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Abstract The 2012-2016 California Drought severely impacted natural vegetation across a wide
range of environmental gradient. Although several studies have reported an increase in plant water stress
and mortality, the spatiotemporal variations of ecosystem productivity responses and the associated
environmental and biological drivers remain unclear. Here, using Enhanced Vegetation Index from the
Moderate resolution imaging spectrometer, we found that 45% of the natural ecosystems showed an
abrupt change (breakpoint [BP]) in productivity during 2012-2016. There were three major contrasting
temporal patterns of productivity responses: (i) a steady increase under higher temperature followed

by a decline due to accumulated moisture depletion (high elevation forest) or temperature decrease

(high elevation nonforest), (ii) gradual decline during the drought followed by a rapid recovery within

1 year after drought stress was partially relieved, and (iii) both a gradual decline and an abrupt decline.
The magnitude of abrupt changes was negatively correlated (r = —0.80, p < 0.001) with initial gradual
changes. Overall, changes during BP offset, on average, 57% of the preceding gradual responses. The
spatial variability in ecosystem response patterns is driven by both environmental and biological factors.
Particularly, for forests, positive BP was driven by increasing rainfall and decreasing temperature, while
negative BP was mainly driven by the precipitation anomaly. By 2019, 33% of the natural vegetation have
recovered to the level of EVI in 2010. Ecosystem responses to multiyear droughts can influence ecosystem
dynamics in a complex pattern. Multiple ecohydrological factors should be considered to understand and
predict the long-term drought impacts on ecosystems.

Plain Language Summary The 2012-2016 California Drought caused significant damage
to natural ecosystems throughout the state, many of which are still struggling to return to their previous
state. While there are studies on the causes and impacts of this drought, our work identified strong
spatial variability in the direction, magnitude, and timescale of vegetation responses. Depending on
vegetation type and local environmental factors, ecosystem productivity can either increase or decrease
in the early stage of the drought but more than half of the gradual changes in productivity were offset by
abrupt changes in the late stage. These results have significant implications in predicting the response of
vegetation to drought.

1. Introduction

Drought is an increasing threat to many terrestrial ecosystems (Allen et al., 2015; McDowell et al., 2018, 2020;
Miller et al., 2020; Reichstein et al., 2013; Vicente-Serrano et al., 2013). The Californian Mediterranean
and Montane ecosystems are some of the most drought-vulnerable areas in the United States because the
combination of declining precipitation and increasing temperature with global warming lead to earlier
snowmelt and reduced water availability during the summer (Scheff & Frierson, 2012). The 2012-2016
California drought is considered as one of the most severe droughts in the last 1,200 years (Griffin & An-
chukaitis, 2014), which has significantly decreased the groundwater level (Famiglietti, 2014), degraded for-
ests (Asner et al., 2016; Stovall et al., 2019), and worsened local air quality (Demetillo et al., 2019). This
“exceptional” drought provides a unique natural experiment to observe ecosystem resilience and recovery
under unusually prolonged water stress, which is projected to occur with increasing frequency due to an-
thropogenic changes in atmospheric CO, (Diffenbaugh et al., 2015).

YANG ET AL.

1of 14



A7
ra\“1%
ADVANCING EARTH
AND SPACE SCIENCE

Journal of Geophysical Research: Biogeosciences 10.1029/2020JG005976

Several recent studies have focused on the patterns and drivers of vegetation canopy water loss (Asner
et al., 2016) and tree mortality (Goulden & Bales, 2019; Paz-Kagan et al., 2017; Rao et al., 2019; Stovall
et al., 2019, 2020) during the 2012-2016 California drought. However, the response of ecosystem produc-
tivity, a critical process of the carbon cycle, to the multiyear drought across a large environmental gradient
and a wide range of vegetation types is relatively unexplored, particularly during the recovery phase. During
meteorological drought, reduction of precipitation and the accompanying heatwave can reduce ecosystem
productivity in moisture-limited ecosystems but, potentially, increase ecosystem productivity in energy-lim-
ited alpine ecosystems (e.g., the 2003 Europe heatwave over the Alps; Jolly et al., 2005). Accordingly, when
the drought conditions terminate, ecosystem productivity can either increase due to the release of moisture
limitation or decrease due to a reduction in temperature (Berry & Bjorkman, 1980; Huang et al., 2019). These
divergent responses result from complex interactions of different processes including enzymatic activity,
stomatal closure, phenology, and vegetation demographics, which operate at different spatial and temporal
scales (Anderegg et al., 2015; Brodrick & Asner, 2017; Kannenberg et al., 2019; McDowell et al., 2008; Sperry
et al., 2017; Wolf et al., 2016). Characterizing the magnitude, time-scale, and environmental drivers of these
opposing effects can help to reveal the integrated mechanisms of ecosystem drought responses.

Aside from local resource conditions, the direction and time-scale of drought responses can also depend on
vegetation type. At the coarsest level, trees and grasses display distinctive hydraulic traits, water-use strate-
gies, drought resistance/recovery abilities, and the associated metabolic costs to build new tissues (Baldoc-
chi et al., 2004; Scholes & Archer, 1997; Xu et al., 2015). With generally deeper roots and hydraulically resist-
ant stems, trees are more drought-resistant compared to grasses but can cavitate and require a longer time to
recover when crossing mortality thresholds in carbon starvation and hydraulic failure (Adams et al., 2017;
McDowell et al., 2008), or the associated biotic stress such as insect attack (Fettig et al., 2019). On the other
hand, recent studies have shown that mature trees can be quite resistant to loss of conductivity (Dietrich
et al., 2018; Korner, 2019). Therefore, ecosystems dominated by trees should show relatively gradual chang-
es in productivity, whereas the grass-dominated ecosystem should generally have more acute responses.

Using the 2012-2016 California drought as an example, we seek to answer the following questions: (1) What
is the magnitude and directionality of ecosystem productivity responses to drought, and are there identifia-
ble abrupt changes in productivity, or alternatively, vegetation responses are gradual and slow as usually be-
ing characterized with one single trend? (2) Do tree-dominated and grass-dominated vegetation types show
different responses? (3) Have the ecosystems fully recovered from the drought? As Schwalm et al. (2017)
have shown, most of the ecosystems recover from a drought within 24 months. In the case of megadroughts,
it remains unclear over what timeframe ecosystems recover. (4) What are the environmental and biological
factors that explain the spatial variability of ecological drought impacts and recovery?

We combine long-term satellite observations of canopy greenness (as a proxy for vegetation leaf area and
chlorophyll content) and geospatial products of environmental variables to address these questions. We re-
veal abrupt and gradual drought responses using the Breaks for Additive Season and Trend (BFAST) meth-
od to analyze the Enhanced Vegetation Index (EVI) from the MODerate resolution Imaging Spectrometer
(MODIS) time-series during 2010-2019 (Figure 1, see Section 2 for details). Here, we define abrupt response
in terms of statistically significant changes in EVI trend within a year, while gradual responses are changes
that can be characterized with a linear regression during this period.

2. Materials and Methods
2.1. MODIS Data

Canopy greenness, as a proxy for vegetation productivity over the drought period, was estimated from the
EVI data are from the MODIS 16-day level-3 products with 500 m spatial resolution (MOD13A1) (Huete
et al., 2002). EVI is influenced by the total leaf amount and the chlorophyll concentration in the leaves
(Huete et al., 2002). Only the EVI data points with the highest quality (QA reliability flag equals to 0 and
1) were used. We used MODIS annual land cover (LC) types (MOD12Q1), based on the International Ge-
osphere-Biosphere Program (IGBP) classification, to identify main LC types in this region, including ever-
green needleleaf, shrub and savanna, and grassland. Needleleaf forest and woody savannah are grouped in
“Forest,” as the definition of woody savannah from IGBP is “Tree cover 30%-60% with mean canopy height
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Figure 1. Temporal patterns of ecosystem productivity during the 2012-2016 California drought and the Breaks for
Additive Season and Trend (BFAST) terminology in our analyses. We identified three major types of drought responses
for vegetations in California: (a) An example of a gradual decline in the Enhanced Vegetation Index (EVI) followed by
instantaneous recovery (in terms of a few months to a year) at the BP. We estimated, for each pixel, the long-term mean
EVI (EVIy), the changes before BP (Apre, %), during BP (ABP, %), and after BP (Apost, %). The uncertainty in the timing
of BP is denoted with the red whiskers. (b) A gradual increase in EVI before the BP where there is a precipitous decline
of EVLI. (c) An example of a decline in EVI before and during BP. (d) Mean time-series of EVI for forest types (forest,
and woody savanna as defined by MODIS LC product based on the IGBP classification) and nonforest types (shrub and
grass) from 2000 to 2019. We used the full time-series here to show the scale of change during the drought. Red lines
are BFAST trend fits, and the uncertainties in the timing of the BPs detected are denoted with whiskers near the x-axis.

larger than 2 m.” Grassland and savannah are grouped into “non-forest” types. Pixels with LC type changes
during this period, particularly from evergreen forests to non-forest types, were excluded. Agriculture and
urban pixels were excluded from the analysis. We used MODIS fire product (MCD64A1) to exclude any
pixels that had a fire during the 2000-2018 period to avoid false identification of breakpoints (BPs) due to
drought. Pixels with a fire history were excluded in this analysis. We also have excluded pixels with mean
annual EVI during 2000-2010 <0.15 to exclude areas with minimal vegetation cover. The noisy time-series
from these areas have a negative impact on the quality of trend and change detection.

2.2. Breaks for Additive Season and Trend

BFAST is a method to quantify the trend and BPs of time-series, which often have a periodic pattern (Ver-
besselt et al., 2010). A time-series is decomposed into a trend, a seasonal, and a residual component. BFAST
finds whether a significant change of trend exists and when the change is. We used BFAST to quantify the
timing of the significant change, which we termed the “breakpoint,” the relative magnitude of change in
EVI during the BP (calculated as the ratio between the change of EVI and the mean predrought EVI during
2000-2010), and the slope of the trend before and after the BP (Figure 1). There are a few other methods
that provides estimates of the timing of BP from remote sensing timer-series, including the Bayesian Es-
timator of Abrupt change, Seasonal change, and Trend (BEAST; Zhao et al., 2019), a method based on
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the ordinary-least squares moving sum test (Forkel et al., 2013), and the R-package “segmented” based on
piece-wise regression models (Muggeo & Others, 2008).

The BFAST algorithm also produces the uncertainty in the timing of BP. When there was no statistical-
ly significant BP identified, we calculated the slope of the trend component to estimate the total relative
change during this period. It is important to note that the number of data points (211) is much larger than
the number of variables in the fitted models (6, see Verbesselt et al., 2010), and thus BFAST is unlikely to be
overfitted (Verbesselt et al., 2010).

We used the change since 2010 before BP (A.) relative to the long-term EVI (EVI,) from 2000 to 2010
(Bpre = Apre/EVIy, %) to assess the gradual response to drought; The relative magnitude of EVI change at
BP (Agp) to the long-term mean of EVI (8gp = App/EVIy, %) was used to estimate the short-term response
to drought; and the EVI change after BP (8,05t = Apost/ EVIy, %) relative to the long-term mean EVI (8,0 to
estimate the gradual change post BP (Figure 1). EVIy, is the indicator of the average green leaf area when it
is under normal climate conditions.

To obtain biologically meaningful BPs that are related to the drought, we conducted the following steps: (1)
excluded pixels with uncertainty in the timing of BP larger than 1 year. The excluded pixels may have highly
uncertain BP detected. These pixels were then put into the category with no BP, and the relative change to
long-term mean during this period was calculated; (2) We also limited the number of BPs to be no more
than two and excluded the pixels where the confidence interval range of the BP timing is over 1 year. The
rationale is that given the nature and timing of the disturbance, it is unlikely to have more than two BPs in
a 10-year period; (3) We excluded pixels with recent fire events and changes of LC types during this period
(e.g., forest to cropland).

2.3. Environmental Determinants of Spatial Variations in BFAST Results

To understand the environmental drivers of BFAST results, we used Random Forest Regression (Python
scikit-learn 0.19.1 RandomForestRegressor) to investigate the environmental and biological determinants
of the ecosystem changes before the breakpoint (3,.), during the breakpoint (8gp), and after the breakpoint
(Bpost)- We used 200 trees for each regression. We calculated the partial dependence plots to show the effects
of each independent variable on ecosystem changes. Note that all of the independent variables were resa-
mpled to the resolution of 500 m.

We used the following datasets for the environmental variables and their derivatives such as the mean
values before drought (2000-2010) or slopes of changes during the drought. The details of the variables
included in each random forest model are listed in the results section.

2.3.1. Parameter-Elevation Relationships on Independent Slopes Model

Monthly precipitation (PPT), mean temperature (T), and VPD (calculated as the mean of the maximum
monthly VPD and minimum monthly VPD) from the parameter-elevation relationships on independent
slopes model (PRISM) project are used (Daly and Taylor, 1997). The data range is from 1981 to 2018. The
spatial resolution is 30 arcsec. We resampled the data by resampling the PRISM datasets to the MODIS grid.
We calculated the monthly anomaly of PPT, T, and VPD relative to the monthly mean and SD from 2000 to
2010. Here, we used the mean PPT, T, and VPD during 1980-2010. We calculated the anomalies of PPT, T,
and VPD before, during, and after a BP.

2.3.2. Cumulative Water Deficit

We calculated monthly water deficit as the difference between PPT and actual evapotranspiration (AET),
from the California Basin Characterization Model (Flint et al., 2013). We then calculated the 24-month cu-
mulative water deficit (CWD) before the month of the BP identified in BFAST. The model outputs are from
October 2010 to September 2016.
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Figure 2. (a) Fractions of pixels with or without BP partitioned by the sign of the change during BP. (b) Same as A, for
forests; (c) Same as A, for nonforests. Under the “No BP” category, colors indicate the trend of EVI time-series.

2.3.3. Water Table Depth

Water table depth (WTD) (m) data is the model simulation result constrained by over 1.6 million well and
publication records from Fan et al. (2013). WTD values indicate water table depth below land surface. The
native resolution of the WTD product is 0.0083°, which is roughly ~1 km in California ~40° latitude).

2.3.4. Soil Available Water Storage

Available water storage (AWS) for the top 150 cm of the soil was calculated as the difference between soil
water content at field capacity and the permanent wilting point adjusted for salinity and fragments. It is
part of the 2018 version of the USDA Gridded Soil Survey Geographic (gSSURGO) Database (https://www.
nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2_053628). The original spatial resolution
is 30 m.

2.3.5. Elevation

Digital elevation model data used in this study were from the Shutter Radar Topography Mission (SRTM)
collected during 2000. The product has a resolution of 90 m.

3. Results and Discussion
3.1. Spatial Variations of Divergent Drought Responses

Here, we show that the uncertainty of BPs is mostly within a year (Figure 2) despite the MODIS data (every
16 days) allow for detection of submonthly abrupt changes, suggesting that vegetation responses to the
drought occurred over a few months to a year, instead of an instantaneous vegetation response within 1
or 2 weeks. From 2010 to 2019, 45% of the natural ecosystems had a statistically significant change point
detected (Figure 2). Among those areas with BPs, the uncertainties—as estimated by BFAST—in the timing
of BP varies (Figure 2): 41% are below 6 months, 49% are between 6 and 12 months. The significant changes
in the trend and/or magnitude of EVI during BPs could be caused by beetle attack or drought, which are
highly interactive factors that drive the vegetation responses of some evergreen forests (Gaylord et al., 2013;
Stovall et al., 2020).

Interestingly, gp and S, have a strong negative correlation across California (» = —0.80, Figure 3), implying
that the timing and timescales of drought response vary, probably depending on the characteristics of the
ecosystems. The slope of the linear regression between dgp and . is —0.6, indicating that 60% of the initial
gradual changes in productivity, negative or positive, were offset at the BP. Given that almost the entirety of
California has experienced equally strong drought conditions (Williams et al., 2015), these patterns suggest
that California ecosystems have a wide range of drought resistance and resilience (Malone et al., 2016).
Larger initial decreases in productivity mean a higher recovery potential when the environmental stress
is relieved. The temporary recovery, despite being induced by short-term changes in climatic conditions
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Figure 3. (a) Timing of BP and the sign of BP. (b) Same as D, for forests; (c) Same as D, for nonforests; (d) Anomalies of temperature and precipitation during
the BP for forest and nonforest types. Positive BP for forests is associated with lower temperature and positive precipitation. Positive BP for nonforest types is
associated with positive temperature and precipitation. (e) Annual precipitation (mm) averaged across all the forest pixels (red) and nonforest pixels (blue).

(Figure 3d), was highly dependent on the preexisting biological responses (8,r.), especially during prolonged
droughts like the 2012-2016 California drought.

A majority of the detected BPs have positive signs (58%), implying BP happened during the recovery phase
for those regions. This type of recovery could be a transient one following the temporary release of water
stress, as we will show later. The likelihood of significant abrupt responses also differs among LC types.
Forty-six percent nonforest pixels had BPs between 0 to 6 months, whereas only 24% forest pixels fell in
the same category (Figures 2b and 2c). Among the forests, the proportions of positive and negative BPs are
27% and 73%, respectively. A majority of the negative BPs (56%) occurred early during the drought around
2012-2014 (Figure 3a). Among the nonforests, the proportions of positive and negative BPs are 75% and
25%, respectively. For pixels without a BP, more than half of them (56%) have a negative trend during this
period, while 44% of them showed a positive trend during this period (p < 0.001). Together, the results sug-
gest nonforest types could recover from the drought in a relatively fast and abrupt manner, likely because
grasses that dominate these nonforest pixels do not need to invest on stem growth and can regrow quickly
once moisture stress is relieved. The pixels with BP uncertainties larger than a year has been treated as pix-
els without a BP. The EVI time-series of these pixels were only fitted with a linear regression.

The timing of BP varies spatially, but most of the BPs occurred during 2012-2016, with a peak in 2014
(Figure 3b). For forests, negative BPs occurred early in the drought period (2012-2013), while positive BPs
were throughout 2015-2016. For nonforests, positive BPs are between 2014 and 2016, and negative BPs are
evenly distributed from 2012 to 2015. Even though the drought was at its peak in 2014, precipitation started
to recover from then on, likely driving the positive BP of nonforests, which respond faster to precipitation
(Figure 3e).
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3o (%) decrease of EVI, followed by a rebound (Figure 1a, and area 1 in Fig-
oo ure 4); 21% showed a gradual increase in productivity in the early stage of
Figure 4. (a) The relationship between changes in EVI before BP (8,rc) the drought, terminated by a short-term decrease (Figure 1b, and area 2
and during BP (8p). We estimated the changes relative to the long-term in Figure 4); 15% had a gradual and an abrupt decrease often followed by
mean EVI (2000-2010, EVI,) before BP (8,,%), during BP (8gp,%), and a rebound (Figure 1c, and area 3 in Figure 4).
after BP (80s,%). Colors of the dots indicate point density. The graph has
been divided into three areas corresponding to the text. See text for more There are clear spatial variations of vegetation response before BP (Bpre,
details.

Figure 5c) and during BP (8gp, Figure 5d). Areas that had reductions in

productivity before BP (3y..) formed a “ring-of-fire” around the Central

Valley and can also be found in the southwestern part of the state. Nota-
bly, southwestern California showed the most severe drought response and the decline of EVI, as indicated
by 8pre, could be as high as the long-term EVI of this region (close to —100% of 3, which was calculated as
Dpre/EVI).

On the contrary, the forests at a higher elevation (e.g., near the Eldorado National Forest) had a positive
Spre and thus an increasing EVI in the first few years of drought until 2013-2014 (Figures 3b and 5c). This
relationship is likely due to larger increases in ecosystem productivity occurring during favorable condi-
tions in a high elevation where the temperature could be the limiting factor at an early drought stage (Jolly
et al., 2005). These increases in productivity may have led to over-investment of photosynthetic tissues,
an increasing photosynthetic rate and canopy transpiration, further draw-down of local water resources,
and ultimately more abrupt decreases when the drought became a prolonged one (Goulden & Bales, 2019;
Trugman et al., 2018). The map of change during BP (8gp) almost mirrored that of §,. but with an inverse
pattern: areas experiencing declines before the BP showed the strongest recovery of EVI (8,0 increased
up to ~50%), while the western part of the state and areas around the Central Valley had a decline in EVI
during the BP. This pattern can also be observed in Figure 4a: pixels in area 1 and 2 had opposite signs of ;.
and Sgp. A few areas, including the northwestern part of the Central Valley, had both negative 8. and 3gp.
After BP, 48% of all the pixels showed a positive recovery (8,s) While 52% showed a negative ;.. There was
no clear relationship between 8, and Sgp, indicating that the observed relationship between 8. and gp is
not an artifact of the BFAST algorithm.

A significant portion of California's natural ecosystems had not fully recovered from the drought even after
24-36 months of the end of the drought period. By the end of 2019, 33% of the natural vegetation (~7.9
million ha) in California had recovered—as defined by a higher EVI compared to the EVI at the beginning
of the drought (i.e., Sota1 > 0, Stotal = Spre+Opp+3post)- Sixty-seven percent of areas still have lower EVI com-
pared with that of 2010. We also found that 89% have reached 80% of the predrought vegetation productivity
(i.e., most of the pixels with negative 8, had reached at least 80% of the EVI at 2010). Breaking down into
forested and nonforested categories, 47% of the forests have fully recovered. Similarly, 21% of nonforests
have recovered.
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Figure 5. Spatial patterns of vegetation productivity changes in California during 2010-2019 decomposed using
BFAST. (a) Number of BPs detected by the BFAST algorithm. One means one BP, whereas zero means no significant
BP is detected; (b) The timing of the BP; (c—f) Relative changes compared with long-term (2000-2010) mean EVI at
each pixel (EVIy); (c) Changes before BP (8., %); (d) Changes during BP(Sgp, %); (¢) Changes after BP(8,05,%); (f) Total

change during 2010-2018 relative to the long-term mean (Sota = Spre + pp + Spost;%)-

Overall, we showed that the ecosystem response to this megadrought was nonlinear, and the recovery could
be characterized by a combination of slow and/or fast responses. Vegetation recovery is a complex process
that occurs at various speeds that one single metric (e.g., recovery time) might fail to capture (Schwalm
et al., 2017). Nonforest types (grass and shrub) usually had a fast response to changing water availability
(increasing or decreasing), whereas forest types were more conservative. Below, we analyze what drivers

may have contributed to the fast and slow responses.
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Table 1
Key Variables That Contributes to the Spatial Variations of Spr., dgp and Spos
Spre Spp Spost
Forest Historical mean temperature (—) Spre (=) Precipitation trend (+)
Precipitation anomaly (—) precipitation anomaly (+) Altitude (—)
Historical mean precipitation (—) Altitude (+) Temperature trend (—)
Temperature anomaly (—)
VPD anomaly (—)
Non-forest Historical mean temperature (—) Spre (=) Historical mean precipitation (—)
Historical mean precipitation (+) precipitation anomaly (—) Temperature trend (+)
Precipitation anomaly (—) Altitude (+) Historical mean temp (—)
Temperature anomaly (—) Historical mean precipitation (+) VPD trend (—)

Forest and nonforest are colored in the same way in the random forest results figures (Figures 6-8). Biotic factors are marked in light green while abiotic factors
are marked in blue. The sign after each variable indicates the relationship between the variable and the spatial variations of Sy, Sgp, and 8y,s. Only factors with
a relative importance value larger than 0.05 are included.

*Note that whenever anomaly is mentioned, it refers to the anomaly of the corresponding period of time, that is, pre BP, during BP, or post BP. Historical mean
precipitation is monthly average of a year (so annual mean is 12 times this value).

3.2. Drivers of Vegetation Responses

We used random forest to analyze the potential drivers of the spatial variations in Sy, Sgp, and Spey. In
particular, we were interested in whether the spatial pattern was driven by the variations in the average
environment (“climate”), the different degrees of drought stress (“weather”), or any biological variables.
We found that both environmental drivers (precipitation and temperature) and the vegetation status before
the drought (e.g., EVI,) drive the response. Key variables that contribute to the spatial variations of 8y, Sgp,
and 8,05 are summarized in Table 1. Random Forest models explained 80%-90% of the spatial variability of
changes in EVI before, during, and after BP.

Forest and nonforest responses before the BP (8,..) can be well captured by a combination of tempera-
ture, precipitation, and VPD during and before the drought (forest, cross-validation ¥ = 0.84; nonforest:
cross-validation #* = 0.91, Figure 6). The most important variable that explains the spatial variation of Spre
for forests is the long-term mean annual temperature (TMPayc), followed by precipitation anomaly before
drought (PPTy.), long-term mean annual precipitation (PPTayg), VPD anomaly before BP (TMP,,.), and
temperature anomaly before BP (TMP,.). Higher temperature anomaly leads to a more negative response
in EVI This finding is consistent with other work showing that heat stress could be one of the major tree
mortality drivers during drought (Stovall et al., 2019). High temperature is oftentimes associated with high
vapor pressure deficit, which exacerbates drought stress (Grossiord et al., 2020). Forests with a higher long-
term mean annual temperature (TMPay) generally had a smaller decrease in EVI, while we did not find a
strong relationship between the spatial patterns of TMPp. and TMPayc (r = —0.03). This pattern likely im-
plies the local adaptation to a warmer environment by the drought-tolerating species. For nonforest types,
the most important variable is the long-term mean annual temperature (TMPayc), followed by the long-term
mean annual precipitation (PPTayg), precipitation anomaly before BP (PPT,..), and temperature anomaly
before BP (TMP,..). Areas with a higher climatically mean annual precipitation and more precipitation
before BP suffered less during this period of time. The average water availability, which reflects the average
level of limiting resources, was the second most important (PPTayg, 16%), whereas elevation had very low
relative importance (1%, Figure 6¢). We did not find that soil variables such as water table depth and soil
available water storage played important roles in driving the spatial variability of 5., presumably because
of the relatively high uncertainty in these datasets and the sweeping nature of the severity of the drought.
Notably, nonforest productivity changes are almost always lower than forest productivity changes under
given environmental conditions (brown curves are below green curves in Figure 6), supporting our hypoth-
esis that productivity show more initial gradual increases in forest regions because trees are hydraulically
more resistant.
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Figure 6. Sensitivity of d;.. to key environmental variables in Random forest analyses. Each panel shows a partial dependence plot with Y-axis denoting
normalized 8. and X-axis denoting the range of variations of the specific environmental factor as indicated in the panel title. The unit of each driver is under
each panel. Each panel title also includes the relative importance of that driver for forest (F) or nonforest (NF). Green lines are for forest, and brown lines are
for nonforest. Listed below are the six most important drivers: long-term mean temperature (TMPayc), long-term mean precipitation (PPTayc), precipitation
anomaly during this period before BP (TMP,.), VPD anomaly during this period before BP (VPD,), and altitude (ALT).

During the BP, 88% and 93% of the spatial variability of 6z can be mostly explained by .., and precipita-
tion during this period for forests and nonforests, respectively (Figure 7). The most important factor is Sy,
which is also implicated in Figure 4. The more decline (or increase) before the BP, the more opposite chang-
es during BP, indicating that the ecosystem resilience or memory may have played a role. Besides 0, for
forests, the most important variable is the precipitation anomaly within one year of the BP (PPTgp), followed
by ALT, long-term mean annual temperature (TMPayc). For nonforests, the second most important variable
is PPTyp, followed ALT and PPTayc. For both forests and non-forests, positive precipitation anomaly seems
to be the key to the positive recovery during this period.

After the BP, during the late stage of and after the drought, 80% and 79% of the spatial variability of 8,0 can
be explained by using our Random Forest model (Figure 8). In this analysis, instead of the mean anomaly
of precipitation, temperature, and VPD after BP, we used the slope of the precipitation, temperature, and
VPD after BP (from BP to 2019) as a group of predictors to the spatial variability of 8., in combination with
historical mean precipitation, temperature, and altitude of each pixel. The main reason for using the slope
is that a positive slope could indicate a relief of drought, even when the anomalies of PPT or VPD are still
negative. For forests, the most important variable is the slope of precipitation trend (PPTyy,), followed by
ALT, the slope of temperature trend (TMPq,;), long-term mean annual precipitation (PPTavg), the slope of
temperature trend (VPDgj;), and long-term mean annual temperature (TMPayc). Areas with a positive trend
of precipitation have more recovery of EVI, which is not surprising. Areas with more historical precipitation
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Figure 7. Sensitivity of dgp to key environmental variables in Random forest analyses. Each panel shows a partial dependence plot with Y-axis denoting
normalized dgp and X-axis denoting the range of variations of the specific environmental factor as indicated in the panel title. The unit of each driver is under
each panel. Each panel indicates one driver and the relative importance of that driver for forest (F) or nonforest (NF). Green lines are for forest, and brown lines
are for nonforest. Listed below are the six most important drivers: relative change before BP (8,..), precipitation anomaly during this period (PPTgp), altitude
(ALT), long-term mean temperature during 1980-2010 (TMPayc), long-term mean precipitation during 1980-2010 (PPTayg), temperature anomaly during this

period (TMPgp).

had a lower recovery rate, likely due to that the vegetation in those areas are less adaptive to drier conditions
and thus it takes more water for a full recovery.

Overall, results from random forest analyses suggested the following key findings: (1) the observed changes
during the BP and the trends before and after the BP are real instead of artifacts from the BFAST algorithm,
because the random forest results by large are in line with ecological understandings; (2) The changes be-
fore, during, and after BP are mainly driven by temperature and precipitation anomalies, which can explain
a significant portion of the spatial variability of the magnitude and direction of 8., Ogp, and dpos. Nonforest
types (shrub and grass) seem to be more responsive to instantaneous changes in temperature and precipita-
tion, as supported by a higher R? for nonforest types from the random forest analyses. This is not surprising
given the relatively lower biomass and shallower root depth of shrub and grass compared with trees in
this area. This finding is largely in line with other studies on this topic (e.g., Dong, MacDonald, Willis,
etal., 2019; Stovall et al., 2019; Young et al., 2017), in which water deficit is certainly driving the loss of vege-
tation. Dong, MacDonald, Willis, et al. (2019) showed that there is a difference in drought response between
southern and northern California. We have shown in our BFAST results that more areas in the southern
California have BPs whereas a significant proportion of northern California does not have a BP. A poten-
tial improvement to this study is to examine different nonforest types' response to drought—some shrub
species may respond to the drought more like trees than grasses. While MODIS LC types include multiple
shrub types (e.g., open shrub or close shrub), they may not closely correspond to the local shrub types that
have different ecohydrological traits (e.g., chaparral vs. coastal sage scrub). One study focusing on drought
responses of different vegetation types in the Southern California region has shown that temperature is an
important driver of vegetation responses to drought, while precipitation is not (Dong, MacDonald, Okin, &
Gillespie, 2019). This difference between our study and Dong, MacDonald, Okin, and Gillespie (2019) could
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Figure 8. Sensitivity of d,. to key environmental variables in Random forest analyses. Each panel shows a partial dependence plot with Y-axis denoting
normalized 8, and X-axis denoting the range of variations of the specific environmental factor as indicated in the panel title. The unit of each driver is under
each panel. Each panel indicates one driver and the relative importance of that driver for forest (F) or nonforest (NF). Green lines are for forest, and brown
lines are for nonforest. Listed below are the six most important drivers: the slope of precipitation during this period (VPDy,,), altitude (ALT), the slope of
temperature during this period (TMPy,), long-term mean precipitation from 1980 to 2010 (PPTayc), long-term mean temperature from 1980 to 2010 (TMPayc),
and the slope of VPD during this period (VPDgp,).

be related to the spatial coverage—our study area covers the entire California in which the spatial variations
in precipitation is much higher. In addition, forests are generally located in higher elevation areas, and may
have been buffered from the initial drought impact or even benefit from a higher temperature at the begin-
ning of the drought (Figure 5c). Similarly, high elevation vegetation responded favorably to the 2003 heat-
wave in Europe, benefiting from an increasing temperature with adequate soil moisture (Jolly et al., 2005).

4. Conclusion

We use satellite records of vegetation greenness to study the biological patterns and environmental driv-
ers of ecosystem response to an extreme and persistent drought—the 2012-2016 California Drought. By
2019, only 33% of the natural ecosystems recovered from the drought (i.e., areas with annual mean EVI
higher than that of 2010), which has a significant implication on the carbon and water cycles. Most areas
had abrupt changes caused by varying water availability, preceded by either positive or negative trends
of productivity. We show three contrasting patterns of drought response that dominate the ecosystems of
California: one with gradual decline in productivity, followed by an abrupt recovery, which was mainly driv-
en by a temporary increase in precipitation (even when the annual precipitation was still below normal);
the second one with a slow positive response before an abrupt decline in productivity which was due to a
chronicle water deficit; and a third with both slow and abrupt decline in EVI. The spatiotemporal patterns
of drought response are largely driven by environmental factors (e.g., long-term mean temperature and
precipitation and/or temperature/precipitation during the drought) and biological factors (e.g., long-term
average productivity).
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Our results also suggest that ecosystem responses to drought can be complex, and the recovery process of
the ecosystem is oftentimes non-linear. For high altitude forest ecosystems, initial benefits from the drought
lasted longer than one growing season (unlike the 2012 US drought which had an increase in productivity
in the spring, or 2003 Europe heatwave, which had an increase all year round). As temperature remained
high while the water ran out (Goulden & Bales, 2019), forests lost 36% of the productivity gained during the
initial stage of the drought. Areas with high productivity prior to drought could be more resistant. With the
more frequent and more intense drought in this area (Cook et al., 2015), the resilience of the ecosystems will
be tested, and this resistance will largely depend on a combination of biological factors (predrought produc-
tivity), precipitation, and temperature. In this area, forests may be more resilient than grasslands and shrub-
lands in a short drought, but in the end, they may still succumb to future intense and prolonged drought.

Data Availability Statement

PRISM data can be downloaded https://prism.oregonstate.edu/. All source code can be downloaded from
Zenodo (https://doi.org/10.5281/zenodo0.4542105).
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