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Abstract 21 

Hyperspectral imaging is a technique that provides rich chemical or compositional information 22 

not regularly available to traditional imaging modalities such as intensity imaging or color 23 

imaging based on the reflection, transmission, or emission of light. Analysis of hyperspectral 24 

imaging often relies on machine learning methods to extract information. Here, we present a 25 

new flexible architecture, the U-within-U-Net, that can perform classification, segmentation, and 26 

prediction of orthogonal imaging modalities on a variety of hyperspectral imaging techniques. 27 

Specifically, we demonstrate feature segmentation and classification on the Indian Pines 28 

hyperspectral dataset and simultaneous location prediction of multiple drugs in mass 29 

spectrometry imaging of rat liver tissue. We further demonstrate label-free fluorescence image 30 

prediction from hyperspectral stimulated Raman scattering microscopy images. The applicability 31 

of the U-within-U-Net architecture on diverse datasets with widely varying input and output 32 

dimensions and data sources suggest that it has great potential in advancing the use of 33 

hyperspectral imaging across many different application areas ranging from remote sensing, to 34 

medical imaging, to microscopy. 35 

 36 

Introduction 37 

Computer vision techniques based on deep learning have recently demonstrated a 38 

myriad of novel applications in many disciplines. With the continuous improvement and 39 

availability of advanced computing hardware and open-source methods, deep learning is finding 40 

broader use in a wide variety of imaging, sensing, and biophotonics research1,2. The flexibility of 41 

deep learning for image processing enables facile adoption of existing frameworks for many 42 

different imaging modalities such as transmitted light microscopy, fluorescence microscopy, X-43 

ray imaging, magnetic resonance imaging, and many more3–7. Often the images from such 44 
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techniques are passed to a deep learning algorithm to perform tasks like classifying diseases, 45 

segmenting spatial features, improving image quality, or predicting alternate imaging 46 

modalities8–11. However, the majority of work done so far performs deep learning on 47 

monospectral images. Such monospectral images contain only a single intensity value at each 48 

pixel. That is, there is no spectral information inherent to the imaging technique such as in 49 

black-and-white photography, X-ray imaging, or magnetic resonance imaging. Contrary to 50 

monospectral images are multispectral and hyperspectral images where multiple spectral 51 

components of a field of view can be depicted in their own image. We take “multispectral” to be 52 

a subset of “hyperspectral“ specifically pertaining to images that contain relatively few spectral 53 

channels (e.g. RGB imaging). Hyperspectral imaging combines spectroscopy and imaging such 54 

that each pixel of the image contains a wide spectral profile that allows for detailed 55 

characterization. 56 

Linear decomposition, phasor analysis, support vector machines and other machine 57 

learning methods have indeed been used for analysis of hyperspectral imaging datasets12–18. 58 

While many of these techniques have demonstrated promising results, such methods may 59 

suffer from limited generalizability or information loss, limiting their ultimate performance19,20 60 

Deep learning, in contrast, potentially offers a method for learning based on both spectral and 61 

spatial signatures and their nonlinear interplay allowing for improved performance in a variety of 62 

hyperspectral imaging analysis tasks21,22. However, techniques for these hyperspectral stacks 63 

face unique challenges in computer vision research23,24. For example, standard deep learning 64 

architectures that work for monospectral images (consisting of 2 or 3 spatial dimensions), may 65 

not work for hyperspectral stacks due to the extra dimension needed for spectral information. 66 

Frameworks such as Mayerich et al’s Stain-less Staining25 or Behrmann et al’s work in mass 67 

spec imaging26 address this by interpreting the spectra at individual pixels of hyperspectral 68 

images to produce excellent results in label-free prediction and classification, but may be 69 
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missing contextual information from spatial convolutions of the whole image. Zhang et al’s 70 

recently published work bypasses the need for spectral deep learning by using machine 71 

learning to interpret spectral information and create truth maps to which spatial deep learning of 72 

images can be trained27. Other frameworks for hyperspectral deep learning based on spectral-73 

spatial convolutions also exist but are often rigid; only performing a particular task like binary 74 

pixel or multi-class label classification28–30. Further, a convolutional framework for predicting 75 

entirely alternate imaging modalities (where the final number of spectral channels is unlikely to 76 

match the input, but spatial resolution is maintained) from hyperspectral images, to our 77 

knowledge, has not been reported. We thus present a new architecture, the U-wthin-U-Net 78 

(UwU-Net) to address these current shortcomings in hyperspectral deep learning and improve 79 

the utility of hyperspectral imaging techniques. 80 

The UwU-Net Architecture presented here is based on the U-Net architecture developed 81 

originally by Ronneberger et al where a specialized autoencoder encodes and decodes spatial 82 

feature information in an input image to reconstruct some new output image31. The U-Net 83 

separates itself from a traditional autoencoder with the recontextualization of information 84 

through concatenations at equivalent encode-decode levels (noted as blue arrows in Figure 1a). 85 

This eliminates the discarding of information as in a traditional autoencoder. While the original 86 

work was concerned with image segmentation, the U-Net has seen use in a variety of 87 

applications including segmentation, label-free prediction, and denoising9,32–34. However, most 88 

works that utilize the U-Net in this way are not concerned with images that contain multiple 89 

spectral channels. Indeed, the original U-Net is generally not applicable to hyperspectral images 90 

as the architecture is dedicated to encoding multiple spatial feature channels starting from a 91 

single spatial channel image as shown in Figure 1a. The typical 2D kernel of a U-Net is thus not 92 

well suited for hyperspectral stacks which have a third tensor dimension dedicated to spectral 93 

channels. A 3D kernel could potentially be used, but then the spatial and spectral information 94 
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are being mixed during the feature encoding in a problematic fashion for image reconstruction35. 95 

Modification of input and output layers to match spectral dimensions is often useful in the 96 

multispectral regime but may be too facile of a change to adequately handle spectrally complex 97 

hyperspectral images. While other recently reported modifications to the U-Net have also shown 98 

improvements with respect to the original U-Net on semantic segmentation and classification of 99 

remote sensing datasets (some of which involve multispectral datasets)36–38, we report a robust 100 

architecture for multiple hyperspectral imaging tasks.  101 

To create a hyperspectral deep learning architecture with the robustness and features of 102 

the traditional U-Net, we have amended the U-Net architecture such that spectral channel 103 

information is handled by a separate “U” structure “outside” of an arbitrary number of traditional 104 

spatial U-Nets as shown in Figure 1b. This UwU-Net architecture allows dedication of tunable 105 

free parameters to both spectral information (outer U) and spatial information (inner U’s). The 106 

architecture’s parameters can be empirically tuned to change the spectral layer depth, number 107 

of spatial U’s at the center, or output spectral size based on the dataset. Here we demonstrate 108 

the utility of this new architecture in 3 different tasks on 3 different types of hyperspectral 109 

imaging: feature segmentation and classification on the high altitude hyperspectral imaging 110 

Indian Pines dataset, monoisotopic drug location prediction in rat liver from mass spectrometry 111 

images, and label-free prediction of cellular organelle fluorescence in stimulated Raman 112 

scattering (SRS) microscopy. 113 

The first task concerns segmentation and classification of the Indian Pines dataset which 114 

depicts a scene of farmland in northwest Indiana across a large range of wavelengths spanning 115 

the ultraviolet to short infrared region (400-2500 nm)39. The publicly available dataset was 116 

acquired by the Airborne Visible/Infrared Imaging Spectrometer and provides a model task for 117 

hyperspectral deep learning: segmentation and classification of various crop and foliage types. 118 

The broad spectrum and spatial heterogeneity of the scene demonstrates a deep learning 119 
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algorithm’s ability to correctly identify and segment features based on both spectral signatures 120 

and spatial positions. Moreover, the use of this dataset by previous work in hyperspectral deep 121 

learning allows for comparison of our proposed architecture40–42. 122 

The second task concerns predicting drug location in a model rat liver tissue sample 123 

from mass spectrometry imaging. Mass spectrometry imaging (MSI) is a powerful technique that 124 

provides spatially resolved, highly specific chemical information in the form of molecular ion 125 

masses. Where most deep learning computer vision work is centered around interpretation of 126 

optical images, MSI is particularly interesting to approach with deep-learning as it has an 127 

enormous spectral dimension that provides highly specific, but difficult to interpret in situ 128 

chemical information43,44. Most MSI work follows from traditional linear decomposition and 129 

analysis that is well-developed and ubiquitous in mass spectrometry45–49. Deep learning has 130 

been demonstrated for MSI datasets26,43,50,51, but has been chiefly used for spectral 131 

dimensionality reduction or interpretation. To our knowledge, the simultaneous interpretation of 132 

spatial and spectral information using convolutional deep learning in MSI has yet to be reported. 133 

We demonstrate one way the UwU-Net architecture could be used in MSI by simultaneously 134 

predicting the highly specific monoisotopic peak locations of 12 drugs from low mass resolution 135 

binned images. 136 

Finally, the third task demonstrates the capability of the UwU-Net to perform label-free 137 

prediction of fluorescence images from SRS microscopy images. SRS microscopy is a 138 

hyperspectral imaging technique where molecular vibrational bonds are coherently interrogated 139 

by two ultrashort laser pulses52–54. While the vibrational information afforded by SRS microscopy 140 

can be specific to a given molecule, there are often many overlapping contributions to 141 

vibrational signals that confound image interpretation. In this work, we show that the specificity 142 

of SRS microscopy can be improved by deep learning to predict fluorescence images that are 143 
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highly specific to an organelle. Further, we show that the trained algorithms can be multiplexed 144 

to create label-free cell organelle images in live cells. 145 

 146 

Indian Pines Classification 147 

To demonstrate this flexibility and to validate the architecture’s capability to classify an 148 

arbitrary number of features from hyperspectral images, a 1-U UwU-Net (where there is 1 149 

spatial U-Net at the center of the architecture) and 17-U UwU-Net (where there are 17 spatial U-150 

Nets at the center) were trained to classify the Indian Pines AVARIS dataset39. The 151 

hyperspectral images consist of 200 spectral channels (where 20 of the original 220 bands have 152 

been removed due to water absorption) across a broad range of wavelengths (400-2500 nm) 153 

with 144 x 144 pixel images (cropped from 145 x 145 to be compatible with the spatial U-Nets) 154 

at each wavelength. The images contain a high-altitude 2 mile by 2 mile field of view of farmland 155 

in northwest Indiana. The ground truth images consist of non-mutually exclusive hand-drawn 156 

maps of the various crops and foliage depicted in the field of view. In total, there are 16 157 

classifications shown in Figure 1c and listed in Table 1. Here, the UwU-Net is trained to predict 158 

a 17 x 144 x 144 image stack (16 classifications plus an unused background) from the 200 x 159 

144 x 144 input image stack. The initial 200 channels are first reduced via convolution to 100 160 

then to the final 1 (for the 1-U UwU-Net) or 17 (for the 17-U UwU-Net) before spatial learning. 161 

The output predicted images are thresholded to create a binary map to compare against the 162 

ground truth image. Looking at the results in Table 1, the 17-U UwU-Net performs well with 163 

nearly all classifications exceeding 99% accuracy. The exceptions are the classification of an 164 

untilled corn field in the upper left of the field of view that are instead identified as a mixture of 165 

the three soybean classifications. We also note the prediction of crops at the top-middle, top-166 

right, and bottom of the field of view. While these areas contribute to the error, we note that 167 

crops do exist in these parts of the hyperspectral images (as seen in the composite image in 168 
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Figure 1c) but are unidentified in the hand-drawn truth maps. To better reflect the model’s 169 

performance, especially in these cases, counts of false positive and negative pixels and the 170 

intersection over union (IOU) for each class is provided in Extended Data Table 1. The overall 171 

accuracy (99.48% ± 0.50%), however, is in concordance with state-of-the-art architectures for 172 

hyperspectral classification on the Indian Pines dataset41,42,55–57. Three of these architectures’ 173 

(ResNet, Multi-Path ResNet, and Auxillary Capsule GAN) classification accuracies are shown in 174 

Table 1 for comparison with the 17-U UwU-Net demonstrating the highest accuracy. We note 175 

that the 1-U UwU-Net (with its more modest modifications to the original U-Net) performs worse 176 

than the other models suggesting that the additional spatial parameters afforded by the parallel 177 

U-Nets at the center of the UwU-Net contribute towards a more accurate model. For additional 178 

comparison, a basic U-Net (where the initial and final layers have been simply adjusted to 179 

accommodate the desired input/output channel number) was also trained. However, it was 180 

unable to classify any of the labels properly suggesting that UwU-Nets spectral layers are 181 

critical for proper identifications. A representative example of one of the basic U-Net’s errant 182 

classifications is shown in Extended Data Figure 1. These results demonstrate the UwU-Net’s 183 

ability to simultaneously segment and classify features from hyperspectral images with high 184 

accuracy. However, the UwU-Net is not limited to a binary pixel classification, like some 185 

hyperspectral architectures here compared, but can also predict intensity features as shown in 186 

the demonstrations below. 187 

 188 

Drug Location Prediction in Mass Spectrometry Images. 189 

To further demonstrate the utility of the UwU-Net in deep learning of hyperspectral 190 

images, we predict the location of multiple drugs (most of which are cancer treatment drugs) in 191 

a rat liver slice from publicly available mass spectrometry imaging data originally taken by 192 

Eriksson et al58. Here, a frozen-fixed rat liver section was spiked with 5 mixtures of diluted 193 
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drugs, where each mixture contains some combination of 4 of the 12 potential drugs at varying 194 

concentrations. MSI was then performed on the liver slice in the mass (m/z) range of 150 – 195 

1000 m/z at a mass resolution of 0.001 m/z. This means that this particular raw hyperspectral 196 

dataset contains 850,000 images which is not uncommon for MSI datasets. Given this colossal 197 

spectral density, MSI datasets must be narrowed to small “windows” (e.g. only 1000 images 198 

between 300.000 m/z – 300.999 m/z are shown) and/or “binned” (e.g. all the 0.001 m/z images 199 

from 300.000 m/z – 300.999 m/z are summed together to form a single 1 m/z bin image) to be 200 

viewable. Both windowing and binning sacrifice information for interpretability. Windowing allows 201 

for only seeing a few mass components at a time while binning sacrifices the hallmark specificity 202 

of mass spectrometry59. Analysis of these large datasets can also be cumbersome, taking 203 

potentially hours or longer to interpret per dataset. 204 

The work we present here demonstrates a potential solution to this information trade-off 205 

issue by predicting high mass resolution drug location images (corresponding to each drug’s 206 

monoisotopic peak) from a window of hyperspectral low-resolution binned mass images of the 207 

spiked rat liver tissue. Specifically, the region of 330 – 630 m/z (a window containing all 208 

monoisotopic drug peaks) was binned into 1 m/z images and concatenated into a hyperspectral 209 

image stack. Then, the 0.001 m/z resolution images corresponding to the monoisotopic peaks of 210 

the 12 drugs (as determined in the previous publication) were isolated from the raw MSI data 211 

and concatenated to produce a stack where each image corresponds to a specific drug. The 212 

UwU-Net architecture was trained to predict 12 drug images from the 300-channel hyperspectral 213 

images. Figure 2 shows the results of these predictions and the corresponding 1 m/z bin image 214 

that contains the monoisotopic peak. While some of these low mass resolution bins are already 215 

highly correlated with the specific monoisotopic peak (e.g. Ipratropium and Vatalanib in Figures 216 

2a and 2b, respectively), other images have strong background contributions and or conflicting 217 

drug spot signal due to fragment peaks from other drugs (e.g. Erlotinib and Gefitinib in Figures 218 



   
  10 

2c and 2f, respectively). From Figure 2, it is apparent that the deep learning algorithm is able to 219 

reliably predict each drug’s location from the low resolution hyperspectral data even when there 220 

are conflicting background/fragment peaks or when the drug concentration is low (as in 221 

Lapatinib and Trametinib in Figures 2k and 2l). Even in Trametinib, where the drug is near the 222 

sensitivity limit for this MSI experiment, the UwU-Net correctly predicts the spot where the drug 223 

is present. Though the exact pixels predicted do not cleanly match (as noted by the PCC values 224 

for Trametinib in Table 2), the grouping of these sparse pixels in the correct spots suggest that 225 

the UwU-Net is picking-up the relevant spectral and spatial components for prediction. 226 

To better understand the role of spectral and spatial learning in the UwU-Net, other U-227 

Net and UwU-Net models were trained on this data with some varying parameters and 228 

compared in Table 2. To first understand the role of spectral vs spatial learning and their 229 

interplay on model accuracy, multiple basic U-Nets were trained on a single drug at a time. Here 230 

the single 1 m/z bin image and corresponding high mass resolution peak image were used for 231 

training. While some of the drugs are correctly identified and predicted (suggesting spatial 232 

learning of a single image from the hyperspectral stack may drive some drugs’ predictions), 233 

many of the drugs (sunitinib, gefitinib, sorafenib, dabrafinib, and trametinib) go partially or 234 

entirely unpredicted. A single basic U-Net modified to accept 300 channels and output 12 235 

channels again produces unacceptable results (Extended Data Figure 1). The use of a UwU-Net 236 

with a single spatial U-Net at its center (denoted as 1-U in Table 2) allows for spectral learning 237 

of the data in addition to spatial learning. When a stack of just the 12 drug 1 m/z bins is used for 238 

training (1-U, only drug bins in Table 2), only gefitinib, dabrafinib, and trametinib were 239 

unidentified. The use of the full 300 hyperspectral stack in the 1-U UwU-Net shows further 240 

improvement leaving only one spot of dabrafenib unpredicted. This suggests additional spectral 241 

information improves the accuracy of the model in drugs where spatial information from the 242 

principal bins is insufficient for prediction. The use of a 12-U UwU-Net on the full hyperspectral 243 
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data eliminates any unidentified drug spots, but errantly predicts spots in sunitinib and initinib 244 

that do not exist in the respective truth images. A 5-U UwU-Net demonstrates the most accurate 245 

prediction of drug spots with no missing or errantly predicted spots for any of the 12 drugs (as 246 

seen in Figure 2). This analysis and comparison suggest that, like “depth” in a traditional U-Net 247 

or ResNet, architecture parameters such as spectral depth or number of spatial U-Nets at 248 

center can be empirically tuned to improve model accuracy. 249 

These results highlight a capability of the UwU-Net to mine MSI datasets for relevant 250 

features from both spatial and rich spectral features afforded in MSI in a convolutional manner. 251 

One way this is potentially useful for MSI is in the design and execution of experiments. If a 252 

priori ground-truth information is available (in this case, the masses of the drug molecules 253 

sought, their locations, and their concentrations), a UwU-Net model can be trained and utilized 254 

in other similar experiments to vastly improve analysis speed. For example, while the training of 255 

this algorithm took ~8 hours, the final prediction of all images shown takes only ~1 second. This 256 

upfront single-time investment of training then affords analysis of further samples to be 257 

performed extremely quickly in comparison to costly linear analysis of each dataset. The 258 

specific demonstration presented here could also be highly useful for the miniaturization of MSI 259 

systems for in situ use where the tradeoff of reduced mass resolution would be mitigated by a 260 

pretrained algorithm. We also note the possibility of combining MSI with an orthogonal method 261 

such as fluorescence or Raman imaging, to predict alternate imaging modalities using the UwU-262 

Net as we demonstrate below. 263 

 264 

Label-free Organelle Prediction from SRS Microscopy Images 265 

Label-free prediction via deep learning has been a recent area of interest for augmenting 266 

the information acquired from a given microscopy modality60. The label-free prediction usually 267 
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involves a microscopy image, such as transmitted light or autofluorescence microscopy, being 268 

converted to an image that mimics a more complex label-requisite modality like fluorescent or 269 

histologically stained images18,33,61. The value of this type of work is clear due to the elimination 270 

of staining protocols and the disadvantages associated with labeling the sample 271 

(photobleaching, toxicity, disruption of biological structures or functions, etc.). However, the 272 

quality of label-free prediction depends heavily on the information present in the input images62. 273 

For example, while transmitted-light microscopy is relatively simple to perform, it only reveals 274 

information based on light scattering due to differences in refractive index. In the context of cells 275 

and their organelles, there may not be significant enough difference between an organelle and 276 

cytosol to produce relevant information for a deep learning algorithm to reliably predict a 277 

corresponding organelle’s fluorescence. 278 

Compared to simple bright field or autofluorescence imaging, Raman imaging is a much 279 

more information-rich, label-free alternative. The Raman spectrum of a sample reflects specific 280 

molecular vibrations quantitatively associated with the molecules within. Hyperspectral SRS 281 

imaging improves the conventional Raman imaging by significantly speeding up the image 282 

acquisition by 3-4 orders of magnitude53,63,64. Regardless of the acquisition method, for 283 

biological samples, the Raman spectra are often congested and highly convolved due to the 284 

overlapping Raman bands from many different molecules. Principle component analysis and 285 

phasor analysis have been used to extract individual organelles from the myriad of vibrational 286 

signatures in a cell15,18. However, the subtle variations of Raman spectra for individual 287 

organelles present significant challenges to the analysis of smaller structures such as 288 

mitochondria and endoplasmic reticulum (ER). Previous attempts to produce label-free staining 289 

based on hyperspectral Raman imaging have shown promising results for some organelles but 290 

not as rich of predictions for smaller ones18. The architecture we present here shows improved 291 

fluorescence prediction across 3 organelles.  Deep learning using the rich spectral and spatial 292 
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information afforded by hyperspectral SRS microscopy also outperforms previous work of label-293 

free prediction from transmitted light microscopy33. As shown in Figures 3a - 3c, we create label-294 

free prediction algorithms for nuclei, mitochondria, and endoplasmic reticulum fluorescence in 295 

fixed lung cancer cells (A549, from ATCC).. The accuracy of the predictions is quantified in 296 

Table 3 by Pearson’s correlation coefficient (PCC), normalized root mean squared error 297 

(NRMSE), and feature similarity index (FSIM)65,66. Across all computed quality metrics, we find 298 

high correlation and acceptably low error between predicted images and their respective truths. 299 

Previous work reported PCC values of 0.58, 0.69, and 0.70 for DNA (nucleus), mitochondria, 300 

and endoplasmic reticulum, respectively33. Thus, we see a significant improvement in label-free 301 

organelle prediction with the information-rich hyperspectral SRS microscopy in comparison to 302 

bright field microscopy. A basic U-Net was again trained for comparison as seen in Extended 303 

Data Figure 1. While this task was more successful than in the previous demonstrations, 304 

unacceptable residual SRS features were also present in the image. For additional comparison 305 

to another modern architecture used for image reconstructions, a U-Net utilizing ResNet 306 

Blocks36,67 was also trained to predict the organelles (Extended Data Figure 2 and Extended 307 

Data Table 2). While the Res-U-Net showed slightly improved organelle predictions in 308 

comparison to previously reported results, the UwU-Net predictions still outperformed across all 309 

organelles and metrics. 310 

The utilization of both spectral and spatial information is paramount towards 311 

demonstrating utility of this architecture. This is most clearly demonstrated in the mitochondria 312 

prediction model by the differentiation of the organelle from lipid droplets in the cell. In SRS 313 

images, lipids droplets appear as bright “dots” typically ~1 μm in size. This means they have a 314 

similar size and shape to mitochondria, yet the trained models have clearly learned to exclude 315 

such similar features. This suggests that the model is not simply searching for the spatial 316 

features in the image to isolate and predict, but likely utilizing both spatial and spectral 317 
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information to determine the position of the desired organelles. To confirm this, a simple 2D U-318 

Net was trained using the single brightest SRS image to predict the fluorescence image 319 

(Extended Data Figure 3). While the PCC values demonstrated by this traditional U-Net training 320 

still outperform previous work (likely due to the higher input image quality with respect to 321 

transmitted-light microscopy), they slightly underperform the UwU-Net where spectral 322 

information augments the prediction capability (Extended Data Table 3). Moreover, the 2D U-323 

Net models predict some spurious features such as nucleoli (Extended Data Figure 3) or lipid 324 

droplets (Extended Data Figure 4) as they are incapable of seeing the difference in vibrational 325 

spectral information for such features. 326 

Finally, to demonstrate the multiplexing capability of the trained algorithms, 327 

hyperspectral SRS images of live A549 cells with none of the dyes present are used to predict 328 

organelle fluorescence in Figures 3e and 3f. Here new prediction models have been trained for 329 

live cells in a similar manner as in the fixed cells (Extended Data Figure 5). However, instead of 330 

predicting based on SRS images of cells where the dye is present (such as in Figures 3a - 3c 331 

and Extended Data Figure 5), the live cells are first imaged with SRS when no dye is present 332 

(Figure 3e, left). The cells are then stained while still mounted on the microscope and reimaged 333 

with two-photon fluorescence to acquire reference fluorescence images (Figure 3e, right, bottom 334 

row). The stain-free SRS images are used to predict fluorescence images using the pretrained 335 

models (Figure 3e, right, top row) and overlaid for comparison against the reference images 336 

(Figure 3f). As shown in Figure 3f, the label-free prediction in live cells matches well with the 337 

truth fluorescence images. We do, however, note slight mismatches in fields of view and cellular 338 

shape. This is due to both the sample moving and focus changing slightly during the staining 339 

process while mounted on the microscope. Additionally, organelle movement and cellular 340 

reorganization between SRS and fluorescence imaging (~10 minutes) leads to mismatch of 341 
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exact spatial features. Regardless of these differences, the UwU-Net demonstrates a firm ability 342 

in predicting label-free fluorescence of organelles from SRS images of live cells. 343 

 344 

Discussion 345 

 In this work we have presented UwU-Net, a new architecture for deep learning using 346 

hyperspectral images. The architecture is highly flexible in both the types of tasks it can perform 347 

(e.g. classification, segmentation, label-free prediction) and the types of hyperspectral images 348 

with which it is compatible (e.g. remote sensing, MSI, and SRS microscopy). Specifically, we 349 

show excellent performance of Indian Pines classification with 99.48% overall accuracy for all 350 

classifications. We also demonstrate successful drug location prediction in fixed tissue from MSI 351 

data from windowed and binned images. This highlights the capability to mine spectrally dense 352 

MSI datasets using both spectral and spatial information and offers new possibilities for deep 353 

learning in MSI. Finally, we show improved label-free prediction of organelle fluorescence by 354 

using hyperspectral SRS microscopy. We note a significant improvement in nuclear, 355 

mitochondrial, and ER prediction correlation with respect to previous work by the use of the 356 

UwU-Net to interpret spectral and spatial information. 357 

 We further note that while all models were trained using randomized starting parameters 358 

and stochastic gradient descent to minimize mean squared error (MSE) between output and 359 

truth images, the architecture is easily amenable to transfer learning methods and more 360 

complex error functions for particular tasks. We also note that the UwU-Net architecture can 361 

potentially be used in a generative adversarial network (GAN) framework to perform an even 362 

broader class of tasks2,68. However, GAN training of a UwU-Net is not feasible currently given 363 

memory constraints.  364 
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 Finally, while only a subset of tasks and imaging techniques are demonstrated here, we 365 

expect the UwU-Net to be broadly applicable or adaptable to any reasonably designed 366 

computer vision task involving a hyperspectral imaging technique with potential use in medical 367 

imaging, microscopy, and remote sensing. 368 

 369 

Methods 370 

The following are the methods for the label-free fluorescence prediction demonstration 371 

experiments and utilization of the UwU-Net algorithm. The methods for the publicly available 372 

datasets (Indian Pines and the MSI of Spiked Rat Liver) are briefly discussed above and details  373 

of their experimental parameters can be found in their respective original publications39,58. 374 

 375 

Cell Sample Preparation 376 

A549 cells were cultured in ATCC F-12K medium with 10% fetal bovine serum at 37 °C 377 

with 5% CO2 atmosphere. Cells were seeded on coverslips 24 hours prior to imaging. Fixed 378 

cells were first dyed then fixed using 2% paraformaldehyde. Live cells were first mounted, 379 

imaged with SRS and then stained for fluorescence imaging. The fluorescent dyes used were 380 

Hoescht 33342, MitoTracker Red CMXRos, and ER-Tracker Green for nucleus, mitochondria, 381 

and ER respectively. All dye protocols were based on the provided instructions from the 382 

manufacturer. 383 

 384 

Simultaneous SRS and Fluorescence Microscopy 385 

 SRS Microscopy was performed on a homebuilt SRS microscope as described 386 

previously. Briefly, an Insight DeepSee+ provides synchronized 798 nm and 1040 nm laser 387 
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pulses which are passed through high density glass and a grating stretcher pair, respectively, to 388 

control pulse chirp. The 1040 nm bean is modulated by an electro optical modulator and 389 

polarizing beam splitter to operate in the stimulated Raman loss scheme. Time delay of the 390 

1040 beam was controlled by a computer-controlled Zaber X-DMQ12P-DE52-KX14A delay 391 

stage. Both pulses are combined on a dichroic mirror before being directed through the 392 

microscope by a pair of scanning galvo mirrors. The microscope is a Nikon Eclipse FN1 393 

equipped with a 40x 1.15 NA objective. The 800 and 1040 nm laser powers were set to 20 mW 394 

at focus for both beams in all experiments. Light passed through the sample is collected by a 395 

1.4 NA condenser, filtered by a 700 nm long pass filter (to remove fluorescence light) and 1000 396 

nm short pass filter (to remove the 1040 nm light), and finally collected on a homebuilt 397 

photodiode connected to a Zurich Instruments HF2LI lock-in amplifier. Two photon fluorescence 398 

is captured in the backwards direction by a 650 long pass dichroic towards a photomultiplier 399 

tube. SRS signal from the lock-in amplifier and fluorescence signal from the photomultiplier tube 400 

were collected simultaneously using ScanImage69. Images were acquired with 512 x 512 pixels 401 

and a pixel dwell time of 8 μs at each of the 10 vibrational transitions as noted in Figure 3d. It is 402 

noted that the transitions noted in Figure 3d represent only the center of the probed band with 403 

19 cm-1 spectral resolution. This means that at the step size of ~15 cm-1 per image in the stack, 404 

the full CH region is probed during hyperspectral imaging. 405 

 406 

UwU-Net Functional Description 407 

An input hyperspectral stack of dimensions (L, X, Y) is first passed to the architecture. Here, L 408 

represents the number of input channels of the hyperspectral stack (e.g. 200 for Indian Pines, 409 

300 for MSI drug location prediction, or 10 for SRS images) and X and Y are the number of 410 

spatial pixels in the image (in all cases here X = Y). The stack is first reduced to (M, X, Y) in the 411 

channel dimension, where L > M, with a 3x3 kernel convolution of stride 1 over all L channels 412 
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followed by a batch normalization and rectified linear unit (ReLU) activation function. The new 413 

stack is then reduced once more in the channel dimension by the same process to a stack of 414 

(N, X, Y) where N is the desired final number of spatial tuning channels. The stack is then split 415 

at the channel dimension (if N > 1) such that there are now N number of (X,Y) images. Each of 416 

these images is passed to its own U-Net for spatial feature learning as described previously33. 417 

The resulting N number of images from each spatial U-Net are then reconcatenated in the 418 

channel dimension to reform a (N, X, Y) stack. This (N, X, Y) stack is then concatenated in the 419 

channel dimension to the (N, X, Y) stack from prior to splitting (mimicking the recovery of 420 

information as in the traditional U-Net) to form a stack of (2N, X, Y). This (2N, X, Y) stack is 421 

reduced to (O, X, Y) by a 3x3 kernel convolution of stride 1 over the 2N channels followed by a 422 

batch normalization and ReLU activation function. This predicted stack is then compared to the 423 

truth stack (also of dimension [O, X, Y]), a mean squared error is calculated for all channels, 424 

and parameters are tuned in a backpropagating fashion. 425 

 426 

Training Parameters, Data Preparation, and Hardware 427 

The models trained and shown in this paper were developed and built using the pytorch-428 

fnet framework originally developed by Ounkomol et al33. All models were trained using the 429 

pytorch-fnet default parameters with a few exceptions. The models were trained using 430 

randomized starting parameters on batches of randomized patches from the given dataset. 431 

Model parameters are tuned in a stochastic gradient descent manner based on minimization of 432 

mean squared error. The pytorch-fnet framework utilizes an Adam optimizer with a 0.001 433 

learning rate and beta values of 0.5 and 0.999. The rat liver drug prediction model which was 434 

trained only for 23,000 iterations due to the satisfactory prediction accuracy and long training 435 

iteration time. The Indian Pines and rat liver drug prediction models were trained with buffer size 436 

of 6 due to the reduced number of training datasets. The Indian Pines classification and rat liver 437 
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drug prediction model used patch sizes of 64 x 64 pixels for training, while all organelle 438 

prediction models utilized patch sizes of 256 x 256 pixels. 439 

Nearly all image preparations and processing discussed below were performed using 440 

Fiji, an imageJ platform. The exception was the additional use of Datacube Explorer for initial 441 

processing of the raw MSI data. 442 

The 200 band Indian Pines dataset was used natively from the published source. The 443 

ground truth stack was created by separating the individual labeled images via thresholding 444 

then concatenating all truth images into a TIF stack. The native pytorch-fnet cropper was used 445 

to crop the images to 144 x 144 pixels from 145 x 145 pixels to accommodate the spatial 446 

learning in the central U-Nets of the UwU-Net architectures. Training data was augmented by 447 

rotations and flips with the original dataset withheld for testing. This equated to 6 training 448 

datasets and 2 test datasets. Final predictions were recolored for each label and then overlaid 449 

into the shown prediction image (Figure 1c). The UwU-Nets reported in Table 1 use 1 (1-U) or 450 

17 (17-U) spatial U-Nets at their center during training. 451 

The rat liver MSI dataset was first prepared by saving the 330-630 m/z window at 1 m/z 452 

bins from the raw data using Datacube Explorer. All 300 images were concatenated into a TIF 453 

stack using Fiji. The monoisotopic images at 0.001 m/z resolution were then saved for each 454 

drug using Datacube Explorer following the m/z peaks and appropriate FWHM bins as noted by 455 

Eriksson et al58. The 12 drug peak images were concatenated into a TIF stack using Fiji. Both 456 

stacks were padded with zeros in Fiji from their native 247 x 181 pixel size to 256 x 256 pixels to 457 

be compatible with the spatial U-Nets within the UwU-Net architecture. Training data here was 458 

also augmented by rotations and flips with the original dataset withheld for testing. There were 7 459 

datasets used for training. The shown 1 m/z bin, truth peak, and predicted peak images for the 460 

drugs were normalized, contrast adjusted to the same level, and colored using the “Red Hot” Fiji 461 
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lookup table. The UwU-Nets reported in Table 1 use 1 (1-U), 5 (5-U), or 12 (12-U) spatial U-462 

Nets at their center. 463 

The simultaneously collected SRS and Fluorescence images were first separated into 2 464 

respective TIF stacks. The SRS stack was used as is for training and prediction. The 465 

fluorescence stacks were averaged to a single image and used as the truth for training and 466 

prediction. The fixed cell nucleus, mitochondria, and ER models utilized 43, 46, and 35 images, 467 

respectively, with a randomized 80%/20% train-test split for each model. Images predicted by 468 

the model were normalized, contrast adjusted to the same level, then colored using the “mpl-469 

inferno”, “Cyan”, “Green”, and “Magenta” Fiji lookup tables for SRS, nucleus, mitochondria, and 470 

endoplasmic reticulum, respectively. 471 

 All model development, training, and prediction as well as image processing was 472 

performed on a homebuilt machine running Ubuntu 18.04. The machine is equipped with an 473 

AMD 2950X processor, Nvidia Titan RTX graphics processing unit, 64 GB memory, and a 2 TB 474 

solid state drive. All dependency software versions were based on the pytorch-fnet 475 

requirements. On our machine, trainings for Indian Pines, rat liver drug, and organelle models 476 

took ~4, ~8, and ~5 hours respectively. In all models, prediction of individual test images took 1 477 

second or less. 478 

 479 

Quantitative Metrics 480 

 Prediction quality was assessed by overall accuracy (OA), Intersection Over Union (IOU) 481 

Pearson’s correlation coefficient (PCC), normalized root mean squared error (NRMSE), and 482 

feature similarity index (FSIM) 483 

 OA is used to evaluate the binary pixel values assigned for each classification. Here, the 484 

number of errantly predicted pixels are counted, subtracted from the total number of pixels, then 485 
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divided by the total number of pixels. A percentage score is reported here where accuracy 486 

closer to 100% indicates a more accurate prediction. 487 

 IOU also measures the segmentation and classification accuracy by taking the ratio of 488 

the intersection between predicted pixels and true pixels (i.e. true positives) and union of 489 

predicted pixels and true pixels (i.e. true positives plus false positives). The resulting ratio 490 

indicates how accurately the model segments and classifies areas where values closer to 1 491 

indicate more accurate prediction. 492 

 PCC is used to correlate the pixels of the truth and predicted images. The covariance of 493 

the two images is divided by the standard deviation of the two images to provide a value 494 

indicating pixel-to-pixel correlation. A PCC of 1 would indicate perfect correlation while 0 would 495 

indicate no correlation. 496 

 NRMSE is used to express the accuracy of a predicted pixel versus the same pixel in the 497 

truth image. Here a value closer to 0 indicates a more accurate prediction model. 498 

 FSIM is used as an image quality assessment metric that mimics human perception of 499 

image similarity. Like the structural similarity index (SSIM), FSIM incorporates the spatially 500 

associated pixels in the images during calculation to provide a better notion of perceived 501 

similarity. However FSIM emphasizes low-level features of images to more accurately reflect the 502 

human visual system’s perception of image similarity66. Here an FSIM of 1 indicates perfectly 503 

similar images while 0 would indicate no similarity. 504 

Quantitative metrics were calculated using Fiji “Coloc 2” (PCC), and “SNR” (NRMSE) 505 

plugins on the normalized images produced by the trained prediction model. FSIM was 506 

calculated using the MATLAB code provided by Zhang et al66, following the prescribed 507 

instructions. 508 

 509 
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Figures 728 

 729 

Fig. 1: Architecture Diagrams and Indian Pines Classification. 730 

Panel a shows a schematic representation of the traditional U-Net (adapted from Ounkomel et 731 

al.33) where a single 2D image is convolved to encode and decode spatial features. The “U” in 732 

the upper right corner of panel a denotes its schematic representation as used in panel b. Panel 733 

b shows the schematic representation of the UwU-Net where an arbitrarily dimensioned 734 

hyperspectral stack is convolved both spectrally and spatially to produce an arbitrarily 735 

dimensioned output stack. The symbols used in panels a and b are noted at the bottom of the 736 

figure to show their operational meanings. Here, “conv” is short for convolution and the “NxN” 737 

shown describes with pixel size of the kernel used for convolution. Panel c depicts a false color 738 

composite of 3 different spectral bands from the original 200-band hyperspectral stack, the truth 739 

classifications, and predicted classifications from the UwU-net. 740 

 741 
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 742 

Fig. 2: Mass spectrometry images of drug-spikes rat liver slice.  743 

Each row (a-l) shows (from left to right) a 1 m/z bin image from the input 300 image 744 

hyperspectral stack that contains a given drug’s monoisotopic peak, the 5-U UwU-net predicted 745 

0.001 m/z bin image of the drug, and the 0.001 m/z bin image specific to that drug’s 746 

monoisotopic peak. The following drugs are depicted in their respective panels: Ipratropium 747 

(panel a), Vatalanib (panel b), Erlotinib (panel c), Sunitinib (panel d), Pazopanib (panel e), 748 

Gefitinib (panel f), Sorafenib (panel g), Dasatinib (panel h), Imatinib (panel i), Dabrafinib (panel 749 

j), Lapatinib (panel k), Trametinib (panel l). Scalebar = 4 mm. 750 

 751 



   
  33 

 752 

Fig. 3: Predicted organelle fluorescence from hyperspectral SRS microscopy images. 753 

All SRS images shown depict only the peak signal image from the hyperspectral stack. Panel a 754 

shows the prediction of nucleus fluorescence. Panel b shows the prediction of mitochondria 755 

fluorescence. Panel c shows the prediction of endoplasmic reticulum fluorescence. Panel d 756 

shows a typical cellular SRS spectrum (black) and the 10 vibrational transitions imaged and 757 

used for prediction (red). Note that the transitions marked in red represent the center of a band 758 

of probed transitions with a resolution of 19 cm-1. The 15 cm-1 steps between each spectral 759 

image means the entire CH vibrational region is effectively probed during hyperspectral 760 

imaging. Panel e shows an SRS image of live cells (left) that contain no dye, each algorithms 761 

predicted fluorescence (right, top row), and fluorescence images taken after the cells are 762 

stained (right, bottom row). Panel f shows an overlaid combination of each organelle prediction 763 

(left), and the same group of cells after staining (right). 764 

 765 

 766 
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Tables 767 

Table 1: Classification accuracy of the Indian Pines dataset. 768 

The individual and overall classification accuracy of the Indian Pines dataset from various 769 

hyperspectral deep learning models and the presented UwU-Net model. Note the ResNet, 770 

MPRN, and AU-Caps-GAN models are reported as produced in their respective references, the 771 

ResNet and MPRN classifications were reported without uncertainties. Reported uncertainties 772 

refer to the standard deviation among the n= 16 classifications. 773 

 774 

 775 

 776 

 777 

Label UwU-Net 
(1-U) 

ResNet41 MPRN41 AU-Caps-Gan42 UwU-Net 
(17-U)  

Alfalfa 97.40 98.33 98.89 99.15 99.96 
Corn (No Till) 93.66 99.28 99.51 99.50 98.57 
Corn (Min Till) 95.98 98.80 98.92 99.12 99.19 
Corn 98.83 98.20 98.52 98.34 99.78 
Grass (Pasture) 97.60 97.97 97.92 98.70 99.48 
Grass (Trees) 98.26 98.80 99.08 99.42 99.80 
Grass (Mowed 
Pasture) 

99.98 100 98.18 98.74 99.98 

Hay (Windrowed) 97.65 100 100 99.27 99.91 
Oats 99.90 97.50 97.50 98.68 99.98 
Soybeans (No Till) 96.35 97.99 98.14 98.45 99.18 
Soybeans (Min Till) 79.37 99.27 99.38 99.12 98.49 
Soybeans (Clean 
Till) 

97.15 98.35 98.69 98.34 99.23 

Wheat 99.50 99.14 98.90 98.69 99.93 
Woods 94.87 99.88 99.98 99.33 99.18 
Buildings 
(Grass/Trees/Drives) 

98.07 99.55 99.68 99.41 99.18 

Stone-Steel Tower 99.74 94.52 96.44 98.94 99.91 
OA 96.52 ± 4.7 99.01 99.16 99.12 ± 0.25 99.48 ± 0.50 
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 1 m/z bin U-Nets 
(Non-HS) 

UwU-Net  
(12-U) 

UwU-Net  
(1-U, only 
drug bins) 

UwU-Net  
(1-U) 

UwU-Net 
(5-U) 

Drug  
(mass, m/z) 
Ipratropium 
(332.223) 

0.99 0.003 0.99 0.011 0.99 0.013 0.99 0.007 0.99 0.014 0.99 0.013 

Vatalanib 
(347.107) 

0.97 0.010 0.98 0.019 0.95 0.012 0.97 0.010 0.95 0.013 0.96 0.013 

Erlotinib 
(394.177) 

0.38 0.104 0.93 0.059 0.89 0.025 0.94 0.023 0.93 0.022 0.93 0.022 

Sunitinib 
(399.220) 

0.08 0.096 0.12 0.399 0.67 0.055 0.86 0.033 0.89 0.029 0.89 0.030 

Pazopanib 
(438.171) 

0.63 0.076 0.99 0.030 0.97 0.013 0.98 0.014 0.98 0.011 0.98 0.013 

Gefitinib 
(447.160) 

0.24 0.250 0.84 0.053 0.88 0.026 0.56 0.044 0.88 0.027 0.89 0.022 

Sorafenib 
(465.094) 

0.21 0.077 0.93 0.121 0.93 0.021 0.93 0.020 0.93 0.020 0.992 0.021 

Dasatinib 
(488.267) 

0.91 0.033 0.99 0.016 0.98 0.014 0.98 0.014 0.98 0.013 0.98 0.012 

Imatinib 
(494.267) 

0.25 0.240 0.72 0.096 0.59 0.057 0.73 0.042 0.78 0.040 0.75 0.039 

Dabrafinib 
(520.143) 

0.35 0.295 0.96 0.058 0.92 0.027 0.95 0.024 0.96 0.020 0.96 0.019 

Lapatinib 
(581.143) 

0.26 0.084 0.8 0.024 0.80 0.023 0.76 0.026 0.80 0.024 0.74 0.024 

Trametinib 
(616.086) 

0.05 0.047 0.11 0.023 0.12 0.030 0.03 0.024 0.10 0.025 0.24 0.023 

PCC 0.44 ± 0.34 0.78 ± 0.32 0.81 ± 0.25 0.81 ± 0.28 0.85 ± 0.25 0.85 ± 0.21 
NRMSE 0.110 ± 

0.098 
0.076 ± 0.11 0.026 ± 0.015 0.023 ± 0.012 0.021 ± 0.008 0.021 ± 0.007 

Table 2: Quality metric values for the MSI dataset predictions 778 

The table shows spiked drugs, their respective masses, and the Pearson correlation coefficients 779 

(PCC, left column under each model) and normalized root mean squared error (NRMSE, right 780 

column under each model) for the low resolution and predicted images from various models with 781 

respect to the high resolution image for the drug. U-Nets (Non-HS) refers to individual traditional 782 

U-Nets trained from a single image input of low mass resolution (i.e. non-hyperspectral images). 783 

The “only drug bins” UwU-Net was trained on a 12 image input stack of only the relevant 1m/z 784 

images that contain the drug peak. All other UwU-Nets were trained using the full 300 image 785 

stack with various numbers of spatial U-Nets at their center (1-U, 5-U, or 12-U). The uncertainty 786 

values refer to the standard deviation among the respective metrics for the given model (n=12 787 

for all). 788 
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Organelle Model PCC NRMSE FSIM 

Nucleus 0.92 ± 0.03 0.047 ± 0.022 0.89 ± 0.04 

Mitochondria 0.84 ± 0.05 0.059 ± 0.019 0.93 ± 0.02 

Endoplasmic Reticulum 0.94 ± 0.02 0.038 ± 0.016 0.92 ± 0.03  

 789 

Table 3: Quality metric values for the label-free prediction of organelle fluorescence. 790 

The table shows pearson correlation coefficients (PCC), normalized root mean squared error 791 

(NRMSE), and feature similarity index (FSIM) values for the 3 organelles predicted from 792 

hyperspectral SRS images. Numbers shown are based on the average of all withheld test 793 

images (9, 9, and 7 images for nucleus, mitochondria, and ER, respectively) of 512 x 512 pixels. 794 

Uncertainty refers to the standard deviation among the withheld test images. 795 


