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Hidden and mirage collective modes in two dimensional
Fermi liquids
Avraham Klein 1✉, Dmitrii L. Maslov2 and Andrey V. Chubukov1

The longstanding view of the zero sound mode in a Fermi liquid is that for repulsive interaction it resides outside the particle-hole
continuum and gives rise to a sharp peak in the corresponding susceptibility, while for attractive interaction it is a resonance inside
the particle-hole continuum. We argue that in a two-dimensional Fermi liquid there exist two additional types of zero sound:
“hidden” and “mirage” modes. A hidden mode resides outside the particle-hole continuum already for attractive interaction. It does
not appear as a sharp peak in the susceptibility, but determines the long-time transient response of a Fermi liquid and can be
identified in pump-probe experiments. A mirage mode emerges for strong enough repulsion. Unlike the conventional zero sound, it
does not correspond to a true pole, yet it gives rise to a peak in the particle-hole susceptibility. It can be detected by measuring the
width of the peak, which for a mirage mode is larger than the single-particle scattering rate.
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INTRODUCTION
Zero-sound (ZS) is a collective excitation of a Fermi liquid (FL)
associated with a deformation of the Fermi surface (FS)1–4. The
dispersion of the ZS mode ω = vzsq encodes important
information about the strength of correlations, as was demon-
strated in classical experiments on 3He5. Conventional wisdom
holds6 that for a strong enough repulsive interaction in a given
charge or spin channel, ZS excitations are anti-bound states which
live outside the particle hole continuum (vzs > vF) and appear as
sharp peaks in spectroscopic probes, while for attractive interac-
tion they are resonances buried inside the continuum. Possibly the
best known example of a resonance is a Landau-overdamped
mode near a Pomeranchuk transition1–4,6–16. These qualitative
notions are consistent with rigorous results for a 3D FL1–4,6.
In this paper we report on two unconventional features of ZS

excitations in a clean 2D FL. First, for relatively weak attraction, ZS
modes with any angular momentum l are not the expected
overdamped resonances but rather sharp propagating modes
with vzs > vF. However, a spectroscopic probe will not show a peak
at ω = vzsq. Second, for sufficiently strong repulsion, ZS modes
with l ≥ 1 appear as peaks in a spectroscopic measurement with
vzs > vF, but the modes are not the true poles of the dynamical
susceptibility and, as a result, are not the longest lived excitations
of the system. We argue that these two features come about
because the charge (c) and spin (s) susceptibilities χcðsÞl ðq;ωÞ in the
angular momentum channel l are nonanalytic functions of
complex ω with branch points at ω = ±vFq, which arise from
the threshold singularity at the edge of the particle hole

continuum. Accordingly, χcðsÞl ðq;ωÞ is defined on the complex ω
plane with branch cuts, located slightly below the real axis in the
clean limit (see Fig. 1). In 3D, χcðsÞl ðq;ωÞ near a branch point has
only a weak logarithmic non-analyticity. In 2D, however, the non-
analyticity is algebraic (

ffiffiffi
x

p
). In this situation, the analytic structure

of χcðsÞl ðq;ωÞ is encoded in a two-sheet genus 0 algebraic Riemann

surface (a sphere)17–19. It has a physical sheet, on which χ
cðsÞ
l ðq;ωÞ

is analytic in the upper half-plane by causality, and a nonphysical

sheet. The ZS modes appear as poles of χcðsÞl ðq;ωÞ. Both the genus
and the number of ZS poles are topological invariants of

χ
cðsÞ
l ðq;ωÞ, which remain unchanged as the poles move on
continuous trajectories over the complex plane. However, to pass
smoothly through a branch cut, a ZS pole must move from the
physical to unphysical sheet and vice versa. We show that, for
relatively weak attractive interaction, the propagating pole is on
the physical sheet, but below the branch cut. Consequently, it
cannot be analytically extended to the real ω axis of the physical

sheet and does not give rise to a sharp peak in Imχ
cðsÞ
l ðq;ωÞ above

the continuum. We label such a mode as “hidden”. It is similar to
the “tachyon ghost” plasmon that appears in an ultra-clean 2D
electron gas once retardation effects are taken into account20,21.
For sufficiently weak repulsive interaction in channels with l ≥ 1,
the pole is located above the branch cut but, when the interaction
exceeds some critical value, the pole moves through the branch
cut to the unphysical Riemann sheet. Although the pole is now
below the branch cut, it does gives rise to a peak in χl(q, ω)
because the pole can be continued back through the branch cut
to the physical real axis. We label such a mode as “mirage”.
Hidden and mirage modes cannot be directly identified

spectroscopically by probing Imχ
cðsÞ
l ðq;ωÞ, as hidden modes do

not appear in such a measurement at all, while mirage modes do
appear but cannot be distinguished from conventional modes. We
argue, however, that they can be identified by studying the
transient response of a 2D FL in real time, i.e., by analyzing

χ
cðsÞ
l ðq; tÞ extracted from pump-probe measurements, which have
recently emerged as a powerful technique for characterizing and
controlling complex materials22–30. At long times, the response

function χ
cðsÞ
l ðq; tÞ is the sum of contributions from the ZS poles

and the branch points. One can readily distinguish a conventional

ZS modes from a mirage one via χcðsÞl ðq; tÞ because a conventional
ZS mode is located above the branch cut and decays slower than
the branch point contribution, while a mirage mode decays faster.
As a result, the response of a FL hosting a mirage mode undergoes
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a crossover from oscillations at the ZS mode frequency to
oscillations at the branch point frequency ω = vFq at some t =
tcross (see Fig. 2). The detection of a hidden mode is a more subtle
issue as this mode does not appear on the real frequency axis, and

χ
cðsÞ
l ðq; tÞ at large t always oscillates at ω = vFq. However, we show

that in the presence of the hidden pole the behavior of χcðsÞl ðq; tÞ
changes from cosðvFqt þ π=4Þ=t1=2 at intermediate t to cosðvFqt �
π=4Þ=t3=2 at the longest t, and the location of the hidden pole can
be extracted from the crossover scale tcross between the two
regimes (see Fig. 3a).

RESULTS
Zero-sound modes in 2D
A generic bosonic excitation of a FL with angular momentum l and

dispersion ω(q) is the solution of χ
cðsÞ
l ðq;ωÞ

� ��1
¼ 0. ZS excita-

tions are the modes with linear dispersion ω = vzsq in the limit
q ≪ kF, where kF is the Fermi momentum. The quasiparticle
susceptibility at small ω and q but fixed ω/vFq = s is expressed

solely in terms of Landau parameters FcðsÞl in the charge or spin

sectors1–4,6,7,14–16. An explicit form of χcðsÞl ðq;ωÞ is rather cumber-
some but becomes much simpler if one of the Landau parameters,

FcðsÞl , is much larger than the others. Up to an irrelevant overall
factor, for this case we have

χ
cðsÞ
l sð Þ / χ lðsÞ

1þ FcðsÞl χ lðsÞ
; (1)

where χl(s) is the quasiparticle contribution from states near the
FS, normalized to χl(0) = 1. The general structure of χl(s) can be
inferred from the particle-hole bubble of free fermions with
propagators G0ðk;ωÞ ¼ ωþ i~γ=2� vFðjkj � kFÞð Þ�1 and form-
factors fl(θ) at the vertices, where θ is the angle between k and
q, f0 = 1, and f lðθÞ ¼

ffiffiffi
2

p
cos lθ ð ffiffiffi

2
p

sin lθÞ for the longitudinal
(transverse) channels with l ≥ 1. (The longitudinal/transverse
modes correspond to oscillations of the FS that conserve/do not
conserve its area.) However, to properly specify the position of the
pole with respect to the branch cut one must include vertex
corrections due to the same scattering processes that give rise to
the i~γ term in G0 (refs 15,31). This is true even in the clean limit
~γ ! 0. To be specific, we assume that extrinsic damping is
provided by short-range impurities, and account for the corre-
sponding vertex corrections in all subsequent calculations. We
study the case l= 0 as an example of a hidden mode, and the case
l = 1, with f lðθÞ ¼

ffiffiffi
2

p
cos θ, as an example of a mirage mode. (The

l = 1 transverse mode has recently been discussed in refs 15,16).
For l = 0, χ0(s) with vertex corrections due to impurity scattering

included is given by15,31

χ0ðsÞ ¼ 1þ isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sþ iγð Þ2

q
� γ

; (2)

where γ ¼ ~γ=vFq. Observe that (i) χ0(s) vanishes at q → 0 and finite
ω and γ, as required by charge/spin conservation, and (ii) χ0(s) has
branch cuts at s = ±x− iγ, x > 1, see Fig. 1. From Eq. (1), the

equation for the pole is 1þ FcðsÞ0 χ0ðsÞ ¼ 0. For FcðsÞ0 > 0 and γ≪ 1,

the two poles are located at ω ¼ vFq ±szs � iγzsð Þ, where szs ¼
ð1þ FcðsÞ0 Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2FcðsÞ0

q
> 1 and γzs ¼ γð1þ FcðsÞ0 Þ=ð1þ 2FcðsÞ0 Þ< γ.

These are conventional ZS poles above the branch cut, which give

rise to a peak in Imχ
cðsÞ
0 ðq;ωÞ at ω = vFszsq. For �1< FcðsÞ0 < � 1=2,

Fig. 1 Trajectories of the poles of χcðsÞl ðq;ωÞ on the two-sheeted Riemann surface of complex s=ω/vFq. a l = 0 surface. Blue circles:
overdamped ZS mode; magenta circles: hidden mode; orange circles: propagating ZS mode. b l = 1 surface. Blue circles: damped ZS mode;
magenta circles: hidden mode; orange circles: propagating ZS mode; green circles: mirage mode. For clarity, additional poles on the
unphysical sheet are not shown (see the “Methods” section). In both figures, solid (dashed) circles denote the poles on the physical
(unphysical) Riemann sheet. Solid (dashed) blue arrows denote the direction of poles’ motion on the physical (unphysical) sheet with
increasing FcðsÞl .

Fig. 2 Time evolution of conventional ZS and mirage modes. The
figure depicts the time evolution of χcðsÞ1 ðt�Þ for a conventional ZS

mode at FcðsÞ1 ¼ 0:2 (orange) and a mirage mode at FcðsÞ1 ¼ 8:0
(green). The modes correspond to the orange and green circles in
Fig. 1b. The conventional mode displays an underdamped behavior
with decay constant γzs < γ and oscillation period T*= 2π/szs < 2π at
all times. The mirage mode decays with γzs > γ and crosses over to
oscillations with period T*= 2π at a crossover time
tcross � ðγzs � γÞ�1. Inset: a zoomed-in view showing the crossover
at t* ~ tcross. χ

cðsÞ
1 ðt�Þ is multiplied by eγt

�
to enhance visibility. The

solid line is added to the data points for clarity. The disorder
strength is γ= 0.2.
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the two poles are located along the imaginary s axis, one on the

physical Riemann sheet, at szs ¼ �ið1� jFcðsÞ0 jÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jFcðsÞ0 j � 1

q
, and

the other on the unphysical Riemann sheet. This is another
conventional behavior – the ZS is Landau overdamped, and at

FcðsÞ0 ! �1 its frequency vanishes, signaling a Pomeranchuk

instability6,15. The hidden ZS mode emerges at �1=2< FcðsÞl < 0.
Here the two modes are again located near the real axis, at

ω ¼ vFq ±sh � iγhð Þ, where sh ¼ ð1� jFcðsÞ0 jÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2jFcðsÞ0 j

q
> 1 and

γh ¼ γð1� jFcðsÞ0 jÞ=ð1� 2jFcðsÞ0 jÞ> γ. Since sh > 1, the ZS mode is
formally outside the continuum, i.e., it is an anti-bound state, even

though the interaction is attractive (FcðsÞ0 < 0). However, because
γh > γ, the pole is located below the branch cut. Since a pole
cannot pass smoothly through the cut without moving to a
different Riemann sheet, a hidden pole does not give rise to a
peak in ImχcðsÞðq;ωÞ at ω= vFshq. The evolution of the poles with

FcðsÞ0 is depicted in Fig. 1a.
For l = 1 one finds:

χ1ðsÞ ¼ 1þ 2s2
1þ i sþ iγffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sþiγð Þ2
p

1� γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sþ iγð Þ2

p : (3)

In this case too, a hidden pole exists for attractive interaction, in

the interval �1=9< FcðsÞ1 < 0. In addition, a new type of behavior

emerges for FcðsÞ1 > 0. Namely, χcðsÞ1 has a conventional ZS pole

above the branch cut only for a finite range 0< FcðsÞ1 < Fm1 , where

Fm1 ¼ 3=5 in the clean limit. At FcðsÞ1 ¼ Fm1 the pole merges with the

branch cut and, for larger FcðsÞ1 , it moves below the branch cut and,
simultaneously, to the unphysical Riemann sheet. We call this pole
a “mirage” one because although it is located on the unphysical
Riemann sheet, it can be connected to the physical real axis
through the branch cut. As a result, the pole gives rise to a sharp

peak in Imχ
cðsÞ
1 ðq;ωÞ; however, the width of the mirage mode, γm,

is larger than γ.

Detection of hidden and mirage modes
We argue that hidden and mirage modes can be observed
experimentally by analyzing the transient response of a FL which,
for an instantaneous initial perturbation, is described by the

susceptibility in the time domain, χcðsÞl ðq; tÞ. At first glance, it

seems redundant to study χ
cðsÞ
l ðq; tÞ, which is just a Fourier

transform of χcðsÞl ðq;ωÞ for real ω, expressed via Imχ
cðsÞ
l ðq;ωÞ as

χ
cðsÞ
l ðq; t > 0Þ ¼ ð2=πÞ R10 sinðωtÞImχ

cðsÞ
l ðq;ωÞ by causality. A hid-

den mode does not give rise to a peak in Imχ
cðsÞ
l ðq;ωÞ for real ω,

while the peak due to a mirage mode is essentially indistinguish-
able from that due to a conventional ZS mode. However, we will
show below that there are subtle features in Imχ

cðsÞ
l ðq;ωÞ for

hidden and mirage modes that manifest themselves in the time

evolution of χcðsÞl ðq; tÞ.
Our reasoning is based on the argument that χcðsÞl ðq; tÞ can be

obtained by closing the contour of integration over ω on the
Riemann surface. A choice of the particular contour is a matter of
convenience, but a contour can always be decomposed into a part
enclosing the poles in the lower half-plane (either on the physical
or unphysical sheet) and a part connecting the branch points on
the Riemann sphere. For both conventional and mirage modes the
second contribution at long times comes from the vicinity of the

branch points and behaves as χcðsÞl ðq; tÞ / cosðt� � π=4Þe�γt� t�3=2,
where t* = vFqt. The pole contribution behaves as

χ
cðsÞ
l ðq; tÞ / sinðsat�Þe�γat

�
, where a = zs, h, m. For a conventional

ZS mode γzs < γ, and the long-t behavior of χcðsÞl ðq; tÞ is dominated
by oscillations at the ZS frequency. For a mirage mode γm > γ, and
the oscillations associated with the mirage mode decay faster than
the ones associated with the branch points. We illustrate this

behavior in Fig. 2, which depicts χ
cðsÞ
1 ðq; tÞ at intermediate and

long times for FcðsÞ1 ¼ 0:2 and FcðsÞ1 ¼ 8, which correspond to the
cases of a conventional and mirage ZS mode, respectively.
Alternatively, of course, the mirage mode may be identified from
the width of the ZS peak if an independent measurement of γ is
available.
For a hidden mode, the situation is more tricky as the pole

contribution is cancelled out by a portion of the branch cut
contribution and so a hidden pole does not contribute directly to

χ
cðsÞ
0 ðq; tÞ. The only oscillations in χ

cðsÞ
0 ðq; tÞ are due to the branch

points, with a period T = 2π/vFq. However, a more careful study
shows (see “Methods”) that in the presence of a hidden pole the
branch point contribution undergoes a crossover between two
types of oscillations with the same period: at intermediate t,

χ
cðsÞ
0 ðq; tÞ / cosðt� þ π=4Þ=ðt�Þ1=2, while at longer t,

Fig. 3 Time evolution of hidden and damped modes. a–c show the time dependence χ
cðsÞ
l ðq; tÞ for a system hosting: a A hidden mode at

FcðsÞ0 ¼ �0:125 (magenta circles in Fig. 1a). The gray lines show the characteristic power-law decays ∝ t−1/2, t−3/2. b A damped l = 1 mode at

FcðsÞ1 ¼ �0:9 (blue circles in Fig. 1b). At even longer times (not shown), the period of oscillations approaches 2π. c A hidden l = 1 mode at
FcðsÞ1 ¼ �0:121 (magenta circles in Fig. 1b). d The numerically extracted variation of the phase shift between the two regimes of the hidden

mode described in the text (solid), and the analytic prediction (dashed), for FcðsÞ0 ¼ 0:03.

A. Klein et al.

3

Published in partnership with Nanjing University npj Quantum Materials (2020) 55



χ
cðsÞ
0 ðq; tÞ / cosðt� � π=4Þ=ðt�Þ3=2. We illustrate this behavior in
Fig. 3a. Note that both the t-dependence of the envelope changes
and the phase is shifted by π/2. The crossover scale t�cross is
determined by the position of a hidden pole in relation to the

branch point. For small FcðsÞ0 it is just t�cross ¼ jsh � ð1� iγÞj�1; this
relation is verified numerically in the Methods section. Hence, a
hidden pole can be extracted from time-dependent measure-
ments even though it does not show up in spectroscopic probes.
For completeness, we also briefly discuss the behavior of

χ
cðsÞ
0 ðq; tÞ in the range �1< FcðsÞ0 < �1=2, where the pole is Landau
overdamped even in the absence of disorder, i.e., ω=−ivFqγzs

15.
In this situation, dynamics at intermediate t is dominated by a
non-oscillatory, exponentially decaying pole contribution, while
dynamics at longer t is dominated by algebraically decaying
oscillations arising from the branch points, with the period T = 2π/
(vFq). The crossover time is ðt�crossÞ�1 ¼ ðγzs � γÞ�1 to logarithmic

accuracy. We also present the results for χ
cðsÞ
1 ðq; tÞ in two

representative regimes of FcðsÞ1 < 0. As shown in Fig. 1b, the l = 1
poles travel in the complex plane, starting from ω = 0 at the

Pomeranchuk instability point FcðsÞ1 ¼ �1 and arriving at the lower

edge of the branch cut at FcðsÞ1 ¼ �1=9. Near FcðsÞ1 ¼ �1, the poles

are close to the real axis and, accordingly, χ
cðsÞ
1 ðq; tÞ displays

weakly damped oscillations (Fig. 3b). When FcðsÞ1 crosses the critical
value of −1/9, the poles transform into hidden ones, and
oscillations are now controlled by the branch points (Fig. 3c). As
a final remark, we also verified that the behavior does not change
qualitatively for a more realistic case when two Landau

parameters, FcðsÞ0 and FcðsÞ1 , have comparable magnitudes.

DISCUSSION
In this work we argued that ZS collective excitations in a 2D FL
have two unexpected features. First, for any angular momentum l

and for the Landau parameter FcðsÞl in some negative range, a ZS
mode is not a damped resonance inside a particle-hole
continuum, as is the case in 3D, but a propagating mode with

velocity larger than vF. In the clean limit, a ZS pole of χ
cðsÞ
l is

located arbitrary close to the real axis, but still below the branch
cut, which hides the pole. Such a “hidden” mode does not
manifest itself in spectroscopic probes but can be identified by
transient, pump-probe techniques. Second, for l ≥ 1 and positive

FcðsÞl above some critical value, a ZS pole moves from the physical
Riemann surface to the unphysical one and becomes a “mirage”

one. In this situation, Imχ
cðsÞ
l ðq;ωÞ still has a peak at the pole

frequency in the clean limit. However, the long-time behavior of

χ
cðsÞ
l ðq; tÞ is now determined by the branch points rather than by
the pole.
The existence of hidden modes in 2D can be traced to the fact

that in 2D the branch points associated with the particle-hole
threshold are algebraic. The consequence of this is that the poles

move continuously on the Riemann surface as FcðsÞl is varied. This

feature is best seen for the case of weak interaction (jFcðsÞl j � 1)

and vanishingly small damping. In this case, the poles of χcðsÞl ðq;ωÞ
are near the branch points: ω = vzsq(±1 − iγ) with vzs ≈ vF and γ≪
1. Then the form of branch point singularity determines the

trajectory of the pole as FcðsÞl is varied. For the square-root branch
point, the pole’s trajectory is described by ðω=vFqÞ � ð1� iγÞ
/ � γ2 þ ðFcðsÞl Þ2 þ 2iγFcðsÞl , which gives rise to hidden modes. (To
see this for l = 0 mode, note that the equation for the pole,

following from Eqs. (1) and (2), is reduced for small jFcðsÞ0 j � 1 to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ zÞ2 � 1

q
� iγ ¼ FcðsÞ0 , where z = (ω/vFq) − (1 − iγ). For small

z, this gives the required trajectory.) In contrast, in 3D the cut is
logarithmic and poles move discontinuously15. For example, in the
l = 0 channel in 3D the pole position moves from above the

branch cut for FcðsÞ0 > 0 to the imaginary axis for FcðsÞ0 < 0 (ref. 6). We
also stress that in our calculations we always assumed ω ≫ vFqγ,
which corresponds to the collisionless regime. In the opposite
limit of ω ≪ γvFq, there is no hidden mode.
The existence of mirage modes for l ≥ 1 but not for l = 0 is a

consequence of the fact that the l = 0 channel represents the
response function of a conserved quantity (total particle number
or spin), while the l ≥ 1 channels represent the response functions
of the quantities which are not conserved in the presence of even
infinitesimally weak disorder (for example, l = 1 corresponds to
the charge or spin current). As a result, the free susceptibility χ0 ≡
χl= 0 in the long wavelength limit (γ ≫ 1) must have a diffusion
pole with small magnitude, s = 1/(2iγ). Because of this constraint,
the pole in χ0(s) remains above the branch cut for all values of

FcðsÞ0 . For l ≥ 1, there are no constraints limiting the damping term.
The result of this is that the imaginary part of the ZS frequency

grows with increasing repulsion FcðsÞl , and at some critical FcðsÞl the
pole frequency crosses the branch cut. We note in passing that the
difference between the l = 0 and l ≥ 1 channels is not special to
2D, although 2D is a more natural setting to search for a mirage
mode, since the pole positions move continuously on the

Riemann surface as a function of FcðsÞl . Indeed, it can be shown
that there is a mirage mode in the 3D l = 1 longitudinal channel as
well. (The calculation is analogous to the one for the 2D case. The

pole equation is 1þ FcðsÞ1 χ1ðsÞ ¼ 0, where χ1(s) is the particle-hole
bubble with vertex corrections from impurities, with a form factor
Y0
1 ¼

ffiffiffi
3

p
cos θ. We find that the crossover to a mirage mode

occurs for vanishing γ at Fm1 ¼ 0:44.)
In more general terms, our work establishes that dynamics of a

2D FL, even of an isotropic and Galilean-invariant one, is
determined not just by the poles of its response functions, but
also by topological properties encoded in the Riemann surfaces
defined by those functions. Here we studied the simplest case,
where the Riemann surface is a closed sphere. There exist more
complex cases, e.g., for two bands with different Fermi velocities,
vF,1 and vF,2, there are four branch points in the complex plane, at
ω = ±vF,1q, ±vF,2q, and the associated Riemann surface is a torus.
In such cases, one should expect new topological features of ZS
excitations.
A few remarks about real systems. First, our results apply to

both neutral and charged FLs, with a caveat that for charged FLs
the l = 0 charge mode becomes a plasmon32. Second, to observe
a ZS mode, one needs to either employ finite-q versions of the
pump-probe techniques, e.g., time resolved RIXS33 and neutron
scattering34, or spatially modulate/laterally confine 2D electrons.
The most readily verifiable prediction is the hidden mode in the
spin channel, which occurs for 0< Fs0 < �1=2. Previous measure-
ments on a GaAs/AlGaAs quantum well35,36 indicate that Fs0 for
this system is exactly in the required range.

METHODS
In this section we present the details of our calculations of the charge/spin
susceptibility in the time domain, χ

cðsÞ
l ðq; tÞ, and discuss the analytic

structure of the Riemann surface of χcðsÞl ðq;ωÞ. In Section A we discuss the
framework to calculate χ

cðsÞ
l ðq; tÞ for a generic l in the charge or spin

channel. In Sections B and C we give detailed derivations of χcðsÞl ðq; tÞ in
the l = 0 and the l = 1 longitudinal channels and briefly discuss how these
calculations can be extended to arbitrary l. In Section E we show that the
results, discussed in the main text, i.e. the existence of conventional,
hidden, and mirage poles, also hold when two Landau parameters, FcðsÞ0
and FcðsÞ1 , have comparable magnitudes.
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Throughout this section, we assume an isotropic system, such that at
low enough momenta and frequency the fermionic dispersion can be
approximated as ω = εk − μ ≈ vF(∣k∣ − kF), where vF is the renormalized
Fermi velocity vð0ÞF m=m� and m* is the FL effective mass. We assume that
single-particle states are damped by impurity scattering and that the
damping rate, ~γ, is small compared to Fermi energy. We also assume that
the temperature T is low enough such that the quasiparticle damping rate
can be neglected, but still higher than the critical temperature of a
superconducting (Kohn-Luttinger) instability.

Dynamical susceptibliities χcðsÞl ðq;ωÞ and χ
cðsÞ
l ðq; tÞ

In this section we provide details of our calculations of the response
functions in the frequency and time domains, χcðsÞl ðq;ωÞ and χ

cðsÞ
l ðq; tÞ. We

assume that typical frequencies and momentum transfers are small, i.e.,
q ≪ kF and ω ≪ EF. In this limit the response of a FL to a weak external
perturbation comes predominantly from quasiparticles near the FS. The
quasiparticle contribution to the dynamical susceptibility was obtained by
Leggett back in 1965 (ref. 37). To get it diagrammatically, one needs to sum
up series of bubble diagrams coupled by quasiparticle interactions. For the
case when one Landau parameter dominates, the quasiparticle contribu-
tion to χ

cðsÞ
l ðq;ωÞ has the form

χ
cðsÞ
qp;l q;ωð Þ ¼ νF

χ lðsÞ
1þ FcðsÞl χ lðsÞ

; s ¼ ω

vFq
: (4)

Here the Landau parameter Fl is the properly normalized l’th moment of
the antisymmetrized four-fermion vertex, νF is the (renormalized)
thermodynamic density of states, and χl(s) is the retarded free-fermion
susceptibility in the l’th channel. The subscript qp makes explicit the fact
that this is only the quasiparticle response. The full χcðsÞl ðq;ωÞ differs from
(4) by an overall factor, which accounts for renormalizations by fermions
with higher energies, and also contains (for a non-conserved order
parameter) an additional term, which comes solely from high-energy
fermions37. These additional terms are relevant for the full form of the
susceptibility near Pomeranchuk instabilities towards states with special
order parameter13,15,38,39 but not for collective modes studied in this paper.
The expression for the free-fermion susceptibility χl(s) in the presence of
impurity scattering is obtained by (a) evaluating a particle-hole bubble
using propagators of free fermions with fermionic frequency ω shifted to
ωþ i~γ and (b) summing up the ladder diagrams for the vertex
renormalizations due to impurity scattering. The detailed form of χl(s)

depends both on the channel angular momentum l and its polarization
(longitudinal/transverse). For a detailed derivation of Eq. (4) and explicit
forms of χl(s) we refer the reader to refs 14,15,31. Here we just state the final

results for χ
cðsÞ
qp;lðsÞ and focus on calculating its time-domain form. To

shorten the notations, henceforth we skip the subindex “qp” in χ
cðsÞ
qp;l q;ωð Þ,

as we did in the main text.
The retarded time-dependent susceptibility is a Fourier transform of

χ
cðsÞ
l ðq;ωÞ:

χ
cðsÞ
l ðq; tÞ ¼

Z 1

�1

dω
2π

e�iωtχ
cðsÞ
l ðq;ωÞ ¼ vFq

Z 1

�1

ds
2π

e�ist� χ
cðsÞ
l ðsÞ; (5)

where t* = vFqt. In physical terms, χcðsÞl ðq; tÞ describes a response of the
order parameter in the l’th charge or spin channel to a pulse-like excitation
of the form hle

−iq⋅rδ(t).
To evaluate Eq. (5), it is convenient to close the integration contour in

the complex plane. As discussed in the main text, χcðsÞl ðsÞ has two types of
singularities in complex s plane, both of which contribute to the result of
integration. First, it has a set of poles sj, which can be either on the physical
or unphysical sheet. To be concrete, in the subsequent calculations for l =
0, 1 we will label by s1 the pole in the lower-right quadrant of a complex
plane of frequency, where Res ≥ 0, Ims < 0. We express the coordinates of
the pole s1 as

s1 ¼ sa � iγa; (6)

where a = zs, h, m, and the notations are for three different types of the
poles corresponding to a “conventional” ZS mode (either a propagating
one, or a resonance within the particle-hole continuum), a hidden mode,
and a mirage mode, respectively. These are the same notations that we
used in the main text. To make the text less cumbersome, we will refer to
each pole according to the mode it gives rise to, i.e. we will call them a
“conventional pole”, a “hidden pole”, and a “mirage pole”.
Second, χcðsÞl ðsÞ has branch points at s = ±1 − iγ, where γ ¼ ~γ=vFq, and

we chose the branch cuts to run along the lines ±x − iγ, 1 < x < ∞. Because
of the sign of the argument of the exponential function in Eq. (5), the
contour must be closed in the lower half-plane for t > 0, so it traces over
the branch cuts in the manner shown in Fig. 4. For t < 0, the contour must

be closed in the upper half-plane, where χ
cðsÞ
l ðsÞ has no singularities and

thus χcðsÞl ðq; t < 0Þ ¼ 0 as required by casuality.
The evaluation of the integral over the contour in Fig. 4 yields

χ
cðsÞ
l ðq; tÞ ¼ vFqχ

cðsÞ
l ðt�Þ; χ

cðsÞ
l ðt�Þ ¼ χ

cðsÞ
l;poleðt�Þ � χ

cðsÞ
l;branchðt�Þ: (7)

Here χcðsÞl;poleðt�Þ is a contribution from the residues of the poles of χcðsÞl ðsÞ on
the physical sheet:

χ
cðsÞ
l;poleðt�Þ ¼ �i

X
sj2phys:

e�isj t�Ress!sj χ lðsÞ: (8)

Since the sum over sj is restricted to the poles on the physical sheet, it
includes conventional ZS and and hidden poles, but not mirage poles.
The second term in (7) is the branch-cut contribution

χ
cðsÞ
l;branchðt�Þ ¼ e�γt� 1

2π

Z 1

1
e�ixt�Δχ

cðsÞ
l ðxÞ þ eþixt�Δχ

cðsÞ
l ð�xÞ

h i
dx; (9)

Fig. 4 Integration contour to obtain χcðsÞl ðt�Þ. The integration
contour over (dimensionless) complex frequency s on the physical
Riemann sheet from which we obtain χ

cðsÞ
l ðt�Þ in Eq. 7.

Fig. 5 Another way to define the integration contour over complex s. We added to the integral over real s the integration segments over s
immediately above the branch cuts on the physical sheet and immediately below the branch cuts on the unphysical sheet. These additional
integrals then cancel out between the two Riemann sheets. We then added the integral over an infinite semi-circle to the unphysical sheet,
and for both sheets added and subtracted the integrals over the range of s between the branch points. The resulting integration contour in
each Riemann sheet consists of the closed contour (the solid line) and an additional piece (the dashed line).
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where Δc(s)χl(x) is the discontinuity of χcðsÞl ðsÞ at the branch cut:

Δχ
cðsÞ
l ðxÞ ¼ lim

ε!0
χ
cðsÞ
l ðx � iγ � iεÞ � χ

cðsÞ
l ðx � iγ þ iεÞ

� �
: (10)

It is also possible to re-arrange the contour integral into the one
depicted in Fig. 5. This is done by (a) closing the integration contour in
complex s on the physical sheet along the line x− iγ+ iε, where ε is
infinitesimal and x=−∞…∞, i.e. along the line which is located right above
the branch cuts, (b) adding an integration contour on the unphysical
sheet along the line x− iγ+ iε, x=−∞…∞, i.e., right below the branch cut,
(c) closing this second contour via an infinite half-circle in the unphysical
lower half plane, and (d) adding two compensating integration segments
along the lines x− iγ− iε, where −1 ≤ x ≤ 1, on the physical sheet, and
along x− iγ+ iε, −1 ≤ x ≤ 1 on the unphysical sheet (dashed lines in Fig. 5).
Because χ

cðsÞ
l ðsÞ varies smoothly through the branch cuts if one

simultaneously move between physical and unphysical Riemann sheets,
the integration segments running above and below the branch cuts cancel
out.
The evaluation of the integrals again yields an expression of the form of

Eq. (7), but now the sum in Eq. (8) is over the poles on the physical sheet
above the branch cut (i.e., conventional poles with damping rate γzs < γ),
and over mirage poles:

χ
cðsÞ
l;poleðt�Þ ¼ �i

X
sj2conv:;mirage

e�isj t�Ress!sj χ lðsÞ: (11)

In addition, the second contribution in Eq. (7) now comes from the
difference between the values of χcðsÞl ðsÞ on the two Riemann sheets rather
than from a discontinuity at the branch cut:

χ
cðsÞ
l;branchðt�Þ ¼ e�γt� 1

2π

Z 1

0
e�ixt�Δχ

cðsÞ
l ðxÞ þ eþixt�Δχ

cðsÞ
l ð�xÞ

h i
dx: (12)

It can be verified that the integration contour of Fig. 5 is equivalent to a
contour on the physical sheet, when the branch cut is chosen to run along
the line x − iγ, − 1 < x < 1, see Fig. 6. In this case, the integral for χbranch can
be understood as running around the circumference of the contour
glueing the two Riemann sheets together into a single sphere.
In what follows, we will present calculations using both integration

contours, the one in Fig. 4 and the one in Fig. 5. Although the result, of
course, does not depend on the choice of a contour, some details of the
calculation are more transparent when using one contour and some are
clearer when using the other.

χ
cðsÞ
l ðt�Þ for l = 0

In this section we provide detailed calculations for the case of l = 0. First,
we use the integration contour in Fig. 4 and then the one in Fig. 5.
The free-fermion susceptibility is given by Eq. (2) of the main text

χ0ðsÞ ¼ 1þ isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sþ iγð Þ2

q
� γ

: (13)

The quasiparticle susceptibility is obtained by plugging χ0 into Eq. (4).

The two poles of χcðsÞ0 ðsÞ are located at

s1;2 ¼ ±
1þ FcðsÞ0

1þ 2FcðsÞ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2FcðsÞ0 � γ2

q
� iγ

1þ FcðsÞ0

1þ 2FcðsÞ0

: (14)

In Fig. 7 we show a 3D depiction of the poles’ trajectories on the
Riemann surface. In what follows, we assume that γ ≪ 1, as we did in the
main text.
The discontinuity of χ0(s) at the branch cut is

Δχ
cðsÞ
0 ðxÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
ðx � iγÞ

ð1þ 2FcðsÞ0 Þðx � iγ � s1Þðx � iγ � s2Þ
; (15)

where s1,2 are given by (14), see Eq. (10).
We obtain χ0(q, t*) for the three cases shown in Fig. 1a of the main text,

i.e., for a ZS resonance (an overdamped l = 0 mode), hidden mode, and
weakly damped ZS mode.

ZS resonance, �1< FcðsÞ0 < �1=2. An overdamped ZS resonance occurs
for �1< FcðsÞ0 < �1=2. The pole contribution can be found directly from Eq.
(8). As follows from Eq. (14), there is only one pole in the lower half-plane,
at s1 = −iγzs, where

γzs ¼ 1� jFcðsÞ0 j
� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jFcðsÞ0 j � 1

q
: (16)

Note γzs ≫ γ everywhere but in the narrow vicinity of the Pomeranchuk
instability at FcðsÞ0 ¼ �1. Evaluating the residue in Eq. (8) we obtain

χ
cðsÞ
0;poleðt�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2zs

p
2jFcðsÞ0 j � 1

¼ jFcðsÞ0 j
2jFcðsÞ0 j � 1
� �3=2 e�γzst

�
: (17)

Now we turn to χ
cðsÞ
0;branchðt�Þ, Eq. (9). One can readily verify that at large t*,

the leading contribution to the integral in (9) comes from the vicinity of
the branch point s = 1 − iγ. Accordingly, we shift the integration variable
in Eq. (9) to y = 1 + x and expand the integrand to leading order in y. We
obtain

χ
cðsÞ
0;branchðt�Þ � � 2ffiffi

π
p e�γt�

Z 1

0
dy

ffiffiffi
y

p

ð1þ 2FcðsÞ0 Þσ1σ2
e�it��iyt� þ c:c:

¼ e�γt�ffiffiffiffi
2π

p ð1þ 2FcðsÞ0 Þσ1σ2
e�it� þ iπ=4 þ c:c:

(18)

where

σ1;2 ¼ s1;2 � ð1� iγÞ; (19)

are the pole coordinates measured from the branch point at s = 1 − iγ

Fig. 6 Integration contour over an alternatively defined Riemann
surface. Contour of integration over complex s with a branch cut
(dashed line) chosen to run horizontally between the branch points
at ∓1 − iγ.

Fig. 7 A 3D depiction of the pole evolution on the Riemann
surface for l = 0. The figure is obtained by mapping the complex s
point of the two Riemann sheets to the 3D set of points
fRes; Ims; ±Re

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p
g where +(−) maps the physical (unphysical)

sheet to the top (bottom) sheet of the figure. On this representation
of the surface, the solid and blue red lines denote the pole evolution
with increasing FcðsÞ0 . The evolution of the poles begins at the origin

of the physical and unphysical sheets at FcðsÞ0 ¼ �1. The poles
initially move along Im(s) axis down(up) the physical(unphysical)
sheets. The pole on the unphysical sheet reaches infinity and crosses
to the physical sheet at FcðsÞ0 ¼ �1=2, and the poles merge and

bifurcate at FcðsÞ0 ¼ �ð1� γ2Þ=2. The regions with yellow shading

denote areas where a pole in χ
cðsÞ
0 ðsÞ either on physical, or on

unphysical Riemann sheet, gives rise to a peak in χ
cðsÞ
0 ðsÞ on the

physical real s axis. The areas shaded by peach color are regions
where a pole cannot be analytically extended to the physical real
axis due to the branch cuts, and χ

cðsÞ
0 ðsÞ on the physical real

frequency axis has no sharp peaks. We set γ = 0.2 for definiteness.
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Keeping γ only in the exponential, we re-write Eq. (18) as

χ
cðsÞ
0;branchðt�Þ � e�γt�

ffiffiffi
2
π

r
cosðt� � π=4Þ
FcðsÞ0

� �2
t�ð Þ3=2

: (20)

Comparing χ
cðsÞ
0;pole and χ

cðsÞ
0;branch, we see that at FcðsÞ0 \�1, where γzs ≪ 1

(but still γzs > γ), the pole contribution dominates up to t* ~ tcross, where

tcross ¼ 3
2ðγzs � γÞ log

FcðsÞ0

� �2
ð2jFcðsÞ0 j � 1Þðγzs � γÞ

� 1: (21)

For t* ≫ tcross, the branch-cut contribution becomes the dominant one.
At FcðsÞ0 not close to −1, tcross ~ 1. In this situation, the branch-cut
contribution dominates over the pole one for all t* ≫ 1.

Weakly damped ZS mode, FcðsÞ0 > 0. For FcðsÞ0 > 0, ZS excitations are

conventional propagating modes. The time-dependent χcðsÞ0 ðt�Þ is analyzed
along the same lines as for the overdamped case. The main difference is that
for a propagating mode γzs < γ, and, hence, the pole contribution remains
the dominant one at all times, i.e. there is no crossover to oscillations from
the branch point (this incidentally is indicated by the divergence of tcross in
Eq. (21) as γzs crosses γ). The pole contribution is now obtained by summing

up the residues of the two poles at s1,2 = ±szs − iγzs, where szs ¼
ð1þ FcðsÞ0 Þ=ð1þ 2FcðsÞ0 Þ1=2 and γzs ¼ γð1þ FcðsÞ0 Þ=ð1þ 2FcðsÞ0 Þ< γ. Keeping γ
only in the exponential, we find

χ0;poleðt�Þ ¼
i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2zs � 1

p
ð1þ 2FcðsÞ0 Þ

e�iszs t��γzs t
� þ c:c: ¼ 2FcðsÞ0

1þ 2FcðsÞ0

� �3=2 sin szst�e�γzst
�
:

(22)

Hidden mode, �1=2< FcðsÞ0 < 0. We next consider the range

�1=2< FcðsÞ0 < 0, where the ZS pole is a hidden one: s1 = sh − iγh, where

sh ¼ ð1� jFcðsÞ0 jÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2jFcðsÞ0 j

q
and γh ¼ γð1� jFcðsÞ0 jÞ=ð1� 2jFcðsÞ0 jÞ> γ.

The pole contribution to χ
cðsÞ
0 ðt�Þ is up to O(γ) terms

χ
cðsÞ
0;poleðt�Þ ¼ � 2jFcðsÞ0 j

1� 2jFcðsÞ0 j
� �3=2 sin sht�e�γht

�
: (23)

Note that to get the prefactor right, one has to keep γ finite, otherwise
the pole and the branch cut would be at the same depth below the real
axis, and the prefactor in (23) would be smaller by a factor of two because
the angle integration around the pole would be only over a half-circle
rather than over a full circle.
The branch cut contribution in Eq. (9) reduces to

χ
cðsÞ
0;branchðt�Þ ¼

1
π

e�γt�

1� 2jFcðsÞ0 j

Z 1

1
dxe�ixt� ðx � iγÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p

ðx � iγ � s1Þðx � iγ � s2Þ þ c:c:

(24)

where now s1,2 = ±sh − iγh. Evaluating the integral, we find two dominant
contributions: one from x ≈ 1, i.e., from the vicinity of the branch point, and
another one from x ≈ sh, i.e., from the vicinity of the hidden pole (there is
only one such term because Re s2 < 0). Accordingly, we write

χ
cðsÞ
0;branchðt�Þ ¼ χ

cðsÞ
0;branch;aðt�Þ þ χ

cðsÞ
0;branch;bðt�Þ: (25)

To obtain χ
cðsÞ
0;branch;a , we expand near x = sh as x = sh + ϵ and keep the

leading terms in ϵ. We obtain

χ
cðsÞ
0;branch;aðt�Þ ¼

e�γt�

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2h � 1

q
1� 2jFcðsÞ0 j

e�isht�
Z 1

�1
dϵ

e�iϵt�

ϵþ iγ
þ c:c: (26)

where γ ¼ γh � γ > 0. The integral in (26) yields, by Cauchy theoremZ 1

�1
dϵ

e�iϵt�

ϵþ iγ
¼ �2iπe�γt� : (27)

Substituting into (26) we obtain

χ
cðsÞ
0;branch;aðt�Þ ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2h � 1

q
1� 2jFcðsÞ0 j

sin sht�e�γht
� ¼ �2

jFcðsÞ0 j
1� 2jFcðsÞ0 j
� �3=2 sin sht�e�γht

�
:

(28)

Observe that the exponential factor in (25) is e�γht
�
, despite that the

overall factor in (24) is e�γt� . The extra factor e�ðγh�γÞt� appears after the
integration in (27).

Comparing (23) and (28), we see that χcðsÞ0;branch;aðt�Þ cancels out the pole
contribution:

χ
cðsÞ
0;branch;aðt�Þ ¼ χ0;poleðt�Þ: (29)

Because of the cancellation between χ
cðsÞ
0;branch;a(t*) and χ0,pole(t*), there

are no oscillations in χ
cðsÞ
0 ðt�Þ with frequency sh, set by the hidden pole.

Note in passing that if we computed χ
cðsÞ
0;branch;aðt�Þ strictly at γ = 0, the

overall prefactor would be smaller by the factor of two because thenR1
�1dϵe�iϵt�=ϵ ¼ �iπ. The relation χ

cðsÞ
0;branch;aðt�Þ ¼ χ0;poleðt�Þ would still

hold because the pole contribution at γ = 0 would also be smaller by a
factor of two.
The second term in Eq. (25) is the contribution from the vicinity of the

branch point. At the largest t*, this contribution has the same form as in Eq.
(18):

χ
cðsÞ
0;branch;bðt� ! 1Þ �

ffiffiffi
2
π

r
cosðt� � π=4Þ
FcðsÞ0

� �2
t�ð Þ3=2

e�γt� : (30)

However, the full form of χ
cðsÞ
0;branch;bðt�Þ is more involved, and the

1=ðt�Þ3=2 behavior sets in only after some characteristic time tcross,1, which

becomes progressively larger as jFcðsÞ0 j decreases and sh approaches 1. To
see this, we expand the integrand of (24) in y = x − 1, but do not assume
that y is small compared to σh = sh − 1. We obtain, at t* ≫ 1

χ
cðsÞ
0;branch;bðt�Þ � �

ffiffiffiffiffiffiffi
2
πt�

r
σh

jFcðsÞ0 j2
e�γt�e�iðt�þπ=4ÞZðσht�Þ þ c:c:; (31)

where z = −iyt* and

ZðaÞ ¼ 1ffiffi
π

p
Z 1

0
dz

ffiffiffi
z

p
e�z

z � ia

¼ 1� ffiffiffiffiffiffiffiffiffiffi�iπa
p

e�iaerfc
ffiffiffiffiffiffiffiffi�ia

p� �
;

(32)

where
ffiffiffiffiffi�i

p
in (32) stands for ð1� iÞ= ffiffiffi

2
p

. Note that both σh and ðFcðsÞ0 Þ2

vanish in the limit FcðsÞ0 ! 0, but their ratio remains finite:

σh=ðFcðsÞ0 Þ2 � 1=2. At small enough FcðsÞ0 , a = σht* can remain small even
when t* is large. Accordingly, we treat a as a variable which can have any
value. In the two limits a ≫ 1 and a ≪ 1 we have

ZðaÞ � 1; a � 1
i
2a ; a � 1:

(
(33)

Accordingly, in the two limits χcðsÞ0;branch;bðt�Þ behaves as

χ
cðsÞ
0;branch;bðt�Þ /

cosðt� þ π=4Þ
t�ð Þ1=2 ; σht� � 1

cosðt� � π=4Þ
σh t�ð Þ3=2 ; σht� � 1:

8<
: (34)

We see that both the exponent of the power law decay and the phase of
oscillations vary between the two regimes. In particular, the phase changes
by π/2 between the regimes of σht* ≪ 1 and σht* ≫ 1 (up to corrections O
(γ). The crossover between the two regimes occurs at t* ~ tcross,1, where

tcross;1 ¼ 1=σh ¼ 1=ðsh � 1Þ; (35)

is related to the coordinate of the hidden pole. This relation provides a way

to detect the hidden mode experimentally, particularly for small FcðsÞ0 ,
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where sh − 1 ≪ 1 and tcross,1 ≫ 1, by either by looking at the crossover in

the power-law decay of χ
cðsÞ
0 ðt�Þ or by studying a variation of the

phase shift.
In the intermediate regime of t* ~ tcross,1 (assuming that tcross,1 ≫ 1) the

susceptibility behaves as χcðsÞ0 ðt�Þ � Aðσht�Þ cosðt� � ϕðt�ÞÞ=ðt�Þ1=2. In Fig. 8

we depict ϕ(t*) extracted from numerical evaluation of χ
cðsÞ
0 ðt�Þ for

different FcðsÞ0 . To obtain the data in the figure, we fit segments of the data
at different t* onto a trial function A cosðt� � ϕÞ=ðt�Þα , where A, ϕ, α are
fitting parameters. We then fit ϕ(t*/tcross) to the prediction of Eq. (37). The
data shows a good collapse of the phase evolution onto a universal
function of σht* = t*/tcross,1, given by Eqs. (31) and (32), even for not-too-

small FcðsÞ0 , and a very good agreement between the numerical value of
tcross,1 and the asymptotic expression in Eq. (35).

Calculations using the contour of Fig. 5. We now demonstrate how to

evaluate χ
cðsÞ
0 ðt�Þ in the case of a hidden pole, i.e., at �1=2< FcðsÞ0 < 0, using

the contour of Fig. 5. The advantage of using this contour is that there is no
need to account for a partial cancellation between the pole and brunch-
cut contributions. Inspecting the integration contours, we note that χ0,
pole(t*) = 0 because there are no poles either above the branch cuts on the
physical sheet or below it on the unphysical sheet. We are left only with χ0,

branch, defined in Eq. (12). We shift the integration variable in (12) to y =
1 − x. At t*≫ 1 only small ymatter, and one can safely extend the limits of
integration to ±∞. We then obtain

χbranchðt�Þ �
e�it�

2π

Z 1

0
dy

2i
ffiffiffiffiffi
2y

p ð1� iγÞ
ð1� 2jFcðsÞ0 jÞðy þ σ1Þσ2

eiyt
� þ c:c: (36)

It is easy to verify that Eq. (36) is the analog of Eq. (24), up to small
corrections due to γ. The integral in Eq. (36) can be solved exactly with the
result

χ0;branchðt�Þ �
e�it� ið ffiffiffiffi

2i
p Þð1� iγÞffiffiffiffiffiffiffi

πt�
p ð1þ 2FcðsÞ0 Þσ2

Zðσht�Þ þ c:c: (37)

where Z(a) was defined in Eq. (32). This result is the same as in Eq. (31), but
with corrections due to finite γ.

We also note in passing that at small t* < 1, χcðsÞ0 ðt�Þ is linear in t* for all

values of FcðsÞ0 . In the limit γ → 0 the dependence is given by:

χ
cðsÞ
0 ðt�Þ ¼ t�

2
1� 3� 2FcðsÞ0

24
ðt�Þ2 þ � � �

 !
(38)

At small but finite γ, the slope at t* → 0 changes to

Fig. 9 Properties of the l = 1 longitudinal mode. a A sketch of the trajectories of the poles of χcðsÞ1 ðsÞ on the physical and unphysical Riemann
surfaces. Solid (dashed) circles denote the poles on the physical (unphysical) Riemann sheet. Arrows on solid (dashed) blue lines denote the
direction of poles' motion on the physical (unphysical) sheet with increasing FcðsÞ1 . Blue, magenta, orange, and green circles show typical
positions of the poles for the cases of an overdamped ZS mode, a hidden mode, a propagating ZS mode, and a mirage mode, respectively.
Note the existence of poles (orange and green, on the ImðsÞ axis) corresponding to additional overdamped ZS modes for FcðsÞ1 > 0. b A
crossover in χ

cðsÞ
1 ðq; tÞ between the regions dominated by the contributions from the visible and hidden poles. The blue (magenta) points

denote the numerical result for FcðsÞ1 ¼ Fvis1 þ 0:05 (Fvis1 � 0:05), where Fvis1 ¼ �0:162, and the solid lines depict the analytical result. (The
significance of Fvis1 is described in the text around Eq. (61)). It can be seen that the two traces begin in phase, then move out of phase, and

finally become in-phase again. This is an indication that χcðsÞ1 ðq; tÞ oscillates at different frequencies that correspond to poles for different FcðsÞ1 ,
until oscillations from the branch points take over at long times.

Fig. 8 Evolution of the phase of the hidden mode. a Evolution of the phase of the oscillations ϕ(t*) in Eq. (37) with time, for different
FcðsÞ0 ¼ �0:03;�0:06; ¼ �0:48 (the rightmost blue dots are for FcðsÞ0 ¼ �0:48). Numerical results for ϕ(t*) are plotted as a function of t*/tcross.
For t* > tcross the data for different FcðsÞ0 collapse onto a universal curve described by Eq. (31). b Evolution of tcross with FcðsÞ0 . The black curve is
the asymptotic expression in Eq. (35).
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χ
cðsÞ
0 ðt�Þ ¼ ðt�=2Þð1þ γΦðFcðsÞ0 ÞÞ, where Φ(−1) = 0 and Φð0�Þ ¼
8=ðπjFcðsÞ0 jÞ. For FcðsÞ0 ¼ 0, χcðsÞ0 ðt�Þ ¼ J1ðt�Þ, where J1 is a Bessel function.

χ
cðsÞ
l ðt�Þ in the l = 1 longitudinal channel

In this section we provide a detailed derivation of χ
cðsÞ
1 ðt�Þ in the

longitudinal channel. The free-fermion susceptibility is

χ1ðsÞ ¼ 1þ 2s2
1þ i sþ iγffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sþ iγð Þ2
p

1� γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sþ iγð Þ2

p : (39)

In the limit γ → 0, the pole coordinates are the solutions of

0 ¼ 4FcðsÞ1 s4 þ 1� 2FcðsÞ1 � 3 FcðsÞ1

� �2� �
s2 � 1þ FcðsÞ1

� �2
: (40)

This gives four poles, which are located on both physical and unphysical
sheets. In Fig. 9 we present a 2D sketch of the evolution of the four poles
on the Riemann surface. As before, we label the pole with Re s > 0, Ims > 0
as s1, We label the pole in the first quadrant of the unphysical sheet as s3
and define s2 ¼ �s�1; s4 ¼ �s�3. At finite γ, the expressions for the
coordinates of the poles are much more involved, but the number of
poles remains unchanged, as does their qualitative behavior.
The discontinuity at the branch cut is

Δχ
cðsÞ
1 ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
x � iγð Þ3

FcðsÞ1

Q
j¼1::4ðx � iγ � sjÞ

: (41)

Before proceeding to a calculation of χ
cðsÞ
1 ðt�Þ we sketch out the

trajectories of s1...4 on the physical and unphysical sheets, see Fig. 9. We
start with the limit γ → 0. The two poles on the physical sheet, s1,2, depart

from s = 0 at FcðsÞ1 ¼ �1 and move in the complex frequency plane as FcðsÞ1

increases from −1, until approaching the branch cut at FcðsÞ1 ¼ �1=9. For

FcðsÞ1 close to −1, the poles are almost propagating, and γzs < γ. Such poles

give rise to oscillations in χ
cðsÞ
1 ðt�Þ at the pole frequency. For

�1=9< FcðsÞ1 < 0, the poles on the physical sheet are hidden. For

0< FcðsÞ1 < 3=5, the poles are conventional ZS poles with γzs < γ.

For 3=5< FcðsÞ1 , the poles move to the unphysical sheet and become
mirage poles. The two poles on the unphysical sheet, s3,4, are the mirror

images of the poles on the physical sheet in the range �1< FcðsÞ1 < �1=9,

i.e., s3 ¼ s�1; s4 ¼ s�2. In the range �1=9< FcðsÞ1 < 0, the two poles move

parallel to the real exis, reaching ±∞ at FcðsÞ1 ¼ 0. For positive FcðsÞ1 , the
poles s3, s4 are on the imaginary axis of the lower half plane of the physical
sheet, and on the imaginary axis of the upper half-plane of the unphysical
sheet. (We recall, that on the Riemann surface the points ±∞, +i∞ on the
unphysical sheet, and −i∞ on the physical sheet, are identical). The pole on
the physical sheet moves up from −i∞ and the pole on the unphysical
sheet moves down from +i∞. At finite γ, the trajectories are slightly
deformed, so that, e.g., s1,2 never quite reach the branch cut and s3,4 are
never true mirror images, but the qualitative behavior remains the same.
We now evaluate χ

cðsÞ
1 ðt�Þ. As we did in the l = 0 case, we first use the

contour of Fig. 4. The evaluation proceeds along similar lines as for l = 0,
except for two differences related, first, to the existence of mirage poles,
and second, to the fact that for some ranges of FcðsÞ1 we need to take into
account contributions from all four poles.

Weakly damped ZS mode, FcðsÞ1 \�1. Consider first the limiting case

FcðsÞ1 \�1. Here s1 = szs − iγzs, where szs � ðð1� jFcðsÞ1 jÞ=2Þ1=2 and

γzs � ð1� jFcðsÞ1 jÞ=4. The real part of s1 is much larger than the imaginary
one (γzs ≪ szs ≪ 1), i.e., the mode is underdamped. The pole and branch
contributions to χc(s)(t*) are given by

χpoleðt�Þ ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s1 þ iγð Þ2

q
s31

FcðsÞ1

Q
j¼2::4ðs1 � sjÞ

e�is1t þ c:c:; (42)

χbranchðt�Þ �
1� iγð Þ3

FcðsÞ1 σ1σ2σ3σ4

e�it�þiπ=4

2
ffiffiffiffiffiffi
2π

p ðt�Þ3=2
þ c:c:; (43)

respectively, where σj = sj − (1 − iγ), similar to Eq. (19). For γ → 0, the pole

contribution is

χ
cðsÞ
1;poleðt�Þ �

sin szst�

2szs
e�γzst

�
: (44)

The branch cut contribution has the same form as in the l = 0 case, cf.
Eq. (30):

χ
cðsÞ
1;branchðt�Þ �

cosðt� � π=4Þ
t�ð Þ3=2

e�γt� : (45)

For FcðsÞ1 � �1, the pole contribution is larger than the branch-cut one
over a wide range of t* because the pole contributions contains a large
prefactor 1/szs while the branch cut contribution is reduced by 1=ðt�Þ3=2 at
large t*. Still, at any jFcðsÞ1 j< 1, intrinsic γzs is finite and by our construction is
larger than extrinsic γ. Then, at large enough t* > tcross,2, the branch-cut
contribution becomes larger than the contribution from the pole. The
crossover scale is

tcross;2 � 1
γzs � γ

log
1

szs γzs � γð Þ3=2
: (46)

This tcross,2 is the l = 1 analog of tcross in the l = 0 channel, Eq. (21).

Hidden pole, �1=9< FcðsÞ1 < 0. In the hidden pole regime, which occurs for

�1=9< FcðsÞ1 < 0, the pole contribution is still given by Eq. (42). To leading
order in γ, it is

χ
cðsÞ
1;poleðt�Þ ¼ �4Kγs

2
hðs2h � 1Þ1=2 sin sht�; (47)

where

Kγ ¼ 1

1� 9jFcðsÞ1 j
� �1=2

ð1� jFcðsÞ1 jÞ3=2
: (48)

The pole frequency is

sh ¼ 1� jFcðsÞ0 j
8jFcðsÞ0 j

1þ 3jFcðsÞ0 j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� jFcðsÞ0 jÞð1� 9jFcðsÞ0 jÞ

q	 
1=2
: (49)

In the two limits, sh ¼ 2=
ffiffiffi
3

p
for FcðsÞ1 ¼ �1=9 and sh → 1 for FcðsÞ1 ! 0.

To leading order in γ, the branch-cut contribution can be expressed as
the sum of the two terms:

χ
cðsÞ
1;branchðt�Þ ¼ χ

cðsÞ
1;branch;1ðt�Þ þ χ

cðsÞ
1;branch;2ðt�Þ: (50)

The first term contains the frequency of the pole s1 on the physical
Riemann sheet:

χ
cðsÞ
1;branch;1ðt�Þ ¼

2
π
Kγ

Z 1

1

dxx3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
e�it�s

ðx þ iγÞ2 � s21
þ c:c:; (51)

where we recall that s1 = sh − iγh and γh ≥ γ. The second term contains the
frequency of the pole s3 on the unphysical Riemann sheet:

χ
cðsÞ
1;branch;2ðt�Þ ¼ � 2

π
Kγ

Z 1

1

dxx3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
e�ixt�

ðx þ iγÞ2 � s23
þ c:c:; (52)

where s3 ¼ s03 � iγ3 with γ3 < 0 and

s03 ¼
1� jFcðsÞ0 j
8jFcðsÞ0 j

1þ 3jFcðsÞ0 j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� jFcðsÞ0 jÞð1� 9jFcðsÞ0 jÞ

q	 
1=2
: (53)

As for l = 0, the two largest contributions to χ
cðsÞ
1;branch;1ðt�Þ in (51) at t*≫ 1

come from x ≈ sh and from x ≈ 1. Accordingly, we further split χcðsÞ1;branch;1ðt�Þ
into two parts as χ

cðsÞ
1;branch;1ðt�Þ ¼ χ

cðsÞ
1;branch;1aðt�Þ þ χ

cðsÞ
1;branch;1bðt�Þ. The first

contribution is obtained in the same way as for l= 0, by expanding in ϵ = x
− sh. The result is

χ
cðsÞ
1;branch;1aðt�Þ ¼ �2Kγs

2
hðs2h � 1Þ1=2 sinðsht�Þ 1þ γh � γ

jγh � γj
� �

: (54)

A. Klein et al.

9

Published in partnership with Nanjing University npj Quantum Materials (2020) 55



Because γh > γ, the two terms in the last bracket in (54) are of the same
sign and add up to a factor of 2. Then

χ
cðsÞ
1;branch;1aðt�Þ ¼ �4Kγs

2
h s2h � 1
� �1=2

sinðsht�Þ: (55)

This term exactly cancels out χ
cðsÞ
1;poleðt�Þ from (47). The second

contribution, χcðsÞ1;branch;b , yields oscillations with frequency equal to one. It

evinces a crossover from χ
cðsÞ
1;branch;b / cosðt þ π=4Þ=ðt�Þ1=2 behavior at t* <

tcross,3 to χ
cðsÞ
1;branch;b / cosðt � π=4Þ=ððszs � 1Þðt�Þ3=2Þ behavior at t* > tcross,3,

where again

tcross;3 ¼ 1
sh � 1

(56)

This tcross,3 is the analog of tcross,1 for l = 0, Eq. (35).

The term χ
cðsÞ
1;branch;2ðt�Þ can also be split into two contributions, one from

x � s03 and another one from x ≈ 1. Evaluating the first contribution, we find
that, up to an overall factor,

χ
cðsÞ
1;branch;2aðt�Þ / sinðs03t�Þ 1þ γ3 � γ

jγ3 � γj
� �

: (57)

Because γ3 < 0, the second term in the round brackets equals −1 and

cancel the first one. As a result, there is no sinðs03t�Þ term in χ
cðsÞ
1 ðt�Þ. The

second contribution, χcðsÞ1;branch;2bðt�Þ, has the same structure as χcðsÞ1;branch;1bðt�Þ
and just adds up to the prefactor of an oscillation with frequency equal
to one.

Damped ZS mode for FcðsÞ1 	 �1=9. In this section we consider the range

of �1< FcðsÞ1 < �1=9, excluding the immediate vicinity of −1, which has

been already considered in Section 1. For FcðsÞ1 t� 1=9 the pole is close to
but somewhat below the branch cut, i.e., in our notations this is a weakly
damped conventional ZS pole (by x ≲ y we mean that x is smaller than y by
an asymptotically small quantity). Here we have szs � 2=

ffiffiffi
3

p
; γzs �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ðjFcðsÞ1 j � 1=9Þ=2
q

. Up to two leading orders in γzs, the pole contribution
is

χ
cðsÞ
1;poleðt�Þ ¼ � 3

2
e�γzs t

� cos szst�

γzs
þ 3

ffiffiffi
3

p
sin szst� þ OðγzsÞ

� �
: (58)

We verified that both terms in the pole contribution are cancelled out by
the corresponding contributions from the branch cut. The branch cut
contribution can again be represented as the sum of two terms, like in (50),
(51), (52), but now s3 is complex conjugate of s1: s3 = sh + iγh. The term
that cancels (58) is obtained by expanding in ϵ = x − sh and evaluating
integrals up to two leading orders in γh. The cancellation implies that there

are no oscillations in χ
cðsÞ
1 ðt�Þ with frequency szs, even when the system is

slightly outside the range where the ZS pole is a hidden one. The
remaining contribution from the branch cut has the same form as in other
regimes: at largest t*,

χ
cðsÞ
1;branchðt�Þ /

cosðt� � π=4Þ
t�ð Þ3=2

: (59)

We now study the crossover from the behavior at FcðsÞ1 t�1=9, where
we just found that the pole contribution is cancelled by the contribution

from the branch cut, to the behavior at FcðsÞ1 \�1, where we found earlier

that there is no such cancellation. As FcðsÞ1 decreases, the trajectory of s1
evolves in the complex plane, mirrored by the other s2..4. During this
evolution, γzs is finite but numerically small. For this reason, below we
restrict ourselves to the leading contribution in γzs.
Within this approximation, the pole contribution is the first term in (58).

For the branch cut contribution we find, not requiring szs to be close to
2=

ffiffiffi
3

p
,

χ
cðsÞ
1;branchðt�Þ ¼ � 3eiszst

�

4π

Z 1

1�szs

dx
e�ixt�

x2 þ γ2zs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
szs � 1þ x
szs � 1

r
þ c:c: (60)

For szs < 1, the lower limit of the integral is positive. This happens when

FcðsÞ1 	 Fvis1 ; (61)

where Fvis1 ¼ �0:162. In this range of FcðsÞ1 , one can safely set γzs to zero –

the integral does not diverge. As a consequence, χcðsÞ1;branch;1ðt�Þ does not

contain the factor /γ�1
zs and cannot cancel χcðsÞ1;poleðt�Þ / cosðszst�Þ=γzs in

(58). The leading contribution to the integral in (60) comes from x ≈ 1 − szs,
and the integration yields

χ
cðsÞ
1;branchðt�Þ /

cosðt� � π=4Þ
t�ð Þ3=2

; (62)

as in (59). We see that the behavior of χcðsÞ1 ðt�Þ is qualitatively the same as
for F ≥−1: the pole contribution yields oscillations with frequency szs and

remains the largest contribution to χ
cðsÞ
1 ðt�Þ up to t* ~ tcross,2. At t* > tcross,2,

the branch cut contribution becomes the largest one and χ
cðsÞ
1 ðt�Þ

oscillates at the (dimensionless) frequency equal to one.

However, when szs > 1, which happens for Fvis1 < FcðsÞ1 < �1=9, the lower
limit of integration in Eq. (60) is negative, and the integral contains a
singular contribution from x → 0. Using

Z 1

�1

e�ixt�

x2 þ γ2zs
¼ π

γzs
e�γzst

�
; (63)

we find that this singular piece cancels out the contribution from the pole.
Evaluating the other relevant contribution from x ≈ 1 − szs, we find

χ
cðsÞ
1 ðt�Þ ¼ � 3

2
ffiffiffi
π

p
szs � 1ð Þ5=2

cosððt� � π=4ÞÞ
t�ð Þ3=2

: (64)

This result is valid for t*∣szs − 1∣ ≫ 1. The cosðt� � π=4Þ=ðt�Þ3=2 is
precisely the expected time dependence for the case when the

contribution to χ
cðsÞ
1 ðt�Þ comes solely from the end points of the branch cut.

We see therefore that oscillations with frequency szs exist as long as

FcðsÞ1 < Fvis1 . For Fvis1 < FcðsÞ1 < �1=9 only oscillations, coming from the branch
points, with frequency equal to one are present.
In the analysis above we expanded in γzs, i.e., we assumed that the

damping remains small in the crossover regime around Fvis1 . The
approximation of small γzs would be rigorously valid if the pole trajectory
in the complex plane would remain close to the real axis for all

�1< FcðsÞ1 < �1=9. In that case we would expect oscillations to persist for

a long time, both at FcðsÞ1 < Fvis1 and at �1=9< FcðsÞ1 < Fvis1 . For FcðsÞ1 < Fvis1
oscillations would occur with frequency szs at intermediate t* (but still t* ≫
1) and with frequency equal to one at even larger t*. For Fvis1 < FcðsÞ1
oscillations would occur with frequency equal to one at all t* ≫ 1. We see
therefore that the branch contribution “eats up” the pole contribution once
the coordinate of the pole in the complex plane moves to below the branch

cut. In reality, γzs is small (or order γ) near FcðsÞ1 ¼ �1 and FcðsÞ1 ¼ �1=9, but

is of order one at FcðsÞ1 � Fvis1 . In this situation, the crossover between the

behaviors at FcðsÞ1 \�1 and FcðsÞ1 t�1=9 is expected to be obscured by
damping. Nevertheless, in numerical calculations, we do see indications of

the crossover in the behavior of χcðsÞ1 ðt�Þ, when FcðsÞ1 is varied around Fvis1 ,
see Fig. 9 b and its caption.

Calculations using the contour of Fig. 5. We now obtain the same results
by using the integration contour of Fig. 5. Again, the use of this contour
will allow us to avoid canceling out pole and branch contributions. It also
allows one to see more transparently how the poles on the unphysical
sheet contribute to the dynamics. We study both the regime of hidden
poles and the crossover regime between FcðsÞ1 ¼ �1 and FcðsÞ1 � 1=9. For
consistency we define s1 = szs − iγzs and σzs = s1 − (1 − iγ). With the
contour of Fig. 5, the pole contribution is zero for the same reason as for
the l = 0 case (cf. Section 4), and the dynamics is determined entirely by
the branch-cut contribution, which is given by

χbranchðt�Þ ¼
e�it�

2π

Z 1

0
eiyt

�
Δχ

cðsÞ
1 ð1� yÞdy þ c:c:; (65)

A. Klein et al.

10

npj Quantum Materials (2020) 55 Published in partnership with Nanjing University



where we used Eq. (12) and shifted the integration variable via y = 1 − x.
To proceed further, we infer from Eq. (41) that the y integral is dominated
by the region y≪ ∣σi∣, i.e., by whichever pole is nearest to the branch point,
see Eq. (19). In our notations, it is σ1 ≡ σzs. For ∣σzs∣ ≪ 1 we may expand the
integral in small y and extend the integration limits to infinity. This yields

χ1;branchðt�Þ �
ffiffiffi
2

p
i 1� iγð Þ3
2πFcðsÞ1

e�it�
Z 1

0

ffiffiffi
y

p
eiyt

�Q
j¼1::4ðy þ σjÞ dy þ c:c: (66)

First, we consider the situation when FcðsÞ1 < 0 and jFcðsÞ1 j � 1=9, i.e.,
when s1,2 reside below the branch cut (see Fig. 9) and are close to the
branch point. In this situation ∣s3,4∣ ≫ 1 and the y dependence in the (y +
σ3)(y + σ4) factor in Eq. (66) can be neglected. Then Eq. (66) is identical to
Eq. (36), up to unimportant constant factors, i.e., the hidden pole behavior

for l = 1 is the same as for l = 0. Next, we consider the situation when FcðsÞ1
decreases and becomes smaller than −1/9. We evaluate the integral in Eq.
(66) exactly by contour integration in the first quadrant of complex y and
obtain

χ1;branchðt�Þ �
ffiffiffi
2

p
i 1� iγð Þ3
2πFcðsÞ1

e�it�
X
j¼1::4

AjZðσj ; t�Þ þ c:c:; (67)

where Aj ¼
P

i≠jðσi � σjÞ�1 are the partial fraction decompositions of ∏j(x
+ σj), and

Zðσ; tÞ ¼
Z 1

0
dxeixt

ffiffiffi
x

p
x þ σ

dx ¼ Θð�ReσÞΘð�ImσÞ2πi ffiffiffiffiffiffiffi�σ
p

e�iσt þ eiπ=4ZðσtÞ;
(68)

where Z(a) was defined in Eq. (32) and Θ(a) is the Heaviside function. (Note
that since s2,3 are not near the branch point at 1 − iγ, they have σj ≈ −2
while the integral is dominated by the region y ~ ∣σ1∣, ∣σ4∣. However, their
contribution is included in the complex conjugate term in χ1,branch.)
Equations (67) and (68) are applicable in both the hidden pole regime

and the crossover regime, as long as ∣σ1∣ ≪ 1. Let us examine them in the
crossover regime. Although the sum in Eq. (67) is over all four poles, the
Heaviside functions in Eq. (68) are nonzero only for s1. It can be verified
that the sudden appearance of the pole contribution for s1 is mirrored by a
jump in ∑jAjZ(σjt), so that the crossover is actually smooth—the pole
progressively “emerges” from behind the branch cut. This behavior is the
analog of the progressive “eating up” of the poles that we obtained via
integration over the contour of Fig. 4, see Eq. (60).
To obtain a qualitative understanding of how the poles emerge, we

expand Eqs. (67) and (68) in small γzs − γ. This approximation is analogous
to the one we made above when studying the crossover using the contour
of Fig. 4, i.e. of keeping only the leading contribution in γzs. Using our
results for the contour of Fig. 5, the only necessary step is to take the limit
Imσj ! 0 in Eqs. (67) and (68), which yields,

χ1;branchðt�Þ / �Θð1� szsÞ2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� szs

p
e�iszst� � e�it�þiπ=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�iπ2ðszs � 1Þp
4ðszs � 1Þ þ c:c:;

(69)

i.e. oscillations at a frequency szs ≠ 1 begin to emerge precisely when szs <
1. Eq. (69) is valid when ∣(1 − szs)t*∣ ≪ 1.

Mirage poles. Finally, we discuss the mirage poles. For 0< FcðsÞ1 < 3=5, the
conventional ZS pole s1 is located outside particle-hole continuum, and its
position in the lower half-plane of frequency is between the real frequency
axis and the branch cut, i.e., Res1 > 1 and −γ < Ims1 < 0. At FcðsÞ1 ¼ 3=5, Ims1
becomes equal to γ, and for larger FcðsÞ1 , the pole moves to the unphysical
Riemann sheet, i.e. in our notations it becomes a mirage pole (see ref. 15).
As before, we first compute χ

cðsÞ
1 ðt�Þ using the integration contour in Fig.

4. Because there are no poles on the physical Riemann sheet for FcðsÞ1 > 3=5,

the whole contribution comes from the branch cut: χ
cðsÞ
1 ðt�Þ ¼

�χ
cðsÞ
1;branchðt�Þ. The integral over the branch cut has two relevant

contributions. The first one, χcðsÞ1;branch;am
ðt�Þ, comes from the vicinity of

branch points. This contribution is computed in the same way as the
analogous contributions in other cases considered earlier. The result is

χ
cðsÞ
1;branch;am

ðt�Þ ¼ 1ffiffiffiffiffiffi
2π

p
FcðsÞ1

� �2 cosðt� � π=4Þ
t�ð Þ3=2

e�γt� : (70)

The second contribution, χcðsÞ1;branch;bm
ðt�Þ, comes from the vicinity of the

point on the upper edge of the branch cut, s = xm − i(γ − 0+), where there
would be a ZS pole in the absence of damping. The real xm is the solution
of

1þ FcðsÞ1

FcðsÞ1

¼ �2x2m þ 2
x3mffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2m � 1

p : (71)

At FcðsÞ1 ¼ 3=5, xm ¼ 2=
ffiffiffi
3

p
. For larger FcðsÞ1 , xm increases monotonically

with FcðsÞ1 . For FcðsÞ1 � 1, xm � ð3FcðsÞ1 =4Þ1=2. For s near xm − i(γ − 0+),

χ
cðsÞ
1 ðsÞ � � Q1ðxmÞ

FcðsÞ1

� �2 1
s� xm þ iγQ2ðxmÞ ; (72)

where

Q1ðxmÞ ¼ x2m � 1ð Þ3=2
4xm x2m � 1ð Þ3=2 � 2x2mð2x2m � 3Þ

Q2ðxmÞ ¼ x2mðxm �
ffiffiffiffiffiffiffiffiffiffi
x2m � 1

p
Þ

2ðx2m � 1Þ3=2 � xmð2x2m � 3Þ

: (73)

Equation (72) is valid only for s above the branch cut, i.e., for ∣Ims∣ < γ.
This is satisfied on the upper branch of the cut, but not on the lower
branch.
The function Q2(xm) satisfies Q2ð2=

ffiffiffi
3

p Þ ¼ 1 and increases with xm for

larger xm, which correspond to FcðsÞ1 > 3=5. At large FcðsÞ1 , Q2ðxmÞ � FcðsÞ1 =2.
The condition Q2(xm) > 1 implies that there is no pole in (72) above the
branch cut, where this expression is valid. Evaluating the branch cut
contribution along s = x − i(γ − 0+), we find that the largest piece comes
from x ≈ xm and yields

χ
cðsÞ
1;branch;bm

ðt�Þ ¼ Q1ðxmÞ
FcðsÞ1

� �2 sinðxmt�Þe�γðQ2ðxmÞÞ: (74)

Combining (70) and (74), we see that in the range where a ZS pole is a

mirage one, χcðsÞ1 ðt�Þ ¼ �ðχcðsÞ1;branch;am
ðt�Þ þ χ

cðsÞ
1;branch;bm

ðt�ÞÞ has a contribu-
tion oscillating with (dimensionless) frequency xm and the contribution

oscillating with (dimensionless) frequency equal to one. When FcðsÞ1 ¼ Oð1Þ,
the second contribution is the dominant one in some range of t* > 1,
because the first contribution contains 1=ðt�Þ3=2. However, above a certain
t* the contribution from the branch point becomes the dominant one as it
contains the smaller factor in the exponent. This crossover from oscillations
with frequency xm to oscillations with frequency 1 provides a way to detect
a mirage pole experimentally.

For 0< FcðsÞ1 < 3=5, the ZS pole is located in the lower half-plane of

frequency on the physical Rieman sheet. In this situation, χcðsÞ1 ðt�Þ contains
contributions both from the pole and from the branch cut. The combined
contribution from the pole and the upper edge of the branch cut is

χ
cðsÞ
1 ðt�Þ ¼ 2

Q1ðxmÞ
ðFcðsÞ1 Þ2

sinðxmt�Þe�γðQ2ðxmÞÞ; (75)

where now 0< xm < 2=
ffiffiffi
3

p
and Q2(xm) < 1. The contribution from the

branch points is still given by (70). There is no crossover in this case
because the exponential factor in the pole contribution is smaller than in
the branch cut contribution. We note in passing that there is also a sign

change between χ
cðsÞ
1 ðt�Þ and �χ

cðsÞ
1;branch;bm

ðt�Þ in (74), (i.e., the phase of
sinðxmÞt�) oscillations changes by π between the regions where a ZS pole
is a conventional one and where it is a mirage one.
Calculations using the contour of Fig. 5. The same results can be obtained

using the contour in Fig. 5. For the contour of Fig. 5, the pole contribution
is non-zero and is given by

χpoleðt�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s1 þ iγð Þ2

q
s31

FcðsÞ1

Q
j¼2::4ðs1 � sjÞ

e�is1t þ c:c:; (76)

where s1 = sm −iγm is the mirage pole according to our conventions. This is
just −1 times the result for a conventional ZS mode residing above the
branch cut on the physical sheet, Eq. (42). The phase shift is due to the pole
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being on the unphysical sheet. The contribution of χ
cðsÞ
1;branchðt�Þ is

dominated by the branch points and is given by

χ
cðsÞ
1;branchðt�Þ ¼

1ffiffiffiffiffiffi
2π

p
FcðsÞ1

� �2 cosðt� � π=4Þ
t�ð Þ3=2

e�γt� ; (77)

The crossover time is

tcross;4 � 1
γm � γ

log
1

sm γm � γð Þ3=2
; (78)

i.e., it is analogous to the crossover time for a conventional pole with γzs <
γ, see Eq. (46).

Arbitrary l
Our results for l = 0 and l = 1 can be readily generalized to any channel.
Using the contour of Fig. 5, we see that for a given channel with 2n poles
on the Riemann surface, the solution is given by the contributions of
mirage and conventional poles with γzs < γ, along with the branch points
contribution

χbranchðt�Þ ¼ Q0

X
j¼1::2n

Ajeiπ=4Zðσj t�Þ; (79)

where Z(a) is given by Eq. (32), Aj ¼
P

i≠jðσi � σjÞ�1 and Q0 is a constant,

calculated directly from Δχ
cðsÞ
l ðxÞ and given by

Q0 ¼ lim
x!0

Δχ
cðsÞ
l ð1� xÞQjðx þ σjÞffiffiffiffiffi

2x
p : (80)

To study a crossover regime where a pole s1 emerges from behind a
branch cut, simply replace eiπ/4Z(σjt*) in (80) by Z, given in Eq. (67).

The case of comparable FcðsÞ0 and FcðsÞ1
In the main text and in the previous sections, we assumed that one Landau
parameter dominates over all others. In this section, we discuss what
happens when two Landau parameters are comparable. We focus on the

most physically relevant case when FcðsÞ0 and FcðsÞ1 dominate over all others,
as can be expected for a generic interaction which decreases mono-
tonically with momentum transfer. Our results can be readily generalized

for the case of more nonzero FcðsÞl ’s.
When both FcðsÞ0 ; FcðsÞ1 are nonzero, the expression for the quasiparticle

susceptiblity becomes more complex, since there are now cross terms in
the ladder series. Resumming the series, we obtain15,38,39

χ
cðsÞ
0 ðsÞ ¼ νF

χ0ð1þ FcðsÞ1 χ1Þ � 2FcðsÞ1 χ201

ð1þ FcðsÞ0 χ0Þð1þ FcðsÞ1 χ1Þ � 2FcðsÞ0 FcðsÞ1 χ201
; (81a)

χ
cðsÞ
1 ðsÞ ¼ νF

χ1ð1þ FcðsÞ0 χ0Þ � 2FcðsÞ0 χ201

ð1þ FcðsÞ0 χ0Þð1þ FcðsÞ1 χ1Þ � 2FcðsÞ0 FcðsÞ1 χ201
; (81b)

where χ0 and χ1 are given by Eqs. (13) and (39), respectively, while χ01(s) is
the fermion bubble with l = 0 and l = 1 form-factors at the vertices

χ01ðsÞ ¼ s
1þ i sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sþ iγð Þ2
p

1� γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sþ iγð Þ2

p : (82)

The equations for the poles in the l = 0 and (longitudinal) l = 1 channels
are the same because Eqs. (82a) and (82b) have the same denominator.
(The pole in the transverse l = 1 channel is different.) The solution of

1þ FcðsÞ0 χ0

� �
1þ FcðsÞ1 χ1

� �
¼ 2FcðsÞ0 FcðsÞ1 χ201; (83)

interpolates smoothly between the limits of jFcðsÞ0 j � jFcðsÞ1 j and

jFcðsÞ0 j � jFcðsÞ1 j, studied in the previous sections. As a result, the behavior

of the poles for the case of comparable FcðsÞ0 and FcðsÞ1 does not change
qualitatively. A new element, however, is that the mirage mode occurs
both in the l = 0 and l = 1 channels (again, because they have a common
pole). Also, the conditions for the existence of the mirage mode become

less stringent compared to the FcðsÞ0 ¼ 0 case, when the mirage mode

occurs only in the l = 1 channel and for FcðsÞ1 > 3=5. If FcðsÞ0 ≠ 0, the mirage

mode occurs already for smaller values of FcðsÞ1 , e.g., for FcðsÞ1 > 0:15 if

FcðsÞ1 ¼ 1.
For a charged FL, the situation is somewhat different. The new

diagrammatic element are the chains of bubbles connected by the
unscreened Coulomb interaction, Uq = 2πe2/q. Such chains are present in
the l = 0 charge channel and in the l ≥ 1 longitudinal charge channel, but
not in the transverse charge channel and the spin channel. Each bubble in
the chain is renormalized by a FL interaction, parameterized by the Landau
function. The Landau function comprises infinite series of diagrams
containing the screened Coulomb interaction. Resumming the diagram-
matic series, one obtains the full charge susceptibilities in the form

~χc0ðq;ωÞ ¼
χc0ðq;ωÞ

1� Uqχc0ðq;ωÞ
; (84a)

~χcl ðq;ωÞ ¼ χcl ðq;ωÞ þ
χcl0ðq;ωÞ
� �2

1� Uqχc0ðq;ωÞ
; l 
 1; (84b)

where χcl ðq;ωÞ is the quasiparticle susceptibility renormalized by the FL
interaction and χcl0ðq;ωÞ is the “mixed” quasiparticle susceptibility with
vertices at the opposite corners given by

ffiffiffi
2

p
cos lθ and 1, correspondingly.

The pole of (85a) is a 2D,
ffiffiffi
q

p
plasmon, whose group velocity is

renormalized by the FL interaction40. This is the only collective mode in
the l = 0 charge channel. In the channels with l ≥ 1 there are two kinds of
collective modes: the acoustic ZS modes, which correspond to the pole of
the first term in Eq. (85b), and the plasmon mode, which correspond to the
pole of the second term in this equation. Note that the longitudinal ZS
modes exist for any repulsive FL interaction, as opposed to the case of
transverse ZS modes, which occur only if the FL interaction exceeds certain
threshold16.
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