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Several recent studies have focused on the patterns and drivers of vegetation canopy water loss (Asner 

et al., 2016) and tree mortality (Goulden & Bales, 2019; Paz-Kagan et al., 2017; Rao et al., 2019; Stovall 

et al., 2019, 2020) during the 2012–2016 California drought. However, the response of ecosystem produc-

tivity, a critical process of the carbon cycle, to the multiyear drought across a large environmental gradient 

and a wide range of vegetation types is relatively unexplored, particularly during the recovery phase. During 

meteorological drought, reduction of precipitation and the accompanying heatwave can reduce ecosystem 

productivity in moisture-limited ecosystems but, potentially, increase ecosystem productivity in energy-lim-

ited alpine ecosystems (e.g., the 2003 Europe heatwave over the Alps; Jolly et al., 2005). Accordingly, when 

the drought conditions terminate, ecosystem productivity can either increase due to the release of moisture 

limitation or decrease due to a reduction in temperature (Berry & Bjorkman, 1980; Huang et al., 2019). These 

divergent responses result from complex interactions of different processes including enzymatic activity, 

stomatal closure, phenology, and vegetation demographics, which operate at different spatial and temporal 

scales (Anderegg et al., 2015; Brodrick & Asner, 2017; Kannenberg et al., 2019; McDowell et al., 2008; Sperry 

et al., 2017; Wolf et al., 2016). Characterizing the magnitude, time-scale, and environmental drivers of these 

opposing effects can help to reveal the integrated mechanisms of ecosystem drought responses.

Aside from local resource conditions, the direction and time-scale of drought responses can also depend on 

vegetation type. At the coarsest level, trees and grasses display distinctive hydraulic traits, water-use strate-

gies, drought resistance/recovery abilities, and the associated metabolic costs to build new tissues (Baldoc-

chi et al., 2004; Scholes & Archer, 1997; Xu et al., 2015). With generally deeper roots and hydraulically resist-

ant stems, trees are more drought-resistant compared to grasses but can cavitate and require a longer time to 

recover when crossing mortality thresholds in carbon starvation and hydraulic failure (Adams et al., 2017; 

McDowell et al., 2008), or the associated biotic stress such as insect attack (Fettig et al., 2019). On the other 

hand, recent studies have shown that mature trees can be quite resistant to loss of conductivity (Dietrich 

et al., 2018; Körner, 2019). Therefore, ecosystems dominated by trees should show relatively gradual chang-

es in productivity, whereas the grass-dominated ecosystem should generally have more acute responses.

Using the 2012–2016 California drought as an example, we seek to answer the following questions: (1) What 

is the magnitude and directionality of ecosystem productivity responses to drought, and are there identifia-

ble abrupt changes in productivity, or alternatively, vegetation responses are gradual and slow as usually be-

ing characterized with one single trend? (2) Do tree-dominated and grass-dominated vegetation types show 

different responses? (3) Have the ecosystems fully recovered from the drought? As Schwalm et al. (2017) 

have shown, most of the ecosystems recover from a drought within 24 months. In the case of megadroughts, 

it remains unclear over what timeframe ecosystems recover. (4) What are the environmental and biological 

factors that explain the spatial variability of ecological drought impacts and recovery?

We combine long-term satellite observations of canopy greenness (as a proxy for vegetation leaf area and 

chlorophyll content) and geospatial products of environmental variables to address these questions. We re-

veal abrupt and gradual drought responses using the Breaks for Additive Season and Trend (BFAST) meth-

od to analyze the Enhanced Vegetation Index (EVI) from the MODerate resolution Imaging Spectrometer 

(MODIS) time-series during 2010–2019 (Figure 1, see Section 2 for details). Here, we define abrupt response 

in terms of statistically significant changes in EVI trend within a year, while gradual responses are changes 

that can be characterized with a linear regression during this period.

2. Materials and Methods

2.1. MODIS Data

Canopy greenness, as a proxy for vegetation productivity over the drought period, was estimated from the 

EVI data are from the MODIS 16-day level-3 products with 500 m spatial resolution (MOD13A1) (Huete 

et al., 2002). EVI is influenced by the total leaf amount and the chlorophyll concentration in the leaves 

(Huete et al., 2002). Only the EVI data points with the highest quality (QA reliability flag equals to 0 and 

1) were used. We used MODIS annual land cover (LC) types (MOD12Q1), based on the International Ge-

osphere-Biosphere Program (IGBP) classification, to identify main LC types in this region, including ever-

green needleleaf, shrub and savanna, and grassland. Needleleaf forest and woody savannah are grouped in 

“Forest,” as the definition of woody savannah from IGBP is “Tree cover 30%–60% with mean canopy height 
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larger than 2 m.” Grassland and savannah are grouped into “non-forest” types. Pixels with LC type changes 

during this period, particularly from evergreen forests to non-forest types, were excluded. Agriculture and 

urban pixels were excluded from the analysis. We used MODIS fire product (MCD64A1) to exclude any 

pixels that had a fire during the 2000–2018 period to avoid false identification of breakpoints (BPs) due to 

drought. Pixels with a fire history were excluded in this analysis. We also have excluded pixels with mean 

annual EVI during 2000–2010 <0.15 to exclude areas with minimal vegetation cover. The noisy time-series 

from these areas have a negative impact on the quality of trend and change detection.

2.2. Breaks for Additive Season and Trend

BFAST is a method to quantify the trend and BPs of time-series, which often have a periodic pattern (Ver-

besselt et al., 2010). A time-series is decomposed into a trend, a seasonal, and a residual component. BFAST 

finds whether a significant change of trend exists and when the change is. We used BFAST to quantify the 

timing of the significant change, which we termed the “breakpoint,” the relative magnitude of change in 

EVI during the BP (calculated as the ratio between the change of EVI and the mean predrought EVI during 

2000–2010), and the slope of the trend before and after the BP (Figure 1). There are a few other methods 

that provides estimates of the timing of BP from remote sensing timer-series, including the Bayesian Es-

timator of Abrupt change, Seasonal change, and Trend (BEAST; Zhao et  al.,  2019), a method based on 
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Figure 1. Temporal patterns of ecosystem productivity during the 2012–2016 California drought and the Breaks for 
Additive Season and Trend (BFAST) terminology in our analyses. We identified three major types of drought responses 
for vegetations in California: (a) An example of a gradual decline in the Enhanced Vegetation Index (EVI) followed by 
instantaneous recovery (in terms of a few months to a year) at the BP. We estimated, for each pixel, the long-term mean 
EVI (EVIlt), the changes before BP (Δpre, %), during BP (ΔBP, %), and after BP (Δpost, %). The uncertainty in the timing 
of BP is denoted with the red whiskers. (b) A gradual increase in EVI before the BP where there is a precipitous decline 
of EVI. (c) An example of a decline in EVI before and during BP. (d) Mean time-series of EVI for forest types (forest, 
and woody savanna as defined by MODIS LC product based on the IGBP classification) and nonforest types (shrub and 
grass) from 2000 to 2019. We used the full time-series here to show the scale of change during the drought. Red lines 
are BFAST trend fits, and the uncertainties in the timing of the BPs detected are denoted with whiskers near the x-axis.
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the ordinary-least squares moving sum test (Forkel et al., 2013), and the R-package “segmented” based on 

piece-wise regression models (Muggeo & Others, 2008).

The BFAST algorithm also produces the uncertainty in the timing of BP. When there was no statistical-

ly significant BP identified, we calculated the slope of the trend component to estimate the total relative 

change during this period. It is important to note that the number of data points (211) is much larger than 

the number of variables in the fitted models (6, see Verbesselt et al., 2010), and thus BFAST is unlikely to be 

overfitted (Verbesselt et al., 2010).

We used the change since 2010 before BP (Δpre) relative to the long-term EVI (EVIlt) from 2000 to 2010 

(δpre = Δpre/EVIlt, %) to assess the gradual response to drought; The relative magnitude of EVI change at 

BP (ΔBP) to the long-term mean of EVI (δBP = ΔBP/EVIlt, %) was used to estimate the short-term response 

to drought; and the EVI change after BP (δpost = Δpost/EVIlt, %) relative to the long-term mean EVI (δpost) to 

estimate the gradual change post BP (Figure 1). EVIlt is the indicator of the average green leaf area when it 

is under normal climate conditions.

To obtain biologically meaningful BPs that are related to the drought, we conducted the following steps: (1) 

excluded pixels with uncertainty in the timing of BP larger than 1 year. The excluded pixels may have highly 

uncertain BP detected. These pixels were then put into the category with no BP, and the relative change to 

long-term mean during this period was calculated; (2) We also limited the number of BPs to be no more 

than two and excluded the pixels where the confidence interval range of the BP timing is over 1 year. The 

rationale is that given the nature and timing of the disturbance, it is unlikely to have more than two BPs in 

a 10-year period; (3) We excluded pixels with recent fire events and changes of LC types during this period 

(e.g., forest to cropland).

2.3. Environmental Determinants of Spatial Variations in BFAST Results

To understand the environmental drivers of BFAST results, we used Random Forest Regression (Python 

scikit-learn 0.19.1 RandomForestRegressor) to investigate the environmental and biological determinants 

of the ecosystem changes before the breakpoint (δpre), during the breakpoint (δBP), and after the breakpoint 

(δpost). We used 200 trees for each regression. We calculated the partial dependence plots to show the effects 

of each independent variable on ecosystem changes. Note that all of the independent variables were resa-

mpled to the resolution of 500 m.

We used the following datasets for the environmental variables and their derivatives such as the mean 

values before drought (2000–2010) or slopes of changes during the drought. The details of the variables 

included in each random forest model are listed in the results section.

2.3.1. Parameter-Elevation Relationships on Independent Slopes Model

Monthly precipitation (PPT), mean temperature (T), and VPD (calculated as the mean of the maximum 

monthly VPD and minimum monthly VPD) from the parameter-elevation relationships on independent 

slopes model (PRISM) project are used (Daly and Taylor, 1997). The data range is from 1981 to 2018. The 

spatial resolution is 30 arcsec. We resampled the data by resampling the PRISM datasets to the MODIS grid. 

We calculated the monthly anomaly of PPT, T, and VPD relative to the monthly mean and SD from 2000 to 

2010. Here, we used the mean PPT, T, and VPD during 1980–2010. We calculated the anomalies of PPT, T, 

and VPD before, during, and after a BP.

2.3.2. Cumulative Water Deficit

We calculated monthly water deficit as the difference between PPT and actual evapotranspiration (AET), 

from the California Basin Characterization Model (Flint et al., 2013). We then calculated the 24-month cu-

mulative water deficit (CWD) before the month of the BP identified in BFAST. The model outputs are from 

October 2010 to September 2016.
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2.3.3. Water Table Depth

Water table depth (WTD) (m) data is the model simulation result constrained by over 1.6 million well and 

publication records from Fan et al. (2013). WTD values indicate water table depth below land surface. The 

native resolution of the WTD product is 0.0083°, which is roughly ∼1 km in California ∼40° latitude).

2.3.4. Soil Available Water Storage

Available water storage (AWS) for the top 150 cm of the soil was calculated as the difference between soil 

water content at field capacity and the permanent wilting point adjusted for salinity and fragments. It is 

part of the 2018 version of the USDA Gridded Soil Survey Geographic (gSSURGO) Database (https://www.

nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2_053628). The original spatial resolution 

is 30 m.

2.3.5. Elevation

Digital elevation model data used in this study were from the Shutter Radar Topography Mission (SRTM) 

collected during 2000. The product has a resolution of 90 m.

3. Results and Discussion

3.1. Spatial Variations of Divergent Drought Responses

Here, we show that the uncertainty of BPs is mostly within a year (Figure 2) despite the MODIS data (every 

16 days) allow for detection of submonthly abrupt changes, suggesting that vegetation responses to the 

drought occurred over a few months to a year, instead of an instantaneous vegetation response within 1 

or 2 weeks. From 2010 to 2019, 45% of the natural ecosystems had a statistically significant change point 

detected (Figure 2). Among those areas with BPs, the uncertainties—as estimated by BFAST—in the timing 

of BP varies (Figure 2): 41% are below 6 months, 49% are between 6 and 12 months. The significant changes 

in the trend and/or magnitude of EVI during BPs could be caused by beetle attack or drought, which are 

highly interactive factors that drive the vegetation responses of some evergreen forests (Gaylord et al., 2013; 

Stovall et al., 2020).

Interestingly, δBP and δpre have a strong negative correlation across California (r = −0.80, Figure 3), implying 

that the timing and timescales of drought response vary, probably depending on the characteristics of the 

ecosystems. The slope of the linear regression between δBP and δpre is −0.6, indicating that 60% of the initial 

gradual changes in productivity, negative or positive, were offset at the BP. Given that almost the entirety of 

California has experienced equally strong drought conditions (Williams et al., 2015), these patterns suggest 

that California ecosystems have a wide range of drought resistance and resilience (Malone et al., 2016). 

Larger initial decreases in productivity mean a higher recovery potential when the environmental stress 

is relieved. The temporary recovery, despite being induced by short-term changes in climatic conditions 
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Figure 2. (a) Fractions of pixels with or without BP partitioned by the sign of the change during BP. (b) Same as A, for 
forests; (c) Same as A, for nonforests. Under the “No BP” category, colors indicate the trend of EVI time-series.
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(Figure 3d), was highly dependent on the preexisting biological responses (δpre), especially during prolonged 

droughts like the 2012–2016 California drought.

A majority of the detected BPs have positive signs (58%), implying BP happened during the recovery phase 

for those regions. This type of recovery could be a transient one following the temporary release of water 

stress, as we will show later. The likelihood of significant abrupt responses also differs among LC types. 

Forty-six percent nonforest pixels had BPs between 0 to 6 months, whereas only 24% forest pixels fell in 

the same category (Figures 2b and 2c). Among the forests, the proportions of positive and negative BPs are 

27% and 73%, respectively. A majority of the negative BPs (56%) occurred early during the drought around 

2012–2014 (Figure 3a). Among the nonforests, the proportions of positive and negative BPs are 75% and 

25%, respectively. For pixels without a BP, more than half of them (56%) have a negative trend during this 

period, while 44% of them showed a positive trend during this period (p < 0.001). Together, the results sug-

gest nonforest types could recover from the drought in a relatively fast and abrupt manner, likely because 

grasses that dominate these nonforest pixels do not need to invest on stem growth and can regrow quickly 

once moisture stress is relieved. The pixels with BP uncertainties larger than a year has been treated as pix-

els without a BP. The EVI time-series of these pixels were only fitted with a linear regression.

The timing of BP varies spatially, but most of the BPs occurred during 2012–2016, with a peak in 2014 

(Figure 3b). For forests, negative BPs occurred early in the drought period (2012–2013), while positive BPs 

were throughout 2015–2016. For nonforests, positive BPs are between 2014 and 2016, and negative BPs are 

evenly distributed from 2012 to 2015. Even though the drought was at its peak in 2014, precipitation started 

to recover from then on, likely driving the positive BP of nonforests, which respond faster to precipitation 

(Figure 3e).
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Figure 3. (a) Timing of BP and the sign of BP. (b) Same as D, for forests; (c) Same as D, for nonforests; (d) Anomalies of temperature and precipitation during 
the BP for forest and nonforest types. Positive BP for forests is associated with lower temperature and positive precipitation. Positive BP for nonforest types is 
associated with positive temperature and precipitation. (e) Annual precipitation (mm) averaged across all the forest pixels (red) and nonforest pixels (blue).
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The mean EVI time-series of forest and nonforest both showed a BP dur-

ing the drought that is similar to the first category as described in the next 

paragraph (Figure 1d). BPs occurred later (2016) in forests, compared to 

nonforest (2014; Figure 1d). As expected, and suggested by the BFAST 

results, a large fraction of California's natural ecosystem experienced a 

loss of productivity during the drought. However, the results also showed 

that the temporal patterns of drought response and the recovery after the 

drought cannot be simply characterized by a linear trend throughout the 

drought period. Post drought responses occurred in either a gradual and 

fast way, and in either positive or negative directions.

Across the study period, spatiotemporal patterns in California's ecosys-

tem productivity could be grouped into three distinct categories (Fig-

ure 4, and see Figure 1 for the corresponding examples): (1) a slow de-

crease followed by a fast rebound; (2) a slow increase in EVI followed by 

an abrupt decline; (3) a gradual and a fast decrease often followed by a 

rebound. Of areas with BPs, 63% of the natural ecosystems had a gradual 

decrease of EVI, followed by a rebound (Figure  1a, and area 1 in Fig-

ure 4); 21% showed a gradual increase in productivity in the early stage of 

the drought, terminated by a short-term decrease (Figure 1b, and area 2 

in Figure 4); 15% had a gradual and an abrupt decrease often followed by 

a rebound (Figure 1c, and area 3 in Figure 4).

There are clear spatial variations of vegetation response before BP (δpre, 

Figure 5c) and during BP (δBP, Figure 5d). Areas that had reductions in 

productivity before BP (δpre) formed a “ring-of-fire” around the Central 

Valley and can also be found in the southwestern part of the state. Nota-

bly, southwestern California showed the most severe drought response and the decline of EVI, as indicated 

by δpre, could be as high as the long-term EVI of this region (close to −100% of δpre, which was calculated as 

Δpre/EVIlt).

On the contrary, the forests at a higher elevation (e.g., near the Eldorado National Forest) had a positive 

δpre and thus an increasing EVI in the first few years of drought until 2013–2014 (Figures 3b and 5c). This 

relationship is likely due to larger increases in ecosystem productivity occurring during favorable condi-

tions in a high elevation where the temperature could be the limiting factor at an early drought stage (Jolly 

et al., 2005). These increases in productivity may have led to over-investment of photosynthetic tissues, 

an increasing photosynthetic rate and canopy transpiration, further draw-down of local water resources, 

and ultimately more abrupt decreases when the drought became a prolonged one (Goulden & Bales, 2019; 

Trugman et al., 2018). The map of change during BP (δBP) almost mirrored that of δpre but with an inverse 

pattern: areas experiencing declines before the BP showed the strongest recovery of EVI (δpost increased 

up to ∼50%), while the western part of the state and areas around the Central Valley had a decline in EVI 

during the BP. This pattern can also be observed in Figure 4a: pixels in area 1 and 2 had opposite signs of δpre 

and δBP. A few areas, including the northwestern part of the Central Valley, had both negative δpre and δBP. 

After BP, 48% of all the pixels showed a positive recovery (δpost) while 52% showed a negative δpost. There was 

no clear relationship between δpost and δBP, indicating that the observed relationship between δpre and δBP is 

not an artifact of the BFAST algorithm.

A significant portion of California's natural ecosystems had not fully recovered from the drought even after 

24–36 months of the end of the drought period. By the end of 2019, 33% of the natural vegetation (∼7.9 

million ha) in California had recovered—as defined by a higher EVI compared to the EVI at the beginning 

of the drought (i.e., δtotal > 0, δtotal = δpre+δBP+δpost). Sixty-seven percent of areas still have lower EVI com-

pared with that of 2010. We also found that 89% have reached 80% of the predrought vegetation productivity 

(i.e., most of the pixels with negative δtotal had reached at least 80% of the EVI at 2010). Breaking down into 

forested and nonforested categories, 47% of the forests have fully recovered. Similarly, 21% of nonforests 

have recovered.
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Figure 4. (a) The relationship between changes in EVI before BP (δpre) 
and during BP (δBP). We estimated the changes relative to the long-term 
mean EVI (2000–2010, EVIlt) before BP (δpre,%), during BP (δBP,%), and 
after BP (δpost,%). Colors of the dots indicate point density. The graph has 
been divided into three areas corresponding to the text. See text for more 
details.
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Overall, we showed that the ecosystem response to this megadrought was nonlinear, and the recovery could 

be characterized by a combination of slow and/or fast responses. Vegetation recovery is a complex process 

that occurs at various speeds that one single metric (e.g., recovery time) might fail to capture (Schwalm 

et al., 2017). Nonforest types (grass and shrub) usually had a fast response to changing water availability 

(increasing or decreasing), whereas forest types were more conservative. Below, we analyze what drivers 

may have contributed to the fast and slow responses.
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Figure 5. Spatial patterns of vegetation productivity changes in California during 2010–2019 decomposed using 
BFAST. (a) Number of BPs detected by the BFAST algorithm. One means one BP, whereas zero means no significant 
BP is detected; (b) The timing of the BP; (c–f) Relative changes compared with long-term (2000–2010) mean EVI at 
each pixel (EVIlt); (c) Changes before BP (δpre, %); (d) Changes during BP(δBP, %); (e) Changes after BP(δpost,%); (f) Total 
change during 2010–2018 relative to the long-term mean (δtotal = δpre + δBP + δpost,%).
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3.2. Drivers of Vegetation Responses

We used random forest to analyze the potential drivers of the spatial variations in δpre, δBP, and δpost. In 

particular, we were interested in whether the spatial pattern was driven by the variations in the average 

environment (“climate”), the different degrees of drought stress (“weather”), or any biological variables. 

We found that both environmental drivers (precipitation and temperature) and the vegetation status before 

the drought (e.g., EVIlt) drive the response. Key variables that contribute to the spatial variations of δpre, δBP, 

and δpost are summarized in Table 1. Random Forest models explained 80%–90% of the spatial variability of 

changes in EVI before, during, and after BP.

Forest and nonforest responses before the BP (δpre) can be well captured by a combination of tempera-

ture, precipitation, and VPD during and before the drought (forest, cross-validation r2 = 0.84; nonforest: 

cross-validation r2 = 0.91, Figure 6). The most important variable that explains the spatial variation of δpre 

for forests is the long-term mean annual temperature (TMPAVG), followed by precipitation anomaly before 

drought (PPTpre), long-term mean annual precipitation (PPTAVG), VPD anomaly before BP (TMPpre), and 

temperature anomaly before BP (TMPpre). Higher temperature anomaly leads to a more negative response 

in EVI. This finding is consistent with other work showing that heat stress could be one of the major tree 

mortality drivers during drought (Stovall et al., 2019). High temperature is oftentimes associated with high 

vapor pressure deficit, which exacerbates drought stress (Grossiord et al., 2020). Forests with a higher long-

term mean annual temperature (TMPAVG) generally had a smaller decrease in EVI, while we did not find a 

strong relationship between the spatial patterns of TMPpre and TMPAVG (r = −0.03). This pattern likely im-

plies the local adaptation to a warmer environment by the drought-tolerating species. For nonforest types, 

the most important variable is the long-term mean annual temperature (TMPAVG), followed by the long-term 

mean annual precipitation (PPTAVG), precipitation anomaly before BP (PPTpre), and temperature anomaly 

before BP (TMPpre). Areas with a higher climatically mean annual precipitation and more precipitation 

before BP suffered less during this period of time. The average water availability, which reflects the average 

level of limiting resources, was the second most important (PPTAVG, 16%), whereas elevation had very low 

relative importance (1%, Figure 6c). We did not find that soil variables such as water table depth and soil 

available water storage played important roles in driving the spatial variability of δpre, presumably because 

of the relatively high uncertainty in these datasets and the sweeping nature of the severity of the drought. 

Notably, nonforest productivity changes are almost always lower than forest productivity changes under 

given environmental conditions (brown curves are below green curves in Figure 6), supporting our hypoth-

esis that productivity show more initial gradual increases in forest regions because trees are hydraulically 

more resistant.
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δpre δBP δpost

Forest Historical mean temperature (−) δpre (−) Precipitation trend (+)

Precipitation anomaly (−) precipitation anomaly (+) Altitude (−)

Historical mean precipitation (−) Altitude (+) Temperature trend (−)

Temperature anomaly (−)

VPD anomaly (−)

Non-forest Historical mean temperature (−) δpre (−) Historical mean precipitation (−)

Historical mean precipitation (+) precipitation anomaly (−) Temperature trend (+)

Precipitation anomaly (−) Altitude (+) Historical mean temp (−)

Temperature anomaly (−) Historical mean precipitation (+) VPD trend (−)

Forest and nonforest are colored in the same way in the random forest results figures (Figures 6–8). Biotic factors are marked in light green while abiotic factors 
are marked in blue. The sign after each variable indicates the relationship between the variable and the spatial variations of δpre, δBP, and δpost. Only factors with 
a relative importance value larger than 0.05 are included.

*Note that whenever anomaly is mentioned, it refers to the anomaly of the corresponding period of time, that is, pre BP, during BP, or post BP. Historical mean 
precipitation is monthly average of a year (so annual mean is 12 times this value).

Table 1 
Key Variables That Contributes to the Spatial Variations of δpre, δBP, and δpost



Journal of Geophysical Research: Biogeosciences

During the BP, 88% and 93% of the spatial variability of δBP can be mostly explained by δpre, and precipita-

tion during this period for forests and nonforests, respectively (Figure 7). The most important factor is δpre, 

which is also implicated in Figure 4. The more decline (or increase) before the BP, the more opposite chang-

es during BP, indicating that the ecosystem resilience or memory may have played a role. Besides δpre, for 

forests, the most important variable is the precipitation anomaly within one year of the BP (PPTBP), followed 

by ALT, long-term mean annual temperature (TMPAVG). For nonforests, the second most important variable 

is PPTBP, followed ALT and PPTAVG. For both forests and non-forests, positive precipitation anomaly seems 

to be the key to the positive recovery during this period.

After the BP, during the late stage of and after the drought, 80% and 79% of the spatial variability of δpost can 

be explained by using our Random Forest model (Figure 8). In this analysis, instead of the mean anomaly 

of precipitation, temperature, and VPD after BP, we used the slope of the precipitation, temperature, and 

VPD after BP (from BP to 2019) as a group of predictors to the spatial variability of δpost, in combination with 

historical mean precipitation, temperature, and altitude of each pixel. The main reason for using the slope 

is that a positive slope could indicate a relief of drought, even when the anomalies of PPT or VPD are still 

negative. For forests, the most important variable is the slope of precipitation trend (PPTslp1), followed by 

ALT, the slope of temperature trend (TMPslp1), long-term mean annual precipitation (PPTAVG), the slope of 

temperature trend (VPDslp1), and long-term mean annual temperature (TMPAVG). Areas with a positive trend 

of precipitation have more recovery of EVI, which is not surprising. Areas with more historical precipitation 
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Figure 6. Sensitivity of δpre to key environmental variables in Random forest analyses. Each panel shows a partial dependence plot with Y-axis denoting 
normalized δpre and X-axis denoting the range of variations of the specific environmental factor as indicated in the panel title. The unit of each driver is under 
each panel. Each panel title also includes the relative importance of that driver for forest (F) or nonforest (NF). Green lines are for forest, and brown lines are 
for nonforest. Listed below are the six most important drivers: long-term mean temperature (TMPAVG), long-term mean precipitation (PPTAVG), precipitation 
anomaly during this period before BP (TMPpre), VPD anomaly during this period before BP (VPDpre), and altitude (ALT).
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had a lower recovery rate, likely due to that the vegetation in those areas are less adaptive to drier conditions 

and thus it takes more water for a full recovery.

Overall, results from random forest analyses suggested the following key findings: (1) the observed changes 

during the BP and the trends before and after the BP are real instead of artifacts from the BFAST algorithm, 

because the random forest results by large are in line with ecological understandings; (2) The changes be-

fore, during, and after BP are mainly driven by temperature and precipitation anomalies, which can explain 

a significant portion of the spatial variability of the magnitude and direction of δpre, δBP, and δpost. Nonforest 

types (shrub and grass) seem to be more responsive to instantaneous changes in temperature and precipita-

tion, as supported by a higher R2 for nonforest types from the random forest analyses. This is not surprising 

given the relatively lower biomass and shallower root depth of shrub and grass compared with trees in 

this area. This finding is largely in line with other studies on this topic (e.g., Dong, MacDonald, Willis, 

et al., 2019; Stovall et al., 2019; Young et al., 2017), in which water deficit is certainly driving the loss of vege-

tation. Dong, MacDonald, Willis, et al. (2019) showed that there is a difference in drought response between 

southern and northern California. We have shown in our BFAST results that more areas in the southern 

California have BPs whereas a significant proportion of northern California does not have a BP. A poten-

tial improvement to this study is to examine different nonforest types' response to drought—some shrub 

species may respond to the drought more like trees than grasses. While MODIS LC types include multiple 

shrub types (e.g., open shrub or close shrub), they may not closely correspond to the local shrub types that 

have different ecohydrological traits (e.g., chaparral vs. coastal sage scrub). One study focusing on drought 

responses of different vegetation types in the Southern California region has shown that temperature is an 

important driver of vegetation responses to drought, while precipitation is not (Dong, MacDonald, Okin, & 

Gillespie, 2019). This difference between our study and Dong, MacDonald, Okin, and Gillespie (2019) could 
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Figure 7. Sensitivity of δBP to key environmental variables in Random forest analyses. Each panel shows a partial dependence plot with Y-axis denoting 
normalized δBP and X-axis denoting the range of variations of the specific environmental factor as indicated in the panel title. The unit of each driver is under 
each panel. Each panel indicates one driver and the relative importance of that driver for forest (F) or nonforest (NF). Green lines are for forest, and brown lines 
are for nonforest. Listed below are the six most important drivers: relative change before BP (δpre), precipitation anomaly during this period (PPTBP), altitude 
(ALT), long-term mean temperature during 1980–2010 (TMPAVG), long-term mean precipitation during 1980–2010 (PPTAVG), temperature anomaly during this 
period (TMPBP).
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be related to the spatial coverage—our study area covers the entire California in which the spatial variations 

in precipitation is much higher. In addition, forests are generally located in higher elevation areas, and may 

have been buffered from the initial drought impact or even benefit from a higher temperature at the begin-

ning of the drought (Figure 5c). Similarly, high elevation vegetation responded favorably to the 2003 heat-

wave in Europe, benefiting from an increasing temperature with adequate soil moisture (Jolly et al., 2005).

4. Conclusion

We use satellite records of vegetation greenness to study the biological patterns and environmental driv-

ers of ecosystem response to an extreme and persistent drought—the 2012–2016 California Drought. By 

2019, only 33% of the natural ecosystems recovered from the drought (i.e., areas with annual mean EVI 

higher than that of 2010), which has a significant implication on the carbon and water cycles. Most areas 

had abrupt changes caused by varying water availability, preceded by either positive or negative trends 

of productivity. We show three contrasting patterns of drought response that dominate the ecosystems of 

California: one with gradual decline in productivity, followed by an abrupt recovery, which was mainly driv-

en by a temporary increase in precipitation (even when the annual precipitation was still below normal); 

the second one with a slow positive response before an abrupt decline in productivity which was due to a 

chronicle water deficit; and a third with both slow and abrupt decline in EVI. The spatiotemporal patterns 

of drought response are largely driven by environmental factors (e.g., long-term mean temperature and 

precipitation and/or temperature/precipitation during the drought) and biological factors (e.g., long-term 

average productivity).
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Figure 8. Sensitivity of δpost to key environmental variables in Random forest analyses. Each panel shows a partial dependence plot with Y-axis denoting 
normalized δpost and X-axis denoting the range of variations of the specific environmental factor as indicated in the panel title. The unit of each driver is under 
each panel. Each panel indicates one driver and the relative importance of that driver for forest (F) or nonforest (NF). Green lines are for forest, and brown 
lines are for nonforest. Listed below are the six most important drivers: the slope of precipitation during this period (VPDslp1), altitude (ALT), the slope of 
temperature during this period (TMPslp1), long-term mean precipitation from 1980 to 2010 (PPTAVG), long-term mean temperature from 1980 to 2010 (TMPAVG), 
and the slope of VPD during this period (VPDslp1).
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Our results also suggest that ecosystem responses to drought can be complex, and the recovery process of 

the ecosystem is oftentimes non-linear. For high altitude forest ecosystems, initial benefits from the drought 

lasted longer than one growing season (unlike the 2012 US drought which had an increase in productivity 

in the spring, or 2003 Europe heatwave, which had an increase all year round). As temperature remained 

high while the water ran out (Goulden & Bales, 2019), forests lost 36% of the productivity gained during the 

initial stage of the drought. Areas with high productivity prior to drought could be more resistant. With the 

more frequent and more intense drought in this area (Cook et al., 2015), the resilience of the ecosystems will 

be tested, and this resistance will largely depend on a combination of biological factors (predrought produc-

tivity), precipitation, and temperature. In this area, forests may be more resilient than grasslands and shrub-

lands in a short drought, but in the end, they may still succumb to future intense and prolonged drought.

Data Availability Statement

PRISM data can be downloaded https://prism.oregonstate.edu/. All source code can be downloaded from 

Zenodo (https://doi.org/10.5281/zenodo.4542105).
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