lower-right quadrant of a complex
plane of frequency, where Res > 0, Ims < 0. We express the coordinates of
the pole s; as

S1 = Sa — iVa, (6)

where a = zs, h, m, and the notations are for three different types of the
poles corresponding to a “conventional” ZS mode (either a propagating
one, or a resonance within the particle-hole continuum), a hidden mode,
and a mirage mode, respectively. These are the same notations that we
used in the main text. To make the text less cumbersome, we will refer to
each pole according to the mode it gives rise to, i.e. we will call them a
“conventional pole”, a “hidden pole”, and a “mirage pole”.

Second, x,c<s)(s) has branch points at s = 1 — iy, where y = y/v¢q, and
we chose the branch cuts to run along the lines £x — iy, 1 < x < . Because
of the sign of the argument of the exponential function in Eq. (5), the
contour must be closed in the lower half-plane for t > 0, so it traces over
the branch cuts in the manner shown in Fig. 4. For t < 0, the contour must

be closed in the upper half-plane, where X,C(s)(s) has no singularities and

thus x¥(g,t <0) = 0 as required by casuality.
The evaluation of the integral over the contour in Fig. 4 yields

X9@ 0 =vea (), X0 ) = X)) = X ohen (€. @)

Here stgle(t*) is a contribution from the residues of the poles of x¢®/(s) on

the physical sheet:

Xipme(t') = =i Y e Res_yxi(s). @
sjephys.

Since the sum over s; is restricted to the poles on the physical sheet, it
includes conventional ZS and and hidden poles, but not mirage poles.
The second term in (7) is the branch-cut contribution

contour over (dimensionless) complex frequency s on the physical os) e 1 /-oo s )
t=e V" — {e LN X) + et p x ]dX~ 9
Riemann sheet from which we obtain X,C(S)(t*) in Eq. 7. Xipranch (t") 21/, X (%) X (—x)|dx, )
In(s) Re(s) Im(s) Re(@)
- ]
LI~ ,-=-< -

Fig. 5 Another way to define the integration contour over complex s. We added to the integral over real s the integration segments over s
immediately above the branch cuts on the physical sheet and immediately below the branch cuts on the unphysical sheet. These additional
integrals then cancel out between the two Riemann sheets. We then added the integral over an infinite semi-circle to the unphysical sheet,
and for both sheets added and subtracted the integrals over the range of s between the branch points. The resulting integration contour in
each Riemann sheet consists of the closed contour (the solid line) and an additional piece (the dashed line).
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Re(s)

Fig. 6 Integration contour over an alternatively defined Riemann
surface. Contour of integration over complex s with a branch cut
(dashed line) chosen to run horizontally between the branch points
at 1 — iy.

where Ay (x) is the discontinuity of x®)(s) at the branch cut:

B (x) = iing(xf(s)(x —iy—ig) —xW(x —iy + ie))‘ (10)

It is also possible to re-arrange the contour integral into the one
depicted in Fig. 5. This is done by (a) closing the integration contour in
complex s on the physical sheet along the line x — iy + i, where ¢ is
infinitesimal and x =—co...co, i.e. along the line which is located right above
the branch cuts, (b) adding an integration contour on the unphysical
sheet along the line x — iy + ig, x = —oo...9, i.e,, right below the branch cut,
(c) closing this second contour via an infinite half-circle in the unphysical
lower half plane, and (d) adding two compensating integration segments
along the lines x — iy — ig, where —1<x<1, on the physical sheet, and
along x — iy + ig, —1 < x < 1 on the unphysical sheet (dashed lines in Fig. 5).
Because x;*(s) varies smoothly through the branch cuts if one
simultaneously move between physical and unphysical Riemann sheets,
the integration segments running above and below the branch cuts cancel
out.

The evaluation of the integrals again yields an expression of the form of
Eq. (7), but now the sum in Eq. (8) is over the poles on the physical sheet
above the branch cut (i.e., conventional poles with damping rate y,s < y),
and over mirage poles:

c(s) A\ i —is;t*
Xipole(t') = 1 e Ress—gx)(5)-
sj€conv.,mirage

(1m

In addition, the second contribution in Eq. (7) now comes from the
difference between the values of ch(s) (s) on the two Riemann sheets rather
than from a discontinuity at the branch cut:

1
Xiomnen (t7) = €7 21—" / [e*‘"‘AX,C(S)(x) + et Ax,c(s)(fx)]dx. 12)
0

It can be verified that the integration contour of Fig. 5 is equivalent to a
contour on the physical sheet, when the branch cut is chosen to run along
the line x — iy, — 1 <x < 1, see Fig. 6. In this case, the integral for Xpranch Can
be understood as running around the circumference of the contour
glueing the two Riemann sheets together into a single sphere.

In what follows, we will present calculations using both integration
contours, the one in Fig. 4 and the one in Fig. 5. Although the result, of
course, does not depend on the choice of a contour, some details of the
calculation are more transparent when using one contour and some are
clearer when using the other.

X (t) for I =0
In this section we provide detailed calculations for the case of / = 0. First,
we use the integration contour in Fig. 4 and then the one in Fig. 5.
The free-fermion susceptibility is given by Eq. (2) of the main text
is
Xols) =1+ ————. (13
1—(s+iy)" —vy
The quasiparticle susceptibility is obtained by plugging x, into Eq. (4).

The two poles of x5/ (s) are located at

(s) (
LR 14 F5®

c(s) o s
S ZFS(S) 1+ 2F, % |y71 n 2Ff,(s> . (14)

S12 =
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Fig. 7 A 3D depiction of the pole evolution on the Riemann
surface for I = 0. The figure is obtained by mapping the complex s
point of the two Riemann sheets to the 3D set of points
{Res, Ims, £Rev'1 — 52} where +(—) maps the physical (unphysical)
sheet to the top (bottom) sheet of the figure. On this representation
of the surface, the solid and blue red lines denote the pole evolution

with increasing F§*). The evolution of the poles begins at the origin

of the physical and unphysical sheets at FS® = —1. The poles
initially move along Im(s) axis down(up) the physical(unphysical)
sheets. The pole on the unphysical sheet reaches infinity and crosses
to the physical sheet at F{®) = —1/2, and the poles merge and
bifurcate at FS® = —(1 —y2)/2. The regions with yellow shading
denote areas where a pole in x5 (s) either on physical, or on
unphysical Riemann sheet, gives rise to a peak in x5*'(s) on the
physical real s axis. The areas shaded by peach color are regions
where a pole cannot be analytically extended to the physical real
axis due to the branch cuts, and xg(s)(s) on the physical real
frequency axis has no sharp peaks. We set y = 0.2 for definiteness.

In Fig. 7 we show a 3D depiction of the poles’ trajectories on the
Riemann surface. In what follows, we assume that y < 1, as we did in the
main text.

The discontinuity of xo(s) at the branch cut is

2Vx%2 —1(x —iy)
(1+ 2F8<5))(x —iy—s1)(x —iy —s3) '
where s, , are given by (14), see Eq. (10).
We obtain xo(g, t*) for the three cases shown in Fig. 1a of the main text,

i.e, for a ZS resonance (an overdamped / = 0 mode), hidden mode, and
weakly damped ZS mode.

(0 = (s)

ZS resonance, —1 <Fg(s) < —1/2. An overdamped ZS resonance occurs

for —1<Fy* < —1/2. The pole contribution can be found directly from Eq.
(8). As follows from Eq. (14), there is only one pole in the lower half-plane,
at s; = —iy,, Where

vas = (1= 1F671) /2067 = 1. ()

Note y,s > y everywhere but in the narrow vicinity of the Pomeranchuk
instability at F;* = —1. Evaluating the residue in Eq. (8) we obtain

VAR

0] = 32
2|F0 [ —1 (leS(S)‘ _ 1)

e Vat'

©) (g
Xopole(t") 7)

Now we turn to x¢_ ("), Eq. (9). One can readily verify that at large t*,
the leading contribution to the integral in (9) comes from the vicinity of
the branch point s = 1 — iy. Accordingly, we shift the integration variable
in Eq. (9) to y = 1 4+ x and expand the integrand to leading order in y. We

obtain

o0
. e y —it*—iyt*

o) = =G5 [ e e

Jo (14 2F;7)010, (18)

_ e —it* +im/4
o1+ 2k )or0, 12 P00, e + c.C.

where
o12 =512 —(1-1y), (19)

are the pole coordinates measured from the branch pointats = 1 — iy
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Keeping y only in the exponential, we re-write Eq. (18) as

<(s) ) vt |2 COS(E —11/4)
) e [EEOSE )
O,branch( ) T <Fg(5>)2(l’*)3/2 (20)

Comparing X;F;)o,e and x5, we see that at Fg® 2 —1, where y,, < 1
(but still y,s > y), the pole contribution dominates up to t* ~ t s, Where

3, (FS(S))Z
O

> 1. (21)
Z(st - V) (2|F8(S)‘ - 1)(yzs - Y)

teross =

For t* > t s, the branch-cut contribution becomes the dominant one.
At FE(S) not close to —1, tyoss ~ 1. In this situation, the branch-cut
contribution dominates over the pole one for all t* > 1.

Weakly damped ZS mode, Ff)(s)>0. For F8(5)>0, 7S excitations are

conventional propagating modes. The time-dependent x5 (1*) is analyzed
along the same lines as for the overdamped case. The main difference is that
for a propagating mode y,s <y, and, hence, the pole contribution remains
the dominant one at all times, i.e. there is no crossover to oscillations from
the branch point (this incidentally is indicated by the divergence of tss in
Eq. (21) as y,s crosses y). The pole contribution is now obtained by summing

up the residues of the two poles at s;, = *s,; —
1/2

(14 FE9) /(14 26 and y,e = (1 + FE9) /(1 + 269 <. Keeping

only in the exponential, we find

_ i\/ Sgs =1 —iSpst" Y t* _
XO,poIe(r‘) - € +tcac =
(1+ 27y

iz Where s,o =

2FE) .
Oc(s) 35 sinsst'e Yt
(1+2F0 )

(22)

Hidden -1/2< Fg(s) <0. We next
—1/2<Fg<s) <0, where the ZS pole is a hidden one: s; = s,, — iyn, where

sn= (1= 1R N/\/1=2F5"| and y, =y(1 = [F§])/(1 = 2F§7]) > .
The pole contribution to x5 (t*) is up to O(y) terms

mode, consider the range

2/F5Y)|

: * A=Yt
(0 2|Fc<s)\)3/25'nshte . (23)
- 0

Xf)f;)ole(tﬂ =-

Note that to get the prefactor right, one has to keep y finite, otherwise
the pole and the branch cut would be at the same depth below the real
axis, and the prefactor in (23) would be smaller by a factor of two because
the angle integration around the pole would be only over a half-circle
rather than over a full circle.

The branch cut contribution in Eq. (9) reduces to

<(s) * 1 e /OO —ixt* (X — Iy) x2 =1
X ty=——"—"+— dxe - - +c.c
O,branch( ) m _2“:3(5)‘ 1 (X—IV—$1)(X—IY—52)

(24)

where now s; , = *s,, — iy, Evaluating the integral, we find two dominant
contributions: one from x = 1, i.e., from the vicinity of the branch point, and
another one from x = s, i.e., from the vicinity of the hidden pole (there is
only one such term because Re s, < 0). Accordingly, we write

(s) #y _C(8) * (s) *
Xf),ks)ranch(t ) _Xg,granch:a(t ) +X;,lsuranch;b(t ) (25)

To obtain x5 ..., we expand near x = s, as x = sy, + € and keep the
leading terms in ¢. We obtain

« 2 e
e vt 4/Sp— 1 oo et
s) (t") = —isnt / de (26)
—00

<(
t .C.
Xo,branch;a 1 2‘F8(5)| e iy +c.C
where ¥ =y, —y>0. The integral in (26) yields, by Cauchy theorem

00 e—iet* _.
/ de = 2ime """, (27)

e E€FIY
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Substituting into (26) we obtain

V21

) 17"
1-2/F5Y]

sinspt'e "t =2
(1-21F")

(s * . — *
XOFbianch;a(t*) == 3738 sptfe Mt

(28)

Observe that the exponential factor in (25) is e ", despite that the
overall factor in (24) is e ", The extra factor e~ ~Yt appears after the
integration in (27).

Comparing (23) and (28), we see that X;f;)ranch;a(r*) cancels out the pole
contribution:

Xotranca(t") = Xopole(). 29)

Because of the cancellation between x5©). . (t*) and Xopoie(t*), there
are no oscillations in X8(5>(l‘*) with frequency s, set by the hidden pole.
Note in passing that if we computed Xf)fsb)ranch;a(t*) strictly at y = 0, the
overall prefactor would be smaller by the factor of two because then
J72 dee " /e = —im. The relation Xgi)ranch:a(t*) = Xopole(t”) would still
hold because the pole contribution at y = 0 would also be smaller by a
factor of two.

The second term in Eq. (25) is the contribution from the vicinity of the

branch point. At the largest t*, this contribution has the same form as in Eq.
(18):

c(s) N 2 cos(t* —m/4) e
Xo,branch:b(t - OO) ~ \/:—Ze . (30)
"(F;(S)) (t*)3/2

However, the full form of X;i)ranch;b(t*) is more involved, and the
1/(t")3/2 behavior sets in only after some characteristic time tcoss,1, Which

becomes progressively larger as \Fg(s>| decreases and sy, approaches 1. To
see this, we expand the integrand of (24) in y = x — 1, but do not assume
that y is small compared to o, = s, — 1. We obtain, at t* > 1

« 2 Oh e i «
X branchis () & — [ e e i+1/4) 7(0ut*) + c.c., 31)
TRy
where z = —iyt* and

4 00 \/Eefz
Z(a) =), d227ia 32)

=1—/—inae “erfc(v/—ia),

2
where /=i in (32) stands for (1 —1i)/1/2. Note that both oy, and (F5®))
vanish in the limit Fg“> — 0, but their ratio remains finite:

2
on/(FS¥)" & 1/2. At small enough FS®), a = ot* can remain small even
when t* is large. Accordingly, we treat a as a variable which can have any
value. In the two limits a > 1 and a <« 1 we have

ak 1

Z(a) = { :7 33)

5qs a>1.

Accordingly, in the two limits X;(,?ranch;b(f*) behaves as
cos(t* +m/4)
(t,)w/z 5

%7 ont* > 1.

© opt* <« 1
(s
XO.branch;b(t*) x

We see that both the exponent of the power law decay and the phase of
oscillations vary between the two regimes. In particular, the phase changes
by 71/2 between the regimes of o,,t* < 1 and o,,t* > 1 (up to corrections O
(y). The crossover between the two regimes occurs at t* ~ tc.oss,1, Where

tcross,1 = 1/0h = 1/(5h - 1)7 (35)
is related to the coordinate of the hidden pole. This relation provides a way

to detect the hidden mode experimentally, particularly for small Fg“),
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Fig. 8 Evolution of the phase of the hidden mode. a Evolution of the phase of the oscillations ¢(t*) in Eq. (37) with time, for different
FS®) = —0.03,-0.06, ... —0.48 (the rightmost blue dots are for F§*) = —0.48). Numerical results for ¢(t*) are plotted as a function of t*/tcoss.

For t* > t.0ss the data for different Ff,<s) collapse onto a universal curve described by Eq. (31). b Evolution of t.,oss With FS(S). The black curve is

the asymptotic expression in Eq. (35).
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Fig.9 Properties of the I = 1 longitudinal mode. a A sketch of the trajectories of the poles ofxﬁ(s) (s) on the physical and unphysical Riemann
surfaces. Solid (dashed) circles denote the poles on the physical (unphysical) Riemann sheet. Arrows on solid (dashed) blue lines denote the

direction of poles' motion on the physical (unphysical) sheet with increasing Ff(s). Blue, magenta, orange, and green circles show typical
positions of the poles for the cases of an overdamped ZS mode, a hidden mode, a propagating ZS mode, and a mirage mode, respectively.
Note the existence of poles (orange and green, on the Im(s) axis) corresponding to additional overdamped ZS modes for Fﬁ“) >0.b A
crossover in Xﬁ(s) (g, t) between the regions dominated by the contributions from the visible and hidden poles. The blue (magenta) points
denote the num_erical result for F‘.I:(S) = F‘{‘S +0.05 (F‘{is — 0.05), where F‘{is = —0.162, and the solid lines depict the analytical result. (The
significance of F}* is described in the text around Eq. (61)). It can be seen that the two traces begin in phase, then move out of phase, and

finally become in-phase again. This is an indication that )(ﬁ@(q7 t) oscillates at different frequencies that correspond to poles for different F?“),
until oscillations from the branch points take over at long times.

where sy — 1 < 1 and teos51 > 1, by either by looking at the crossover in
the power-law decay of xS¥(t*) or by studying a variation of the

pranch defined in Eq. (12). We shift the integration variable in (12) to y =
1 — x. At t* > 1 only small y matter, and one can safely extend the limits of

phase shift.

In the intermediate regime of t* ~ t ;o551 (@ssuming that tc.oss,1 > 1) the
susceptibility behaves as x5 (t*) ~ A(ont*) cos(t* — $(t*))/(t)"/2.In Fig. 8
we depict $(t*) extracted from numerical evaluation of x5 (t*) for

different F;@. To obtain the data in the figure, we fit segments of the data
at different t* onto a trial function Acos(t* — ¢)/(t*)%, where A, ¢, a are
fitting parameters. We then fit ¢(t*/toss) to the prediction of Eq. (37). The
data shows a good collapse of the phase evolution onto a universal
function of ont* = t*/toss1, given by Egs. (31) and (32), even for not-too-

small Ff,(s), and a very good agreement between the numerical value of
teross 1 and the asymptotic expression in Eq. (35).

Calculations using the contour of Fig. 5. We now demonstrate how to
evaluate x5 (t*) in the case of a hidden pole, i.e, at —1/2 <FS® <0, using
the contour of Fig. 5. The advantage of using this contour is that there is no
need to account for a partial cancellation between the pole and brunch-
cut contributions. Inspecting the integration contours, we note that xo,
pole(t*) = 0 because there are no poles either above the branch cuts on the
physical sheet or below it on the unphysical sheet. We are left only with xo,
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integration to +eo. We then obtain

ek 2iyy(1—iy)
7/o (1= 2IF$))(y + 01)03
It is easy to verify that Eq. (36) is the analog of Eq. (24), up to small

corrections due to y. The integral in Eg. (36) can be solved exactly with the
result

e +cc (36)

Xbranch (t*) ~

X (t*) ~ eiit*i(\/j)(‘l — |V)
0,branch \/ﬂ_t*('l T ZFS(S))Gz
where Z(a) was defined in Eq. (32). This result is the same as in Eq. (31), but
with corrections due to finite y.
We also note in passing that at small t* < 1, X§<S)(t*) is linear in t* for all
9. In the limit y — 0 the dependence is given by:

t (. 3-2F"
ﬁ%m-@f’wﬁ+m (38)

Z(ont*) + c.c. (37)

values of FS'

24

At small but finite y, the slope at t* — 0 changes to
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XD () = (t/2)(1 + yO(FSY)), where ®(~1) = 0 and O(0-)=
8/(mFS)). For FS®) = 0, xS (t*) = J; ('), where J; is a Bessel function.

x*®(t*) in the I =1 longitudinal channel

In this section we provide a detailed derivation of xS (t*) in the
longitudinal channel. The free-fermion susceptibility is
1+i—Str

1—(s+iy)?
1——Yr

1—(s+iy)?

Xi(s) =1+ 282 (39)

In the limit y — 0, the pole coordinates are the solutions of
2 2
0=4Fs* + (1 — 2% = 3(FY) )sz -(1+A9) (40)

This gives four poles, which are located on both physical and unphysical
sheets. In Fig. 9 we present a 2D sketch of the evolution of the four poles
on the Riemann surface. As before, we label the pole with Re s > 0, Ims > 0
as s1, We label the pole in the first quadrant of the unphysical sheet as s3
and define s; = —s;,s4 = —si. At finite y, the expressions for the
coordinates of the poles are much more involved, but the number of
poles remains unchanged, as does their qualitative behavior.

The discontinuity at the branch cut is

V2 = 1(x —iy)®
Oy ot~ iy = 5)
Before proceeding to a calculation of Xﬁ(s)(t*) we sketch out the

trajectories of s;_4 on the physical and unphysical sheets, see Fig. 9. We
start with the limit y — 0. The two poles on the physical sheet, s; 5, depart

from s = 0 at F{*) = —1 and move in the complex frequency plane as F<"¥
increases from —1, until approaching the branch cut at Fﬁ(s) = —1/9. For
Fﬁ“) close to —1, the poles are almost propagating, and y,s < y. Such poles

8P (x) =

(41)

give rise to oscillations in X?(S)(t*) at the pole frequency. For
—1/9<F® <0, the poles on the physical sheet are hidden. For
0<F§(5)<3/5, the poles are conventional ZS poles with y,s < y.
For 3/5<F$(5), the poles move to the unphysical sheet and become
mirage poles. The two poles on the unphysical sheet, s; 4, are the mirror

images of the poles on the physical sheet in the range —1 <F§<S) < =1/9,

i.e, s3 =5;7,55 =55. In the range 71/9<F§(S>

<0, the two poles move
parallel to the real exis, reaching # at F$*) = 0. For positive F$*), the
poles s3, 54 are on the imaginary axis of the lower half plane of the physical
sheet, and on the imaginary axis of the upper half-plane of the unphysical
sheet. (We recall, that on the Riemann surface the points +eo, +ico on the
unphysical sheet, and —iee on the physical sheet, are identical). The pole on
the physical sheet moves up from —ie and the pole on the unphysical
sheet moves down from -+ie. At finite y, the trajectories are slightly
deformed, so that, e.g., 51, never quite reach the branch cut and s 4 are
never true mirror imag{es, but the qualitative behavior remains the same.

We now evaluate x5 (t*). As we did in the | = 0 case, we first use the
contour of Fig. 4. The evaluation proceeds along similar lines as for / = 0,
except for two differences related, first, to the existence of mirage poles,
and second, to the fact that for some ranges of F? *) we need to take into
account contributions from all four poles.

Weakly damped ZS mode, F® 2 —1. Consider first the limiting case
12

F$¥2 —1. Here s; = s, — iy, Where s~ ((1—|F¥[)/2)"" and

Vos = (1 — \Fﬁ(s) )/4. The real part of s; is much larger than the imaginary
one (Y5 < Sz < 1), i.e., the mode is underdamped. The pole and branch
contributions to x®(t*) are given by

—\/1= (51 +1ip)%s3
A ) we—-m +ec, (42)
F Hj:z..4(51 =)

X (1 _ iy)3 e—it"+i71/4
Xbrancn (7) & +c.c.,
ranc Fi(s)(ﬁ 070304 2\/2777(1'*)3/2

respectively, where g; = s; — (1 — iy), similar to Eq. (19). For y — 0, the pole

Xpole (t*)

(43)
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contribution is

sin syt*

O (¢ St
X1 pole (1) & L ‘. (44)

The branch cut contribution has the same form as in the /| = 0 case, cf.
Eq. (30):
cos(t* —m/4)

*

X?E!?ranch(t*) ~ eﬂﬁ . (45)

For Ff(s) ~ —1, the pole contribution is larger than the branch-cut one
over a wide range of t* because the pole contributions contains a large

prefactor 1/s,s while the branch cut contribution is reduced by 1/(1‘*)3/2 at

large t*. Still, at any |Fﬁ(5> |< 1, intrinsic y,s is finite and by our construction is
larger than extrinsic y. Then, at large enough t* > tc.oss2, the branch-cut
contribution becomes larger than the contribution from the pole. The
crossover scale is

1 1
tcross,z ~ IOg
Szs (st -y

. 46
Yzs =V )3/2 (46)

This teoss2 is the I = 1 analog of t s in the I = 0 channel, Eq. (21).
Hidden pole, —1/9 < Fﬁ(s) <0. In the hidden pole regime, which occurs for

71/9<F§(5) <0, the pole contribution is still given by Eq. (42). To leading
order iny, it is

X e(t) = —aK,s3 (s — 1) sinsyt, 47)
where

:
K, =

(1 —oirs1) R “

The pole frequency is

1- 1R o(s) <(s) on]"”
sh:W{sto == D —aFp| 49)
0

In the two limits, s, = 2/+/3 for F®) = —1/9 and s, > 1 for F<¥) — 0.
To leading order in y, the branch-cut contribution can be expressed as
the sum of the two terms:

(s) w\ <) * (s) *
X?,Zranch(t ) 7X§,lsnranch:1 (t ) +X?,;ranch;2(t ) (50)

The first term contains the frequency of the pole s; on the physical
Riemann sheet:

00 3 2 —it"s
<(s) o2 / axx>Vx* —le
L () ==K — 3 5
X1.branch,1( ) oY ; (x+ iy)2 _ 512

where we recall that s; = s, — iy, and y}, = y. The second term contains the
frequency of the pole s3 on the unphysical Riemann sheet:

+c.c, (51)

2 o 4 3/2_1—ixt*
Xi(lsu)ranch-z(t*) i V/ #‘F c.c, (52)
' " T (x +iy)* —s2
where s3 = s} — iy; with y3 <0 and
1— |FC<S)\ 1/2
e AR MR R LT | R
0

As for | = 0, the two largest contributions to X?(,p?ranchn (t)in (51) at > 1
come from x = s, and from x = 1. Accordingly, we further split x/_ . (t")

into two parts as X?Fg)ranchﬂ (t*) :X?flsa)ranch:w(t*) +X$E;)ranch:'lb(t*)‘ The first

contribution is obtained in the same way as for | = 0, by expanding in ¢ = x
— Sh. The result is

X tanch1a(t’) = —2Ky52 (52 = 1)/ sin(snt") (1 * |:: :W‘ &9
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Because y}, > y, the two terms in the last bracket in (54) are of the same
sign and add up to a factor of 2. Then

X o) = 452 (2 — 1)/ sin(snt). (55)

Jbranch;1a

This term exactly cancels out X?F;)ole(t*) from (47). The second
contribution, x?fsb),anch_b, yields oscillations with frequency equal to one. It
evinces a crossover from X?f;)ranch;b o cos(t +1m/4)/(t*)"? behavior at t* <
teross 3 tO x?@ranch;b o cos(t — /4)/((ss — 1)(*)*/) behavior at t* > terossss
where again

1

Sh — 1 (56)

teross3 =

This teross,3 is the analog of teess1 for I = 0, Eq. (35).

The term X?f:):'anchzz(t*) can also be split into two contributions, one from
x = s§ and another one from x = 1. Evaluating the first contribution, we find
that, up to an overall factor,

X nenaa t') o sin(s,t") (1 I )

(57
lvs —vI

Because y3 < 0, the second term in the round brackets equals —1 and
cancel the first one. As a result, there is no sin(s;t*) term in xﬁ(s)(t*). The
second contribution, x5, .25 ("), has the same structure as x5, 4.1, (t")

and just adds up to the prefactor of an oscillation with frequency equal
to one.

Damped ZS mode for Fﬁ(s) < —1/9. In this section we consider the range
of —1 <Ff<s) < —1/9, excluding the immediate vicinity of —1, which has
been already considered in Section 1. For Fﬁ(s) < — 1/9 the pole is close to
but somewhat below the branch cut, i.e., in our notations this is a weakly
damped conventional ZS pole (by x <y we mean that x is smaller than y by
an asymptotically small quantity). Here we have s~ 2/v/3,y, ~

3(|F§(5)\ —1/9)/2. Up to two leading orders in y,, the pole contribution
is

3 . r
XL () = —Ze st <%+ 3v3sinsyt’ + O(yzs)>‘ (58)

pole 2 s

We verified that both terms in the pole contribution are cancelled out by
the corresponding contributions from the branch cut. The branch cut
contribution can again be represented as the sum of two terms, like in (50),
(51), (52), but now s3 is complex conjugate of s;: s3 = s, + iyh. The term
that cancels (58) is obtained by expanding in ¢ = x — s, and evaluating
integrals up to two leading orders in y;,. The cancellation implies that there

are no oscillations in Xﬁ(s)(t*) with frequency s,;, even when the system is
slightly outside the range where the ZS pole is a hidden one. The
remaining contribution from the branch cut has the same form as in other
regimes: at largest t*,

cos(t* —m/4)

c(s) *
Xl. ranch(t ) x (t*)3/2

(59)

We now study the crossover from the behavior at Fﬁ“) < —1/9, where
we just found that the pole contribution is cancelled by the contribution

from the branch cut, to the behavior at Fﬁ@ > —1, where we found earlier

that there is no such cancellation. As Fﬁ(s) decreases, the trajectory of s,
evolves in the complex plane, mirrored by the other s, 4. During this
evolution, y,s is finite but numerically small. For this reason, below we
restrict ourselves to the leading contribution in y,s.

Within this approximation, the pole contribution is the first term in (58).
For the branch cut contribution we find, not requiring s, to be close to

2/V3,

) o 3ei5,5t‘ o0
X?.Sl:wanch(tL ) - ar dx

T—5z

e~ ixt*

S,s — 1+ x
ﬁ 7+C.C.
X<+ Vi Sz — 1
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(60)

For s,s < 1, the lower limit of the integral is positive. This happens when

F < s, (61)
where FY = —0.162. In this range of F\¥, one can safely set y,; to zero -

the integral does not diverge. As a consequence, Xﬁff))ranchﬂ(t*) does not

contain the factor oy, and cannot cancel Xﬁf;zj,e(t*) X COS(Sz5t*) /Y, N
(58). The leading contribution to the integral in (60) comes from x = 1 — s,
and the integration yields

cos(t* —m/4)

X?Slsa)ranch(t*) x
as in (59). We see that the behavior of xﬁ(s)(t*) is qualitatively the same as
for F= —1: the pole contribution yields oscillations with frequency s,s and
remains the largest contribution to xﬁ(s)(t*) UP 1O t* ~ teross 2 At ¥ > tross s
the branch cut contribution becomes the largest one and Xﬁ“)(t*)
oscillates at the (dimensionless) frequency equal to one.

However, when s, > 1, which happens for F} < Fﬁ(s) < —1/9, the lower
limit of integration in Eq. (60) is negative, and the integral contains a
singular contribution from x — 0. Using

o0 e—ixt' B m it
IRV
—00 X+ st YZS
we find that this singular piece cancels out the contribution from the pole.
Evaluating the other relevant contribution from x = 1 — s,, we find

(63)

3 cos((t* —m/4))
2y/7 (55 — 1)5/2 (t*)g/z

X0() =~ (64)

This result is valid for t¥|s,s — 1| > 1. The cos(t* —rr/4)/(t*)3/2 is
precisely the expected time dependence for the case when the

contribution to xﬁ(s)(t*) comes solely from the end points of the branch cut.

We see therefore that oscillations with frequency s, exist as long as
FS©) < F¥s_ For F¥s < F$®) < —1/9 only oscillations, coming from the branch
points, with frequency equal to one are present.

In the analysis above we expanded in v, i.e, we assumed that the
damping remains small in the crossover regime around F}S. The
approximation of small y,; would be rigorously valid if the pole trajectory
in the complex plane would remain close to the real axis for all

-1 <Fﬁ<5) < —1/9. In that case we would expect oscillations to persist for
a long time, both at F$*) < F¥s and at —1/9<F<) <FYs. For F5 < Fis
oscillations would occur with frequency s, at intermediate t* (but still t* >
1) and with frequency equal to one at even larger t*. For FYs<F®
oscillations would occur with frequency equal to one at all t* > 1. We see
therefore that the branch contribution “eats up” the pole contribution once
the coordinate of the pole in the complex plane moves to below the branch

cut. In reality, y,, is small (or order y) near F<® = —1 and F$®) = —1/9, but

is of order one at F$®) ~ F¥, In this situation, the crossover between the

behaviors at Fﬁ(s)z —1 and Fﬁ(s)s —1/9 is expected to be obscured by
damping. Nevertheless, in numerical calculations, we do see indications of

the crossover in the behavior of xS (t*), when F$*) is varied around F¥s,
see Fig. 9 b and its caption.

Calculations using the contour of Fig. 5. We now obtain the same results
by using the integration contour of Fig. 5. Again, the use of this contour
will allow us to avoid canceling out pole and branch contributions. It also
allows one to see more transparently how the poles on the unphysical
sheet contribute to the dynamics. We study both the regime of hidden
poles and the crossover regime between F5®) = —1 and F$®) — 1/9. For
consistency we define s; = s, — iy,s and 0,5 = 5, — (1 — iy). With the
contour of Fig. 5, the pole contribution is zero for the same reason as for
the | = 0 case (cf. Section 4), and the dynamics is determined entirely by
the branch-cut contribution, which is given by
—it*

1
Xoranch (£) = =— / e ax;¥ (1~ y)dy + cc., (65)
0

2m
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where we used Eq. (12) and shifted the integration variable viay = 1 — x.
To proceed further, we infer from Eq. (41) that the y integral is dominated
by the region y <« |gj, i.e., by whichever pole is nearest to the branch point,
see Eq. (19). In our notations, it is 0; = 0,. For |0,5| < 1 we may expand the
integral in small y and extend the integration limits to infinity. This yields

V2i(1 — |y ot \/—e'yt
Fe / 14y +0)

dy +c.c. (66)
2m 1.4y +0))

X1 Jbranch (t*)

First, we consider the situation when F?m <0 and \Fﬁ(s)\ <1/9, ie,
when s;, reside below the branch cut (see Fig. 9) and are close to the
branch point. In this situation |s3 4| > 1 and the y dependence in the (y +
03)(y + a,) factor in Eq. (66) can be neglected. Then Eq. (66) is identical to
Eq. (36), up to unimportant constant factors, i.e., the hidden pole behavior
for I = 1 is the same as for | = 0. Next, we consider the situation when F?(S)
decreases and becomes smaller than —1/9. We evaluate the integral in Eq.
(66) exactly by contour integration in the first quadrant of complex y and
obtain

X1, branch(t*) + c.c, (67)

\/_I 1— |y e
N A2 (o)t
277F j=1.4
where A; = 3",.(0; — o)
+ o)), and

are the partial fraction decompositions of TT;(x

Z(o,t) = /0\ dxem#/;odx = ©(—Re0)O(—Ima)2mmiy/—oe ™ + e"*Z(at),

(68)
where Z(a) was defined in Eq. (32) and ©(a) is the Heaviside function. (Note
that since s, 3 are not near the branch point at 1 — iy, they have g; = —2

while the integral is dominated by the region y ~ |01|, |04|. However, their
contribution is included in the complex conjugate term in X1 pranch-)

Equations (67) and (68) are applicable in both the hidden pole regime
and the crossover regime, as long as |0;| < 1. Let us examine them in the
crossover regime. Although the sum in Eq. (67) is over all four poles, the
Heaviside functions in Eq. (68) are nonzero only for s;. It can be verified
that the sudden appearance of the pole contribution for s; is mirrored by a
jump in $AZ(ojt), so that the crossover is actually smooth—the pole
progressively “emerges” from behind the branch cut. This behavior is the
analog of the progressive “eating up” of the poles that we obtained via
integration over the contour of Fig. 4, see Eq. (60).

To obtain a qualitative understanding of how the poles emerge, we
expand Egs. (67) and (68) in small y,s — y. This approximation is analogous
to the one we made above when studying the crossover using the contour
of Fig. 4, i.e. of keeping only the leading contribution in y,s. Using our
results for the contour of Fig. 5, the only necessary step is to take the limit
Imo; — 0 in Egs. (67) and (68), which yields,

. e —im2 (s — 1
X1 branch(t*) & _6(1 - 525)277 11— SZSeiISBI - eilr +|77/4#
’ 4(s;s — 1)

(69)

i.e. oscillations at a frequency s, # 1 begin to emerge precisely when s, <
1. Eqg. (69) is valid when |(1 — s,)t*] < 1.

Mirage poles. Finally, we discuss the mirage poles. For 0 < F?(S) <3/5, the
conventional ZS pole s, is located outside particle-hole continuum, and its
position in the lower half-plane of frequency is between the real frequency
axis and the branch cut, i.e., Res; > 1 and —y <Ims; <0. At F*® =3/5, Ims;
becomes equal to y, and for larger F;, the pole moves to the unphysical
Riemann sheet, i.e. in our notatlons |t becomes a mirage pole (see ref. 19).

As before, we first compute x5* (t*) using the integration contour in Fig.

>3/5
the whole contribution comes from the branch cut: X1< )( t) =
—xﬁfg)ranch(t*). The integral over the branch cut has two relevant
contributions. The first one, xﬁf;)ranch:am(t*), comes from the vicinity of
branch points. This contribution is computed in the same way as the
analogous contributions in other cases considered earlier. The result is

<(s) o 1 cos(t* —m/4) _ .
X1,branch;am (t ) - 32 e e, (70)

var(FeY ()

4. Because there are no poles on the physical Riemann sheet for F
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The second contribution, xﬁf;)ranch:bm (t*), comes from the vicinity of the
point on the upper edge of the branch cut, s = x,, — i(y — 0+), where there
would be a ZS pole in the absence of damping. The real x,, is the solution
of
1 FC(5> 3

R NS I S W 71

FEO T Tk

At F1 =3/5, Xm = 2/+/3. For Iarger F1 , Xm increases monotonically
with F1 . For F1 ) > 1, xm ~ (3F 1 /4) . For s near x,, — ily — 0+),

c(s) Q (Xm) 1

s) = — - )
*6 (Fﬁ(w)Z 5 — Xm + iYQa (Xm) (72)
where
(xrzn —1)3/2
Qi xm) = Ixm(x3, — 1) — 222, (22, - 3) 73)
_ o Xnlm =R T)
Q2m) = 250 T xmia )

Equation (72) is valid only for s above the branch cut, i.e, for |Ims| < y.
This is satisfied on the upper branch of the cut, but not on the lower
branch.

The function Q(x,,) satisfies 02(2/\/_) =1 and increases with xm for

larger x,,,, which correspond to F >3/5 At large F Oz(xm) ~ F /2.
The condition Qy(x,) > 1 |mp||es that there is no poIe in (72) above the
branch cut, where this expression is valid. Evaluating the branch cut
contribution along s = x — i(y — 0+), we find that the largest piece comes
from x = x,, and yields

Qi(Xm) o @ (Qalxm)
(F?(S) 5sin(Xmt")e . (74)

(s) *)
X?.lszranch;b,.,, (t ) -

Combining (70) and (74), we see that in the range where a ZS pole is a
mirage one, xS (") = —()(ﬁ(?ranch;am(t*) +x?i>ranch:bm(t*)) has a contribu-
tion oscillating with (dimensionless) frequency x,, and the contribution

oscillating with (dimensionless) frequency equal to one. When Fﬁ(s) =0(1),
the second contribution is the dominant one in some range of t* > 1,
because the first contribution contains 1/(t*)3/2. However, above a certain
t* the contribution from the branch point becomes the dominant one as it
contains the smaller factor in the exponent. This crossover from oscillations
with frequency x,, to oscillations with frequency 1 provides a way to detect
a mirage pole experimentally.

For 0< F )< 3/5, the ZS pole is located in the Iower haIf plane of

frequency on the physical Rieman sheet. In this situation, x1 ( *) contains
contributions both from the pole and from the branch cut. The combined
contribution from the pole and the upper edge of the branch cut is

ZEEsin (xt ) e V(@ b)),

(Fe)’
where now 0<xmy<2/4/3 and Qs(x,) < 1. The contribution from the
branch points is still given by (70). There is no crossover in this case
because the exponential factor in the pole contribution is smaller than in
the branch cut contribution. We note in passing that there is also a sign
change between x5 (") and X§<lsnranch o, (t) in (74), (e, the phase of
sin(xm)t*) oscillations changes by 1 between the regions where a ZS pole
is a conventional one and where it is a mirage one.

Calculations using the contour of Fig. 5. The same results can be obtained
using the contour in Fig. 5. For the contour of Fig. 5, the pole contribution
is non-zero and is given by

V1= (51 +ip)s
Fi(S)Hj:Z.A(ﬁ - )

where s; = s, —iym is the mirage pole according to our conventions. This is
just —1 times the result for a conventional ZS mode residing above the
branch cut on the physical sheet, Eq. (42). The phase shift is due to the pole

(75)

Xpole(t*) = e Wt 4 c.c, (76)
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being on the unphysical sheet. The contribution of Xﬁi)ranch(t*) is
dominated by the branch points and is given by

1 cos(t* —m/4)

c(s) *\ —yt*
Xl.branch(tL ) - 2 £13/2 ’ (77)
van(FP)T (@)
The crossover time is
t ! log ! (78)
cross.4 Vm —y S (Vm — V)3/2 )

i.e, it is analogous to the crossover time for a conventional pole with y,s <
y, see Eq. (46).

Arbitrary /
Our results for / = 0 and | = 1 can be readily generalized to any channel.
Using the contour of Fig. 5, we see that for a given channel with 2n poles
on the Riemann surface, the solution is given by the contributions of
mirage and conventional poles with y,s < y, along with the branch points
contribution

Xbranch (t7) = Qo Z Ajei”/4Z(0jt*),

j=1.2n

(79)

where Z(a) is given by Eq. (32), A; = >_,;(0;
calculated directly from Ax™® (x) and given by

8 (1 =0T (x + o)
o ‘

To study a crossover regime where a pole s; emerges from behind a
branch cut, simply replace e”™*Z(o;t*) in (80) by Z, given in Eq. (67).

— ;)" and Q is a constant,

Q = Iin?) (80)

The case of comparable F5®) and F5"¥

In the main text and in the previous sections, we assumed that one Landau
parameter dominates over all others. In this section, we discuss what
happens when two Landau parameters are comparable. We focus on the

most physically relevant case when F5® and F<"¥ dominate over all others,
as can be expected for a generic interaction which decreases mono-
tonically with momentum transfer. Our results can be readily generalized
for the case of more nonzero F,c(s)’s.

When both F3(5)7F§(5) are nonzero, the expression for the quasiparticle
susceptiblity becomes more complex, since there are now cross terms in
the ladder series. Resumming the series, we obtain'>3%3°

Xo(1+Fi¥xp) = 2F{2,

) (81a)
(14 R xo) (1 Fix0) = 273K

X2 (s) = v

x.(1+ F8<S)Xo) - ZFS(S)Xg1

. , (81b)
(14 Foxo) (1 + FPxy) = 2F6 RS2,

Xi¥(s) =v

where xo and x; are given by Egs. (13) and (39), respectively, while xo:(s) is
the fermion bubble with / = 0 and / = 1 form-factors at the vertices

1+i1f¥

—(s+i

Xoi(s) =s = v 2. (82)
V1= (s+iy)?

The equations for the poles in the / = 0 and (longitudinal) / = 1 channels
are the same because Eqgs. (82a) and (82b) have the same denominator.
(The pole in the transverse | = 1 channel is different.) The solution of

(14 ) (14 Fx ) = 2667 F00G (83)

interpolates  smoothly between the limits of |F§®| > |F$¥| and
IFS9| « |FS®)|, studied in the previous sections. As a result, the behavior

of the poles for the case of comparable F(C,(S) and F<¥) does not change
qualitatively. A new element, however, is that the mirage mode occurs
both in the / = 0 and / = 1 channels (again, because they have a common
pole). Also, the conditions for the existence of the mirage mode become

less stringent compared to the FS(S) = 0 case, when the mirage mode
occurs only in the | = 1 channel and for F§®) >3/5. If F{®) %0, the mirage

npj Quantum Materials (2020) 55

mode occurs already for smaller values of Fﬁ(s), e.g., for Fﬁ@ >0.15 if
F =1
1 .

For a charged FL, the situation is somewhat different. The new
diagrammatic element are the chains of bubbles connected by the
unscreened Coulomb interaction, U, = 2re*/q. Such chains are present in
the | = 0 charge channel and in the /= 1 longitudinal charge channel, but
not in the transverse charge channel and the spin channel. Each bubble in
the chain is renormalized by a FL interaction, parameterized by the Landau
function. The Landau function comprises infinite series of diagrams
containing the screened Coulomb interaction. Resumming the diagram-
matic series, one obtains the full charge susceptibilities in the form

__ X w)
1 Ugxg(q,w)’

_(o(.0)”
1= Ugx5(g, )
where xf(q,w) is the quasiparticle susceptibility renormalized by the FL
interaction and x§,(q,w) is the “mixed” quasiparticle susceptibility with
vertices at the opposite corners given by /2 cos /6 and 1, correspondingly.
The pole of (85a) is a 2D, ,/q plasmon, whose group velocity is
renormalized by the FL interaction®®. This is the only collective mode in
the / = 0 charge channel. In the channels with /> 1 there are two kinds of
collective modes: the acoustic ZS modes, which correspond to the pole of
the first term in Eq. (85b), and the plasmon mode, which correspond to the
pole of the second term in this equation. Note that the longitudinal ZS
modes exist for any repulsive FL interaction, as opposed to the case of
transverse ZS modes, which occur only if the FL interaction exceeds certain
threshold'®.

Xo(q, ) (84a)

[>1 (84b)

)

Xi (g, w) =x{(q,w) +
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