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A B S T R A C T   

This paper presents a damage identification and performance assessment study of a four-story masonry-infilled 
reinforced concrete building in Sankhu, Nepal, using ambient vibration and point cloud data measurements. The 
building was severely damaged during the 2015 Gorkha earthquake. A set of accelerometers was used to record 
the ambient response of the building in order to extract its modal parameters, and a series of lidar scans were 
collected to estimate the surface defects of certain structural components. An initial model of the structure is 
created using a recently proposed strut model for masonry infills and a novel modeling approach for infilled RC 
frames. Dimensions are extracted from lidar-derived point cloud data in the absence of as-built drawings. The FE 
model updating is first performed through a deterministic formulation where optimal model parameters are 
estimated through a least squares optimization, and then through a Bayesian inference formulation where the 
joint posterior probability distribution of the updating parameters are estimated based on the prior knowledge of 
updating parameters and likelihood of measured data. The error functions for both formulations are defined as 
the difference between identified and model-predicted modal parameters. Two cases of model updating are 
performed using different parameterizations and different prior information about the damage. In the first case, 
updating parameters include walls and columns along the four stories of the building and exclude structural 
components observed to be severely damaged. The prior knowledge about structural component stiffness values 
is based on the expected material properties. In the second case of model updating, updating parameters include 
walls and columns of only the first story, and the prior stiffness values are estimated from the point-cloud 
measurements. The prior values are then updated using the vibration measurements. The damage identifica
tion results are in good agreement with visual observations and point cloud damage quantifications. The most 
probable model parameters in the Bayesian approach are also found to be in good agreement with the optimal 
results obtained in the deterministic formulation. Finally, it is shown that the probabilistic natural frequency 
predictions provide more realistic confidence bounds when both modeling errors and parameter uncertainties are 
accounted for in the prediction process.   

1. Introduction 

Assessing the condition of existing structures is a major challenge 
after the occurrence of strong earthquakes. Visual inspections carried 
out by experienced engineers are usually the most common approach for 
the safety assessment of structures. While these inspections provide an 
effective way of estimating the damage severity for buildings, they can 
be inefficient and subjective in identifying damaged areas [1]. In order 
to overcome this shortcoming, destructive and nondestructive methods 

have been proposed to supplement visual inspections for performance 
assessment of structures. 

Among the suggested nondestructive post-earthquake assessment 
methods, vibration-based damage identification methods have gained 
more attention in the last two decades, and researchers have used vi
bration measurements to identify the location and severity of the dam
age in buildings and bridges. Huang et al. [2] used a set of measured 
acceleration responses along with the base excitation recordings to train 
a neural network framework for response assessment of a five-story steel 
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frame building damaged through different intensities of the Kobe 
earthquake simulated using a shake table. A full-scale seven-story RC 
structure was built and tested on the UCSD-NEES shake table, and its 
performance was evaluated at different levels of induced damage with 
the help of vibration recordings [3]. 

Finite element models of structures are commonly used to predict the 
behavior of structures and assess their performance. However, these 
models are more effective if they are calibrated with measured data to 
reduce the modeling errors caused by potential damage that may have 
occurred during the earthquake. There are different sources of error in 
the modeling of large-scale civil structures, some of which can be 
reduced through the calibration process, and with the help of experi
mental data. This includes errors related to erroneous assumptions about 
effective parameter values such as modulus of elasticity, mass or cross- 
sectional properties [4], and tuning them can compensate for other 
sources of modeling error to some extent. Overall, models can often 
accurately represent the measured data that are used in the calibration 
process. 

Extensive efforts have been undertaken to develop, assess, and 
expand various model updating techniques, as summarized in seminal 
publications [5–7]. Model updating algorithms have been developed 
utilizing modal parameters such as natural frequency [8,9], mode shape 
[10,11], mode shape curvature [12], modal flexibility [13] and their 
combinations [14]. Despite the improvements in deterministically 
formulated model updating methods, they are still incapable of quan
tifying the uncertainties in the updating results. Modeling errors, as 
mentioned earlier, together with identification errors, measurement 
noise, and variability in ambient and environmental conditions would 
cause uncertainty in model updating results. 

Probabilistic model updating methods, including those based on 
Bayesian inference, consider the modeling errors and measurement 
noise in the updating process [15,16]. Ching and Beck [17] and Yuen 
et al. [18] implemented Bayesian model updating approaches to the 
IASC-ASCE benchmark problem. Ching and Chen [19] developed the 
transitional Markov chain Monte Carlo (TMCMC) method to improve 
the efficiency of Bayesian model updating and address the challenges in 
sampling multimodal or very peaked posterior distributions. Zhang et al. 
[20] developed a Bayesian inference approach to consider different 
kinds of errors, including measurement noise, modeling errors, and ef
fects of the linearity assumption. Sankararaman and Mahadevan [21] 
used Bayesian inference for detection, localization, and quantification of 
damage. Behmanesh and Moaveni [22] have used Bayesian model 
updating to estimate damage on a footbridge and quantify the value of 
added information on accuracy of the results. Jang and Smyth [23] 
proposed a sensitivity-based cluster analysis for the selection of updat
ing parameters in the Bayesian model updating of a full-scale FE bridge 
model. Sun and Betti [24] proposed a hybrid optimization algorithm for 
probabilistic model updating using the sensitivity-based cluster analysis. 
The above-reviewed studies consider linear elastic structural models in 
the updating process. In contrast, many studies in the literature are 
focused on the identification of nonlinear structural systems through 
model updating. Song et al. [25] have proposed the use of nonlinear 
normal modes for identification of geometric nonlinearity while several 
other researchers have proposed the use of extended or unscented Kal
man filters for identification of nonlinear material behavior [26 –30]. 

This paper studies the post-earthquake performance of a masonry- 
infilled RC building that is located in Sankhu, 13 km northeast of 
Kathmandu, and 87 km from the epicenter of a 7.8-magnitude shallow 
earthquake which struck Gorkha district in central Nepal [31,32]. The 
building was red-tagged by local engineers due to the extensive damage 
in walls and columns of the first story. Modal parameters of the building 
are extracted from the ambient vibration recordings, and a FE model of 
the building is developed with the help of lidar and experimental data 
using a novel modeling approach [33]. This model is then updated 
through a Bayesian model updating process, which gives both the most 
probable values and the variance of the updating model parameters. In 

addition, lidar point cloud data was collected to document condition of 
the structure, identify the building geometry accurately, and detect and 
quantify surface damage within structural elements. The estimated 
surface defects from lidar data are compared to the identified damage 
from vibration measurements. Finally, the effect of modeling errors on 
model-predicted natural frequencies is investigated. 

The main novelty of this study includes the combination of state-of- 
the-art model updating and point-cloud analysis methods for damage 
identification using a unique set of in-situ measurements. These mea
surements were obtained from an actual building damaged by an 
earthquake and were used in parallel in the model updating process. 
This provides a unique opportunity to (a) compare and validate the 
identification results obtained from vibration and point-cloud mea
surements, (b) apply a novel modeling approach for RC buildings with 
masonry infills, (c) implement a probabilistic model prediction 
approach that accounts for modeling errors on an actual building with 
realistic earthquake damage, and (d) explore an approach for combining 
the ambient vibration measurements (in likelihood function) with the 
detected damage from the point cloud data (in prior distribution) in the 
model updating process. 

2. Description of building 

The four-story school building located in Sankhu, Nepal, has a 
masonry-infilled reinforced concrete frame. It has seven bays in the 
north–south direction and two bays in the east–west direction (Fig. 1.a). 
The west side of the building has a balcony in the first three stories 
serving as a corridor. The infill walls on the east side of the building have 
wide and relatively short windows, while in the middle of the building, 
the walls had larger windows and/or doors. As presented in the plan 
view of the building (Fig. 1.b), the staircase is located towards the north 
end, which induces torsional irregularity to the structure. 

Major damage was observed in the structural components of the first 
story after Gorkha earthquake. The damage was concentrated towards 
the south end of the structure with shear failures in the columns (Fig. 2. 
a) and extensive damage in the beam-column joints (Fig. 2.b). This 
damage pattern can be attributed to the inadequate stirrups. The infill 
panels towards the south were separated from the bounding frames, and 
developed dominant horizontal and shear cracks (Fig. 2.c). However, 
the RC members and the infills towards the north of the structure were 
only slightly damaged. This non-uniformity in the distribution of dam
age can be attributed to the torsional irregularity introduced by the 
location of the staircase. The damage in the upper-story infill panels and 
RC columns were not significant. More information about the building 
can be found in [34]. 

3. Data collection and processing 

3.1. Ambient vibration data 

Data was collected in two instrumentation setups, with Setup A 
measuring ambient acceleration at the top three floors (3–5) and Setup B 
measuring it at the bottom three floors (1–3). Third floor accelerometers 
were kept in place for both setups and served as reference in identifying 
and combining the mode shapes. In Setup A, 45 min of acceleration data 
were recorded at the top three floors of the building, while 54 min of 
acceleration data were recorded for the bottom three floors in Setup B. 
Each floor was instrumented with 4 accelerometers placed in two 
opposite corners and along two perpendicular directions as demon
strated in Fig. 1. 

The collected data is segmented in 9-minute intervals; resulting in 
five sets of acceleration data for Setup A and six sets of acceleration data 
for Setup B. Each of these 11 sets of data is filtered using a band-pass 
Finite Impulse Response (FIR) filter [35] of order 4096 for frequencies 
between 1 and 10 Hz. In order to improve the computational efficiency 
and without loss of accuracy, the filtered signals are down-sampled from 

M.M. Akhlaghi et al.                                                                                                                                                                                                                           



Engineering Structures 227 (2021) 111413

3

the initial sampling rate of 2048 Hz to 256 Hz. Most of the channels in 
the north-west corner of the building (close to the staircase) have a high 
signal-to-noise ratio for the system identification process, leaving us 
with 11 channels to work with (out of the 20 total recorded channels). 
Fig. 3 shows the acceleration time history and the Fourier amplitude 
spectrum of the sensor at north-west corner of 3rd floor measuring in the 
north–south direction. 

An output only method is used for the identification of modal pa
rameters of the building. The Natural Excitation Technique [36,37] and 
the Eigensystem Realization Algorithm (NExT-ERA) [38] is used to 
identify the modal properties of the structure in the absence of input 
measurements. Eight equal length Hanning windows are used with a 
50% overlap in computing the cross power spectral densities between 
the used acceleration channels and two reference channels. The inverse 
Fourier transform of these cross power spectral densities is calculated as 
an estimate for the free vibration response. Modal parameters of the 
building are then identified through singular value decomposition of an 
(11 × 400) × (400 × 2) Hankel matrix formed using the estimated free 
vibration response. 

Stabilization diagrams, together with the power-spectral density 

(PSD) functions of measured accelerations, are used to find the stable 
and most excited vibration modes of the building. A stabilization dia
gram is demonstrated in Fig. 4 for one set of data together with the PSD 
of the reference channels considered. Four stable modes are observed 
below 6 Hz, where the identified natural frequencies remain stable with 
increasing model order. The first three modes with the highest energy 
(as indicated by peaks of the PSD and identified with lowest model 
order) are selected as the stable and most excited vibration modes of the 
building. It is worth noting that the mode at 5.4 Hz is also stable and 
identifiable from the data. However, due to the fact that contribution of 
this mode to response is minimal, we have not included this mode in the 
model updating process. 

Similar system identification process is performed using different 
datasets in order to identify 11 sets of modal parameters. To assemble 
the mode shapes derived from the two setups, the mode shape values are 
normalized to the shared mode shape coordinates located at the third 
floor [39]. Table 1 shows the statistics of the identified natural fre
quencies and damping ratios. 

Modal damping ratios are identified with larger COV than the natural 
frequencies for each setup and also show some deviation between the 

(a) elevation view (b) plan view and location of sensors

Y
X

N

Sensors

Sensors

Fig. 1. Four-story school building (dimensions in meters).  

(a) Column G2 (b) Column H1 (c) Infill wall H12

Fig. 2. Observed damages in the first story of the building.  

Fig. 3. Time history and Fourier spectrum of filtered and down-sampled acceleration measurement of the 3rd floor.  
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two setup mean values. The average identified modal damping of 2.0%, 
1.8%, and 2.7% for modes 1 to 3 are reasonable, but slightly larger than 
expected during very low amplitude ambient excitations, which may be 
due to the significant damage in the building. 

3.2. Point cloud data 

Numerous workflows have been proposed for analyzing point clouds 
to detect damage using intensity values or geometric properties of point 
normal vectors [40–42]. The use of digitized surface observations has 
also proven valuable to the engineering community in estimating 
member capacity [43]. In this study, a method based on Mohammadi 
et al. [44] is extended to investigate the damage severity for the masonry 
walls, which represent a more complicated problem due to their com
plex surface geometry. Point cloud datasets used within this study were 

captured by two ground-based lidar scanners [45]. Fig. 5 depicts the 
approximate locations of the 13 exterior scans. The scans were regis
tered to a unified coordinate system via a cloud-to-cloud optimization 
for a point cloud of the entire structure through Faro Scene software. The 
aligned scans result in a mean registration accuracy of 2.7 mm for the 
entire dataset and less than 2 mm for walls and columns at the ground 
level. 

Point clouds of the selected walls and columns are used to detect 
surface defects and identify the severity of damage in various structural 
components. The surface defect metrics are then compared to the 
identified loss of stiffness in various components from model updating 
results (similar to the work of Song et al. [46]). The algorithm developed 
to detect damaged areas of each wall or column uses two local geometric 
surface descriptors to evaluate the local variation of each point relative 
to its eight neighboring points. The algorithm initiates by downsampling 
the point cloud data through a voxelization process using a predefined 
voxel dimension (at the centimeter level), which results in a point cloud 
with reduced point density. Afterward, the sparse points are eliminated 
from the point cloud through a statistical outlier removal process. The 
first geometric surface descriptor used is the surface variation which is 
calculated for each point and its eight closest neighboring points, as 
shown below: 

γn =
λ1

λ1 + λ2 + λ3
(1)  

where γn represents the surface variation value for point Pn and λ1, λ2, 
and λ3 (λ1 < λ2 < λ3) denote the eigenvalues of the covariance matrix for 
each point and its neighboring points [47]. The second geometric sur
face descriptor used within the method is the variation of normal vector 
at each point with respect to its local reference vector. The normal vector 
for each point is estimated through a weighted average method, known 
as mean weighted area of adjacent triangles (MWAAT) [47]. The normal 
vector is computed using MWAAT based on eight closest neighboring 
points, as shown below: 

NMWAAT =
∑8

i=1

⎛

⎝ E→i

|Ei|
×

E→i+1

|Ei+1|

⎞

⎠|Ei × Ei+1| (2)  

where Ei represents the edge between central point P and its ith neighbor 

Pi, and ( E→i
|Ei |

×
E→i+1
|Ei+1 |

) is the unit normal vector of the ith adjacent triangle 
with two edges of Ei and Ei+1. The local reference vector for each point is 
estimated based on eigendecomposition of the point and its 24 neigh
bors where the eigenvector corresponding to the smallest eigenvalue 
represents the local reference vector. Once the two surface descriptors 
are computed for each point, a probability distribution function for each 

Fig. 4. A stabilization diagram and identified natural frequencies (verti
cal lines). 

Table 1 
Mean and coefficient-of-variation of identified natural frequencies and damping 
ratios.  

Setup Mode Natural Frequency [Hz] Damping Ratio [%] 

Mean COV [%] Mean COV [%] 

A 1 1.19 0.6 2.2 15.3 
2 2.16 1.3 2.2 17.6 
3 3.14 0.9 3.0 36.2 

B 1 1.20 0.5 1.8 32.5 
2 2.16 1.7 1.5 42.0 
3 3.18 0.8 2.4 18.4  

Fig. 5. Point cloud data: (a) top view of typical scanner placement for exterior scans and (b) elevation view of the structure.  
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surface descriptor is estimated through the Kernel probability distribu
tion function (PDF), and a damage percentile is identified to classify the 
points into damaged and undamaged segments based on its signed 
curvature change. The damage percentiles within this study are esti
mated directly from the Kernel PDF. In the last step, damage detection 
algorithm compares the classification result based on each surface 
descriptor and reevaluates the classification of the points. In this step, 
each point is reclassified as damaged if and only if the point was clas
sified as damaged by both surface descriptors. Therefore, the percent of 
surface damage can be computed in addition to the location of the 
damaged areas. 

Within this study, the damage propagation in the structure is 
investigated through analysis of the various components, including the 
front columns, interior walls, and exterior walls. To analyze the selected 
point clouds, each dataset is initially subsampled to reduce the point 
density variation and resolution differences between each dataset. In 
this study, all three components are examined to provide a detailed and 
complete understanding of the damage evolution as imposed by the 
torsional response of the structure. 

Columns: The columns at the front side of the structure are evaluated 
using the detection algorithm to quantify significant cracking, concrete 
spalling, and other surface defects. Within this study, the column point 
clouds were subsampled using a voxel dimension of 1 cm. Table 2 
summarizes the surface defect percentage for each column and the type 
of damage observed. 

It is observed that the columns close to the staircase sustained minor 
to moderate damage, including localized spalling at two sides or ends 
(values as low as 6%). On the other hand, the columns close to the 
southern side of the structure sustained moderate to significant spalling 
and exposed reinforcement, which indicates that the southern side of the 
structure developed more damage (values up to 40%). 

Interior walls: The analysis of the interior scans is performed on three 
walls at the north, middle, and most southern portions of the structure, 
namely H12, E12, and B12 (see Fig. 1). The interior walls are sub
sampled using a voxel dimension of 2 cm to reduce any resolution dif
ferences between scans of different walls. Table 3 presents the summary 
of the surface defect percentage for each interior wall and the type of 
damage observed. Fig. 6 illustrates the damage classification for the 
interior walls. Within Fig. 6d, e, and f, the detected defects are shown in 
red (or gray in black and white prints), while the intact and undamaged 
surfaces are shown in black. As demonstrated, the interior wall B12 
sustained the least damage during the event with an identified percent 
damage of 5%, as evidenced via a significant horizontal cracking at the 
center of the wall (Fig. 6a). However, both E12 and H12 walls demon
strated severe damage including significant spalling and considerable 
diagonal cracking (Fig. 6b and c). The percent defect identified for walls 
E12 and H12 are 23% and 22%, respectively. Note that the color 

variation between scans of walls B12, E12, and H12 is due to using two 
different lidar scanners during the data collection process. Moreover, the 
vertical white lines within the wall H12 is the result of occlusion due to 
steel shoring posts. 

Exterior walls: The damage evolution within the structure is assessed 
using data collected from the exterior walls. To achieve this objective, all 
the exterior walls on the first floor are analyzed except for walls CD1, 
EF1, and GH1, which are not analyzed due to occlusion from vegetation. 
The points are classified into likely damaged (damaged areas and sharp 
features) and undamaged classes. However, the detection algorithm 
classifies the sharp features (here brick boundaries) as potentially 
damaged areas, which reduces the accuracy of the computed damage 
percentile for this exposed masonry element. Therefore, to address this 
construction feature, the classified damaged points are further analyzed 
to quantify the damage severity. To achieve this goal and specific to this 
study, a best-fitted plane is identified for the undamaged classified 
points and used to further analyze the damaged classified vertices in 
terms of damage severity. To analyze the damaged vertices, the devel
oped method quantifies the distance from the median value of each 
damaged point with respect to the best-fitted plane. These values are 
then binned into 2 mm intervals. The results binning process can 
quantify the severity of likely damaged areas, which represent the 
mortar loss or cracking. Fig. 7 depicts the result of damage severity 
analysis for the walls A12 and H12, as an example. As shown in Fig. 7b, 
severe cracking was observed within the exterior side of wall H12 with 
varying depth of 1.4 cm to 4 cm, while no significant damage detected 
within the exterior of wall A12 (Fig. 7a). 

The developed method to assess the surface damage severity for the 
exterior masonry walls uses a singular damage metric. This contrasts 
with the columns and interior walls, which utilized percent area. For 
these exterior walls, each of the walls binned damage values are 
analyzed via a cumulative distribution function (CDF). The CDF permits 
a quantitative assessment through computing the area under the curve 
(AUC). CDF curves computed for the seven infill walls on the north side 
of the building (axis 2) are shown in Fig. 8. The higher values of AUC 
correspond to the smaller loss of grout or cracking within a brick ma
sonry wall and vice versa. Note that the value of AUC directly corre
sponds to and quantifies the loss of grout and/or cracking within the 
walls for a quantitative comparison between similar elements. 

To compare all the walls within the first floor quantitatively and 
study the damage propagation due to the event, the walls are classified 
based on the computed AUC of CDF curves. Fig. 9 represents the color- 
coded figure of walls organized based on the AUC values. Within Fig. 9, 
the red color corresponded to the lowest AUC values (most damaged), 
while the blue color corresponds to the highest AUC values (least 
damaged). As shown, the southern side of the structure sustained 
significantly more damage, which matches the observed damage prop
agation in the interior walls and columns. 

The analysis results indicate that the structure only experienced 
minor to moderate spalling, cracking, and other surface defects near the 
stairwell on the north end of the building. In contrast, the south end of 
the structure experienced moderate to severe damage that may be 
explained by the torsional dominated response due to the stiffness ir
regularity created by the concrete stairs as well as the openings, doors, 

Table 2 
Surface defect percentage values of selected columns in the first story.  

Member 
ID 

Surface 
Defect (%) 

Description 

A2 6 Minor surface defects and edge spalling on both faces 
B2 26 Spalling of concrete cover at the edges, shear crack at 

the bottom 
C2 29 Minor edge spalling on left, significant localized 

spalling on top right 
D2 28 Shear cracks evident on top and bottom, edge spalling 

on both sides 
E2 32 Shear cracks evident on top and bottom, edge spalling 

on both sides 
F2 33 Shear cracks evident on top and bottom, edge spalling 

on both sides 
G2 30 Shear cracks evident on top and bottom, edge spalling 

on both sides 
H2 40 Significant spalling on top of both faces with exposed 

reinforcement, shear crack on the bottom  

Table 3 
Surface defect percentage values of interior walls in the first story.  

Member 
ID 

Corresponding  
Fig. 6 

Surface 
Defect (%) 

Description 

B12 a, d, and g 5 Minor surface defects throughout 
and one significant horizontal 
cracking 

E12 b, e, and h 23 Significant diagonal cracking and 
moderate to severe spalling 

H12 c, f, and i 22 Significant diagonal cracking and 
severe spalling  

M.M. Akhlaghi et al.                                                                                                                                                                                                                           



Engineering Structures 227 (2021) 111413

6

and windows, within the walls, such as EF2 and DE2. This is based on the 
analysis of the interior and the exterior walls and the columns. 

The developed methods to analyze point clouds reduce the subjec
tivity associated with traditional visual inspection methods as the 
damaged areas are detected primarily based on frequency analysis of 
overall surface local geometric variations. The local geometric varia
tions are computed based on the spatial orientation of each point with 
respect to its neighboring vertices using identical procedures, guaran
teeing consistency throughout the process. As a result, the developed 
method limits the subjectivity of visual inspection to the procedure used 
to collect point clouds data and its quality due to the direct human 
identification and quantitation of damage. 

4. Finite element modeling 

A finite element model of the school building at Sankhu has been 
developed in the structural analysis software, OpenSEES [48]. The ge
ometry of the model is based on the analysis of point cloud data, which is 
complemented with in situ measurements. The material properties are 

assumed according to the tests reported in [49] in the absence of actual 
test data. The compressive strength is considered to be 9.65 MPa for 
concrete and 3.45 MPa for masonry, while the elastic moduli are 13940 
MPa and 2550 MPa for concrete and masonry, respectively. Based on 
recommendations of ACI [50], the initial stiffness of concrete elements is 
assumed to be 40% of the analytically estimated stiffness, to account for 
the potential deterioration of the structure prior to the earthquake. 

The numerical model is developed following the methodology pro
posed in Bose et al. [51]. It adopts displacement-based inelastic beam- 
column elements [52] for the RC members, and truss elements for the 
diagonal struts representing the infill. Each infilled bay is classified ac
cording to the anticipated failure pattern, and the backbone curve for 
the infilled bay is derived using simple analytical equations following 
the methodology proposed by Martin and Stavridis [53,54] for frames 
with solid infills, now adopted in ASCE 41–17 [55]. 

Once the lateral force vs. displacement curves are developed, the 
struts are calibrated so that when added to the model of the bare single- 
bay RC frame, the combined response matches the analytically derived 
backbone curve. The numerical model of the entire building, consisting 

Fig. 6. Identified surface defect areas for interior wall: original RGB colored point cloud of (a) B12, original grayscale colored point cloud of (b) E12 and (c) H12, 
color-coded detections of (d) B12, (e) E12, and (f) H12, and superimposed detected defects to colored point cloud of (g) B12, (h) E12, and (i) H12. 

Fig. 7. Depth analysis (in cm) of detected defects for the exterior wall point clouds: (a) A12 and (b) H12.  
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of 428 elements, is then assembled (Fig. 10). The nonlinear model is 
used to simulate the performance of the actual building when subjected 
to the nearby recorded strong ground motions. The results of the 
nonlinear numerical analyses indicate that the model can accurately 
capture the torsional response of the actual structure and the concen
tration of damage at the south end of the first story. However, in this 

study, only the elastic behavior of the FE model is considered due to the 
low amplitude of the ambient vibration measurements. More details on 
the calibrated properties and the numerical model can be found in Bose 
et al. [56]. 

The modal parameters of the undamaged structural model are 
calculated and compared to the identified values, as shown in the fourth 
column of Table 7. The natural frequencies of the initial elastic model 
are higher than the identified values. This is expected as the model 
represents the undamaged structure, while the ambient vibration data 
was recorded after the actual building was damaged. A more direct 
comparison would be achieved if the model is subjected to the strong 
motions caused by the earthquake sequence, and then compared to the 
recorded data. However, this would increase the required computational 
time as the nonlinear model would need to get updated, which is outside 
the scope of this study. Hence, the mode shapes shown in Fig. 11 are 
expected to be different between the undamaged model and the 
damaged building. However, it can be seen that the first identified mode 
is in excellent agreement with its model counterpart while there is some 
discrepancy for the second and third modes. 

5. FE model updating for damage assessment 

The measured ambient vibration data represent dynamic response of 
the building in its linear range. Therefore, only equivalent linear stiff
ness (modulus of elasticity) of different structural components are 
considered as updating parameters. The normalized updating parame
ters θi are defined as: 

Fig. 8. Typical computed CDF curves for the northern walls.  

Fig. 9. Color-coded walls based on AUC of CDF curve.  

Fig. 10. 3D Model of the school building developed in OpenSEES.  
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θi =
EUpdated

i

EInitial
i

(3)  

where Ei is Young’s modulus for the ith group of structural components. 
In this study, two cases of model updating are performed, considering 
different parametrizations and prior assumptions. In both cases, the 
number of updating parameters is kept small to avoid ill-conditioning of 
the inverse problem. In the first case, the severely damaged elements of 
the first story are removed since they were judged not to have a sig
nificant remaining stiffness contribution based on the visual inspection. 
These elements (shown as crossed elements in Fig. 12) are identified in 
the surveying phase and are columns H1, H2, G1, and G2 and infill walls 
H12 and E12. 

The considered groups of elements in the first case of model updating 
are the following. Columns and beams of the building are grouped 
together, and their stiffness is updated as parameter θ1. In each of the 
first two stories, three updating parameters are chosen for masonry 
walls, as depicted in Fig. 12 (parameters θ2 to θ7). In each of the top two 
stories, just one updating parameter is considered to represent masonry 
walls, namely θ8 for walls of the third story and θ9 for walls of the fourth 
story. This selection of parameters allows investigating the stiffness 
changes in structural elements of interest while keeping the number of 
updating parameters low to avoid ill-conditioning of the inverse 
problem. 

In the second case of model updating, a different set of updating 
parameters is considered for the first story of the building, including the 
structural elements that were removed from the initial model in Case 1. 
This set of parameters are selected to verify our assumption about the 
severity of damage in the removed elements. The prior distribution of 
updating parameters in Case 2, are estimated from the point cloud data. 
Therefore, this case combines the detected damage from point clouds (as 
prior PDFs) with the vibration measurements (as likelihood function) in 
the Bayesian model updating process. In the deterministic updating 

process, the detected damage from point cloud is used in the regulari
zation term of the objective function, which is similar to the prior term 
in the Bayesian framework. The updating parameters include only ele
ments of the first story, assuming that damage is concentrated in this 
story and changes in higher stories are negligible. The validity of this 
assumption is confirmed by the results of the first case of model 
updating. In the second case, θ2, θ3, and θ4 represent walls of the first 
story as defined in the previous case, while θ1 stands for walls E12 and 
H12 from the first story that were removed before. In this case, θ5 and θ6 
represent columns of the first story in the northern and southern side of 
the building, respectively, with θ6 including the columns removed from 
the first case of model updating. Fig. 13 demonstrates the considered 
groups of elements for each updating parameter θ1 to θ6. In this figure, 
dashed lines refer to the previously removed elements. 

As previously mentioned, in Case 2 of model updating, the prior 
distribution of updating parameters (stiffness) is defined using the 
quantified damage derived from point cloud analysis. In order to 
quantify the prior mean stiffness values from point clouds, exponential 
equations have been developed based on surface defect percentage and 
AUC values. For the exterior walls of the first story, the following 
equation is used: 

κi = αweβwAUCi (4)  

where κi is the stiffness ratio for individual wall i, defined as the ratio 
between the updated and initial stiffness values, and AUCi is the AUC 
value for structural element i. The parameters αw and βw are coefficients 
of the exponential equation, estimated by assuming no loss of stiffness 
for the wall with the highest AUC value (CD2) and 80% loss of stiffness 
for the wall with the lowest AUC value (H12). These limits on the 
stiffness ratios, as well as the exponential pattern in stiffness reduction, 
are selected based on engineering judgment and are observed to have 
the best consistency with the visual inspection in comparison to other 

Fig. 11. Identified (ID) and initial finite element (FE) mode shapes.  

(a) Updating parameters in the 1st story (b) Updating parameters in the 2nd story

Fig. 12. Updating parameters for Case 1 of model updating.  
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stiffness estimation scenarios. Values of parameters αw and βw are re
ported in Table 4. The small value of αw is caused by the exponent of 
large AUCi values. 

Table 5 shows the estimated mean of the prior stiffness for first-story 
walls. For the interior walls (B12 and E12), no AUC value was available, 
and therefore, their prior stiffness values are estimated based on the 
surface defect percentage values reported in Table 3. E12 is estimated to 
have an 80% loss of stiffness given that it has almost the same surface 
defect percentage as H12, while B12 is assumed to have no loss of 
stiffness since it has a very small surface defect percentage. 

Based on the estimated stiffness values in Table 5, mean values for 
prior PDF of updating parameters θ1, θ2, θ3 and θ4 are estimated as 0.20, 
0.63, 0.94 and 0.68, respectively, using the average of wall stiffness 
ratios in each substructure. 

A similar equation is used to estimate the mean prior stiffness ratios 
of the first story columns using the following equation: 

κi = αceβcSDi (5)  

where κi is the stiffness ratio for individual column i, SDi represents the 
surface defect percentage value for the structural element i and αc and βc 
are coefficients of the exponential equation. These coefficients are 
calculated assuming no loss of stiffness for the columns with the lowest 
surface damage values (staircase columns) and assuming 80% loss of 
stiffness for the column with the highest surface damage value. Values of 
αc and βc for columns of the first story are also reported in Table 4. 
Similar to the equation proposed for walls, choice of the bounds and the 
exponential model for the stiffness ratios are subjective. These choices 
are made based on the observation that smaller values of surface defect 
percentage correspond to negligible loss of stiffness. However, as the 
surface defect percentages increase, their effect on loss of stiffness grows 
exponentially. A trial and error approach is implemented to choose the 
model form between stiffness and surface defect percentage. Table 6 
summarizes the mean estimates of prior stiffness ratios for the first story 
columns along with the surface defect percentages. Based on the esti
mated stiffness ratios, the mean values for prior PDF of updating pa
rameters θ5 and θ6 are estimated as 0.88 and 0.45, respectively, using the 
average of individual column stiffness ratios in each substructure. 

While point cloud data analysis for damage detection and quantifi
cation introduces additional computational costs, this process can 
significantly reduce time and effort during site visits and enable in
spectors to document the structural systems efficiently at a safer distance 
in comparison to traditional methods. Besides, the proposed damage 
detection and quantification methods have only a linear computational 
cost [44]. Lastly, using an informed prior based on the quantified 
damage from point cloud data reduces the computational cost of model 
updating process for large complicated structural systems by helping to 

avoid extra iterations needed to address convergence issues in the 
sampling process. 

The proposed exponential function establishes a relationship be
tween the quantified surface defects from point clouds and the structural 
stiffness for the given structure. However, further research is required to 
study the efficiency and accuracy of alternative stiffness-surface defect 
models. 

5.1. Deterministic model updating 

The deterministic model updating is formulated as a least squares 
problem where updating parameters are estimated by minimizing an 
objective function. The objective function is defined as a weighted 
square error between the identified and model-predicted modal pa
rameters (natural frequencies and mode shapes) plus a regularization 
term. 

f (θ) = e(θ)
T We(θ) + (θ − θ0)

T Wθ(θ − θ0) (6) 

(a) Updating parameters for walls θ1 - θ4 (b) Updating parameters for columns θ5 - θ6

Fig. 13. Updating parameters for Case 2 of model updating.  

Table 4 
Coefficients of the exponential equation for walls and columns.   

α β 

walls 5.42e-27 0.162 
columns 19.8 −0.115  

Table 5 
Surface defect percentage values and prior estimates of stiffness for selected 
columns of the first story.  

Member 
ID 

AUC (Surface 
Defect %) 

Mean values for Prior 
Stiffness Ratio 

Updating 
Parameter 

H12 364.29 (22%*) 0.20 θ1 

E12 (23%*) 0.20 
EF2 364.67 0.21 θ2 

DE2 368.74 0.41 
FG2 369.89 0.49 
GH2 369.90 0.49 
AB2 373.67 0.91 
BC2 373.86 0.93 
CD2 374.26 1.0 
A12 373.51 0.88 θ3 

B12 (5%*) 1.0 
FG1 371.06 0.59 θ4 

BC1 371.93 0.68 
DE1 372.04 0.70 
AB1 372.49 0.75 

*Surface defect percentages based on Table 3. 

Table 6 
Surface defect percentage values and mean values for prior stiffness ratio for 
selected columns of the first story.  

Member 
ID 

Surface Defect 
(%) 

Mean values for Prior 
Stiffness Ratio 

Updating 
Parameter 

A2 6 1.0 θ5 

B2 26 1.0 
C2 29 0.71 
D2 28 0.79 
E2 32 0.50 θ6 

F2 33 0.45 
G2 30 0.63 
H2 40 0.20  
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In Equation (2), e(θ) is the error vector, and W is a diagonal matrix 
which specifies the weight of each modal parameter error in the 
objective function. The weights for natural frequencies of modes 1 to 3 
are 1.0, 0.74, and 0.4, respectively. These values are inversely propor
tional to the variability of identified natural frequencies. The weights for 
mode shape components of modes 1 to 3 are 0.09, 0.07, and 0.04, 
respectively, which are equal to their corresponding natural frequency 
weights divided by the number of mode shape components (11). θ0 is the 
vector of initial values for updating parameters (corresponds to the 
mean of prior distribution in the Bayesian approach), and Wθ is a di
agonal matrix of regularization weights (corresponds to the covariance 
matrix of prior distribution in the Bayesian approach). In this study, the 
regularization weights (diagonal terms of Wθ) are selected as 0.02. These 
weights indicate the degree of confidence in our initial values. Larger 
regularization weights would ignore the data while smaller weights 
allow the results to only rely on data, which is not ideal in case of having 
noisy data or informative prior knowledge. A relatively small weight on 
the prior assumption of updating parameters would allow the updating 
parameter to rely on data but also limit their divergence in cases where 
the updating parameters are not sensitive to measurements. The 0.02 
value is selected after a sensitivity study of results to the regularization 
factor. It has been found that regularization factors in the range of 0.01 
to 0.05 provide similar and reasonable results. The error vector is 
defined as: 

e(θ) =

[
eω(θ)

eΦ(θ)

]

(7)  

eω(θ) =
ω̃2

m − ω2
m(θ)

ω̃2
m

(8)  

eΦm =
Φ̃m⃦

⃦
⃦Φ̃m

⃦
⃦
⃦

− am
ΓΦm(θ)

‖ΓΦm(θ)‖
(9)  

where eω and eΦ are the eigenfrequency and mode shape error func
tions, ω̃m = 2πf̃m is the average identified circular natural frequency for 
mode m, Φ̃m is the identified mode shape vector for the mth mode, Γ is a 
Boolean matrix selecting the measured components of the model mode 
shapes and am is a scaling factor defined as: 

am =
Φ̃T

mΓΦm(θ)
⃦
⃦
⃦Φ̃m

⃦
⃦
⃦‖ΓΦm(θ)‖

(10) 

The sensitivity of the objective function to updating parameters is 
initially confirmed through a finite difference sensitivity analysis. 
Fig. 14 provides the sensitivity of the objective function (normalized to 
one and without the regularization term) with respect to the considered 
updating parameters. The sensitivity plots are shown for parameters 
θ1–θ4 of Case 1 in Fig. 14a, parameters θ5–θ9 of Case 1 in Fig. 14b, and 
parameters θ1, θ5 and θ6 of Case 2 in Fig. 14c. Note that parameters θ2 to 
θ4 are common in the two cases. From this figure, it is seen that the 
objective function is sensitive to all the considered parameters, but the 
levels of sensitivity differ for different parameters. At the initial values of 
the parameters (θi = 1), the largest sensitivity is observed for θ2, θ4, θ7, θ8 
of Case 1, and θ1, θ6 of Case 2. It is worth noting that the objective 
function shows significant sensitivity to all the parameters representing 
elements/components of the building with potential damage, i.e., θ2 and 
θ4 of Case 1, and θ1 and θ6 of Case 2. MATLAB’s constrained nonlinear 
multivariable optimization algorithm [57] is used to find the minimum 
for the multivariate nonlinear objective function, with a lower bound of 
0.0 and upper bound of 3.0 as the constraints. 

5.2. Bayesian model updating 

In addition to the deterministic model updating, a Bayesian model 
updating procedure is performed to find the probability distribution of 
updating parameters. Once the parameter distributions are estimated, 
the most likely values and their estimation uncertainties are reported. 

The Bayes formula can be expressed as: 

p(θ|d) = cp(d|θ)p(θ) (11)  

where p(θ|d) is the posterior distribution of updating parameters given 
the measured data d, (here the identified natural frequencies and mode 
shape components), p(d|θ) is the likelihood function and reflects the 
probability of observing a specific set of measured data d, for given 
updating parameters, p(θ) is the prior distribution based on our initial 
understanding of the updating parameters, and c is a normalizing con
stant representing the inverse of the evidence term in Bayes formulation 
(p(d)). 

In this study, the updating parameters are assumed to be statistically 
independent and follow Gaussian distributions with mean θ0 and 

Fig. 14. Sensitivity of normalized objective function to updating parameters for both cases of updating (a and b for Case 1, and c for Case 2).  
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variance σ2
θi 

for their priors. The joint prior distribution of updating 
parameters can be expressed as: 

p(θ) =
∏Np

i=1
exp

(

−
1
2

(θi − θ0i)
2

σ2
θi

)

(12)  

where Np is the number of updating parameters. 
The error functions are defined similar to the ones in the determin

istic approach and Gaussian distributions are considered for them ac
cording to the principle of maximum entropy. For a given set of model 
parameters θ, the likelihood of measured data will have the same dis
tribution as the error functions, i.e., Gaussian. Assuming independency 
for the identified modal parameters, the likelihood function can be 
formulated as a product of the marginal probabilities of eigen
frequencies and mode shapes: 

p(d|θ) =
∏Nm

m=1
p(ω̃m|θ)p(Φ̃m|θ) (13)  

here, Nm refers to the number of modes. Considering the prior distri
bution of Equation (8) and likelihood function of Equation (9), the 
posterior distribution can be expressed as: 

p(θ|d)∝exp
(

−
1
2

J(θ, d)

)

(14)  

where J(θ, d) is: 

J(θ, d) =
∑Nm

m=1

e2
ωm

σ2
ωm

+
∑Nm

m=1

eT
Φm

.eΦm

σ2
Φm

+
∑Np

i=1

(
θi − θi0

)2

σ2
θi

(15)  

here, σωm , σΦm and σθi are standard deviations of identified eigen
frequencies, mode shapes, and the prior distribution of updating pa
rameters, respectively. In this Equation, σ2

Φm
= Nsσ2

ωm 
with Ns 

representing the size of mode shapes, and σθi ’s are chosen so that the 
prior term has the same weight as it has in the deterministic formulation. 
The Metropolis Markov Chain Monte Carlo (MCMC) algorithm [58] is 
used to generate 20,000 sample points of the joint posterior probability 
distribution of updating parameters. 

5.3. Model updating results 

Table 7 compares the modal parameters of the initial and updated 
models with the identified values for both cases of model updating. It 
can be seen that modal parameters for the updated models using either 
deterministic or Bayesian approach for both cases of updating are in 
excellent agreement with those identified from measured data. 

Case 1 results: Table 8 reports the optimal values of updating 
parameter from the deterministic approach together with the most 
probable or maximum a-posteriori (MAP) values and their estimation 
uncertainties obtained from the Bayesian approach. It can be observed 
that the optimal parameter values from the deterministic approach are 
in good agreement with the most probable values from the Bayesian 
approach. This agreement verifies that the implemented sampling 

method, number of samples, and the proposal sampling distribution are 
sufficient to sample the high probability region of the posterior joint 
probability distribution of updating parameters. This is further validated 
by the close agreement between values of the objective function at the 
optimum parameter values in the deterministic approach and at the 
MAP values in the Bayesian approach. 

Fig. 15 shows samples from the posterior distribution of two 
updating parameters. In this figure, values of unnormalized posterior 
probability density functions are plotted versus values of parameters θ4 
(left) and θ5 (right) for all the MCMC samples. For each value of θ4 (or 
θ5), there may be several circles providing the posterior PDF values with 
different combination of other parameters. While this plot is different 
from a marginal posterior PDF plot, it is usually informative since the 
MAPs and the variability with respect to one parameter can be clearly 
observed directly from the samples. The corresponding histograms and 
Kernel PDFs of these two parameters are shown in Fig. 16. Kernel PDFs, 
presented by the black lines, are normalized to match the highest his
togram bins and the black dots represent the MAP estimates. 

Case 2 results: In this case, the initial values for updating parameters 
(θ0) are chosen based on the estimated values in Tables 5 and 6 to reflect 
the results of point cloud data analysis both in the deterministic 
updating (i.e., in the regularization term of equation (6)) and Bayesian 
updating (i.e., the prior term of equation (11)). Table 9 reports the 
updated values of parameters in Case 2 for the deterministic and 
Bayesian approaches. It can be seen that similar to Case 1, the optimal 
updating parameters of the deterministic approach are in close agree
ment with the most probable values from the Bayesian approach. The 
assumption of severe damage in θ1 and θ6 (columns and walls of the 
southern side of the first story) in Case 1 is confirmed with θ1 converging 
almost to zero and θ6 estimated to be as low as 0.14. The low standard 
deviations for these two parameters also indicate a high level of confi
dence in the estimation. It should be noted that the updated values of θ2 
and θ4 (eastern and western walls of the 1st story), which were defined 
similarly in the two cases, are consistently reduced in both cases, which 
confirms the loss of stiffness at these locations. Compared to Case 1, the 

Table 7 
Modal parameters of reference and calibrated models together with identified values for the first case of model updating.  

Modal 
Parameters 

Mode System 
Identification 

Model of Undamaged 
Building 

Case 1 Case 2 

Deterministic Model 
Updating 

Bayesian Model 
Updating 

Deterministic Model 
Updating 

Bayesian Model 
Updating 

Frequencies 
(Hz) 

1 1.19 1.30 1.19 1.20 1.20 1.20 
2 2.16 2.69 2.17 2.16 2.16 2.16 
3 3.16 3.39 3.15 3.14 3.14 3.15 

MAC Values 1 – 0.99 0.99 0.99 0.99 0.99 
2 – 0.89 0.99 0.99 1.00 0.99 
3 – 0.91 0.98 0.98 0.99 0.99  

Table 8 
Updating parameter values for Case 1 from deterministic and Bayesian 
approaches.  

Updating Parameter Deterministic Model 
Updating 

Bayesian 
Model 
Updating 

MAP Std 

θ1 (beams and columns) 1.16 1.16 0.058 
θ2 (1st story-western walls) 0.34 0.35 0.059 
θ3 (1st story-A12 and B12 walls) 0.97 0.96 0.173 
θ4 (1st story-eastern walls) 0.29 0.29 0.032 
θ5 (2nd story-western walls) 0.84 0.80 0.101 
θ6 (2nd story-A12, B12,E12 and H12 

walls) 
0.82 0.85 0.108 

θ7 (2nd story-eastern walls) 0.76 0.71 0.108 
θ8 (3rd story-walls) 0.94 0.96 0.099 
θ9 (4th story-walls) 1.00 0.93 0.108 
Final Objective Function Value 6.48 6.51  
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Bayesian approach for this case provides lower standard deviations for 
updated parameters indicating higher sensitivity of lower story struc
tural components to the vibration data and therefore better inference of 
these parameters. 

Comparison with LIDAR results: The point cloud data were analyzed 
using two metrics, including percent of surface defect for columns and 
interior walls and AUC for exterior masonry walls. As presented, the 
percentage of damage computed for walls E12 and H12 were approxi
mately 4 times higher than that of B12 wall, based on the interior scans 
analysis result, which reveals a similar pattern to those computed for 
Bayesian and deterministic model updating parameters of the two walls. 
A similar pattern was also observed based on the computed AUC of the 
exterior walls where the mean values of AUC for the western walls were 
lower than that of mean AUC values computed for the eastern walls. In 
addition, the computed surface defect percentages for the columns on 
the northwestern and southwestern sides of the structures show a similar 
pattern for model updating parameters. Lastly, the point cloud analysis 
results for columns H2 and G2 and walls H12 and E12 demonstrate that 
these elements sustained significant damage in comparison to other 

Fig. 15. Distribution of sampled parameters versus the unnormalized posterior probability densities for updating parameters θ4 and θ5.  

Fig. 16. Histogram and kernel PDF for posterior probability of updating parameters θ4 and θ5.  

Table 9 
Updating parameter values for Case 2 from deterministic and Bayesian 
approaches.  

Updating Parameter Deterministic Model 
Updating 

Bayesian Model 
Updating 
MAP Std 

θ1 (1st story-walls E12 and 
H12) 

0.0007 0.0012 0.0009 

θ2 (1st story-western walls) 0.17 0.17 0.039 
θ3 (1st story-walls A12 and 

B12) 
0.93 0.91 0.097 

θ4 (1st story-eastern walls) 0.28 0.29 0.023 
θ5 (1st story-Northern 

columns) 
0.97 0.95 0.031 

θ6 (1st story-Southern 
columns) 

0.14 0.15 0.005 

Final Objective Function 
Value 

4.72 4.77  
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similar elements within the structure. 

6. Model prediction considering modeling errors 

In this section, the calibrated model from the first model updating 
case is used to probabilistically predict the response (natural frequencies 
here) of the building. Previous studies have shown that considering just 
the updated structural parameter values may not be sufficient for ac
curate model predictions due to the effect of modeling errors [16,59,60]. 
In order to provide more realistic predictions of natural frequencies, 
modeling error is also added to the response prediction process. Using 
the error function of Equation (4), natural frequency of mode m can then 
be estimated as: 

(
ωestimate

m

)2
=

ω2
m(θ)

1 − eωm

(16) 

As previously mentioned, the natural frequency errors are modeled 
as a set of uncorrelated zero-mean Gaussian distributions with variance 
σ̂2

ωm
: 

σ̂2
ωm

=

∑Nt
t=1 ê2

ωtm

Nt − 1
(17) 

where Nt is the number of available data sets. 
For probabilistic response prediction, 200 sets of model parameter 

values are selected based on the posterior distributions of section 5.3. 
Natural frequencies are estimated with and without considering the 
modeling error term. These two sets of predictions are plotted in Fig. 17 
together with the measurements (identified natural frequencies). This 
figure shows the natural frequency predictions pairwise, with the lower 
diagonal subplots showing predictions without considering error while 
upper diagonal subplots include the error in predictions. It can be seen 
that including the error term provides more realistic confidence bound 
for the prediction as the upper diagonal subplots contain most of the 

measured natural frequencies while the lower diagonal subplots provide 
inaccurate uncertainty bounds. Therefore, it is highly recommended to 
account for the effects of modeling errors even after updating to provide 
realistic confidence bounds on model predictions [61]. 

7. Summary and conclusions 

The paper investigates the extent of post-earthquake structural 
damage in an RC infilled frame school building. Finite element model 
updating using ambient acceleration data, and point clouds is imple
mented for this purpose. Two cases of model updating are performed 
with different sets of updating parameters. In Case 1, all structural ele
ments, with the exception of those visually observed to be severely 
damaged, are modeled and updated. In Case 2, all structural elements of 
the first story, including the severely damaged elements, are updated 
while their prior stiffness values are estimated from the point cloud 
measurements. It is confirmed that the elements with clear visual 
damage have little remaining stiffness. In the model updating process, 
deterministic and Bayesian approaches are deployed. Optimum 
parameter values from the deterministic approach are in good agree
ment with the MAP estimates obtained from the Bayesian approach for 
both cases of updating. The Bayesian updating results indicate higher 
confidence (lower standard deviation) for the severely damaged ele
ments for both cases. Collected point cloud data are also used to quantify 
the observable surface defects. A set of interior and exterior point clouds 
are used to estimate the relative surface damage of the columns, and 
exterior and interior walls of the first story. The estimated surface defect 
metrics are in good agreement with the observed damage as well as 
model updating results. Case 2 of model updating shows a successful 
application of a model updating process in which point clouds and vi
bration measurements are combined in a Bayesian inference approach. 
The addition of point cloud analysis improves the results by providing 
more realistic prior distributions, which makes the stochastic sampling 

Fig. 17. Model calculated vs. identified natural frequencies with and without accounting for modeling errors; black circles are identified, grey stars are predicted 
without considering modeling errors, and grey circles are predicted considering modeling errors. 
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approach more efficient and avoids un-identifiability. A more objective 
process for selecting the prior distribution of updating parameters re
duces the estimation uncertainty and allows including the severely 
damaged components in the updating process. It is worth noting that the 
proposed relationship between the point cloud analysis results and prior 
stiffness distributions may not be generally applicable; however, the 
focus of this study is to explore the viability of such an approach. These 
surface defect vs. stiffness relationships can be fine-tuned in future 
studies considering additional data. Finally, the calibrated model is used 
for response (natural frequency) prediction of the building. The effects 
of modeling error in the prediction process are studied, and it is found 
that adding the modeling error term will significantly improve the 
prediction results. Therefore, it is strongly recommended to account for 
modeling errors in addition to the model parameter uncertainties ob
tained from Bayesian model updating to achieve realistic confidence 
bounds on model predictions. 
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