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Abstract

Hyperspectral imaging is a technique that provides rich chemical or compositional information
not regularly available to traditional imaging modalities such as intensity imaging or color
imaging based on the reflection, transmission, or emission of light. Analysis of hyperspectral
imaging often relies on machine learning methods to extract information. Here, we present a
new flexible architecture, the U-within-U-Net, that can perform classification, segmentation, and
prediction of orthogonal imaging modalities on a variety of hyperspectral imaging techniques.
Specifically, we demonstrate feature segmentation and classification on the Indian Pines
hyperspectral dataset and simultaneous location prediction of multiple drugs in mass
spectrometry imaging of rat liver tissue. We further demonstrate label-free fluorescence image
prediction from hyperspectral stimulated Raman scattering microscopy images. The applicability
of the U-within-U-Net architecture on diverse datasets with widely varying input and output
dimensions and data sources suggest that it has great potential in advancing the use of
hyperspectral imaging across many different application areas ranging from remote sensing, to

medical imaging, to microscopy.

Introduction

Computer vision techniques based on deep learning have recently demonstrated a
myriad of novel applications in many disciplines. With the continuous improvement and
availability of advanced computing hardware and open-source methods, deep learning is finding
broader use in a wide variety of imaging, sensing, and biophotonics research'2. The flexibility of
deep learning for image processing enables facile adoption of existing frameworks for many
different imaging modalities such as transmitted light microscopy, fluorescence microscopy, X-

ray imaging, magnetic resonance imaging, and many more®”. Often the images from such
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techniques are passed to a deep learning algorithm to perform tasks like classifying diseases,
segmenting spatial features, improving image quality, or predicting alternate imaging
modalities®'". However, the majority of work done so far performs deep learning on
monospectral images. Such monospectral images contain only a single intensity value at each
pixel. That is, there is no spectral information inherent to the imaging technique such as in
black-and-white photography, X-ray imaging, or magnetic resonance imaging. Contrary to
monospectral images are multispectral and hyperspectral images where multiple spectral
components of a field of view can be depicted in their own image. We take “multispectral” to be
a subset of “hyperspectral® specifically pertaining to images that contain relatively few spectral
channels (e.g. RGB imaging). Hyperspectral imaging combines spectroscopy and imaging such
that each pixel of the image contains a wide spectral profile that allows for detailed

characterization.

Linear decomposition, phasor analysis, support vector machines and other machine
learning methods have indeed been used for analysis of hyperspectral imaging datasets'>-"8,
While many of these techniques have demonstrated promising results, such methods may
suffer from limited generalizability or information loss, limiting their ultimate performance®?
Deep learning, in contrast, potentially offers a method for learning based on both spectral and
spatial signatures and their nonlinear interplay allowing for improved performance in a variety of
hyperspectral imaging analysis tasks?'?2. However, techniques for these hyperspectral stacks
face unique challenges in computer vision research?*24, For example, standard deep learning
architectures that work for monospectral images (consisting of 2 or 3 spatial dimensions), may
not work for hyperspectral stacks due to the extra dimension needed for spectral information.
Frameworks such as Mayerich et al's Stain-less Staining?® or Behrmann et al’'s work in mass
spec imaging®® address this by interpreting the spectra at individual pixels of hyperspectral

images to produce excellent results in label-free prediction and classification, but may be
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missing contextual information from spatial convolutions of the whole image. Zhang et al's
recently published work bypasses the need for spectral deep learning by using machine
learning to interpret spectral information and create truth maps to which spatial deep learning of
images can be trained?’. Other frameworks for hyperspectral deep learning based on spectral-
spatial convolutions also exist but are often rigid; only performing a particular task like binary
pixel or multi-class label classification?®-%. Further, a convolutional framework for predicting
entirely alternate imaging modalities (where the final number of spectral channels is unlikely to
match the input, but spatial resolution is maintained) from hyperspectral images, to our
knowledge, has not been reported. We thus present a new architecture, the U-wthin-U-Net
(UwU-Net) to address these current shortcomings in hyperspectral deep learning and improve

the utility of hyperspectral imaging techniques.

The UwU-Net Architecture presented here is based on the U-Net architecture developed
originally by Ronneberger et al where a specialized autoencoder encodes and decodes spatial
feature information in an input image to reconstruct some new output image®'. The U-Net
separates itself from a traditional autoencoder with the recontextualization of information
through concatenations at equivalent encode-decode levels (noted as blue arrows in Figure 1a).
This eliminates the discarding of information as in a traditional autoencoder. While the original
work was concerned with image segmentation, the U-Net has seen use in a variety of
applications including segmentation, label-free prediction, and denoising®32-34. However, most
works that utilize the U-Net in this way are not concerned with images that contain multiple
spectral channels. Indeed, the original U-Net is generally not applicable to hyperspectral images
as the architecture is dedicated to encoding multiple spatial feature channels starting from a
single spatial channel image as shown in Figure 1a. The typical 2D kernel of a U-Net is thus not
well suited for hyperspectral stacks which have a third tensor dimension dedicated to spectral

channels. A 3D kernel could potentially be used, but then the spatial and spectral information
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are being mixed during the feature encoding in a problematic fashion for image reconstruction®.
Modification of input and output layers to match spectral dimensions is often useful in the
multispectral regime but may be too facile of a change to adequately handle spectrally complex
hyperspectral images. While other recently reported modifications to the U-Net have also shown
improvements with respect to the original U-Net on semantic segmentation and classification of
remote sensing datasets (some of which involve multispectral datasets)**-38, we report a robust

architecture for multiple hyperspectral imaging tasks.

To create a hyperspectral deep learning architecture with the robustness and features of
the traditional U-Net, we have amended the U-Net architecture such that spectral channel
information is handled by a separate “U” structure “outside” of an arbitrary number of traditional
spatial U-Nets as shown in Figure 1b. This UwU-Net architecture allows dedication of tunable
free parameters to both spectral information (outer U) and spatial information (inner U’s). The
architecture’s parameters can be empirically tuned to change the spectral layer depth, number
of spatial U’s at the center, or output spectral size based on the dataset. Here we demonstrate
the utility of this new architecture in 3 different tasks on 3 different types of hyperspectral
imaging: feature segmentation and classification on the high altitude hyperspectral imaging
Indian Pines dataset, monoisotopic drug location prediction in rat liver from mass spectrometry
images, and label-free prediction of cellular organelle fluorescence in stimulated Raman

scattering (SRS) microscopy.

The first task concerns segmentation and classification of the Indian Pines dataset which
depicts a scene of farmland in northwest Indiana across a large range of wavelengths spanning
the ultraviolet to short infrared region (400-2500 nm)*°. The publicly available dataset was
acquired by the Airborne Visible/Infrared Imaging Spectrometer and provides a model task for
hyperspectral deep learning: segmentation and classification of various crop and foliage types.

The broad spectrum and spatial heterogeneity of the scene demonstrates a deep learning
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algorithm’s ability to correctly identify and segment features based on both spectral signatures
and spatial positions. Moreover, the use of this dataset by previous work in hyperspectral deep

learning allows for comparison of our proposed architecture*®2,

The second task concerns predicting drug location in a model rat liver tissue sample
from mass spectrometry imaging. Mass spectrometry imaging (MSI) is a powerful technique that
provides spatially resolved, highly specific chemical information in the form of molecular ion
masses. Where most deep learning computer vision work is centered around interpretation of
optical images, MSI is particularly interesting to approach with deep-learning as it has an
enormous spectral dimension that provides highly specific, but difficult to interpret in situ
chemical information*344, Most MSI work follows from traditional linear decomposition and
analysis that is well-developed and ubiquitous in mass spectrometry*>*°. Deep learning has
been demonstrated for MSI| datasets?5435051 but has been chiefly used for spectral
dimensionality reduction or interpretation. To our knowledge, the simultaneous interpretation of
spatial and spectral information using convolutional deep learning in MSI has yet to be reported.
We demonstrate one way the UwU-Net architecture could be used in MSI by simultaneously
predicting the highly specific monoisotopic peak locations of 12 drugs from low mass resolution

binned images.

Finally, the third task demonstrates the capability of the UwU-Net to perform label-free
prediction of fluorescence images from SRS microscopy images. SRS microscopy is a
hyperspectral imaging technique where molecular vibrational bonds are coherently interrogated
by two ultrashort laser pulses®-°4. While the vibrational information afforded by SRS microscopy
can be specific to a given molecule, there are often many overlapping contributions to
vibrational signals that confound image interpretation. In this work, we show that the specificity

of SRS microscopy can be improved by deep learning to predict fluorescence images that are
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highly specific to an organelle. Further, we show that the trained algorithms can be multiplexed

to create label-free cell organelle images in live cells.

Indian Pines Classification

To demonstrate this flexibility and to validate the architecture’s capability to classify an
arbitrary number of features from hyperspectral images, a 1-U UwU-Net (where there is 1
spatial U-Net at the center of the architecture) and 17-U UwU-Net (where there are 17 spatial U-
Nets at the center) were trained to classify the Indian Pines AVARIS dataset®. The
hyperspectral images consist of 200 spectral channels (where 20 of the original 220 bands have
been removed due to water absorption) across a broad range of wavelengths (400-2500 nm)
with 144 x 144 pixel images (cropped from 145 x 145 to be compatible with the spatial U-Nets)
at each wavelength. The images contain a high-altitude 2 mile by 2 mile field of view of farmland
in northwest Indiana. The ground truth images consist of non-mutually exclusive hand-drawn
maps of the various crops and foliage depicted in the field of view. In total, there are 16
classifications shown in Figure 1c and listed in Table 1. Here, the UwU-Net is trained to predict
a 17 x 144 x 144 image stack (16 classifications plus an unused background) from the 200 x
144 x 144 input image stack. The initial 200 channels are first reduced via convolution to 100
then to the final 1 (for the 1-U UwU-Net) or 17 (for the 17-U UwU-Net) before spatial learning.
The output predicted images are thresholded to create a binary map to compare against the
ground truth image. Looking at the results in Table 1, the 17-U UwU-Net performs well with
nearly all classifications exceeding 99% accuracy. The exceptions are the classification of an
untilled corn field in the upper left of the field of view that are instead identified as a mixture of
the three soybean classifications. We also note the prediction of crops at the top-middle, top-
right, and bottom of the field of view. While these areas contribute to the error, we note that

crops do exist in these parts of the hyperspectral images (as seen in the composite image in
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Figure 1c) but are unidentified in the hand-drawn truth maps. To better reflect the model’s
performance, especially in these cases, counts of false positive and negative pixels and the
intersection over union (I0OU) for each class is provided in Extended Data Table 1. The overall
accuracy (99.48% + 0.50%), however, is in concordance with state-of-the-art architectures for
hyperspectral classification on the Indian Pines dataset*'#?°5-%" Three of these architectures’
(ResNet, Multi-Path ResNet, and Auxillary Capsule GAN) classification accuracies are shown in
Table 1 for comparison with the 17-U UwU-Net demonstrating the highest accuracy. We note
that the 1-U UwU-Net (with its more modest modifications to the original U-Net) performs worse
than the other models suggesting that the additional spatial parameters afforded by the parallel
U-Nets at the center of the UwU-Net contribute towards a more accurate model. For additional
comparison, a basic U-Net (where the initial and final layers have been simply adjusted to
accommodate the desired input/output channel number) was also trained. However, it was
unable to classify any of the labels properly suggesting that UwU-Nets spectral layers are
critical for proper identifications. A representative example of one of the basic U-Net’s errant
classifications is shown in Extended Data Figure 1. These results demonstrate the UwU-Net’s
ability to simultaneously segment and classify features from hyperspectral images with high
accuracy. However, the UwU-Net is not limited to a binary pixel classification, like some
hyperspectral architectures here compared, but can also predict intensity features as shown in

the demonstrations below.

Drug Location Prediction in Mass Spectrometry Images.

To further demonstrate the utility of the UwU-Net in deep learning of hyperspectral
images, we predict the location of multiple drugs (most of which are cancer treatment drugs) in
a rat liver slice from publicly available mass spectrometry imaging data originally taken by

Eriksson et al®®. Here, a frozen-fixed rat liver section was spiked with 5 mixtures of diluted
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drugs, where each mixture contains some combination of 4 of the 12 potential drugs at varying
concentrations. MSI was then performed on the liver slice in the mass (m/z) range of 150 —
1000 m/z at a mass resolution of 0.001 m/z. This means that this particular raw hyperspectral
dataset contains 850,000 images which is not uncommon for MSI datasets. Given this colossal
spectral density, MSI datasets must be narrowed to small “windows” (e.g. only 1000 images
between 300.000 m/z — 300.999 m/z are shown) and/or “binned” (e.g. all the 0.001 m/z images
from 300.000 m/z — 300.999 m/z are summed together to form a single 1 m/z bin image) to be
viewable. Both windowing and binning sacrifice information for interpretability. Windowing allows
for only seeing a few mass components at a time while binning sacrifices the hallmark specificity
of mass spectrometry®®. Analysis of these large datasets can also be cumbersome, taking

potentially hours or longer to interpret per dataset.

The work we present here demonstrates a potential solution to this information trade-off
issue by predicting high mass resolution drug location images (corresponding to each drug’s
monoisotopic peak) from a window of hyperspectral low-resolution binned mass images of the
spiked rat liver tissue. Specifically, the region of 330 — 630 m/z (a window containing all
monoisotopic drug peaks) was binned into 1 m/z images and concatenated into a hyperspectral
image stack. Then, the 0.001 m/z resolution images corresponding to the monoisotopic peaks of
the 12 drugs (as determined in the previous publication) were isolated from the raw MSI data
and concatenated to produce a stack where each image corresponds to a specific drug. The
UwU-Net architecture was trained to predict 12 drug images from the 300-channel hyperspectral
images. Figure 2 shows the results of these predictions and the corresponding 1 m/z bin image
that contains the monoisotopic peak. While some of these low mass resolution bins are already
highly correlated with the specific monoisotopic peak (e.g. Ipratropium and Vatalanib in Figures
2a and 2b, respectively), other images have strong background contributions and or conflicting

drug spot signal due to fragment peaks from other drugs (e.g. Erlotinib and Gefitinib in Figures
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2c and 2f, respectively). From Figure 2, it is apparent that the deep learning algorithm is able to
reliably predict each drug’s location from the low resolution hyperspectral data even when there
are conflicting background/fragment peaks or when the drug concentration is low (as in
Lapatinib and Trametinib in Figures 2k and 2I). Even in Trametinib, where the drug is near the
sensitivity limit for this MSI experiment, the UwU-Net correctly predicts the spot where the drug
is present. Though the exact pixels predicted do not cleanly match (as noted by the PCC values
for Trametinib in Table 2), the grouping of these sparse pixels in the correct spots suggest that

the UwU-Net is picking-up the relevant spectral and spatial components for prediction.

To better understand the role of spectral and spatial learning in the UwU-Net, other U-
Net and UwU-Net models were trained on this data with some varying parameters and
compared in Table 2. To first understand the role of spectral vs spatial learning and their
interplay on model accuracy, multiple basic U-Nets were trained on a single drug at a time. Here
the single 1 m/z bin image and corresponding high mass resolution peak image were used for
training. While some of the drugs are correctly identified and predicted (suggesting spatial
learning of a single image from the hyperspectral stack may drive some drugs’ predictions),
many of the drugs (sunitinib, gefitinib, sorafenib, dabrafinib, and trametinib) go partially or
entirely unpredicted. A single basic U-Net modified to accept 300 channels and output 12
channels again produces unacceptable results (Extended Data Figure 1). The use of a UwU-Net
with a single spatial U-Net at its center (denoted as 1-U in Table 2) allows for spectral learning
of the data in addition to spatial learning. When a stack of just the 12 drug 1 m/z bins is used for
training (1-U, only drug bins in Table 2), only gefitinib, dabrafinib, and trametinib were
unidentified. The use of the full 300 hyperspectral stack in the 1-U UwU-Net shows further
improvement leaving only one spot of dabrafenib unpredicted. This suggests additional spectral
information improves the accuracy of the model in drugs where spatial information from the

principal bins is insufficient for prediction. The use of a 12-U UwU-Net on the full hyperspectral

10
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data eliminates any unidentified drug spots, but errantly predicts spots in sunitinib and initinib
that do not exist in the respective truth images. A 5-U UwU-Net demonstrates the most accurate
prediction of drug spots with no missing or errantly predicted spots for any of the 12 drugs (as
seen in Figure 2). This analysis and comparison suggest that, like “depth” in a traditional U-Net
or ResNet, architecture parameters such as spectral depth or number of spatial U-Nets at

center can be empirically tuned to improve model accuracy.

These results highlight a capability of the UwU-Net to mine MSI datasets for relevant
features from both spatial and rich spectral features afforded in MSI in a convolutional manner.
One way this is potentially useful for MSl is in the design and execution of experiments. If a
priori ground-truth information is available (in this case, the masses of the drug molecules
sought, their locations, and their concentrations), a UwU-Net model can be trained and utilized
in other similar experiments to vastly improve analysis speed. For example, while the training of
this algorithm took ~8 hours, the final prediction of all images shown takes only ~1 second. This
upfront single-time investment of training then affords analysis of further samples to be
performed extremely quickly in comparison to costly linear analysis of each dataset. The
specific demonstration presented here could also be highly useful for the miniaturization of MSI
systems for in situ use where the tradeoff of reduced mass resolution would be mitigated by a
pretrained algorithm. We also note the possibility of combining MSI with an orthogonal method
such as fluorescence or Raman imaging, to predict alternate imaging modalities using the UwU-

Net as we demonstrate below.

Label-free Organelle Prediction from SRS Microscopy Images

Label-free prediction via deep learning has been a recent area of interest for augmenting

the information acquired from a given microscopy modality®®. The label-free prediction usually
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involves a microscopy image, such as transmitted light or autofluorescence microscopy, being
converted to an image that mimics a more complex label-requisite modality like fluorescent or
histologically stained images'®336'. The value of this type of work is clear due to the elimination
of staining protocols and the disadvantages associated with labeling the sample
(photobleaching, toxicity, disruption of biological structures or functions, etc.). However, the
quality of label-free prediction depends heavily on the information present in the input images®2.
For example, while transmitted-light microscopy is relatively simple to perform, it only reveals
information based on light scattering due to differences in refractive index. In the context of cells
and their organelles, there may not be significant enough difference between an organelle and
cytosol to produce relevant information for a deep learning algorithm to reliably predict a

corresponding organelle’s fluorescence.

Compared to simple bright field or autofluorescence imaging, Raman imaging is a much
more information-rich, label-free alternative. The Raman spectrum of a sample reflects specific
molecular vibrations quantitatively associated with the molecules within. Hyperspectral SRS
imaging improves the conventional Raman imaging by significantly speeding up the image
acquisition by 3-4 orders of magnitude®3%364, Regardless of the acquisition method, for
biological samples, the Raman spectra are often congested and highly convolved due to the
overlapping Raman bands from many different molecules. Principle component analysis and
phasor analysis have been used to extract individual organelles from the myriad of vibrational
signatures in a cell'®'8. However, the subtle variations of Raman spectra for individual
organelles present significant challenges to the analysis of smaller structures such as
mitochondria and endoplasmic reticulum (ER). Previous attempts to produce label-free staining
based on hyperspectral Raman imaging have shown promising results for some organelles but
not as rich of predictions for smaller ones'®. The architecture we present here shows improved

fluorescence prediction across 3 organelles. Deep learning using the rich spectral and spatial
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information afforded by hyperspectral SRS microscopy also outperforms previous work of label-
free prediction from transmitted light microscopy?®®. As shown in Figures 3a - 3c, we create label-
free prediction algorithms for nuclei, mitochondria, and endoplasmic reticulum fluorescence in
fixed lung cancer cells (A549, from ATCC).. The accuracy of the predictions is quantified in
Table 3 by Pearson’s correlation coefficient (PCC), normalized root mean squared error
(NRMSE), and feature similarity index (FSIM)%%¢, Across all computed quality metrics, we find
high correlation and acceptably low error between predicted images and their respective truths.
Previous work reported PCC values of 0.58, 0.69, and 0.70 for DNA (nucleus), mitochondria,
and endoplasmic reticulum, respectively®®. Thus, we see a significant improvement in label-free
organelle prediction with the information-rich hyperspectral SRS microscopy in comparison to
bright field microscopy. A basic U-Net was again trained for comparison as seen in Extended
Data Figure 1. While this task was more successful than in the previous demonstrations,
unacceptable residual SRS features were also present in the image. For additional comparison
to another modern architecture used for image reconstructions, a U-Net utilizing ResNet
Blocks®¢¢” was also trained to predict the organelles (Extended Data Figure 2 and Extended
Data Table 2). While the Res-U-Net showed slightly improved organelle predictions in
comparison to previously reported results, the UwU-Net predictions still outperformed across all

organelles and metrics.

The utilization of both spectral and spatial information is paramount towards
demonstrating utility of this architecture. This is most clearly demonstrated in the mitochondria
prediction model by the differentiation of the organelle from lipid droplets in the cell. In SRS
images, lipids droplets appear as bright “dots” typically ~1 ym in size. This means they have a
similar size and shape to mitochondria, yet the trained models have clearly learned to exclude
such similar features. This suggests that the model is not simply searching for the spatial

features in the image to isolate and predict, but likely utilizing both spatial and spectral
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information to determine the position of the desired organelles. To confirm this, a simple 2D U-
Net was trained using the single brightest SRS image to predict the fluorescence image
(Extended Data Figure 3). While the PCC values demonstrated by this traditional U-Net training
still outperform previous work (likely due to the higher input image quality with respect to
transmitted-light microscopy), they slightly underperform the UwU-Net where spectral
information augments the prediction capability (Extended Data Table 3). Moreover, the 2D U-
Net models predict some spurious features such as nucleoli (Extended Data Figure 3) or lipid
droplets (Extended Data Figure 4) as they are incapable of seeing the difference in vibrational

spectral information for such features.

Finally, to demonstrate the multiplexing capability of the trained algorithms,
hyperspectral SRS images of live A549 cells with none of the dyes present are used to predict
organelle fluorescence in Figures 3e and 3f. Here new prediction models have been trained for
live cells in a similar manner as in the fixed cells (Extended Data Figure 5). However, instead of
predicting based on SRS images of cells where the dye is present (such as in Figures 3a - 3¢
and Extended Data Figure 5), the live cells are first imaged with SRS when no dye is present
(Figure 3e, left). The cells are then stained while still mounted on the microscope and reimaged
with two-photon fluorescence to acquire reference fluorescence images (Figure 3e, right, bottom
row). The stain-free SRS images are used to predict fluorescence images using the pretrained
models (Figure 3e, right, top row) and overlaid for comparison against the reference images
(Figure 3f). As shown in Figure 3f, the label-free prediction in live cells matches well with the
truth fluorescence images. We do, however, note slight mismatches in fields of view and cellular
shape. This is due to both the sample moving and focus changing slightly during the staining
process while mounted on the microscope. Additionally, organelle movement and cellular

reorganization between SRS and fluorescence imaging (~10 minutes) leads to mismatch of
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exact spatial features. Regardless of these differences, the UwU-Net demonstrates a firm ability

in predicting label-free fluorescence of organelles from SRS images of live cells.

Discussion

In this work we have presented UwU-Net, a new architecture for deep learning using
hyperspectral images. The architecture is highly flexible in both the types of tasks it can perform
(e.g. classification, segmentation, label-free prediction) and the types of hyperspectral images
with which it is compatible (e.g. remote sensing, MSI, and SRS microscopy). Specifically, we
show excellent performance of Indian Pines classification with 99.48% overall accuracy for all
classifications. We also demonstrate successful drug location prediction in fixed tissue from MSI
data from windowed and binned images. This highlights the capability to mine spectrally dense
MSI datasets using both spectral and spatial information and offers new possibilities for deep
learning in MSI. Finally, we show improved label-free prediction of organelle fluorescence by
using hyperspectral SRS microscopy. We note a significant improvement in nuclear,
mitochondrial, and ER prediction correlation with respect to previous work by the use of the

UwU-Net to interpret spectral and spatial information.

We further note that while all models were trained using randomized starting parameters
and stochastic gradient descent to minimize mean squared error (MSE) between output and
truth images, the architecture is easily amenable to transfer learning methods and more
complex error functions for particular tasks. We also note that the UwU-Net architecture can
potentially be used in a generative adversarial network (GAN) framework to perform an even
broader class of tasks?%8. However, GAN training of a UwU-Net is not feasible currently given

memory constraints.
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Finally, while only a subset of tasks and imaging techniques are demonstrated here, we
expect the UwU-Net to be broadly applicable or adaptable to any reasonably designed
computer vision task involving a hyperspectral imaging technique with potential use in medical

imaging, microscopy, and remote sensing.

Methods

The following are the methods for the label-free fluorescence prediction demonstration
experiments and utilization of the UwU-Net algorithm. The methods for the publicly available
datasets (Indian Pines and the MSI of Spiked Rat Liver) are briefly discussed above and details

of their experimental parameters can be found in their respective original publications3®:%,

Cell Sample Preparation

A549 cells were cultured in ATCC F-12K medium with 10% fetal bovine serum at 37 °C
with 5% CO2 atmosphere. Cells were seeded on coverslips 24 hours prior to imaging. Fixed
cells were first dyed then fixed using 2% paraformaldehyde. Live cells were first mounted,
imaged with SRS and then stained for fluorescence imaging. The fluorescent dyes used were
Hoescht 33342, MitoTracker Red CMXRos, and ER-Tracker Green for nucleus, mitochondria,
and ER respectively. All dye protocols were based on the provided instructions from the

manufacturer.

Simultaneous SRS and Fluorescence Microscopy

SRS Microscopy was performed on a homebuilt SRS microscope as described

previously. Briefly, an Insight DeepSee+ provides synchronized 798 nm and 1040 nm laser
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pulses which are passed through high density glass and a grating stretcher pair, respectively, to
control pulse chirp. The 1040 nm bean is modulated by an electro optical modulator and
polarizing beam splitter to operate in the stimulated Raman loss scheme. Time delay of the
1040 beam was controlled by a computer-controlled Zaber X-DMQ12P-DE52-KX14A delay
stage. Both pulses are combined on a dichroic mirror before being directed through the
microscope by a pair of scanning galvo mirrors. The microscope is a Nikon Eclipse FN1
equipped with a 40x 1.15 NA objective. The 800 and 1040 nm laser powers were set to 20 mW
at focus for both beams in all experiments. Light passed through the sample is collected by a
1.4 NA condenser, filtered by a 700 nm long pass filter (to remove fluorescence light) and 1000
nm short pass filter (to remove the 1040 nm light), and finally collected on a homebuilt
photodiode connected to a Zurich Instruments HF2LI lock-in amplifier. Two photon fluorescence
is captured in the backwards direction by a 650 long pass dichroic towards a photomultiplier
tube. SRS signal from the lock-in amplifier and fluorescence signal from the photomultiplier tube
were collected simultaneously using Scanimage®. Images were acquired with 512 x 512 pixels
and a pixel dwell time of 8 us at each of the 10 vibrational transitions as noted in Figure 3d. Itis
noted that the transitions noted in Figure 3d represent only the center of the probed band with
19 cm' spectral resolution. This means that at the step size of ~15 cm™ per image in the stack,

the full CH region is probed during hyperspectral imaging.

UwU-Net Functional Description

An input hyperspectral stack of dimensions (L, X, Y) is first passed to the architecture. Here, L
represents the number of input channels of the hyperspectral stack (e.g. 200 for Indian Pines,
300 for MSI drug location prediction, or 10 for SRS images) and X and Y are the number of
spatial pixels in the image (in all cases here X =Y). The stack is first reduced to (M, X, Y) in the

channel dimension, where L > M, with a 3x3 kernel convolution of stride 1 over all L channels

17



413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

followed by a batch normalization and rectified linear unit (ReLU) activation function. The new
stack is then reduced once more in the channel dimension by the same process to a stack of
(N, X, Y) where N is the desired final number of spatial tuning channels. The stack is then split
at the channel dimension (if N > 1) such that there are now N number of (X,Y) images. Each of
these images is passed to its own U-Net for spatial feature learning as described previously*.
The resulting N number of images from each spatial U-Net are then reconcatenated in the
channel dimension to reform a (N, X, Y) stack. This (N, X, Y) stack is then concatenated in the
channel dimension to the (N, X, Y) stack from prior to splitting (mimicking the recovery of
information as in the traditional U-Net) to form a stack of (2N, X, Y). This (2N, X, Y) stack is
reduced to (O, X, Y) by a 3x3 kernel convolution of stride 1 over the 2N channels followed by a
batch normalization and ReLU activation function. This predicted stack is then compared to the
truth stack (also of dimension [O, X, Y]), a mean squared error is calculated for all channels,

and parameters are tuned in a backpropagating fashion.

Training Parameters, Data Preparation, and Hardware

The models trained and shown in this paper were developed and built using the pytorch-
fnet framework originally developed by Ounkomol et al®*3. All models were trained using the
pytorch-fnet default parameters with a few exceptions. The models were trained using
randomized starting parameters on batches of randomized patches from the given dataset.
Model parameters are tuned in a stochastic gradient descent manner based on minimization of
mean squared error. The pytorch-fnet framework utilizes an Adam optimizer with a 0.001
learning rate and beta values of 0.5 and 0.999. The rat liver drug prediction model which was
trained only for 23,000 iterations due to the satisfactory prediction accuracy and long training
iteration time. The Indian Pines and rat liver drug prediction models were trained with buffer size

of 6 due to the reduced number of training datasets. The Indian Pines classification and rat liver
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drug prediction model used patch sizes of 64 x 64 pixels for training, while all organelle

prediction models utilized patch sizes of 256 x 256 pixels.

Nearly all image preparations and processing discussed below were performed using
Fiji, an imaged platform. The exception was the additional use of Datacube Explorer for initial

processing of the raw MSI data.

The 200 band Indian Pines dataset was used natively from the published source. The
ground truth stack was created by separating the individual labeled images via thresholding
then concatenating all truth images into a TIF stack. The native pytorch-fnet cropper was used
to crop the images to 144 x 144 pixels from 145 x 145 pixels to accommodate the spatial
learning in the central U-Nets of the UwU-Net architectures. Training data was augmented by
rotations and flips with the original dataset withheld for testing. This equated to 6 training
datasets and 2 test datasets. Final predictions were recolored for each label and then overlaid
into the shown prediction image (Figure 1c). The UwU-Nets reported in Table 1 use 1 (1-U) or

17 (17-U) spatial U-Nets at their center during training.

The rat liver MSI dataset was first prepared by saving the 330-630 m/z window at 1 m/z
bins from the raw data using Datacube Explorer. All 300 images were concatenated into a TIF
stack using Fiji. The monoisotopic images at 0.001 m/z resolution were then saved for each
drug using Datacube Explorer following the m/z peaks and appropriate FWHM bins as noted by
Eriksson et al®®. The 12 drug peak images were concatenated into a TIF stack using Fiji. Both
stacks were padded with zeros in Fiji from their native 247 x 181 pixel size to 256 x 256 pixels to
be compatible with the spatial U-Nets within the UwU-Net architecture. Training data here was
also augmented by rotations and flips with the original dataset withheld for testing. There were 7
datasets used for training. The shown 1 m/z bin, truth peak, and predicted peak images for the

drugs were normalized, contrast adjusted to the same level, and colored using the “Red Hot” Fiji
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lookup table. The UwU-Nets reported in Table 1 use 1 (1-U), 5 (5-U), or 12 (12-U) spatial U-

Nets at their center.

The simultaneously collected SRS and Fluorescence images were first separated into 2
respective TIF stacks. The SRS stack was used as is for training and prediction. The
fluorescence stacks were averaged to a single image and used as the truth for training and
prediction. The fixed cell nucleus, mitochondria, and ER models utilized 43, 46, and 35 images,
respectively, with a randomized 80%/20% train-test split for each model. Images predicted by
the model were normalized, contrast adjusted to the same level, then colored using the “mpl-
inferno”, “Cyan”, “Green”, and “Magenta” Fiji lookup tables for SRS, nucleus, mitochondria, and

endoplasmic reticulum, respectively.

All model development, training, and prediction as well as image processing was
performed on a homebuilt machine running Ubuntu 18.04. The machine is equipped with an
AMD 2950X processor, Nvidia Titan RTX graphics processing unit, 64 GB memory, and a2 TB
solid state drive. All dependency software versions were based on the pytorch-fnet
requirements. On our machine, trainings for Indian Pines, rat liver drug, and organelle models
took ~4, ~8, and ~5 hours respectively. In all models, prediction of individual test images took 1

second or less.

Quantitative Metrics

Prediction quality was assessed by overall accuracy (OA), Intersection Over Union (IOU)
Pearson’s correlation coefficient (PCC), normalized root mean squared error (NRMSE), and

feature similarity index (FSIM)

OA is used to evaluate the binary pixel values assigned for each classification. Here, the

number of errantly predicted pixels are counted, subtracted from the total number of pixels, then
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divided by the total number of pixels. A percentage score is reported here where accuracy

closer to 100% indicates a more accurate prediction.

IOU also measures the segmentation and classification accuracy by taking the ratio of
the intersection between predicted pixels and true pixels (i.e. true positives) and union of
predicted pixels and true pixels (i.e. true positives plus false positives). The resulting ratio
indicates how accurately the model segments and classifies areas where values closer to 1

indicate more accurate prediction.

PCC is used to correlate the pixels of the truth and predicted images. The covariance of
the two images is divided by the standard deviation of the two images to provide a value
indicating pixel-to-pixel correlation. A PCC of 1 would indicate perfect correlation while 0 would

indicate no correlation.

NRMSE is used to express the accuracy of a predicted pixel versus the same pixel in the

truth image. Here a value closer to O indicates a more accurate prediction model.

FSIM is used as an image quality assessment metric that mimics human perception of
image similarity. Like the structural similarity index (SSIM), FSIM incorporates the spatially
associated pixels in the images during calculation to provide a better notion of perceived
similarity. However FSIM emphasizes low-level features of images to more accurately reflect the
human visual system’s perception of image similarity®®. Here an FSIM of 1 indicates perfectly

similar images while 0 would indicate no similarity.

Quantitative metrics were calculated using Fiji “Coloc 2" (PCC), and “SNR” (NRMSE)
plugins on the normalized images produced by the trained prediction model. FSIM was
calculated using the MATLAB code provided by Zhang et al®, following the prescribed

instructions.
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Figures
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Fig. 1: Architecture Diagrams and Indian Pines Classification.

Panel a shows a schematic representation of the traditional U-Net (adapted from Ounkomel et
al.>®) where a single 2D image is convolved to encode and decode spatial features. The “U” in
the upper right corner of panel a denotes its schematic representation as used in panel b. Panel
b shows the schematic representation of the UwU-Net where an arbitrarily dimensioned
hyperspectral stack is convolved both spectrally and spatially to produce an arbitrarily
dimensioned output stack. The symbols used in panels a and b are noted at the bottom of the
figure to show their operational meanings. Here, “conv” is short for convolution and the “NxN”
shown describes with pixel size of the kernel used for convolution. Panel ¢ depicts a false color
composite of 3 different spectral bands from the original 200-band hyperspectral stack, the truth

classifications, and predicted classifications from the UwU-net.
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Fig. 2: Mass spectrometry images of drug-spikes rat liver slice.

Each row (a-l) shows (from left to right) a 1 m/z bin image from the input 300 image
hyperspectral stack that contains a given drug’s monoisotopic peak, the 5-U UwU-net predicted
0.001 m/z bin image of the drug, and the 0.001 m/z bin image specific to that drug’s
monoisotopic peak. The following drugs are depicted in their respective panels: Ipratropium
(panel a), Vatalanib (panel b), Erlotinib (panel c¢), Sunitinib (panel d), Pazopanib (panel e),
Gefitinib (panel f), Sorafenib (panel g), Dasatinib (panel h), Imatinib (panel i), Dabrafinib (panel

j), Lapatinib (panel k), Trametinib (panel I). Scalebar = 4 mm.
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o

Fig. 3: Predicted organelle fluorescence from hyperspectral SRS microscopy images.

All SRS images shown depict only the peak signal image from the hyperspectral stack. Panel a
shows the prediction of nucleus fluorescence. Panel b shows the prediction of mitochondria
fluorescence. Panel ¢ shows the prediction of endoplasmic reticulum fluorescence. Panel d
shows a typical cellular SRS spectrum (black) and the 10 vibrational transitions imaged and
used for prediction (red). Note that the transitions marked in red represent the center of a band
of probed transitions with a resolution of 19 cm™. The 15 cm™ steps between each spectral
image means the entire CH vibrational region is effectively probed during hyperspectral
imaging. Panel e shows an SRS image of live cells (left) that contain no dye, each algorithms
predicted fluorescence (right, top row), and fluorescence images taken after the cells are
stained (right, bottom row). Panel f shows an overlaid combination of each organelle prediction

(left), and the same group of cells after staining (right).
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Tables

Label UwU-Net ResNet*! MPRN*" | AU-Caps-Gan*’ | UwU-Net
(1-U) (17-U)
Alfalfa 97.40 98.33 98.89 99.15 99.96
Corn (No Till) 93.66 99.28 99.51 99.50 98.57
Corn (Min Till) 95.98 98.80 98.92 99.12 99.19
Corn 98.83 98.20 98.52 98.34 99.78
Grass (Pasture) 97.60 97.97 97.92 98.70 99.48
Grass (Trees) 98.26 98.80 99.08 99.42 99.80
Grass (Mowed 99.98 100 98.18 98.74 99.98
Pasture)
Hay (Windrowed) 97.65 100 100 99.27 99.91
Oats 99.90 97.50 97.50 98.68 99.98
Soybeans (No Till) 96.35 97.99 98.14 98.45 99.18
Soybeans (Min Till) | 79.37 99.27 99.38 99.12 98.49
Soybeans (Clean 97.15 98.35 98.69 98.34 99.23
Till)
Wheat 99.50 99.14 98.90 98.69 99.93
Woods 94.87 99.88 99.98 99.33 99.18
Buildings 98.07 99.55 99.68 99.41 99.18
(Grass/Trees/Drives)
Stone-Steel Tower 99.74 94.52 96.44 98.94 99.91
OA 96.52 4.7 | 99.01 99.16 99.12 £ 0.25 99.48 + 0.50

Table 1: Classification accuracy of the Indian Pines dataset.

The individual and overall classification accuracy of the Indian Pines dataset from various

hyperspectral deep learning models and the presented UwU-Net model. Note the ResNet,

MPRN, and AU-Caps-GAN models are reported as produced in their respective references, the

ResNet and MPRN classifications were reported without uncertainties. Reported uncertainties

refer to the standard deviation among the n= 16 classifications.
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1 m/z bin U-Nets UwU-Net UwU-Net UwU-Net UwU-Net
(Non-HS) (12-U) (1-U, only (1-U) (5-V)

Drug drug bins)
(mass, m/z)
Ipratropium 0.99 [ 0.003 | 0.99 [ 0.011 0.99 [ 0.013 | 0.99 [ 0.007 | 0.99 | 0.014 | 0.99 0.013
(332.223)
Vatalanib 0.97 | 0.010 [ 098 | 0019 | 095 | 0.012 | 0.97 | 0.010 | 0.95 | 0.013 | 0.96 0.013
(347.107)
Erlotinib 0.38 | 0104 [ 093 | 0059 | 089 | 0.025 | 0.94 | 0.023 | 0.93 | 0.022 | 0.93 0.022
(394.177)
Sunitinib 0.08 | 0.096 [ 0.12 | 0399 | 067 | 0.055 | 0.86 | 0.033 | 0.89 | 0.029 | 0.89 0.030
(399.220)
Pazopanib 063 | 0.076 [ 099 | 0030 | 097 | 0.013 | 0.98 | 0.014 | 0.98 | 0.011 | 0.98 0.013
(438.171)
Gefitinib 024 | 0250 [ 0.84 | 0053 | 088 | 0.026 | 0.56 | 0.044 | 0.88 | 0.027 | 0.89 0.022
(447.160)
Sorafenib 0.21 | 0.077 | 0.93 | 0.121 0.93 [ 0.021 | 093 | 0.020 | 0.93 | 0.020 | 0.992 0.021
(465.094)
Dasatinib 091 | 0.033 [ 099 | 0016 | 098 | 0.014 | 0.98 | 0.014 | 0.98 | 0.013 | 0.98 0.012
(488.267)
Imatinib 025 | 0240 [ 0.72 | 0096 | 059 | 0.057 | 0.73 | 0.042 | 0.78 | 0.040 | 0.75 0.039
(494.267)
Dabrafinib 0.35 | 0.295 | 096 | 0.058 | 0.92 | 0.027 | 0.95 | 0.024 | 0.96 | 0.020 | 0.96 0.019
(520.143)
Lapatinib 0.26 | 0.084 | 0.8 0.024 | 0.80 | 0.023 | 0.76 | 0.026 | 0.80 | 0.024 | 0.74 0.024
(581.143)
Trametinib 0.05 | 0.047 [ 0.11 [ 0023 | 012 | 0.030 | 0.03 | 0.024 | 0.10 | 0.025 | 0.24 0.023
(616.086)
PCC 0.44 +0.34 0.78 £0.32 0.81+0.25 0.81+0.28 0.85+0.25 0.85 % 0.21
NRMSE 0.110 % 0.076 + 0.11 0.026 £ 0.015 | 0.023 +0.012 | 0.021 +0.008 | 0.021 % 0.007

0.098

Table 2: Quality metric values for the MSI dataset predictions

The table shows spiked drugs, their respective masses, and the Pearson correlation coefficients

(PCC, left column under each model) and normalized root mean squared error (NRMSE, right

column under each model) for the low resolution and predicted images from various models with

respect to the high resolution image for the drug. U-Nets (Non-HS) refers to individual traditional

U-Nets trained from a single image input of low mass resolution (i.e. non-hyperspectral images).

The “only drug bins” UwU-Net was trained on a 12 image input stack of only the relevant 1m/z

images that contain the drug peak. All other UwU-Nets were trained using the full 300 image

stack with various numbers of spatial U-Nets at their center (1-U, 5-U, or 12-U). The uncertainty

values refer to the standard deviation among the respective metrics for the given model (n=12

for all).
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Organelle Model PCC NRMSE FSIM

Nucleus 0.92+0.03 | 0.047 +0.022 0.89 + 0.04
Mitochondria 0.84 + 0.05 | 0.059 + 0.019 0.93 +0.02
Endoplasmic Reticulum | 0.94 £ 0.02 | 0.038 £ 0.016 0.92 £0.03

Table 3: Quality metric values for the label-free prediction of organelle fluorescence.

The table shows pearson correlation coefficients (PCC), normalized root mean squared error
(NRMSE), and feature similarity index (FSIM) values for the 3 organelles predicted from

hyperspectral SRS images. Numbers shown are based on the average of all withheld test

images (9, 9, and 7 images for nucleus, mitochondria, and ER, respectively) of 512 x 512 pixels.

Uncertainty refers to the standard deviation among the withheld test images.
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