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Abstract—In this paper we present a deterministic
discrete-time networked SEIR model that includes a num-
ber of transportation networks, and present assumptions
under which it is well defined. We analyze the limiting
behavior of the model and present necessary and sufficient
conditions for estimating the spreading parameters from
data. We illustrate these results via simulation and with real
COVID-19 data from the Northeast United States, integrat-
ing transportation data into the results.

Index Terms— Control applications, transportation net-
works, SEIR model, COVID-19

[. INTRODUCTION

N December 2019, a novel coronavirus (SARS-CoV-2),

that causes the disease COVID-19, was detected in Wuhan,
China. This virus quickly spread throughout China, and before
long, the virus had reached the status of a global pandemic. In
order to minimize the impact of COVID-19, it is critical to be
able to quickly track the spread of the virus and understand the
mechanisms that are enabling its propagation. While the mode
of transmission of the virus is not exactly known, human-
to-human interaction appears to be a main factor [1]. A key
component for transmission is the underlying transportation
network, which acts as a propagator of the virus within and
between communities.

In this work we extend the deterministic SEIR [2] model
for viral spread to consider spread over the network in the
context of human interaction and transportation. We model
the proportion of people in each county who have not been
infected (S), those who have been infected but have not been
confirmed via a test (£, test-confirmed infected cases (1), and
those who have either recovered or died from the virus (R)
and show that we are able to model the evolution of such a
virus, as well as recover the proper model parameter values
from time series data of infections and recoveries and apply
this model to the recent COVID-19 outbreak.
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The SEIR model has become popular for modeling epidemic
spread (e.g., [3]) and has been described in [4]. A similar
model to the SEIR model, the SEIV model has been studied
in previous work where the vigilant state V corresponds to
a state that is not infected nor immediately susceptible, i.e.
similar to the recovered state R [5]. The model has also
been extended to account for quarantine [6] and asymptomatic
transmission [7]. When considering how transportation can
propagate a viral outbreak, the SIS model has been extended
to include transportation flows between nodes [8]. We go
beyond prior work by integrating transportation networks into
a networked SEIR model, analyzing the model, and applying
it to the COVID-19 pandemic.

The multi-networked SEIR model is introduced in Section II
and its limiting behavior is discussed in Section III. Results
on model parameter estimation are given in Section IV, and
the model is applied via simulations and real COVID-19 data
to the Northeast US. We conclude in Section VL.

A. Notation

Given a vector x, the transpose is indicated by =, Z is the
average of its entries, and diag(+) is a diagonal matrix with the
argument on the diagonal. We use 0 and 1 to denote a vector
or matrix of zeros and ones, respectively, of the appropriate
dimensions. We define a directed graph G = (V, £, w), where
V is the set of nodes, £ C V x V is the set of edges, and
w : & — R is a function mapping directed edges to their
weightings, with R* being the set of positive real values.
Given G, we denote an edge from node i € V to node j € V
by (i,7). We say node ¢ € V is a neighbor of node j € V
if and only if (4,7) € £, and denote the neighbors of node j
as ;. We denote the weighted adjacency matrix associated
with G as A with the nonzero entry a;; indicating the strength
of edge (¢,7) as given by w. We use [n] to denote the set

{1, 2, ..., n}.

I[l. MULTI-NETWORKED SEIR MODEL

Here we introduce the discrete-time multi-networked SEIR
model. We assume that the virus spreads over a set of graphs
Gl =V, &L wh), for | € L, where we interpret each node in
V as a subpopulation, £ is the set of transportation networks,
and &', w! capture the weighted transportation links. Node i’s

susceptibility s¥, exposed ef, infection p¥, and recovery r¥

© IEEE 2021. This article is free to access and download, along with rights for full text and data mining, re-use and analysis.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 17,2021 at 15:01:25 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCSYS.2021.3050954, IEEE Control

Systems Letters

proportions evolve as

P L T (1a)

k“ = ek 4 hskik — hogel, (1b)
pf“ = pf + h(ose; —vipf), (1c)
rf“ =7 —l—h('yipi) , (1d)

where k is the time step, h is the sampling parameter, o;
captures the rate at which the exposed become confirmed
infected cases, -y; is the recovery rate, and

=2 | B 2 aye]
= ij€j

leL ]EJ\/ll

+A0 Y Al ), @

JEN!

where aﬁj represents the edge weights, and f3; ' and By ! are
the corresponding infection rates for the [th transportation
network. Note for the special case where |£|= 1, the model
in (1)-(2) becomes the traditional networked SEIR model.
For the discrete-time SEIR model to be well-defined we
need the following assumption.
Assumption 1: For all i € [n], we have 0 < hvy < 1,
0 < ho; < 1 0 < hi¥ < 1, where ©¥ = 3,..(67" +
ﬁfl)zye/\f a;;, and ,Bel gt a ak; > 0, for all j € [n].
Assumption 1 requires the sampling parameter to be small
enough in relation to the healing parameters and the denseness
of the graph scaled by the infection parameters, and guarantees
that the model is well defined.
Lemma 1: Consider the model in (1)-(2) under Assumption
1. Suppose s?, €2, p?, ¥ € [0,1], s? +€? +p? +r? = 1 for all
€ [n]. Then, for all k > 0 and i € [n], s¥,e¥ pF rF €[0,1]
and s¥ +ef +pF +rF =1
Proof: We prove this result by induction. By assumption,
it holds for the base-case & = 0. We follow the proof by
showing the 1nduct10n step, that is, assume s¥ ek pF rF €
[0,1] and s¥ + ¥ + pk 4+ rF =1, for all i € [n], and we now
show that this holds also for time-step k+ 1. By Assumption 1
and (la), st > sF—hsFiF = s¥ [1 — hi%] > 0. We also have
shtl < sF <1 since h[ Lk] < 0. By Assumption 1 and
(1b), ef“ > (1 — hoy)ef > 0. Moreover, by the assumption
j,pj < 1 for allj € [n], Assumption 1, and (Ib), e ™! <
ek +skhik < ek sk <1.By Assumptlon 1 and (lc), pk'Irl
(1—hy,)p = 0 and pi*" < pb + hoel < pF + ek < 1. By
Assumption 1 and (1d), rf“ > rf >0, and Tf“ < rf —|—pf.
Thus, by the principle of mathematical induction we have
that, if s?,e9,p?, 79 € [0,1] and s? +¢€? +p? + 79 =1 for all
i € [n] then sk, eF pF rk €[0,1] and sF +ef +pF +rF =1
for all £ € N. u

[1l. ANALYSIS OF MODEL

In this section we present a result on the stability of the
healthy states of the networked SEIR model, that is, where
limy, o €¥ = 0 and limy_,o, p¥ = 0 for all i € [n].

Let )\%};x be the dominant eigenvalue of M}, where M, is
defined as
_ [(I +hS*T® — ho) hS*TP
M. = ho (I —hy) ©)

where S* = diag(sl), T¢ =3, Bf A, TP =, Bl Ay,
By = diag(87"), BP = diag(6""), v = diag(v;) and o =
diag(o;). Note that M}, captures the dynamics of the vector
of the exposed and infection states, e* and p*, in (1)-(2).

Theorem 1: Consider the model in (1)-(2) under Assump-
tion 1. Suppose s9,e?,p?, r? € [0,1], s¥ + e +pf +7r) =1
for all i € [n], TP is irreducible, s? > 0 for all i € [n], and
p? > 0 for some 7. Then, for all kK > 0 and i € [n],

1) sf'H < sf,

2) limyg_y o0 ei—“ =0 and limy_, pf =0,

3) AMx is monotonically decreasing as a function of k,

mazx

4) there exist a k such that /\%& <1 for all k >k,
5) there exists k, such that pl converges linearly to O for all
k >k and i € [n].
Proof: We present the proof for each part of the theorem,
starting with 1).
1) By Lemma 1 and Assumption 1, we have that —hs¥ /% <
0 for all ¢ € [n] and k > 0. Therefore, from (la), we have
sf“ < sk,
2) Since the rate of change of sk, —hSk [Tee’c + Tppk], is
non-positive for all £ > 0 and sk is lower bounded by zero,
by Lemma 1, we conclude that limg_, s* exists. Therefore,

lim —hS* [T¢e" +TPp*] = 0. (4)
k—o0
Therefore, limy_ oo "t — eF = limy_, oo fhae Thus, by
Assumption 1, ho; > 0 for all 7 € [n], limg_s 00 e =0 for all

i€ [n).

Similarly, we show that lim;CHOO pk =0 for all i € [n]. W
have that limj_, .o p**! — pF = limkﬁooh< 'ypk) =
limy,_, oo —hyp®, where we used that limj_,. e* = O
assumption hvy; > 0 for all ¢ € [n], thus limg_, pi = 0
for all & € [n].

3) By assumption s? > 0 for all i € [n], and from the
proof of Lemma 1 we can see that s¥ > 0 for all i € [n],
k > 0. Therefore, since we have that TP is irreducible,
from (3) and Assumption 1, the matrix Mj, is irreducible and
non-negative, for all finite k. Thus by the Perron-Frobenius
Theorem for irreducible non-negative matrices we have that
AMi = p(My). Since p(My) increases when any entry
increases [9, Theorem 2.7] and by 1) of this theorem, we have
that p(Mj,) > p(Mjyq), that is AMe > ANkt

4) There are two possible equilibria: 1) limg_, o sk =0, and
i) limy_, oo s* = s* # 0. We explore the two cases separately.

i) If limp_,00 s* = 0,

. I —ho 0
klggo Mi = [ ho - h'y} :

Therefore, by Assumption 1, there exists a k such that A <
1 for all k > k.

i) If limg_oo s = s* # 0, then, by 2), for any
(s°,€% p°%, %) the system converges to some equilibrium of

the form (s*,0,0,1 — s*). Define
k k k e”
€ =5 —s" and €, 1= |:pk:| — 09y, 5)

Linearizing the dynamics of ¥ and e} around (s*,02,) gives
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it =€l — nSM [T TP)er, (6a)
eFtl = Mye. (6b)
Let AM' be the maximum eigenvalue of
« | (I + hdiag(s*)T® — ho) hdiag(s*)T?

M= ho (I — hr) @)

with corresponding normalized left eigenvector w*, that is,
w*TM* — A%ax *T- 8)
If AM. > 1, then the system in (6) is unstable. Therefore, by

Lyapunov’s Indirect Method, limy_ (efj,e’;) # (s*,09,),
which is a contradiction.

Now consider the case where AM® — 1. Define
- e Eyp
i, = hdlag(() T hdlag(()es )T ©)

Theg we can write M, = M™* + M, &, observe that all entries
in M are non-negative. Using (5) and left multiplying the

equation of eﬁ“ in (6b) by w*" we get
w*T€1;+1 _ w*TMkEk
_ )\%Iam 5T ok +w*TMke
—w* ek »+ w*TMke
Thus,
w* (et — k) = w T Myel >0, (10)

where the last inequality holds since all elements are non-
negative. This contradicts that limg_, ¥ = 0y, that is 2).
Therefore, there exists a k such that AMx < 1 for all k > k.

5) Since, by 4), there exists a k such that AMx < 1 for all
k > k, and we know that AMx = (M) > 0 by Assumption

max
1, we have
M IMepR
lim = =\ <1 (11)
k—oo [|IpF|| (2l e
Therefore, for k > k, p* converges linearly to 0,,. ]

Note that the proof was inspired by a similar result for the SIR
model [10, Theorem 1]. The results in Theorem 1 show that
the virus will die out, providing insight into the convergence
rate, under mild assumptions.

IV. ESTIMATING MODEL PARAMETERS

We now explore conditions for estimating the SEIR model
parameters from data. Due to space limitations we consider
|£]=1 and refer to Remark 1 for |£|> 1. In order to estimate
the parameters we define the following matrices:

hs%Ae° hS°Ap° -he’ 0
¢ = : : : S (2
[hST ATt psT=1apT=t —pe™1 0
a b
(0 0  he —hp°
=10 : : ; (13)
10 0 hel 1 —hpT_l
and — T
r=[o o o d. (14)

Using the above matrices we write (1) as

— el _ eO —_
ol _ oT-1
pt —p" & 5;
: =|X b (15)
: o
pT _prl T
1 0 v ’y
rt—r Q
T T

We find the least squares estimates Be, BP, &, and 4 using the
pseudoinverse of Q.

Theorem 2: Consider the model in (1) with homogeneous
virus spread, that is, 8¢, BP, o, and y are the same for all n
nodes. Assume that s* e p* r*, for all k € [T]U{0}, and h
are known, with n > 1. Then, the parameters of the spreading
process can be identified uniquely if and only if 7" > 0, and
there exist i1, 42, 3,94 € [n] and k1, ko, k3, ks € [T —1]U{0}

such that
P #£ 0,2 #0,
G )97;4( Ra) £ gl (eks

where gF(z) = sF Do ien; @ijTj.

(16a)

Vg1 (p™), (16b)

Proof: Using (12)-(14), we can write ) as follows
I ~I  0,..7]fa b 0 0
Q=101 1 I —1I 0 0 ¢ 0. (17)
OnTXnT OnTXnT I 0 0 0 d
D Q

Since n > 1, o = [a b} has at least two rows, and given
that (16b) holds, ® has column rank equal to two. Moreover,
if (16a) holds ¢ and d each have at least one element that is
nonzero. Thus, Q has full column rank. Clearly D has full
rank which implies that the rank of @ is equal to the rank of
Q [11]. Therefore, there exists a unique solution to (15) using
the pseudoinverse.

If one of the assumptions in (16a)-(16b) is not met, @ will
have a nontrivial nullspace. Therefore, in that case, (15) does
not have a unique solution. [ ]
For the heterogeneous case it is not necessary to know
all entries of sk ek pF rk. It is sufficient to know only

sk, el j,pj, ], for J ENzl UNi, UNG, UNG, Ui, da,43, 44},
where i1, 19,13, 14 satisfy (16).

To estimate the spreading parameters for the discrete-time,

heterogeneous SEIR model from Section II we define:

hs? Z aije? hs? Z aijp? —he? 0
JEN; JEN;
®; = : : : aE
hs?il Z aije}“71 hszﬂi1 Z a,yp?il —heZT71 0
JEN; JEN;
a; b; (18)
0 0
0 0  he —hp;
0 0 hel=' —hpl ™t
——  ——
and Ci —d,;
I,=[0 0 0 d] (20)
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Using the above matrices we write (1) as

~ ell . 6? -
T T—1
“ 1_ ‘9 e
b; =D D, ;
: = | i (21)
0;
pi —p; L
? 1 _10 N—— Vi
Ty — T Q;
T T—1
L7, —T; |

We find the least squares estimates 35, Bf’ , i, and 4; using
the pseudoinverse of Q);.

Corollary 1: Consider the model in (1). Assume that
sy el pkork, for all j € N U {i},k € [T —1] U {0},
el pI',rT, and h are known. Then, the parameters of the
spreading process for node ¢ can be identified uniquely if and
only if 7' > 1, and there exist k1, ko, k3, k4 € [T — 1] U {0}
such that

it #0,e% #0,
gfs (eks )954 (pk4) £ 954 (ek4 )gfs (pkg ),
where g (z) = s§ >_;, aijz; which only uses the entries

x; for which j € N;.
Proof: Using (18)-(20), we can write (); as follows

(22a)
(22b)

1 -1 OTxT a; b,’ 0 0
Qi: OTxT I —1I 0 0 C; 0
0., 0., I 0 0 0 d;

D; Qi

Since T' > 1, <i>i = [a,; b,;] has at least two rows, and given
that (22b) holds, ®; has column rank equal to two. Moreover,
if (22a) holds, ¢ and d each have at least one element that is
nonzero. Thus, Qi has full column rank. Clearly D; has full
rank which implies that the rank of @; is equal to the rank
of Q, [11]. Therefore, there exists a unique solution to (15)
using the pseudoinverse.

If one of the assumptions in (22a)-(22b) is not met, ); will
have a nontrivial nullspace. Therefore, in that case, (21) does
not have a unique solution. ]

Remark 1: When using the full transportation model,
namely |£|> 1, we can expand ®; in (18), adding two
columns to ); for each transportation network ! with entries
e, @iel and D jent al;p% and the corresponding entries
Bf’l and (7 ' to the vector on the RHS of (21). Further-
more, by similar process as shown in Corollary 1, we can
construct QX = D;QF where the first row of QF becomes

[a}7 b%, ey aLLl , bli’c| ,0, 0} . By satisfying (22a) and ensuring

that [a}, bl, ..., a‘f‘ ) bLEl has full column rank, we can also

show a unique solution exists in this case.
O
The results in Theorem 2 and Corollary 1 allow us to learn

the spreading parameters from data for homogeneous and het-
erogeneous viruses, respectively, under the given assumptions.

Bridging these two, we can group different nodes into sets
with homogeneous parameters, for example rural vs. urban
counties.

V. SIMULATIONS AND CASE STUDY

In this section we apply the networked SEIR model to the
COVID-19 pandemic in the Northeast US, and incorporate
flight mobility data via simulations and real spread data.

A. Study area

We consider the spread of COVID-19 through five states
in the Northeastern US from March through August, 2020,
and consider how the underlying air transportation network
between the cities in the five-state region propagated the
virus. Specifically, we obtain data for New York (NY), New
Jersey (NJ), Massachusetts (MA), Rhode Islands (RI), and
Connecticut (CT), and consider this five-state region as a
closed system (i.e., no virus entering or leaving the system).
This region is selected both because this was the first signif-
icant COVID-19 outbreak in the US, making the simplifying
modeling assumption that the region is closed with respect to
COVID-19 more reasonable.

We model the infected population proportion in each of the
110 counties in the five-state region. Note that we combine the
COVID-19 case numbers for the five counties that make up
New York City into one administrative region since diagnosis
statistics are provided at the city-level for New York City.

In order to capture the transmission of COVID-19 accu-
rately, we categorize counties as either urban or rural based
on the average population density. Counties with a population
density of at least 500 people per square mile are considered
urban, while counties with lower density are considered rural.
County-level population counts are obtained from the US
Census Bureau 2018 population estimate [12].

B. Transportation data and network topologies

Three different types of connections are considered when
modeling the network topology in (2): (i) county adja-
cency (aﬁ\; ); (if) self-loops for spread within the county (afj =
I); (iii) flights between airports (af;fk) to capture long-range
links between non-adjacent counties [13]. It should be noted
that the flight adjacency matrix af-;’k is time-varying.

We incorporate travel by collecting flight data for every
flight between cities in the study area from March through
August, 2020 (most recent data available at time of writing)
from the Bureau of Transportation (BTS) [13]. This data
includes aircraft registration, which is cross-referenced with
the Federal Aviation Administration database to obtain the
number of passenger seats on each flight. The full dataset and
code to reproduce the results are available online [14].

To construct the scaled flight matrix, we use the number of
available seats between each city pair on a particular day, and
normalize this number with the maximum number of daily
seats observed for each city pair. This produces a scaled value
between 0 and 1 that represents the intensity of travel between
any given city pair on a particular day.
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Phase | Start End PN S PN (o3
1 Jan22 Mar26 10 1.0 1.0 1.0
2 Mar 27 Apr20 0.6 0.8 1.0 1.0
3 Apr 21 Jun 8 06 08 08 0.85
4 Jun 9 Aug 4 1.0 1.0 10 1.0

TABLE |: Study phases and scaling factors for adjacency
between urban counties and other counties (urban or rural) ¢,
within urban counties ¢%, adjacency between rural counties
and other counties (urban or rural) ¢, and within urban coun-
ties ¢, inspired by observed travel reductions summarized
in [15] to account for change in travel activity. The magnitude
of the scaling factor reflects the extent of the connection, i.e.,
the higher ¢, the stronger the connection.

—_—
F
——

50 N 100 150 50 « 100 150

(a) Network average (b) Network average (c) Network average
exposed state. infected state. removed state.

Fig. 1: Simulation of a homogeneous SEIR system with three
networks, its measured states, and the recovered states to show
that the recovered states captures the average state.

To capture the reduction in travel associated with state-
wide stay-at-home orders, the study period is divided into four
phases shown in Table I. Phase 1 represents the time before
the stay-at-home order (high transportation volume). Phase 2
represents the time immediately after the stay-at-home order
started (declining transportation in urban areas). By Phase
3, both urban regions and rural regions restrict travel. Phase
4 represents a gradual return to pre-restriction travel levels.
Each row of each adjacency matrix, excluding flights between
airports, is scaled by the appropriate ¢ value in Table I based
on its urban/rural classification and the phase to account for
the corresponding reduction in mobility.

C. Simulations

In this section we illustrate the analysis and parameter
estimation results from Sections III-IV.

We use the county adjacency matrix (af-\j[ ). To simu-
late the states for the SEIR model we use (1), with
homogeneous spread parameters (3%N, PN o, 5) =
(0.04, 0.06, 0.40, 0.30) and the initial state § = 0.02, €3 =
0.03, p(l) = 0.01, with the rest of the initial conditions for the
non-susceptible states set to zero for each node. We correctly
recover the spread parameters using (15) and e”, p¥, and r*
for k € {0, 1}, as expected by Theorem 2.

We include the adjacency matrix that represents the flights
between airports (af;’k), and the adjacency matrix with only
self-loops for spread within the county (ag) To simulate the
states we use (1)-(2), with the same initial state and the spread
parameters (3N, gpV, g’ gpl o gesS g g o4y =
(0.04, 0.06,0.02, 0.03, 0.05, 0.07, 0.40, 0.30). Moreover, we
add measurement noise to evaluate the sensitivity of the
estimation results and assume that the perturbation on e is
greater than that on p and r since it is the most difficult
of the three states to measure. The measured states are ¢,

0.06

0.04
—_

w
—-

0.02

0.00
0 50 100 150 0 50 100 150 0 50 100 150
k k k

(a) Network average (b) Network average (c) Network average
exposed state. infected state. removed state.

Fig. 2: Simulation of a homogeneous SEIR system with three
networks, one network is not completely known. Shows how
well the recovered states captures the average state.

P, and 7, determined by é¥ = e + ¢ (eF) where e.(z;) ~
N(0,0.0152;4-0.0001), p¥ = pF+¢e(pF), and 7 = rF+e(rF)
where e(z;) ~ N (0,0.008z; + 0.00001). In order to emulate
the difficulty of measuring the states at the beginning of an
outbreak, we start measuring from £ = 14, and recover the
spread parameters by left multiplying (15) by the pseudo-
inverse of (). The estimated states é, p, and 7 are constructed
using (1), the first set of measured states ¢4, p'4, and 74,
and the recovered spread parameters. In Figure 1 we show how
well the average states are recovered compared to the average
of the actual states, e, p, and r using the measured states to
recover the spread parameters. The recovered spread parame-
ters BEVN, prN BS*F, BP’F, BS’S, BPS . 6, fAyS are (0.043,
0.058, 0.023, 0.028, 0.037, 0.082, 0.400, 0.300). The
error of é, p, and 7 are 0.016, 0.015, and 0.004, respectively,
computed as %, for the corresponding state x.

To evaluate the sensitivity of recovering the states with
measurement noise and while only approximately knowing
the network, we use a noisy version of the adjacency ma-
trix that represents the aviation network by adding i.i.d.
zero-mean Gaussian noise with standard deviation 0.001
to every possible edge, not allowing entries to be neg-
ative nor greater than 1. The recovered spread parame-
ters (BevN, ppN | peF gpF geS gpS 5 &) are (0.043,
0.058, 0.023, 0.025, 0.035, 0.082, 0.400, 0.300) and the error
of é, p, and 7 are 0.078, 0.074, and 0.018, respectively. In
Figure 2, we see that the averages of the recovered states are
fairly close to the averages of the actual states even when
accurate flight data is not available.

D. Real COVID-19 spread data

We use daily COVID-19 case numbers aggregated by Johns
Hopkins University (JHU) [16]. Using this dataset, we are
able to estimate e, p¥, and 7% in (1). The per-capita infection
rate in county i on day k, p¥ is estimated by the number of
confirmed cases in county ¢+ minus the cases that have been
removed on day k£ and divided by the population in county
1. Due to incompleteness and inaccuracies in the county-level
recovery data, we estimate the state r* by assuming r¥ —
rR=l = (phmdr phmdey (phmdeml  phmde =y That s, we
assume each confirmed case becomes removed after d, days.
Based on [17], we use the median recovery time d, = 21
when computing the states. Due to uncertainty in the true d,.,
we learn v = 1/d, when calibrating the model. Similarly, we
estimate e as ef — eF1 = (phtde yphtdey (phtde=l
rf"’de_l). That is, the number of new exposed cases on day
k equals the number of new cases that were confirmed on day
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(c) SEIR, urban, with flights. (d) SEIR, rural, with flights.

Fig. 3: SEIR model simulations both with and without taking
flight data into account. Each curve represents the proportion
of infected population p¥ in a particular county. Dashed lines
represent real data, p, solid lines of the same color represent
the corresponding simulation results, p.

No flights With flights
Urban Rural Urban Rural
N s N s N s F N s F
B¢ 50E-8 0.106 | 1.IE-8 0.124 | 14E-6 0.106 0269 | 26E-7 0.124 7.8E-4
B8P 1.0E-7 0824 | 1.5E-8 1.6E-7 | 23E-6 0822 0.118 | 33E7 4.2E-6 0216
o7 0.115 0.124 0.115 0.124
Error(%) 58.6 54.1 57.7 54.1

TABLE II: The recovered parameters and the prediction scaled
error ||[p—p||2/||p||2 in the case of with flight adjacency matrix
and without flight adjacency matrix. E is the scientific notation.

k+d., where d. is the delay in number of days from becoming
exposed to being confirmed. We use d. = 14, since COVID-19
symptoms may appear as long as 14 days after exposure [18].
Note that we use the upper bound (14 days) to account for the
additional time after first showing symptoms until receiving a
positive test result. To limit the number of parameters learned,
we assume a fixed transition rate from exposed to infected of
o=1/d..

E. SEIR model with and without aviation network

Using (1)-(2) and a modified version of (21) as described
in Remark 1, we estimate the parameter values and simulate
the SEIR model both with and without taking transmissions
resulting from inter-city travel into account. The parameters
are estimated by minimizing the error in the modified version
of (21) while constraining them to be non-negative using the
cvx solver [19].

The SEIR model error is presented in Table II and the
corresponding model performance is plotted in Figures 3a-
3d. Comparing the performance of the SEIR model both with
(Figs. 3c, 3d) and without (Figs. 3a, 3b) the flight network,
we see that by including the aviation data, we are able to
predict the proportion of the population in the infected state
with slightly less error than when flight data is not considered.
This indicates that, by including the transportation network, we
are able to better model the virus spread. As before, the error in
rural counties remains lower than in urban counties. This result
is in line with our expectations that there may be viral spread
over the aviation network. Note though that asymptomatic
transmission is not being explicitly modeled, and may be a
significant source of error in this modeling effort. Further, the
inference of the epidemics states from observed data could

also be improved. Another factor that may be contributing to
the higher error is assuming that the system is closed (i.e., no
travel in-to or out-of the region).

VI. CONCLUSION

In conclusion, we have proposed a discrete time SEIR
model to capture virus spread over transportation networks.
We analyzed the limiting behavior of the model and presented
conditions for estimating the spread parameters from data.
The developed model is applied to infection and travel data
collected from the Northeastern US. To extend this work and
improve the performance of the model, we plan to incorporate
asymptomatic transmission. Nonlinear state estimation could
also be employed to more accurately estimate the epidemic
states for the SEIR model from observed data, similar to
the algorithm proposed in [10]. Capturing the transportation
networks via population flows for the SEIR model, similar to
[8] is another interesting future direction.
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