INVASION NOTE

Flood dynamics dictate distributions of *Elaeagnus* angustifolia L. (Russian olive) on a riverine floodplain

Natalie M. West · Ann Marie Reinhold · Geoffrey C. Poole · Erin K. Espeland ·

Received: 1 October 2019/Accepted: 23 August 2020

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020

Abstract North American invasions of *Elaeagnus angustifolia* L. (Russian olive) are still expanding, and hydrochory could be increasing invasion impacts along rivers. Spatial association between riverine flood-inundation patterns and *E. angustifolia* distributions suggests a link between seed movement potential and invasion patterns in time and space. Using output from hydraulic inundation models, we mapped inundation zones associated with successive flood return intervals within 10.81 km² of the estimated 500-year floodplain of the Yellowstone River, Montana, USA.

Natalie M. West and Ann Marie Reinhold have contributed equally to this work.

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10530-020-02352-z) contains supplementary material, which is available to authorized users.

N. M. West (⊠) · E. K. Espeland USDA-ARS Pest Management Research Unit, Northern Plains Agricultural Research Laboratory, Sidney, MT, USA e-mail: Natalie.West@usda.gov

A. M. Reinhold · G. C. Poole Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT. USA

A. M. Reinhold · G. C. Poole Montana Institute on Ecosystems, Montana State University, Bozeman, MT, USA

Published online: 10 September 2020

dation zones and E. angustifolia distribution. Elaeagnus angustifolia was highly spatially associated with frequent flood return intervals: 80% of E. angustifolia exists within a subset of the floodplain predicted to flood every 10 years or less, with the highest occupancy in the 1.5- to 5-year return zones. Within frequently inundated areas, floodplain occupancy of E. angustifolia was distributed in patterns consistent with likely areas of sediment deposition. Thus, existing predictions of invasion timelines are likely to improve with explicit consideration of dispersal opportunities associated with hydrochory during flooding. In particular, if hydrochory is a significant secondary dispersal mechanism, then seed immigration at flood intervals of 5 years or less could lead to substantially shorter invasion lags than currently predicted.

We then evaluated spatial relationships among inun-

Keywords Hydrochory · Dispersal · Plant invasion · Flood frequency · River valley

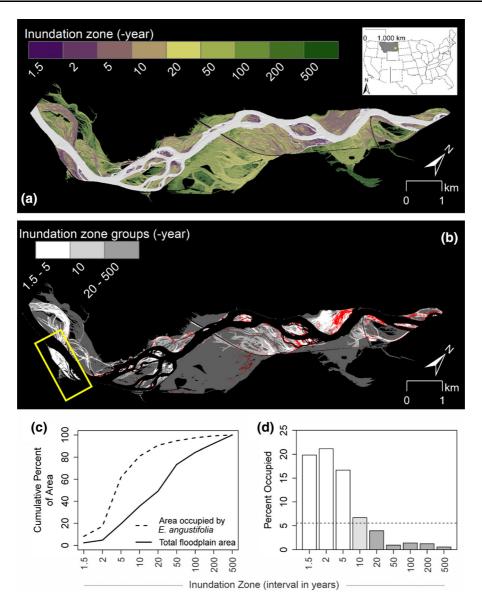
Introduction

Riparian invasions of *Elaeagnus angustifolia* L. (Russian olive) are increasing across western North America with negative impacts on riparian plant communities, successional dynamics, and nutrient cycling (reviewed in Katz 2016; Katz and Shafroth

2003; Shafroth et al. 2010). This large-seeded, N-fixing, shrub or small tree is predicted to have a 30-year invasion lag (Lesica and Miles 2001), and invasion rates are assumed to be limited by dispersal and establishment at regional scales (e.g., due to associations with proximity to water and intentional plantings, McShane et al. 2015; Nagler et al. 2011). At fine spatial scales, however, E. angustifolia occupies a broad range of physical conditions and sites with various hydrodynamics and moisture availabilities (Katz and Shafroth 2003). Elaeagnus angustifolia's dispersal dynamics remain understudied and, despite extensive riparian invasion, the role of waterborne seed transport and deposition (hydrochory) in invasion dynamics has not been explicitly evaluated. On the Yellowstone River floodplain in central Montana, USA, we posit that hydrochory is the dominant dispersal mechanism driving E. angustifolia distribution. Through targeted delivery of large numbers of propagules to locations with high water availability, propagule pressure from hydrochory may override establishment limitation to drive riparian invasion patterns (i.e., Nilsson et al. 2010). If so, the spatial distribution of E. angustifolia on the floodplain will mirror patterns of seed deposition via hydrochory rather than spatial variation in microsite suitability. Using remote sensing and hydrologic modeling data, we conducted a pilot study to detect a signature of hydrochory from spatial patterns of E. angustifolia occurrence and flood inundation frequency across the floodplain. We then incorporated key rates of propagule delivery (i.e., flood inundation frequencies) into a model of E. angustifolia stand recruitment to highlight potential impacts of hydrochory on invasion patterns.

Methods

We evaluated the Yellowstone River floodplain within the USDA-Agricultural Research Service Fort Keogh Livestock and Range Research Laboratory, Custer County, Montana, USA (Fig. 1). Within the conterminous United States, the Yellowstone River is the longest temperate river unaffected by mainstem impoundments (White and Bramblett 1993). The river has an annual snowmelt-driven flood pulse, which usually occurs in June (Chase 2013). The flood pulse drives channel migration and associated erosion and deposition of floodplain sediments. *Elaeagnus*


angustifolia was likely introduced to the region in the 1950s and spread onto the Yellowstone floodplain at Fort Keogh by the 1960s (unpublished data).

We defined the active floodplain as the portion of our study area predicted to be inundated during a 500-year flood event, based on hydraulic inundation modeling conducted by the US Army Corps of Engineers (USACE). Using the Hydrologic Engineering Center's River Analysis System (HEC-RAS) software, the USACE (2016) estimated floodplain inundation extent for flood return intervals of 1.5-, 2-, 5-, 10-, 20-, 50-, 100-, 200-, and 500-year, corresponding to discharges of: 1170; 1339; 1747; 2008; 2299; 2560; 2789; 3030; and 3313 m³ s⁻¹, respectively (Chase 2013). We generated a raster map (2.5 m by 2.5 m cell size) of "inundation zones" (Fig. 1a) where each cell value reflected the smallest modeled flood return interval at which the cell is inundated by water. Thus, on average, the 2-year inundation zone is flooded once every 2 years, the 5-year inundation zone is flooded once every 5 years, etc. We excluded main and side channels perennially inundated or scoured regularly enough to preclude vegetation establishment by masking portions of the floodplain predicted to be wet during a 968 m³ s⁻¹ flow event (approximately a 1.05-year flood event; areas inundated by water, on average, 19 out of 20 years).

We used a digital map created from aerial imagery (Combs and Potter 2011) of presence versus absence ("occupancy") of E. angustifolia along the Yellowstone River to characterize the spatial distribution of E. angustifolia. We converted "presence" polygons to a raster of E. angustifolia occupancy (2.5 m by 2.5 m cell size) and cross-tabulated occupied and unoccupied raster cells by floodplain inundation zone (Fig. 1b; Table S1). We conducted a Pearson's Chisquared test to assess whether the distribution of E. angustifolia occupancy was independent of inundation frequency. The spatial data sets we used are freely available from the Yellowstone River Corridor Geographic Information Clearinghouse (2018). Geoprocessing tasks were conducted in R (R Core Team 2019) using the "sp" (Pebesma and Bivand 2005; Bivand et al. 2013) and "raster" (Hijmans 2019) packages, with geospatial data visualized and Fig. 1 generated with ArcGIS Desktop 10.6.1.

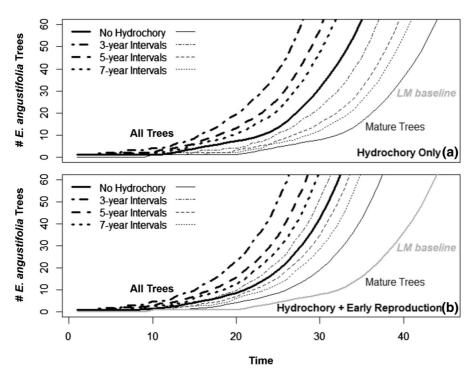
Additionally, we used an existing empirically-derived heuristic model (Lesica and Miles 2001; "baseline") to illustrate impacts of additional seed

Fig. 1 Spatial distribution of inundation zones and *E. angustifolia*, Yellowstone River floodplain within the Fort Keogh Livestock and Range Research Laboratory, Custer County, Montana, USA (star in inset in upper right). **a** Flood inundation zone map: the color of each pixel indicates the most frequent flood return interval at which that pixel is predicted to be inundated; **b** *Elaeagnus angustifolia* occupancy (red) plotted beneath the 1.5- to 5-year inundation zones (white), the 10-year inundation zones (light grey), and the 20-year and greater

deposition on *E. angustifolia* stand development. The baseline scenario assumed founding by a single individual with no immigration, density-dependence in recruitment, or age-dependent change in fecundity. We created another scenario that included propagule

inundation zones (dark grey). **c** Cumulative percent of floodplain area occupied by E. angustifolia (total occupied area = 0.60 km^2) and total floodplain area (total area = 10.81 km^2) plotted by inundation zone; **d** Percent of floodplain occupied by E. angustifolia within each inundation zone: dashed horizontal line denotes percent occupancy of E. angustifolia in the study area as a whole; bar colors reflect inundation zones grouped in **b**. The yellow box on **b** denotes location of side channel enlarged in Fig. 3

immigration at the midpoints of key flood return intervals (1.5-, 5-, 10-year intervals: 3-, 5-, and 7-year midpoints) identified in the spatial analysis. We projected populations to 45 years post-founding for both scenarios and compared total number of trees and


mature trees at 10, 20, and 30 years (three generations). Model details, code, and an R script are provided as supplementary material.

Results

We found strong evidence for a spatial relationship between E. angustifolia distribution and flood inundation zones in our study area (P < 2.2e-16, $X^2 = 131,190$, df = 8, critical value = 15.51; Fig. 1 and Table S1). Elaeagnus angustifolia occupancy was highly spatially associated with the portions of the floodplain inundated at relatively frequent return intervals (Fig. 1b); 62%, of the E. angustifolia occurrence was within the 1.5 to 5-year inundations zones (19% of total floodplain area) and 91% of E. angustifolia occurrence was within the 1.5 to 20-year inundation zones (49% of total floodplain) (Fig. 1c).

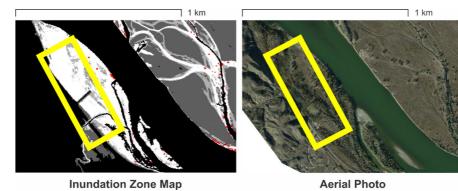
Percent occupancy (Fig. 1b, d) was greatest in the 1.5-to 5-year inundation zones (white), intermediate in the 10-year inundation zone (light gray), and lowest in the 20-year and greater inundation zones (dark gray).

Simulation results showed that incorporating additional immigration substantially increases *E. angusti-folia*'s projected invasion potential. Seed immigration intervals of 7, 5, and 3 years—frequent return interval midpoints—would increase the number of mature trees by a factor of 1.5, 2.0, and 2.5 after 20 years (N_{base}: 2 vs. N_{approx}: 3, 4, and 5) and a factor of 1.8, 2.1, and 3.1 after 30 years (N_{base}: 8 vs. N_{approx}: 14, 17, and 25, Fig. 2a). Extrapolating from the baseline model, in which mature trees would have constituted approximately ¹/₄ of the hypothetical population, projected increases in total stand count would be 1.5, 1.9, and 2.7 times (N_{approx}: 54, 67, and 98) greater than the baseline (N_{base}: 36) at 30 years (Fig. 2a).

Fig. 2 Projected total number of *E. angustifolia* trees (thick lines) and of mature *E. angustifolia* trees (thin lines) over time with and without immigration (e.g., associated with hydrochory). The baseline model ("No hydrochory"—solid lines) is based on Lesica and Miles (2001, "LM baseline"). Hydrochory is incorporated into models modified from LM baseline as immigration of a single additional propagule at 3- (dotdash), 5-

(dashed), and 7- (dotted) year intervals. **a** Model projections with hydrochory at identified return intervals—maintains original demographic parameters; **b** Model projections with hydrochory, but with a percentage of the 5–6-year (5%) and 7–9-year (40%) age classes also achieving reproductive maturity (class percentages from Fig. 2 in Lesica and Miles 2001). The baseline curve is colored gray in **b**

Discussion


The non-random association between E. angustifolia occupancy and flood return interval suggests that inundation dynamics are an important determinant of the fine-scale spatial distributions of E. angustifolia on the Yellowstone River floodplain. Our simulations further demonstrate that failing to consider this association risks underestimating E. angustifolia's invasion potential. We offer two parsimonious explanations linking inundation frequency with E. angustifolia occupancy. First, frequently inundated sites may release E. angustifolia from establishment limitation by providing suitable microhabitats (e.g., higher soil moisture) for germination and growth. Second, hydrochory may deliver seeds repeatedly to frequently-flooded depositional areas, imposing high propagule pressure. Both mechanisms are likely cooccurring. Distinguishing whether one is a primary driver requires a nuanced look at E. angustifolia distribution within frequently inundated zones.

Specifically, if water availability drives E. angustifolia establishment, and propagule pressure is governed by a process other than hydrochory (e.g., vertebrates, within-stand recruitment), we would expect a relatively uniform or haphazard spatial distribution of E. angustifolia across frequently inundated portions of the floodplain. In contrast, if hydrochory imposes propagule pressure across the floodplain with uniformly low microsite limitation, we would expect dense patches of E. angustifolia in frequently inundated areas where sediment deposition occurs (e.g., on point bars, on the downstream side of mid-channel bars, and in side channels abandoned by the river and reforested over time). Overall, the occurrence of E. angustifolia on our study site is consistent with the latter pattern—well-defined, concentrated patches in frequently inundated areas consistent with zones of sediment deposition. In fact, concentrated patches of E. angustifolia now dominate all but one of the reforested side channels on the study site. The exception is a side channel that was bifurcated by a large dike in the 1970s (Fig. 3). During reforestation, the dike prohibited hydrochory by eliminating flow through the side channel. In the absence of hydrochory, E. angustifolia was detected at only two locations (12.5 m²) in the side channel. Both the overall pattern and the exception are consistent with propagule pressure via hydrochory operating as the primary spatial driver of *E. angustifolia* invasion, with establishment limitation then operating after seeds are deposited.

Immigration at frequencies suggested by our analysis (e.g., 3-, 5-, and 7-year returns) would increase invasion intensity and shorten management timewindows for invasion control. The only published empirical approximation of invasion rate (Lesica and Miles 2001) suggests a 30-year demographic lag between a single colonization and exponential increase of mature E. angustifolia. However, this baseline model excluded immigration and did not address the accumulated stand invasion. Using 30 years as a rule-of-thumb risks underestimating invasion and misallocating control efforts. Our estimated model impacts are conservative. We add only one additional recruit per inundation event, likely an underestimate of fluvial influence on propagule pressure, and demographic processes contributing to invasion lags may change over time (i.e., Yokomizo et al. 2017). For instance, shorter generation times, in the absence of density dependence, may further decrease invasion lags (i.e., Fig. 2b). Lesica and Miles (2001) used a 10-year gap to consistent reproduction, but reported flowering in earlier age classes. Scott et al. (2018) suggested reproduction along the Escalante River could occur at five years or less, and we detected flowering three years post-establishment in our study area (unpublished data). Realistic predictions of future invasions and timelines require more data on how E. angustifolia demography and dispersal interact in riparian systems. Eradicating nascent invasions within the range of the earliest flood return intervals identified, e.g., 3-5 years, may be required to reduce recruitment from flood deposits and new seed input from residents.

Disentangling seed and establishment limitations requires further experimental and observational studies. Seed addition experiments and seedbank excavation in different inundation zones will be necessary to evaluate the strength of propagule limitation. *Elaeagnus angustifolia* benefits from open germination sites and ample water availability, especially under deep shade, and floods that expand dispersal distances might dilute local processes (e.g., granivory) influencing stand recruitment (Katz and Shafroth 2003; Nilsson et al. 2010). Nevertheless, *E. angustifolia* is invasive in many parts of the world (e.g., Busso et al. 2013; Enescu 2018), invades multiple terraces and

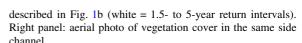


Fig. 3 Elaeagnus angustifolia occupancy within a diked side channel (yellow box) on the Yellowstone floodplain. Left panel: *E. angustifolia* occupancy (red) within the inundation zones

light conditions (Shafroth et al. 2010; Scott et al. 2018), has a persistent soil seedbank (415 seeds/m² (Brock 2003); Katz and Shafroth 2003), and can survive up to 15 years on precipitation alone (Reynolds and Cooper 2010). Further, dense local stands may change channel morphology and deposition, facilitating further invasion (i.e., Merritt and Wohl 2002; Scott et al. 2018). Existing hydrochory data are mainly anecdotal (e.g., Heinrich 2015; Pearce and Smith 2001). Quantifying interactions among dispersal, seed, and microsite limitation will help inform effective management decisions to limit the spread of

Preemptive management to reduce invasion can target propagule abundance (decreasing propagule availability in the landscape) or microsite availability (decreasing establishment likelihood). Control options along rivers are generally limited to costly and timeconsuming tree removals critical to controlling local seed sources on the floodplain because we lack control mechanisms to decrease transport within rivers other than reducing near-river seed sources. Recognizing that additional seed deposition would be high in frequently inundated portions of the floodplain, managers can prioritize vulnerable areas, assuming less frequent flooding intervals are tied to slower rates of invasion or re-invasion. On our study site, vulnerable areas would be associated with return intervals of 5-years or less (19% of the floodplain). More detailed evaluation of dispersal via hydrochory will inform predictions of E. angustifolia riparian invasions and associated management strategies.

Acknowledgements We dedicate this work to our dear colleague, Erin Espeland, who was devoted to this project through the final days of her life. She was a brilliant scientist and fierce friend. Reinhold was funded by the United States Department of Agriculture Agricultural Research Service and Department of Interior Bureau of Land Management and in part by the National Science Foundation EPSCoR Cooperative Agreement OIA-1757351. Poole's contributions were supported by the USDA National Institute of Food and Agriculture (Hatch Project, 1015745).

References

Bivand RS, Pebesma E, Gomez-Rubio V (2013) Applied spatial data analysis with R, 2nd edn. Springer, New York

Busso CA, Bentivegna DJ, Fernández OA (2013) A review on invasive plants in rangelands of Argentina. Interciencia 38(2):95–103

Brock JH (2003) *Elaeagnus angustifolia* (Russian olive) seed banks from invaded riparian habitats in northeastern Arizona. In: Child LE et al (eds) Plant invasions: ecological threats and management solutions. Backhuys Publishers, Leiden, pp 267–276

Chase KJ (2013) Streamflow statistics for unregulated and regulated conditions for selected locations on the Yellowstone, Tongue, and Powder rivers, Montana, 1928–2002

Combs J, Potter T (2011) Russian olive (*Elaeagnus angustifolia* L.) distribution mapping for the upper yellowstone river and tributaries using feature analysis software, an extension for ArcMap

Enescu CM (2018) Russian olive (*Elaeagnus angustifolia* L.): a multipurpose species with an important role in land reclamation. Curr Trends Nat Sci 7(13):54–60

Heinrich KK (2015) Multiple stressors and multiple invaders in linked stream-riparian ecosystems: combined research and pedagogy contributions. Dissertation. Idaho State University, Pocatello

Hijmans RJ (2019) Raster: geographic data analysis and modelling. R package version 2.9-5. https://CRAN.R-project.org/package=raster

E. angustifolia.

- Katz G (2016) Russian olive biology, invasion, and ecological impacts in western North America. Technical report AD1013227, US Army Engineer Research and Development Center, Vicksburg, VA USA. https://apps.dtic.mil/ dtic/tr/fulltext/u2/1013227.pdf
- Katz GL, Shafroth PB (2003) Biology, ecology and management of *Elaeagnus angustifolia* L. (Russian olive) in western North America. Wetlands 23(4):763–777
- Lesica P, Miles S (2001) Natural history and invasion of Russian olive along eastern Montana rivers. West N Am Nat 61(1):1–10
- McShane RR, Auerbach DA, Friedman JM, Auble GT, Shafroth PB, Merigliano MF, Scott ML, Poff NL (2015) Distribution of invasive and native riparian woody plants across the western USA in relation to climate, river flow, floodplain geometry and patterns of introduction. Ecography 38(12):1254–1265
- Merritt DM, Wohl EE (2002) Processes governing hydrochory along rivers: hydraulics, hydrology, and dispersal phenology. Ecol Appl 12(4):1071–1087
- Nagler PL, Glenn EP, Jarnevich CS, Shafroth PB (2011) Distribution and abundance of saltcedar and Russian olive in the western United States. Crit Rev Plant Sci 30(6):508–523
- Nilsson C, Brown RL, Jansson R, Merritt DM (2010) The role of hydrochory in structuring riparian and wetland vegetation. Biol Rev 85:837–858
- Pearce CM, Smith DG (2001) Plains cottonwood's last stand: can it survive invasion of Russian olive onto the Milk River, Montana floodplain? Environ Manag 28(5):623–637
- Pebesma EJ, Bivand RS (2005) Classes and methods for spatial data in R. R News 5(2):9–13
- R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/
- Reynolds LV, Cooper DJ (2010) Environmental tolerance of an invasive riparian tree and its potential for continued spread in the Southwestern US. J Veg Sci 21:733–743

- Scott ML, Reynolds LV, Shafroth PB, Spence JR (2018) The role of a non-native tree in riparian vegetation expansion and channel narrowing along a dryland river. Ecohydrology 11(7):e1988
- Shafroth PB, Brown CA, Merritt DM (eds) (2010) Saltcedar and Russian olive control demonstration act science assessment. Scientific investigations report 2009-5247. Reston, VA: US Geological Survey, p 143
- US Army Corps of Engineers (USACE) Omaha District (2016)
 Yellowstone river corridor study hydraulic analysis modeling and mapping report: a report prepared for the yellowstone river conservation district council and technical advisory council. https://ftp.geoinfo.msl.mt.gov/Data/Spatial/NonMSDI/Collections/Yellowstone_River_Clearinghouse/HydraulicModels/FinalHydraulicsReport.zip
- White RG, Bramblett RG (1993). The Yellowstone River: its fish and fisheries. In: Hesse LW et al (eds) Proceedings of the symposium on restoration planning for the rivers of the Mississippi River ecosystem. US Department of the Interior, National Biological Survey, Washington, DC, pp 396–414
- Yellowstone River Corridor Geographic Information Clearing-house (2018) Montana state library. https://geoinfo.msl.mt.gov/data/yellowstone_river/GISData. Accessed 13 Dec 2018
- Yokomizo H, Takada T, Fukaya K, Lambrinos JG (2017) The influence of time since introduction on the population growth of introduced species and the consequences for management. Pop Ecol 59:89–97

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

