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Abstract—Detecting segments of interest from videos is a common problem for many applications. And yet it is a challenging problem as
it often requires not only knowledge of individual target segments, but also contextual understanding of the entire video and the
relationships between the target segments. To address this problem, we propose the Sequence-to-Segments Network (S2N), a novel and
general end-to-end sequential encoder-decoder architecture. S?N first encodes the input video into a sequence of hidden states that
capture information progressively, as it appears in the video. It then employs the Segment Detection Unit (SDU), a novel decoding
architecture, that sequentially detects segments. At each decoding step, the SDU integrates the decoder state and encoder hidden states
to detect a target segment. During training, we address the problem of finding the best assignment of predicted segments to ground truth
using the Hungarian Matching Algorithm with Lexicographic Cost. Additionally we propose to use the squared Earth Mover’s Distance to
optimize the localization errors of the segments. We show the state-of-the-art performance of S?N across numerous tasks, including
video highlighting, video summarization, and human action proposal generation.

Index Terms—Segment detection, video analysis, video summarization, video highlighting, video temporal action proposal

1 INTRODUCTION

E address the problem of detecting temporal segments
W of “interest” in videos: as shown in Fig a video is
represented as a sequence of input frames, the task is to
find a set of consecutive frames of interest. Here, we define
“interest” as an abstract concept that denotes the parts of the
data that have the highest (application dependent) semantic
values. We assume there are training videos with annotated
segments of interest (e.g., labeled by humans), and our goal
is to train a neural network that can detect the segments
of interest in unseen videos. This general problem arises in
many situations including temporal event detection [1], [2],
[3], video summarization [4], [5], [6], video highlighting [7],
[8], discriminative localization [9], [10], [11], and many other
research areas such as sentence chunking [12] and gene
localization [13]. Each application has its own definition for
the segments of interest, and we assume the availablity of
annotated training examples. For human action detection,
the segments of interest are the ones that correspond to the
temporal extents of human actions. For video highlighting
or summarization, the segments of interest are the video
snippets that are most interesting or best summarize the
video.

A typical approach to address this problem is to train a
classifier to separate the annotated segments of interest from
negative examples. Once trained, the classifier can be used
to evaluate individual candidate segments of the input time
series in a sliding window approach to identify segments
of interest. This approach however has three drawbacks:
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(i) the computational complexity depends on the number
of candidate segments, and this scales quadratically with
the length of the time series. More importantly (ii), the
independent processing of each segment is suboptimal for
many situations because “interest” might be a contextual
concept: to detect a set of target segments, not only do we
need to evaluate the local content of individual segments,
but also their collective relationships and their roles in the
global context. As an example, to summarize a video, it is
important to know and preserve the gist of the video, and
this requires a holistic analysis of the video. Furthermore (iii),
the set of selected video snippets in video summarization
should not overlap temporally or semantically, and this can
only be avoided by collectively evaluating the segments.
The second and third drawbacks of the sliding window
based classification approaches are commonly addressed
by dedicated post-processing steps. However, adding post
processing steps complicates the pipeline which cannot be
optimized end-to-end.

In this paper we propose the Sequence-to-Segments Net-
work (S°N), a novel recurrent neural network for analyzing
a video to detect temporal segments of interest. Our network
is based on the sequential encoder-decoder architecture [14].
The encoder network encodes the time series and produces
a sequence of hidden states that progressively capture from
local to holistic information about the times series. The
decoder network takes the final state of the encoder network
as its starting state and outputs one segment of interest at a
time. The state in the decoder will be updated to incorporate
what has been already output. This alleviates the need for
a post-processing step that may not have access to the time
series information.

We introduce a novel architecture for the decoder net-
work, the Segment Detection Unit (SDU), which outputs
a segment based on the decoding state and the hidden
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states of the encoder. The SDU localizes the segment of
interest by pointing to the boundaries of the segment,
similar to the pointer network [15]. The SDU also outputs a
confidence value for the selected segment. The computational
complexity of the SDU is linear with respect to the length of
the input sequence, which is more efficient than the quadratic
complexity of the sliding window approach. Moreover, the
whole encoder-decoder pipeline can be optimized end-to-
end.

Fig. 1: Detecting segments of interest in videos: given an
input sequence, the task is to detect segments of "interest"
from the video. The “interest” here is an abstract concept that
denotes the segment of the data that have the highest (appli-
cation dependent) semantic values. Typical applications are
video summarization, video highlighting and video temporal
action proposal

We learn an $°N by alternating between two stages: (i)
assigning multiple detected segments with ground truth
(target) segments, (ii) optimizing S*N with loss functions
on the localization offsets based on the assignment. Inspired
by [16], [17], we match the target segments of interest and the
sequence of detected segments to have the minimum match-
ing cost which is computed using the Hungarian Matching
with a Lexicographic Cost (HMLC). In our experiments, we
compared HMLC to its alternatives and observed that S*N
trained with HMLC achieved better performance. For the
loss functions, we use the squared Earth Mover’s Distance
loss to account for the localization error of the boundary
pointing modules in the SDU.

To sum up, the major contributions of this paper are:

1) We propose $°N, a novel network architecture based
on SDU for detecting multiple segments of interest
in a video;

2) We propose a novel strategy to train S*N effectively
with the HMLC matching algorithm and the squared
EMD loss;

3) Through thorough evaluation, we conclude that
HMLC and squared EMD are better suited to this
problem than more commonly used alternatives;

4) We additionally propose a simple and yet effective
beam-search approach to make S?N generate more
diversified proposals, which improves performance.

5) We show that S*Ns outperform the state-of-the-art
methods in three real-world applications with mini-
mum post-processing operations: i) video highlighting,
ii) video summarization, and iii) human action proposal
generation.

2 RELATED WORK
2.1 Encoder-Decoder RNNs

Recurrent Neural Networks (RNNs) have been the standard
method for learning functions defined over sequences from
examples sincve the early days of Neural Networks [18]. To
further remove the constraint that the number of outputs
is dependent on the number of inputs, Sutskever et al.
[14] proposed the sequence-to-sequence paradigm that first
uses one RNN to map an input sequence to a state vector
and then applies another RNN to output a sequence with
arbitrary length based on the encoded state. Bahdanau et
al. augmented the decoder by propagating extra contextual
information from the input using a content-based attentional
mechanism [19], [20]. Vinyals et al. [15] modified the attention
model to allow the model to directly point to elements in
the input sequence, providing a more efficient and accurate
model for element localization. These developments have
made it possible to apply RNNs to new domains such as
language translation [14], [19] and parsing [21], and image
and video captioning [22], [23]. However, since standard
RNNSs are designed to output each time one “token” in the
input sequence, they cannot directly handle the segment
detection task in which each time a continuous subsequence
of the input is selected. Perhaps the most related work
to ours is [17] which attempted to train RNNs to label
unsegmented sequences directly. But the goal of [17] was
classification where the localization information was not
required in the output. The proposed S?N simultaneously
detects segments and estimates their confidence scores, thus
can be applied to different problems such as temporal action
proposal generation and video summarization.

2.2 Video Highlight Detection, Video Summarization &
Temporal Action Proposal

Video Highlight Detection Video highlight detection fo-
cuses on detecting the temporal clips which contain the most
salient event. Early highlight detection works focuses on
broadcast sport videos [24], [25], [26]. Given the increase of
user uploaded video, recent work focuses on detecting high-
lights in generic personal videos. [27] proposes to generate
the highlighted segment that corresponds the most with the
video title. They first extract features from each video clip
and train a bidirectional LSTM to predict a highlight score
of each clip. Then they simply select the eight consecutive
clips with the highest score as the highlighted region. Thus,
this approach is only able to generate proposals with fixed
length. [28] utilize user preferences to identify highlights in
each domain. However, candidate segmentations have to be
detected at a pre-processing stage.

Video Summarization Video summarization aims to shorten
a video while preserving the important and relevant infor-
mation it contains. Multiple methods have been proposed
recently and, depending on whether they are trained with
summaries created by humans, they can be divided into
supervised [4], [5], [29], [30] and unsupervised [31], [6l, [Z],
[32] video summarization. Supervised video summarization
methods aim to maximize the correspondence between
the manually created summarization and the generated
summarization. DPP-LSTM [4] utilized sequence-to-sequence
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models for this task. [29], [30], [6] use hierarchical LSTMs
and attention mechanisms to extract embeddings of the
input video. Most unsupervised methods [32], [33], [34]
rely on manually designed criteria e.g. how important,
representative and diverse are the segments. Recently, [6],
[7], [31] generate unsupervised video summarization by
outputting a summary which can generate another video
that is similar to the original input video.

Video Temporal Action Proposal Temporal action proposal
generation aims to generate temporal boundaries of action
instances in untrimmed videos. Proposal generation is an
important step for action detection and analysis. Earlier
works directly use sliding windows as proposals. However,
this approach suffers from high computational cost as it
scales quadratically with the length of the video. Sparse-
prop [35] applies dictionary learning for proposal generation
over a large set of candidate proposals. DAPs [36] adopts
recurrent networks and a regression branch for temporal
localization. Turn [37] uses boundary regression to evaluate
candidate proposals. However, these methods [35], [36],
[37] only generate proposals with pre-defined durations
and intervals, which are not temporally precise and not
flexible enough to cover variable temporal durations. Recent
work [38], [39]is able to generate proposals with flexible
boundaries and durations. TAG [38] adopts the watershed
algorithm to generate proposals from an action-ness score,
but it only considers each segment independently and
does not include global context for proposal generation.
BSN [39] contains multiple-stage pipelines to detect and
groups boundaries as proposals, thus cannot be optimized
end-to-end.

3 S2N NETWORK ARCHITECTURE

In this section, we will describe the architecture of a Sequence-
to-Segments Network (S*N). We first formally state the
problem. We then describe the overall S?N architecture and
the details of the proposed Segment Detection Unit (SDU),
the core component of S*N for localizing a temporal segment
of interest.

3.1

Let X = (x1,X2, - , X)) be an input time series of length
M, where x,, € R® is the observation feature vector at
time m. Our goal is to train a recurrent network that can
localize a set of segments of interest S = (51, -+ , Sy) from
the input time series X. Here, each segment .S,, corresponds
to a contiguous subsequence of X and it is parameterized by
a tuple of three variables (b,,, d,,, ¢, ) indicating the beginning
position b,,, the ending position d,,, and the estimated interest
score ¢,,. Unlike [40], [41], there are no explicit constraints
on the locations and extents of the output segments; they
can overlap and their union does not have to cover the
entire sequence X. Intuitively, many problems that detect
temporal segments in a series such as action detection or
video summarization can be formulated this way.

Problem Formulation

3.2 Model Overview

The proposed S°N is illustrated in Figure |2 SN is a sequen-
tial encoder-decoder with an attentional mechanism [19].

3

S°N sequentially encodes an input sequence X1, , X
and obtains a corresponding sequence of encoding state
vectors ey, - - - , e)y; the encoding state vector e, essentially
contains integrated information from x; to x,, [14], [42].
In the decoding stage at each step the Segment Detection
Unit (Section 3.3) outputs a temporal segment of interest S,,.

3.3 Segment Detection Unit (SDU)

A key component of the S?N is the Segment Detection
Unit (SDU) for localizing a segment of interest in the
decoding stage. As shown in Figure |2} the SDU is composed
of four components: a Gated Recurrent Unit (GRU) [43] that
updates and communicates states between decoding steps,
two pointing modules [15] that point to the beginning and
ending positions of the segment, and a score estimator that
evaluates the interest score of the segment. Details about
these components follow:

GRU for state update. During decoding, at each step given
the previous hidden state h;_; (hy is the concatenation of
the last hidden state and the memory cell of the encoder),
the GRU module updates the current hidden state: h; =
GRU(h;_1,z), where z is a learned input vector to the GRU
and is common to all the decoding steps. For further details
about the GRU, please refer to Cho et al. [43].

$°N is a general framework and theoretically any RNN
architecture, including LSTMs and Depth-Gated Recurrent
Neural Networks [44], can be used in place of the GRU.
We propose to use the GRU [43] here because it has a
simpler architecture and fewer parameters than other RNNs
(which means higher training and testing efficiency). We also
experimented with LSTMs but did not observe significant
difference in terms of model accuracy. This is consistent with
prior observations [45] and empirical findings from prior
work on deep recurrent models in other domains [43], [46],
[47].

Pointing modules for boundary localization. Given the
current state h; of an SDU, we predict the two boundary
positions similar to the pointer networks (Ptr-Net) [15]. To
localize the beginning position b,, of a segment at decoding
stage n, we use the pointer mechanism as follows:

b, = argmax g(h,, e;), (1)
g(hn,7 ei) = VTtanh<Wle7i + W2h71,)~ (2)

The beginning boundary is determined as the location 7 of
the encoding sequence that has the highest correlation with
the current decoding state (h,,). To measure the correlation,
we use a non-linear pointing function g. The output of
this function depends on the state h,, of the SDU and the
encoding vector e; of the encoder component.

Note the difference from original Ptr-Net [15]: the pointer
function is defined based on the encoding state vector e;
instead of the input vector x;. The encoding state vector
e; contains richer information than the input vector x;; e;
integrates the progression of the input time series up until
time 4, and this information is crucial for determining the
segment boundaries [48]. In the above, v, W; and W are
learnable parameters of the pointing module that associates
the decoding state with the hidden encoding states.
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Fig. 2: An Encoder (green) processes the input sequence to create a set of encoding vectors ({e1, ea, ...epr }). At each decoding
step, a Segment Detection Unit (SDU) updates the decoding state with a GRU, and based on the updated state, the SDU
points to the beginning (b) and ending positions (d) with two separate pointing modules and estimates the confidence score

(c) of the segment.

Similarly, the ending position d,, is determined using
another independent Ptr-Net module. Thus, we have two Ptr-
Net modules for determining the locations of the beginning
and ending positions.

A commonly used alternative for predicting the locations
is to use regression (similar to [49], [50]), however, this
approach outputs in the [0, 1] range, which does not respect
the constraint that the outputs map back exactly to the
boundaries and complicates the localization problem. As
demonstrated in prior works [51], [15], due to the smoothness
of L2 losses, the predicted boundaries are "blurry" and
hence difficult to effectively localize the boundaries in longer
sequences.

Score predictor. Finally, we attach, fscore, @ two-layer 1D
convolution network on top of the GRU hidden state with a
ReLu activation layer in between to predict ¢,

Cp = fscore (hn) (3)

Note the ¢, is only based on the hidden state and not
directly using information from x; or e;, thus this score does
not directly evaluate the quality of the segment, but instead
predicts whether to accept or discard the output at n. It is
possible to incorporate information from x; or €; into fscore,
but this will significantly complicate the gradient flow during
training.

No terminal output. We do not design a terminal output for
$%N as in for two reasons. First, the problem we address
is to output a ranked list of temporal segments of interest,
which is different from the problem of sequence-to-sequence
translation, in which there is a need for a terminal state.
Second, by not having a terminal state, S°N can output as
many segments as needed, and later the output of the score
predictor could be used to select a subset of them, hence
allowing flexibility to different needs in real-world problems.

4 S2N TRAINING

The $?°Ns can be trained end-to-end. In this section, we
first present the overall loss function (Sec. , we then
describe matching the sequence of predicted segments to
the set of target segments using the Hungarian Matching
with Lexicographic Cost (HMLC, Sec.[4.2), we later analyze
HMLC (Sec. and compare it to its alternatives (Sec.
to demonstrate it effectiveness.

4.1

Training an S’N requires a loss function that can measure
the discrepancy between an unordered set of ground truth
segments G = {G1,---,Gk} and an ordered sequence
of predicted segments S = (S51,---,Sn). In other words,
when the system is trained we expect the first few pre-
dicted segments maximally align with the ground truth.
One strategy for matching G to S is to use an injective
mapping: f: {1,--- ,K} = {1,--- , N}, where the ground
truth instance G should be matched to Sy (), and no two
ground truth instances should be mapped to the same output
segment.

Assume the assignment strategy is known for now, then
the loss value for the predicted sequence of segments and
the set of ground truth instances is computed as follows:

Loss functions

K N
LG.S, f) = Lioc(Gr,Sp)+ Y Leons(Sndn), (4)
k=1 n=1
where 0,, is the {0, 1} indicator for S,, depending on whether
Sy, is matched to a ground truth instance in G. Lo and Lon ¢
are the loss functions for localization and label assignment,
which will be explained below.

Note that £, only penalizes K out of the N S,,’s, the
ones that are matched to the target segments in G. For
the remaining N — K unmatched segments, there is no
localization penalty.

Loss function for localization. Let us define the loss
L(Gr, S¢k)). Our goal is to use a loss function that can
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indicate the level of discrepancy (localization error) between
a predicted segment and a target segment. The surface of the
loss function should vary smoothly without any flat regions;
flat regions have zero gradients that make gradient-based
optimization difficult.

We propose to use a loss function that is based on
the Earth Mover’s Distance (EMD) between the probability
distribution of the predicted boundary and the distribution
that represents the ground truth boundary. We now explain
how this loss function can be computed for the beginning
position b (the loss for the ending position d is computed
similarly). Recall from Eq. () that we determine the begin-
ning location of a segment as the maximum of a response
function: b = argmax; g(h¢x),e;), where hy) is the state
vector of the SDU. We define the probability of picking i as
the boundary point based on the soft-max function

eXP(g(hf(kw e;))
Zi]\il eXP(Q(hf(k)yez‘))

Let p* be the binary indicator vector for the ground truth
location of segment boundary; p; = 1 if ¢ is the annotated
boundary and 0 otherwise. The EMD loss can be computed
based on the differences between the two cumulative distri-
butions:

M m m 2
ﬁ?oc(Gka Sty = Z (Z Pr(b=1)— Z;f[) . (6)
1 i=1

m=1 \i=

Pr(b=1i) = ®)

Here, we use the sum of squared differences in Eq. (6)
instead of the sum of absolute differences because the former
is easier to optimize with gradient descent [52], [53], [54]. The
prediction loss for the ending position is similarly defined
and the total localization loss is:

Lioc(Gry Spy) = Loe(Gry Syry) + Libo(Gry Spry)- (7)

One alternative localization loss function is the cross-
entropy loss [15]. However, it is unsuitable for boundary
localization because it is insensitive to the amount of localiza-
tion error: this loss function incurs uniform gradients when
the predicted boundary is not exactly the target boundary.
Another alternative is to use the Mean Squared Error (Ls)
loss, but this loss function is also unsuitable for the same
reason.

We will provide an empirical comparison between the
proposed squared EMD loss and the Ly and cross-entropy
losses in Section [5.2}

Loss function for confidence score estimation. The S°N will
produce a sequence of segments; some will be matched to a
ground truth segment and the rest will not be. Ideally, we
want the matched segments to have high confidence value,
whereas the unmatched ones have low confidence value. The
loss function for confidence estimation satisfies this desired
criterion. Recall that the S*N predicts a confidence value ¢,
at each decoding step n, and §,, indicates whether there is a
matching target segment for this decoding step. We use the
cross-entropy loss to measure the compatibility between c,,
and §,,:

Acconf(Sn»(sn) = _571 IOg(Cn) - (1 - 577«) IOg(]. - Cn). (8)

5

4.2 Assignment Strategy: Hungarian Matching with
Lexicographic Cost (HMLC)

The last important component of the loss function in Eq.
evaluates the matching between the target segments G and
the predicted ones S. In this section, we propose to use
Hungarian Matching with Lexicographic Cost (HMLC), a
bipartite matching strategy inspired by [16]. Specifically, we
define the matching cost between a predicted segment .S,
and a ground truth G, using a triplet cost function:

A(Gka Sn) = (Ok'ru n, lkn)- (9)

The function A : G x & — R returns a tuple where
lkyn is the L1 distance between G, and S),. n is an integer
indicating the output order of S,, (the earlier the output,
the lower the cost). oy, is the penalty on whether there is
significant overlap between G, and Sy,:

o -{0
kn — 1

We use the Hungarian algorithm [55] to determine the best
matching according to lexicographic order:

if IoU(Gy, Sp) > 0.5

. (10)
otherwise.

K
f* = argmin Z A(Gr, Sry)

k=1
K K K

= argmin (Z onfeys D F(K), Y lkf(k)) (8
f k=1 k=1 k=1

The Hungarian algorithm first selects a set of predictions
that significantly overlap (/OU > 0.5) with the ground truth
(i.e., using o). For tie-breaking (i.e., when there exist multiple
subsets that significantly overlap with the ground truth), it
will first consider the order of segments (i.e., n), and finally
the exact amount of overlap (i.e., [) if necessary. We illustrate
the behaviour of HMLC in the next section.

4.3

An appropriate assignment strategy is crucial for S*N to
generate meaningful results in the expected order. For many
applications, we want the S*N to: (1) generate segments that
have high overlap with the ground truth, and (2) generate
true positive segments earlier than false positive ones. In the
following examples, we show how the proposed assignment
strategy satisfies these two criteria.

Let us start with the situation shown in Figure , in
which the black line at the bottom is an input sequence
and the red lines A and B are two ground truth segments.
Assume for now S?°N outputs sequentially four segments:
1,2, 3 and 4, in that order. In this example, the IOU scores
between the predicted segments 1, 2, 3, 4 and the target
segments A and B are shown in Table 1} Based on the scores,
matching 1 to A and 4 to B gives the lowest lexicographic
cost.

In general, the first two components (ox, and n) of
the lexicographic cost triplet (Eq.[9) are sufficient for most
matching problems. However, in the early training stage, it is
possible that none of the predicted segments has significant
overlap with a ground truth segment, as shown in Figure
In this case, the third component of the triplet cost function

lllustrative Assignment Examples
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Fig. 3: Illustration of the HMLC assignment strategy. Given an input frame sequence (black line), the segments in red (A, B)
represent the target segments and the segments in blue (1, 2, ...) are the sequentially generated segments. The solid blue lines
indicate segments that have been matched with ground truth whereas the dashed ones indicate false positives. (a)-(e): five
examples of HMLC matching of generated segments to ground truth. HMLC encourages S*N to generate segments that are
well aligned with the ground truth and output true positive segments earlier than false positive ones. (a, b), initial matches,
(c, d) final non-optimal matches (to be eliminated by non-maximum suppression), (e) optimal match, segments are well
aligned with ground truth and true positives appear earlier than false positives.
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Fig. 4: Illustration of alternative assignment strategies. The notations are the same as Fig. |3| Different assignment strategies
will assign the predicted segments to the ground truth segments differently; solid blue lines indicate matched predictions,
dashed blue lines indicate unmatched predictions. (a) HMLC matching (1-A, 3-B, 4-C); (b) Fixed order matching (1-A, 2-B,

3-C); (3) Greedy matching (2-A, 3-B, 4-C); (4) TopK matching for K = 3 (2-A, 3-B, 1-C)

Predicted segments

left to right. We label this matching FIX. For example, for all

1 2 3 4 the cases shown in Fig. 3} fixed matching simply assigns 1 to
A (0,1,03) (0,202 (1,3,10) (1,4 10) A and 2 to B rega%‘dle'ss of their p'ositions. The limitation of
B 1,1,10 (1,2,1.00 (1,3,1.00 (0,4,02) fixed order matching is that it assigns candidate hypotheses

TABLE 1: Lexicographic Cost between generated segments
and ground truth in Figure

is used to encourage small and stable adjustments of the
predicted segments toward the targets.

Note that matching with HMLC does not guarantee that
the loss function optimization results in the expected output.
Theoretically it is possible to have the trained S°N output
results like the ones in Figure |3c|or Figure [3d, which are not
optimal in the ordering of the output segments. However, by
designing the matching algorithm to prefer early predictions,
these situations were rare: in the initial training stages the
cost induced by the order of the segments plays a more
important role in determining the matching. Additionally,
such non-optimal situations can be easily discarded by a
simple non-maximum suppression in post-processing.

Similarly, for the score predictor, since early outputs are
likely to be matched with ground truth, the expected scores
of the early predictions are more likely to be close to 1.

4.4 Alternative Assignment Strategies

HMLC matching is rather complex but it was found to
be very important in our experiments. We discuss simpler
alternatives and their limitations.

Fixed Order Matching. Perhaps the most straightforward
matching strategy is to match the output of S>°N sequentially
to the target segments following a natural ordering, e.g., from

to ground-truth segments ignoring their positions. One such
sub-optimal example is shown in Figure [4b}

Greedy Matching: Another strategy is to simply match the
generated segments to the closest targets solely based on
their distance, by zeroing out the first and second terms
in the HMLC triplet. We label this strategy as Greedy. The
limitation of greedy matching is that it does not enforce true
positive segments to be output early, as shown in Figure

Top K Matching Top K matching (labeled as TopK) is a
simplified version of HMLC where the first item in the triplet
cost is zeroed out, i.e., the early outputs are always matched
to ground truth segments and the late outputs are always
ignored, as shown in Figure[4d} This reduces the flexibility
of $°N to predict the optimal output.

We will compare empirical matching results in Sec

5 EXPERIMENTS

In this section we show that SN achieves state of the art
performance on three different tasks: video summarization,
video highlighting, and action proposal generation. Detailed
analysis will be provided for all cases, with a slight emphasis
on the task of action proposal generation as the more complex
of the three.

5.1

We used the same architecture in all experiments even though
we expect even better results can be achieved by tuning the
model for each problem. Unless otherwise specified, the

Model Implementation and Hyper-parameters
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encoder is a two layer bi-directional GRU with 512 hidden
units with dropout rate 0.5, the GRU module in SDU is one-
directional with 1024 hidden units. All the models are trained
with the Adam optimizer [56] for 50 epochs with an initial
learning rate of 0.0001, which was decreased by a factor of
10 when the training performance plateaued, batch size of
32 and L, gradient clipping of 1.0. The trade-off factor « in
Eq. (@) is set specifially for different applications to ensure
that £;,. does not dominate the total loss.

A weight adjustment for the score predictor is also used if
necessary to account for the imbalance between the positive
and negative samples.

Note that SN is not restricted to the input length,
essentially it can deal with segmentations with arbitary
length, however, due to difficulties of LSTM/GRU keeping
track of long sequences and simplicity of processing, we split
each input video into overlapping chunks of the same length.

5.2 Video Highlight Detection

Video highlight detection aims to detect one temporal clip
which is the most salient event for each video. In this section,
we show that S*N can be trained to be a highlight detector
by generating one segment per video.

Dataset. We adopted the large-scale VTW dataset [27] for
video highlight detection. The VTW dataset contains 18100
videos, originally proposed for a video captioning task. A
subset of the dataset was labeled with temporal locations
of highlight shots. We followed the same train/test split as
in [6]: the first 1500 videos were used for training, and the
next 500 videos for testing. The average video duration is 1.5
minutes, approximately 2000 frames for each video.

Implementation. For each video, we extracted 13D fea-
tures [57] on RGB frames. Following [39], we rescale the
feature sequence of each video to new length of 150 by linear
interpolation. Since each video only contains one highlight
segment, we set the number of segments to 1 for S*N.

Evaluation metric. We followed the commonly used F1-
scores to evaluate the similarity between the predicted
highlight segments and ground truth segments.

Baselines. We compared S’N with three state-of-the-art
video highlight detection algorithms on the VTW dataset:
DPP-LSTM [4], Hierarchical-RNN [30], and retrospective
sequence-to-sequence model [6]. Both [30] and [6] adopt
a hierarchical model to extract features from videos: first
the original video is divided into multiple segments, within
each segment, an RNN-based encoder is used to extract
features for the segment; then a higher level RNN is used to
incorporate segment-wise features. However, these methods
require additional parameters and increase the probability of
overfitting. In our method, we forego the hierarchical struc-
tures used in previous models to combine local and global
features. Instead, for simplicity, we directly input to our
model the features extracted from pre-trained networks [57].

Results. Table [3| shows the F1 scores of the proposed S?N
and other methods. As can be seen, SN achieves the best
performance.

Ablation Studies. To understand the importance of the
squared EMD loss, we performed controlled experiments
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TABLE 2: F1 scores (%) of various video highlight detection
methods on the VIW dataset

DPP-LSTM [4] H-RNN [30] re-seq2seq [6] S?N (proposed)

443 46.9 48.0 48.8

TABLE 3: F1 scores (%) of S?N when different loss functions
are used

L2 Loss
46.5

Cross Entropy Loss
415

squared EMD Loss (proposed)
48.8

by replacing the squared EMD loss in S*N with other
alternatives. We compare with the cross entropy loss and
the Ly loss discussed in 4.1, Clearly, the proposed squared
EMD loss is able to guide the pointer network to point to the
correct start and end positions.

We have also experimented with the original pointing
mechanism proposed in [15]. Specifically, rather than using
Eq.[I]that localizes the boundaries based on the correlation be-
tween hidden states and decoding states, the implementation
in [15] is based on the input features: b,, = argmax; g(hy,,x;).
We achieved significantly worse results following [15]. This
suggests that compared to the input feature x;, the hidden
state h; captures more progressive information, which is
crucial for S>N.

5.3 Video Summarization

Automatic video summarization provides a method for
humans to browse and analyze video data. Different than
video highlight detection algorithms that only output one
segment per video, a video summarization algorithm needs
to select a small set of segments that are interesting, diverse,
and representative of the original video. In this section, we
show that S*N can be trained to summarize long videos by
generating a set of segments.

Dataset. We performed experiments on SumMe [58], a
standard benchmark for video summarization. SumMe
consists of 25 user videos covering various topics such as
holidays and sports. Each video in SumMe ranges from 1 to
6 minutes and is annotated by 15 to 18 people (thus there
are multiple ground truth summaries for each video). We
treated each annotation separately and considered all of
them ground truth. In this way, S*N was trained to model
multiple segment combinations to account for different user
annotations (around 450 annotated video instances). We used
the canonical setting suggested in [4] for evaluation: we
used the standard 5-fold cross validation (5FCV), i.e., 80% of
videos are for training and the rest for testing.

Implementation. Similar to the video highlight detection
task, instead of using a hierarchical model to extract segment-
wise features, we directly extract I3D features [57] on RGB
frames without fine-tuning. Each video is split into overlap-
ping chunks of 800 frames, subsampled every 8 frames as
inputs. We limit the maximum number of output segments
to 8.

To generate a summary, we followed standard practice [4],
[5] and selected segments based on their scores by maximiz-
ing the total scores while ensuring that the length of the
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summary does not exceed a limit (typically 15% of the video
duration [59]). The maximization step is equivalent to the 0/1
Knapsack problem. Due to the limited amount of training
data in SumMe, we trained each split for exactly 10 epochs.
We report performance based on the last epoch.

Evaluation metric. We followed the commonly used protocol
from [4], [5], [60]: we computed the F1 score to assess the
similarity between the predicted segments and the ground
truth summaries. To deal with the existence of multiple
ground truth summaries [60], we evaluated the predictions
with respect to the nearest human summary, i.e., the one that
was the most similar to the automatically created one.

Baselines. We compared S°N to multiple state-of-the-art
video summary algorithms including interestingness-based
summary [58], submodularity-based summary [60], and
recent deep learning based models: DPP-LSTM [4] (based on
LSTM and a determinantal point process [61]), GANgyp [31]
based on a GAN [62] and an extra supervision branch), and
DR-DSNgyp [5] (based on reinforcement learning).

Results. As shown in Table |4, S?N outperforms all other
methods. $*N is designed to capture all the information
needed for generating good summaries. We also visualize a
summarization example in Figure[f] Apart from the experi-
ments with I3D features, we have tested C3D features [63]
under the same setting and got an F1 score of 43.1, which is
again superior to baseline scores, showing that S?N is quite
robust to the choice of features.

In our experiments, we observed that our algorithm was
not sensitive to the parameter that specified the number of
segments, as can be seen in Table[5| As a whole, Tables
and E] demonstrate that S°N outperforms the previous state-
of-the-art models for all parameter settings.

5.4 Temporal Action Proposal

Temporal Action Proposal (TAP) generation, akin to object
proposal generation for images, is an important problem as
accurate extraction of semantically important segments (e.g.,
human actions) from untrimmed videos is an important step
for large-scale video analysis. In contrast to the previous
applications, TAP has a slightly different goal; to generate
a specific amount of high quality proposals that cover the
action events with both high recall and high precision (based
on temporal overlap). In this section we show that an S*N
can be trained to generate action proposals.

Dataset. We evaluated S*Ns on the THUMOS14 dataset [64],
a challenging action proposal benchmark. Following stan-
dard practice, we trained an S*N on the validation set and
evaluated it on the testing set. On these two sets, 200 and
212 videos respectively have temporal annotations across
20 classes. The average video duration in THUMOS14 is
233 seconds. The average number of labeled actions in each
video is around 15, making the task particularly challenging.
The average action duration is 4 seconds and more than 99%
of the actions are under 10 seconds. We trained an S*N using
180 out of 200 videos from the validation set, after randomly
selecting 20 videos for validation.

Metrics. We evaluated S*N under AR-N (our primary metric,
as it was widely used in multiple previous works) . Follow-
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ing [37], we used additional metrics to further investigate
the performance of S*N. In detail:

e AR-N[65], [39], [36], [66]: this measures the average
recall (AR) as a function of the number of proposals
per video. Note that we retrieve the same number
of proposals (V) for all the test videos, regardless of
video length.

e AR-F [37]: this measures the average recall (AR) as a
function of proposal frequency (F'), which denotes the
number of retrieved proposals per second for a video.
For a video that is L; seconds long and has proposal
frequency F, we retrieve N; = F' x L; proposals.

e Recall@F-tloU [37]: this metric measures the recall rate
at proposal frequency F’ across to different temporal
Intersections over Union (tloUs). In the evaluation,
we set F' = 1.0 following [37].

e Recall@eN-tloU [37]: this metric measures the recall
rate when N proposals are retrieved, across different
tloUs.

Features. We used C3D features [63] to fairly compare with
previous methods. Following [45], [36], we used activations
from the top layer of a 3D convolutional network trained for
action classification, then we performed PCA dimensionality
reduction to improve computational performance.

Implementation. We split each video into overlapping
chunks of 360 frames (~12s) and subsampled every 4 frames.
We set the number of proposals generated from each chunk
to be 15, as this was the largest possible number of ground
truth proposals contained in a chunk during training.

During inference, we combined the proposals from all
chunks, sorted them by their scores, and applied Non-
Maximum Suppression (NMS). NMS was the only post-
processing step used to address the overlap introduced by
splitting the videos.

Baselines. We first compare S’N to state-of-the art TAP
generation methods including i) DAPs [36], which use an
encoder LSTM and a regression branch for localization,
ii) Sparse-prop [35] that applies dictionary learning for
class independent proposal generation over a large set of
candidate proposals, iii) TURN-TAP [37] that evaluates
candidate proposals in a sliding window manner over
different temporal scales and level of contexts (we compare
with variants of TURN-TAP based on different features and
denote them as TURN-C3D and TURN-FLOW). We also
compare with sliding window and random generators. For the
DAPs, Sparse-prop, and TURN-TAPS, we plot the curves
using the generated proposals provided by the authors.
Both sliding window and random proposals are generated
following Gao et al. [37].

Results. The performance of various methods under dif-
ferent metrics is shown in Figure @ S°N outperforms the
other methods by a significant margin on all metrics. The
performance gap between S?°N and DAPs might imply the
usefulness of contextual information.

Error Analysis To further investigate S*N, we performed
quantitative analysis [67] to understand the types of errors
often made by S°N and how much each specific error type
affected the performance of the algorithm.
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TABLE 4: F'1 scores (%) of various video summary methods on the SumMe dataset

Interestingness [58] Submodularity [60] DPP-LSTM [4] GAN s [31] DR-DSN g [5] S*N (proposed)

39.4 39.7 38.6

41.7 421 44.6

- GT
= Pred

GT
Summary

Pred
Summary

Fig. 5: Visualization of the summarization results. S?N localizes the interesting events in the video, as previously annotated.
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Fig. 6: 52N with C3D features outperforms previous temporal action proposal generation approaches on THUMOS-14 under

various performance metrics.

TABLE 5: F1 scores of S*N for different numbers of output
segments on SumMe [58] dataset. S*N is not very sensitive
to this hyper parameter

#Outputs 5 6 7 8 9 10
F1 443 442 439 44.6 41.8 425

Specifically, we followed the notions in Sec. A
proposal S,, was a True Positive if and only if 3G,, € G
such that S,, was the highest scoring prediction with
tIoU(Gy, Sy) larger than a threshold. Otherwise, S,, was
a False Positive and we classified it into the following
three categories: (1). Double Detection Error: Two distinct
predictions satisfied the tloU threshold for the same ground
truth instance (higher scoring one is selected); (2). Localization
Error: A prediction that had a minimum 0.1 tloU but failed to
meet the tloU threshold with the ground truth instance; (3).
Background Error: A prediction that did not meet a minimum

0.1 tloU with any ground truth instance.

We executed our analysis on the error profile of the
top-5G predictions, where G was the number of ground
truth instances because 5G was already large enough for
S?N proposals to cover most of the positives. We compared
SN with C3D features to TURN-C3D (one of the best
competing methods) with results shown in Figure [7] In
addition to a higher positive rate, we observe the following:
(1) even with a very limited number of proposals (< 5G), S°N
covered the majority of ground truth segments (around 90%);
(2) the relatively smaller portion of double detection error
showed that S*N tended to produce more diverse results
than its alternatives.

Speed. S?N is efficient since it does not require repeated
computation over multi-scale context. Specifically, S*N pro-
cesses each frame in a sequence only once in the encoding
stage and sequentially outputs multiple segments over the
whole sequence in the decoding stage. It is more efficient
than recent models ( [45], [66]) that evaluate on a dense set
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Fig. 7: Comparing different action proposal methods. The
red vertical lines indicate the number of true positives (100%
for 1G, 50% for 2G ...). Best viewed on a screen.

of highly-overlapped candidates at each temporal step in a
sequence. Quantitatively, it takes on average 0.028s to process
a 12s, 30FPS video on a GTX Titan X Maxwell GPU with
12GB memory. In batch mode, it takes around 2s to generate
over 1200 proposals for an 8-minute video (14400 frames
sampled every 4 frames). This is more than two times faster
than recently proposed models (1800 FPS v.s. 701 FPS [66],
308 FPS [45], 134 EPS [36]).

5.5 Improving S?N for Temporal Action Proposal Gen-
eration

In this section, we will describe several techniques to further
advance the performance of S*N. In particular, we will
replace C3D features by the more recent I3D features ,
and introduce beam search to extend the recall range of the
method.

Using more sophisticated features. So far, we have used
$’Ns with C3D features, so the resulting S?N models are
directly comparable to other existing methods that also used
C3D features. As we have shown in the previous section,
S?Ns with C3D features have improved the state-of-the-art.
However, the underlying C3D features are no longer the
state-of-the-art for human action recognition; there are more
recent and advanced features such as I3D [57]. In this section,
we evaluate SN with 13D, aiming to further improve state-
of-the-art performance. I3D is a two-stream model that is
built upon image classification architectures where filters
were inflated from 2D to 3D, leading to very deep, naturally
spatio-temporal models. We used the model of [57], pre-
trained on the Kinetics dataset [71] for action classification.
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This model inputs a stack of 64 RGB/optical flow frames
and extracts a 1024-dimensional feature vector. We extracted
both RGB and optical flow features for each frame. We then
performed PCA to reduce dimensionality. The input to S*N
is the concatenation of two 500-dimensional RGB/optical
flow feature vectors.

Extending the range of recall values with beam search.

S°N usually decodes a limited number of proposals for
each input sequence (generally < 300 segments for a video).
This is fine for tasks such as video highlighting or video
summarization. However, it makes S*N less competitive for
temporal action proposal tasks in which more proposals are
allowed.

To address the problem of generating insufficient pro-
posals, we propose a simple but effective modification
during inference, that uses Beam Search: for each decoding
step, instead of only generating one proposal .S,, from the
maximum response locations(Eq. , we make S°N generate
N proposals from the top N maximum response locations.
The score of a segment S,, = (by, dy, ¢, ), which previously
was only determined by the output of the score predictor
branch (Sec. is now a product of the score predictor and
the response scores for the starting and ending position, i.e.:

Cn = Cp - U(g(hru eb,,L)) ’ U(g(hn7 edn)) (12)

where g(-,-) is defined in Eq. 2] and o(-) is the softmax
function.

In this way, this S2N-Beam can generate N times more
proposals than the original S°N. We set N to 10 for all
experiments.

Results. Table [6] shows a complete comparison between
variants of S*N and current state-of-the-art algorithms under
the AR-N metric. In addition to the set of baselines described
in Sec. [5.4, we also include Boundary-Sensitive Network
(BSN) [39], a recently published multiple-stage pipeline that
detects segment boundaries and groups them as proposals.
As shown in Table @ using the same features, the $2N
methods significantly outperform the others. Notably, on
average S?’N-Beam with 13D features performs 5% better
than BSN. Another interesting observation is that when N is
small in AR-N metric (N=50), using beam search may hurt
performance due to multiple candidates proposed.

Figure [8| plots the complete performance curves of
several methods: BSN, S2N-C3D, S2N-Beam-C3D, and S2N-
Beam-I3D. In addition to the performance curves under
the AR-N metric (Figure [8h), this figure also shows the
performance curves under other metrics: AR-F, Recall@F-
1.0 and Recall@N=1000. As shown in the figure, using beam
search (S*N-Beam) improves performance especially when
the proposal frequency is high.

5.6 Ablation Study on Assignment Strategies

We further explore the influence of different label assignment
strategies on the performance of S*Ns. Specifically we
compare the proposed S*N trained with the HMLC matching
strategy with the alternatives introduced in Section [4.4.
As shown in Table |7, the S*N model trained with HMLC
consistently outperforms its variants for all settings output
proposal numbers.
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TABLE 6: Comparison between S*N and the other state-of-the-art proposal generation methods on THUMOS14 in terms of
Average Recall at N (AR-N). Methods based on I3D features outperform the ones based on C3D features. Using Beam Search

also improves overall performance.

Feature Method @50 @100 @200 @500 @1000
- Random 2.47 444 7.42 13.09 16.11
C3D DAPs [36] 13.56 23.83 33.96 49.29 57.64
C3D SCNN-prop [35] 17.22 26.17 37.01 51.57 58.20
C3D TURN [37] 19.63 27.96 38.34 53.52 60.75
C3D BSN + Greedy-NMS [39] 27.19 35.38 43.61 53.77 59.50
C3D BSN + Soft-NMS [39] 29.58 37.38 45.55 54.67 59.48
C3D S$’N 37.06 43.04 49.18 - -
C3D S2N-Beam 36.80 44.23 52.11 59.59 64.46
Flow TURN [37] 21.86 31.89 43.02 57.63 64.17
Two-stream [68] TAG [38] 18.55 29.00 39.61 - -
Two-stream [69] BSN + Greedy-NMS [39] 35.41 43.55 52.23 61.35 65.10
Two-stream [69] BSN + Soft-NMS [39] 37.46 46.06 53.21 60.64 64.52
13D [57] S2N-Beam 41.29 51.96 59.19 66.01 69.11
0.8 0.8 1.0 1.0 e
\.\':\.\'{,. s\\\:'\.‘:‘
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3 3 o N\ |8 N
g g 106 W\ | Loe N
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Fig. 8: Comparison between variants of S*N on THUMOS14. S?N-Beam improve performance especially when proposal
frequency is high. SN-Beam with two stream features achieves best performance under various performance metrics.

Method @50 @100 @200 @500 @1000
Fix 31.44 41.75 49.23 57.82 61.92
Greedy 34.10 41.82 49.71 58.38 64.03
TopK 35.90 42.98 51.52 58.62 62.55
HMLC 36.80 44.23 52.11 59.59 64.46

TABLE 7: Comparison of S*N trained with different assign-
ment strategies under metric AR-N. S*N with with HMLC
strategy outperforms the alternatives over different number
of predefined proposals.

6 CONCLUSIONS AND FUTURE WORK

We have proposed Sequence-to-Segments Network (S*N), a
novel architecture that uses Segment Detection Units (SDU)
to detect segments sequentially from an input sequence. We
have shown that S’N can be applied to multiple real-world
problems and achieve state-of-the-art performance.

There are a few directions for future work. One direction
is to augment the encoding stage to be capable of recording
longer sequences [72]. Another possible direction is to extend
S?N to more complex problems such as action detection in
untrimmed videos. A third direction is to introduce auxiliary
losses to enforce explicit semantic constraints on S2N [66].
It is also possible to base S*N on the fully convolutional
encoder-decoder architecture [73], [74].
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