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As photoautotrophic organisms, cyanobacteria capture and

store solar energy in the form of biomass. Cyanobacterial

biomass has been an important component of diet and nutrition

in several regions for centuries. Synthetic biology strategies are

currently being applied to increase the yield and productivity of

cyanobacterial biomass by optimizing solar energy utilization

and CO2 fixation rates for carbon storage. Likewise,

engineering cyanobacteria as cellular factories to synthesize

carbohydrates, amino acids, proteins, lipids and fatty acids is

providing an attractive way to sustainably produce food and

nutrients for human consumption. In this review, we have

summarized recent progress in both aspects and prospective

trends under development.
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Introduction
Cyanobacteria are photoautotrophic microbes that have

played a major role in shaping the Earth’s biosphere.

Cyanobacteria were responsible for the increase in oxy-

gen in the atmosphere more than 2 billion years ago,

known as the great oxygenation event, which facilitated

the proliferation of eukaryotes [1]. The ability of cyano-

bacteria to convert carbon dioxide and sunlight into

oxygen and bio-products such as nutrients and biofuels

makes them critical for numerous biotechnological pur-

poses [2]. Cyanobacteria are increasingly being used for

production of food and nutrition in important industrial

settings. In the face of human population growth and
www.sciencedirect.com 
concomitant pressure on natural resource utilization, cya-

nobacteria are promising candidates for expanded appli-

cations due to their ability to grow without using arable

lands and potential to use industrial waste products [3].

Cyanobacteria are prokaryotic organisms that use phyco-

bilisomes, large pigment-protein antenna complexes, to

harvest light energy and transfer it to reaction centers

where photochemical reactions occur. Cyanobacteria con-

tain a large internal thylakoid membrane system where

the components of the photosynthetic electron transfer

system are located, including photosystems I and II (PSI

and PSII) [4]. These bacterial cells also contain numerous

inclusion bodies and compartments, including the car-

boxysome, which facilitates the carbon-concentrating

mechanism (CCM) that is important for efficient carbon

fixation [5]. Cyanobacteria are found in a wide range of

habitats, from open ocean to desert crusts. Their meta-

bolic versatility lends these organisms to bioengineering

applications for sustainable production of a wide variety

of products. This review discusses important recent

advances in engineering to improve cyanobacterial bio-

mass production and manipulate cyanobacteria as cellular

factories to produce food and nutrients.

Cyanobacterial biomass used as food
There are multiple records of historical usage of cyano-

bacteria and microalgae in human diets. Arthrospira (com-

mercially known as Spirulina) is a well-known cyanobac-

terium that was consumed long ago around Chad Lake in

Africa and by the Aztecs in Central Mexico [6]. Other

filamentous cyanobacteria that are widely used as food in

Asia and South America belong to the genus Nostoc [7,8].

At present, more than 70 countries have commercialized

products of nutritional importance that are obtained from

cyanobacteria [9]. Biomass of cyanobacteria contains high

amounts of protein and other nutritional components. For

instance, Arthrospira reaches 50–70% protein and pro-

duces fatty polyunsaturated acids (1.5–2%), lipids (5–

6%) as well as various vitamins [6]. Several studies and

reviews have summarized the strategies of cultivation and

process optimization to improve the production of cya-

nobacterial biomass [10–13]. Here, we are focusing on

studies using synthetic biology (mainly through genetic

engineering) to enhance biomass yield and biomass pro-

ductivity, which is determined by photosynthesis and

growth rate, respectively.
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Engineering to increase biomass yield
Microbial bioengineering is dominated by organisms that

are easy to genetically manipulate and display fast growth

rates, such as Escherichia coli and yeast. In comparison,

cyanobacteria are less well understood [14]. However,

recent progress has shown that cyanobacteria are capable

of fast growth and many strains are amenable to genetic

modification [14]. CRISPR strategies have been applied

in several strains of cyanobacteria to implement genetic

changes [15].

To increase cyanobacterial biomass yield, efficient

absorption of solar energy and fixation of CO2 are two

targets for engineering. Recent efforts to increase photo-

synthetic efficiency have focused on expansion of portion

of the solar spectrum harvested and increasing electron

transport chain activity. To absorb far-red light of wave-

lengths over 700 nm, chlorophyll f (Chl f) encoding genes

were successfully introduced into the model species

Synechococcus sp. PCC 7002 [16�]. After optimization of

light growth conditions, Chl f was functionally integrated

into PSI complexes and connected to the reaction center,

resulting the extension of the active radiation for the new

hybrid PSI complex up to 750 nm [17]. This expansion of

the usable area of the solar spectrum has provided an

advantage under non-saturating light conditions. Hasu-

numa et al. overexpressed the gene flv3, encoding an

NAD(P)H:oxygen oxidoreductase in Synechocystis sp.

PCC 6803, resulting in improved biomass accumulation

by 30% in a week of culturing [18]. The study revealed

that Flv3 overexpression improved the electron transport

chain activity and ATP supply through the regeneration

of NADP+. Genes involved in the Calvin cycle and CCM

are targets for engineering to improve the carbon fixation

rate. Overexpression of RuBisCo, sedoheptulose 1,7-

biphosphatase, transketolase and fructose-bisphosphate

aldolase in both Synechocystis 6803 and Synechococcus
7002 proved to be effective to improve biomass accumu-

lation [19,20]. Meanwhile, overexpression of the carbon

transporters BicA and SbtA involved in CCM improved

the biomass yield by 50–100% [21,22]. The progress to

deeply understand the mechanisms of photosynthesis and

carbon fixation is also helpful for synthetic biology appli-

cations to improve the biomass yield of cyanobacteria.

Exploring the fast growth in cyanobacteria
Although cyanobacteria offer attractive systems for bio-

technological applications due to their increased growth

rate compared to plants, the growth rates of commonly

used cyanobacterial model strains are significantly slower

compared to E. coli or yeast. For instance, Synechocystis
6803, Synechococcus elongatus PCC 7942 and Synechococcus
7002 are three model cyanobacterial strains used for

decades, with doubling times under optimal conditions

of 6.6 hours, 4.9 hours, and 4.1 hours, respectively [23].

Several studies have sought to identify and characterize

new cyanobacterial strains that can grow rapidly as a
Current Opinion in Biotechnology 2021, 67:1–6 
superior phototrophic chassis for synthetic biology appli-

cations [23–26].

Isolated in India, S. elongatus PCC 11801 has a growth rate

of 0.29 hour�1 at 41�C and 1000 mmol photons m�2 s�1,

which is the highest reported for any cyanobacterium

under ambient CO2 conditions [24]. The same research

group isolated and characterized another strain, S. elon-
gatus PCC 11802, that is phylogenetically close to S.
elongatus PCC 11801 with 97% genome identity [25].

The strain shows a doubling time of 2.8 hour under the

optimal growth conditions of 1% CO2, 38�C, and

1000 mmol photons m�2 s�1. Isolated from Singapore,

Synechococcus sp. PCC 11901 accumulates 1.7–3 times

more biomass under optimized conditions than these

commonly used model cyanobacteria. Its average biomass

productivity reached 0.1 g CDW L�1 hour�1 and the

shortest doubling time is close to 2 hours at 30�C with

5% CO2 [26].

With a 99.8% identical sequence to S. elongatus PCC 7942

(hereafter PCC 7942), S. elongatus UTEX 2973 (hereafter

UTEX 2973) gained a large interest because of its much

shorter doubling time [23]. At 42�C with 5% CO2 and

1500 mmol photons m�2 s�1, UTEX 2973 achieves the

remarkable doubling time of 1.5 hour, which is compara-

ble to the yeast strain Saccharomyces cerevisiae [27�]. There

are only 55 single nucleotide differences between UTEX

2973 and PCC 7942 at the genome level, which provides

an excellent opportunity to explore how a slower-growing

organism can be transitioned into a faster-growing strain.

Compared to PCC 7942, UTEX 2973 exhibits a 2.5-fold

higher CO2 uptake rate and a 1.9-fold-higher rate of O2

evolution under culture conditions yielding the highest

growth rates for each, indicating higher photosynthetic

rates. These phenotypes in UTEX 2973 are tightly cor-

related to the increased rate of electron transfer from PSII

and the content of PSI, cytochrome b6f, and plastocyanin

[27�]. Furthermore, to determine the specific loci out of

55 single nucleotide differences that confer rapid growth,

a comprehensive mutational analysis of UTEX 2973 was

preformed [28��]. Finally, three genes were identified,

atpA, ppnK and rpaA, which encode the alpha subunit of

ATP synthase, the NAD+ kinase, and the global regulator

of circadian clock output, respectively. Importantly, when

the genome sequence of PCC 7942 at five loci in these

3 genes was converted to the UTEX 2973 sequence, the

doubling time decreased to 2.3 hours. Commensurate

with the increase in growth rate, the photosynthetic rate

was also doubled in the fast growing PCC 7942 mutant

[28��]. This study revealed the molecular basis for rapid

growth and suggested that increased production of intra-

cellular ATP and NADPH is directly responsible for rapid

autotrophic growth.

Along with new species isolated recently, efforts have also

been made to improve the growth rate of model species of
www.sciencedirect.com
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cyanobacteria. Van Alphen et al. identified sulfate and

iron as limiting factors in the medium for Synechocystis
6803. After optimizing the growth conditions, the dou-

bling time of Synechocystis 6803 was significantly shorten to

4.3 hours [29]. Bernstein et al. identified key mechanisms

that allow Synechococcus 7002 to achieve fast growth with a

2.5 hour doubling time [30]. Such enhanced growth was

supported by high rates of photosynthetic electron trans-

fer, which corresponds well with the findings in UTEX

2973. Furthermore, Bernstein et al. found that signifi-

cantly elevated transcription of precursor biosynthesis

and protein translation machinery also contributed to

the ultrafast growth of Synechococcus 7002 [30].

Computational model-based insights on the
fast growth of cyanobacteria
Mueller et al. used genome scale metabolic models of

UTEX 2973 and PCC 7942 to identify the factors that

contributed to the fast growth phenotype [31]. Their

analysis revealed that the major factor is the difference

in their carbon uptake rates, which was supported by a

later study based on genome scale 13C-MFA of UTEX

2973 [32], and is consistent with the results observed in

the study mentioned above [27�]. Reimers et al. used a

genome scale dynamic resource allocation model to

understand the optimal allocation of cellular resources

during diurnal growth of PCC 7942 [33�]. In their analysis,

the major determinant of growth rate was found to be the

fraction of total proteome allocated for non-catalytic roles.

This parameter determines the amount of cellular

resources allocated for the synthesis of non-metabolic

proteins that do not perform any catalytic function but

still constitute the active proteome of the cell. For slower

growing cells of PCC 7942 this fraction was calculated to

be 0.55 [33�]. The lower this fraction, the higher the

growth rate predicted by the model. Similar observations

were also made in earlier modeling studies on cyanobac-

teria [34]. Detailed investigations of the above-men-

tioned model-based hypotheses would help to glean

insights on the principles that govern growth rate, aiding

in the engineering of strains with faster growth rates.

Production of nutrients from CO2 using
cyanobacterial cellular factories
Besides energy captured in the form of biomass as a food

source, cyanobacteria have been used as green cellular

factories to produce various nutrients, including carbohy-

drates, protein and amino acids, lipid and fatty acids, and

pigments. Carbohydrates represent a major product of

photosynthesis, with the content reaching up to 50% of

dry weight in certain cyanobacteria [35]. Exopolysacchar-

ide (EPS) has also been reported to contribute 25% of the

total biomass of cyanobacteria [13]. Because of potential

applications in the food industry, large-scale production

of cyanobacterial EPS has received increasing attention.

Most of cyanobacterial EPS is composed of six or more

types of building blocks, of which glucose is frequently
www.sciencedirect.com 
observed at the highest amount [36]. However, there is

still poor knowledge of the structure of EPS and its

production by cyanobacteria is a complex process that

is regulated by many genes. Therefore, intensive studies

are required for development of genetically engineered

cyanobacteria for EPS production. Another carbohydrate

that has gained interest is sucrose, which is naturally

synthesized by many cyanobacteria under stress condi-

tions and has been engineered for production in several

species. In cyanobacteria, sucrose is synthesized from

UDP-glucose and fructose-6-phosphate by sucrose-phos-

phate synthase (SPS) and sucrose-phosphate phosphatase

(SPP). Manipulation the expression of genes coding for

these two enzymes has improved the accumulation of

intracellular sucrose in several species, including Synecho-
cystis 6803, PCC 7942, and UTEX 2973 [37–39]. Further-

more, introducing a sucrose permease (CscB) from E. coli
into cyanobacteria has resulted in efficient export of

sucrose [39]. To date, the highest production titer and

productivity were reached in UTEX 2973 under salt

stress conditions. After 5 days with 150 mM NaCl, 8 g L�1

sucrose was observed in the medium. The highest pro-

ductivity during the process reached 1.9 g L�1 day�1,

which resulted in a sucrose yield of 3.1 g g�1 biomass [39].

A few studies have been done to produce specific proteins

and amino acids using cyanobacteria as hosts. Phycobili-

proteins have been widely used as a natural protein dye in

the food industry, due to their water-soluble nature. The

commercial production of phycobiliproteins is mainly

restricted to Arthrospira (Spirulina), but Kumar Saini

et al. explored its production in the diazotrophic cyano-

bacterium Anabaena variabilis CCC421 [40]. The group

optimized the medium components resulting in enhance-

ment of phycobiliprotein production from 190 mg/L to

408.5 mg/L, which demonstrated the potential to mas-

sively produce a specific protein in cyanobacteria. Cya-

nobacteria have also been engineered to produce several

amino acids, including lysine in Synechococcus 7002 and

aromatic amino acids (phenylalanine, tyrosine, and tryp-

tophan) in Synechocystis 6803. Through the introduction of

a lysine transporter YbjE and a feedback-inhibition-resis-

tant aspartate kinase, and after the optimization of cul-

tural conditions, engineered Synechococcus 7002 directed

18% of fixed carbon to lysine production, resulting a

productivity of 72 mg L�1 day�1 [41]. Brey et al. engi-

neered the metabolism of Synechocystis 6803 by heterolo-

gous expression of AroG and TyrA to produce phenylala-

nine and tyrosine, of which the yield reached 0.9 g g�1 cell

dry weight and 0.064 g g�1 cell dry weight, respectively

[42]. Combining random mutagenesis and AroG and

TrpE overexpression, Deshpande et al. manipulated Syne-
chocystis 6803 to produce tryptophan with a titer of 0.2 g

L�1 after 10 days of autotrophic growth [43].

Many studies have been done in several species of

cyanobacteria for lipid and fatty acid production, which
Current Opinion in Biotechnology 2021, 67:1–6
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are recently systematically summarized in a review paper

[44��]. Of particular interest is the production of the

dietary omega-3 (n-3)polyunsaturated acids (PUFAs).

To benefit human nutrition, health organizations have

recommended increasing dietary consumption of n-3

PUFAs, leading to fast-growing markets in dietary sup-

plements, functional foods, and infant formulas, espe-

cially for the long chain n-3 PUFAs eicosapentaenoic acid

(EPA, 20:5) and docosahexaenoic acid (DHA, 22:6) [45].

PUFAs are naturally produced by cyanobacteria as essen-

tial components and model species of cyanobacteria have

been engineered to produce a-linolenic acid (ALA, 18:3),

stearidonic acid (SDA, 18:4), and eicosatetraenoic acid

(ETA, 20:4) [45–47]. The rate-limiting steps in intracel-

lular biological conversion are the desaturation steps, and

particularly the D6 desaturase. To date, the production

yield of n-3 PUFAs in cyanobacteria is around 10�100

mg g�1 cell dry weight. Poole et al. summarized all of the

work related to PUFA production in cyanobacteria in a

recent paper [45].

Carotenoids are light harvesting terpenoid pigments that

have been studied as functional food supplements for

decades due to potential health benefits [48]. The car-

otenoids produced by cyanobacteria include b-carotene,
astaxanthin, zeaxanthin, and others [48]. b-carotene is

used as a pro-vitamin A supplement and astaxanthin and

zeaxanthin have commercial value in nutraceuticals due

to antioxidant properties. Two decades ago, Lagarde et al.
explored the potential to modify the content of carote-

noids in Synechocystis 6803 [49]. Overexpression of IDI,

CrtR, CrtP, and CrtB in the carotenoid biosynthetic

pathway increased zeaxanthin accumulation by 2.5-fold

and carotenoid content by 50%. Recently, astaxanthin

was produced in both Synechocystis 6803 and Synechococcus
7002 [50,51�,52]. The highest yield of astaxanthin was

29.6 mg g�1 cell dry weight reported in Synechocystis
6803. Diao et al. constructed an efficient astaxanthin

anabolic pathway through multiple engineering steps to

rewire endogenous metabolism, including introducing

two key enzymes, b-carotenoid ketolase and hydroxylase,

as well as screening and carbon flux enhancements for

precursor supply in the native MEP pathway [51�].

Model-based tools for engineering
Synthetic biology efforts to overproduce nutrients from

cyanobacteria can be guided by metabolic models. Both

constraint-based metabolic models and kinetic models

are already in use to guide genetic modifications for

overproducing target chemicals in cyanobacteria [53].

High quality genome scale metabolic models are avail-

able for a number of model and non-model cyanobacteria

[54], including Arthrospira [55]. For model organisms with

well-developed genetic tools, recent GSM efforts had

incorporated extensive experimental validation into their

workflow [56]. Some of these models were used to

improve the production alongside strain designing
Current Opinion in Biotechnology 2021, 67:1–6 
algorithms such as minimization of metabolic adjust-

ments (MOMA) [57] and OptForce [58]. Kinetic model-

ing efforts on the other hand are confined only to the

model strains Synechocystis 6803 and PCC 7942, although

state-of-the-art parameterization techniques allow for the

development of such models in other less studied cya-

nobacteria [53]. In cyanobacteria, this modeling frame-

work has proven useful in enhancing the production of

target chemicals [59,60]. Another important tool for met-

abolic engineering is 13C-metabolic flux analysis. This

technique provides highly accurate estimates of intracel-

lular fluxes that could be used to pinpoint bottlenecks in

the metabolic network that limit the production rates

[61]. All of these established in silico techniques can be

readily applied for enhancing the production of nutrients

from cyanobacteria.

Conclusions
Synthetic biology has facilitated the rise of cyanobacteria

as promising hosts for efficient conversion of solar energy

to chemical energy, and the resulting product storage in

the form of biomass or bioproducts. Recent progress in

the optimization of photosynthesis and carbon fixation,

identification of growth limitation factors, and isolation of

fast growers has significantly advanced the potential

large-scale production of cyanobacterial biomass. Mean-

while, engineering cyanobacteria to produce specific

nutrients has emerged as an attractive complementary

direction for further exploration. However, limiting fac-

tors for the wide application of cyanobacteria as model

microbes remain the development of systematic and

precise genetic tools and the elucidation of the relevant

intracellular native regulations. Additionally, we need to

be aware that 97% of tested cyanobacteria produce toxins

[62,63], secondary metabolites posing a threat to human

health, which should be considered in future studies.
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