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Abstract: Mechanics-based dynamic models are commonly used in the design and performance
assessment of structural systems, and their accuracy can be improved by integrating models with
measured data. This paper provides an overview of hierarchical Bayesian model updating which
has been recently developed for probabilistic integration of models with measured data, while
accounting for different sources of uncertainties and modeling errors. The proposed hierarchical
Bayesian framework allows one to explicitly account for pertinent sources of variability such as
ambient temperatures and/or excitation amplitudes, as well as modeling errors, and therefore yields
more realistic predictions. The paper reports observations from applications of hierarchical approach
to three full-scale civil structural systems, namely (1) a footbridge, (2) a 10-story reinforced concrete
(RC) building, and (3) a damaged 2-story RC building. The first application highlights the capability
of accounting for temperature effects within the hierarchical framework, while the second application
underlines the effects of considering bias for prediction error. Finally, the third application considers
the effects of excitation amplitude on structural response. The findings underline the importance
and capabilities of the hierarchical Bayesian framework for structural identification. Discussions of
its advantages and performance over classical deterministic and Bayesian model updating methods
are provided.

Keywords: hierarchical Bayesian modeling; model updating; modeling errors quantification;
reinforced concrete buildings; structural identification; uncertainty quantification

1. Introduction

With the availability of cheaper sensors and advanced computational tools, the inference of
models from data is receiving more attention in different engineering applications, including structural
engineering [1-4]. Among the different numerical models, mechanics-based models such as finite
element (FE) models are frequently utilized in structural design, response prediction to future loading,
damage identification and structural health monitoring. The prediction accuracy of models can be
improved by integrating measurements from real structural systems with numerical models through
model updating. In this process, certain structural parameters such as material properties are tuned
so that model predictions match the observed data. This process is referred to as model updating,
model calibration, system identification, model inversion, model inference, or digital twinning, in the
literature [1-4]. Model updating is traditionally performed through an optimization process, referred
to as ‘deterministic approach’ here, or through Bayesian inference. In the deterministic approach,
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structural parameters are updated by minimizing a user-defined objective function, which consists of
the discrepancies between model-predictions and field measurements [1]. This approach is easy to
implement and often not computationally demanding if local optimization algorithms are used [5,6].
Therefore, a large number of deterministic model updating applications can be found in the literature,
on a variety of laboratory or full-scale civil structures [1-4,6-18]. Bayesian model updating methods
have received more interest in structural engineering applications over the last two decades [19].
In addition to the optimal values of updating parameters (as most probable), Bayesian methods also
quantify the estimation uncertainty of parameters which can be propagated into response predictions.
A joint posterior probability distribution of structural parameters is obtained using Bayesian inference
by combining the prior knowledge of parameters and the likelihood of measurements. The maximum a
posteriori (MAP) solution (the peak of posterior distribution) represents the optimal or most probable
solution. The variances of marginal probability distributions of updating parameters represent their
estimation uncertainties. The joint posterior distribution of parameters can be estimated analytically
through an asymptotic approximation method [20], or numerically through stochastic sampling
methods [21-23]. The response can then be predicted probabilistically using the updated model,
by propagating the parameters uncertainty. Several applications of Bayesian model updating on
numerical [19,24-30], laboratory [31] and real-world [32-35] structures can be found in the literature.

The uncertainties/variabilities concerning model updating can be categorized into three groups:
(1) measurement noise, which includes sensor or cable noise for time history response, as well as
estimation errors in data feature extraction, e.g., modal identification errors; (2) variability of effective
structural properties (referred to as ‘inherent variability” of structural parameters), such as mass, stiffness,
or boundary conditions due to changing ambient and environmental conditions, such as temperature,
wind and traffic loads, human activity, humidity, or excitation level; and (3) modeling errors in
the numerical model due to, for example, discretization in FE models, unmodeled non-structural
components, modeling simplifications and assumptions with respect to linearity, material constitutive
model, connections, and boundary conditions. Modeling errors are often the most significant and
influential source of uncertainty in modeling, model updating and response predictions, especially for
civil structures, due to their large-scale size and complexity [29,36,37].

While the deterministic model updating methods can consider the effects of measurement
noise/uncertainty by integrating residual weights in the objective function, these methods cannot
quantify the estimation uncertainty of updating parameters. The classical Bayesian model updating
methods lump the effects of all uncertainties into the error function (i.e., prediction error) and often
consider them as a zero-mean Gaussian white noise in the likelihood function. Some work have
been done to study the effects of spatial and temporal error correlation on Bayesian inference and
the identifiability of joint parameter and error function [38,39], however, zero-mean Gaussian error
function is still commonly adopted in practice [19,20]. In such Bayesian approaches, the inherent
structural variability and modeling errors are not explicitly accounted for or quantified, and the
estimation uncertainty of updating parameters is only assumed to be caused by measurement noise.
Therefore, estimation uncertainty monotonically decreases as more measurements are used in the
likelihood function and converges to zero for adequately large amount of data. The underestimation
and monotonically decreasing trend of parameter uncertainty, conditional on parameter being globally
or locally identifiable [20], using the classical Bayesian methods have been demonstrated through
a numerical study of a three-story shear building model [40]. This decreasing trend is described as
‘noise mitigation” in [41]. This implies that the classical Bayesian inference shall not be used for the
quantification of model updating uncertainties unless the uncertainties are limited to measurement
noise, which is often not the case in civil structural systems. However, both deterministic and Bayesian
approaches are effective in finding the optimal structural parameters from measured data. Alternatively,
non-probabilistic approaches, e.g., fuzzy set theory, can be employed to account for uncertainties
in model updating [42], but inherent structural variability and modeling errors are not explicitly
quantified in these methods either.
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Hierarchical Bayesian model updating has been proposed to address the aforementioned
shortcomings in estimation of realistic structural parameter uncertainty and quantification of modeling
errors. Hierarchical Bayesian modeling [43] was first developed by mathematicians to estimate
unknown parameters at higher levels which measurements were not directly related to, e.g., estimation
of distribution parameters-mean and standard deviation-(referred to as hyperparameters) of structural
parameters. In applications to civil structural systems, it is reasonable to model the structural
components properties with an underlying joint probability distribution, to represent and account for
aforementioned three types of uncertainties, (1) measurement noise, (2) the inherent variability due to
changing ambient and environmental conditions, and (3) the effects of modeling errors, e.g., different
nonlinear mechanisms activated in the real systems that have not been accounted for in the numerical
model [44]. Therefore, in a hierarchical Bayesian framework, instead of directly estimating the structural
parameters (e.g., stiffness), the hyperparameters (e.g., mean vector and covariance matrix of stiffness
probability distribution) are estimated. This approach is suitable when multiple sets of measurements
are available and each set of measurements is assumed to only contain information about one realization
of the structural parameters (e.g., effective structural stiffness under different experimental conditions).
Therefore, by constructing a hierarchical model, the distribution parameters (hyperparameters) of
the structural parameters, which cannot be directly inferred from an individual set of measurements,
are estimated from multiple realizations of the dynamic system. In this case, the effects of pertinent
uncertainties can be considered and quantified by estimating structural hyperparameters to represent
structural parameters variability.

Moreover, the hierarchical framework provides an estimate for the distribution parameters of the
error function. The error function, which represents the prediction error between model-predictions
and field measurements, is assumed to follow a probability distribution characterized by its
distribution parameters, e.g., mean vector and covariance matrix. The error function here
represents the residual uncertainty between model-predictions and measurements after a portion
of the total system uncertainties has been embedded in and accounted for by hyperparameters.
Therefore, the error function captures the remaining prediction misfit which cannot be captured
by the hyperparameter-characterized structural parameters variability. For comprehensive and
robust probabilistic response predictions using the calibrated model, both parameter uncertainties
(hyperparameters) and error function uncertainties (mean vector and covariance matrix of error
function distribution) are included and propagated.

Following a review of the hierarchical Bayesian model updating framework, the paper provides
applications of the hierarchical Bayesian approach on three full-scale civil structures, where structural
hyperparameters and error function are estimated. The first application considers a two-span footbridge
at Tufts University campus in Medford, Massachusetts. The footbridge was instrumented with a
continuous monitoring system including accelerometers and thermocouples. Three different updating
scenarios are performed to underline the capabilities of the hierarchical approach to consider different
subsets of available heterogeneous measurements, i.e., (i) only vibration data, (ii) vibration data
and ambient temperatures, or (iii) vibration data, ambient temperatures, and excitation amplitudes.
The second case study is a 10-story reinforced concrete (RC) building in Utica, New York, instrumented
with accelerometers. This application investigates the effects of the error function distribution format
(zero-mean vs. non-zero-mean) on response predictions, and discusses the shortcomings of using a
tightly fitted model for extrapolation outside the data range, i.e., error function distribution changes
outside the observed data range. The third case study is a two-story RC building in El Centro,
California, which was excessively damaged by past earthquakes. In this application, the structural
stiffness hyperparameters are assumed to be function of loading amplitudes. Dynamic response of the
building to a shaker excitation is predicted when effect of loading amplitudes is or is not considered.



Sensors 2020, 20, 3874 4 of 27

2. Uncertainty Quantification and Propagation through Hierarchical Bayesian Modeling
2.1. Sources of Uncertainty

2.1.1. Measurement Noise

In this paper, measurement noise is generalized to denote any errors/discrepancy between available
data features used for model updating and their true counterparts from the actual structure. Therefore,
measurement noise can either be (1) cable or sensor noise when time history measurements are used
for model updating, e.g., acceleration, velocity, displacement, and strain, etc., or (2) data feature
extraction errors, e.g., modal identification errors when modal parameters (natural frequencies and
mode shapes) are used for model updating, as have been done in the three reviewed applications.
Modal identification errors are often caused by linear model assumption, viscous damping assumption,
experimental variability, data processing errors and analyst’s subjective errors [45]. It is worth noting
that modal identification errors can alternatively be considered as a type of modeling errors, e.g., due to
linear model assumption considered in the identification process, while the structure is inherently
nonlinear. However, in this paper, we consider this as measurement noise, because it has similar effects
to sensor noise when modal parameters are used for model updating. The term ‘modeling errors’ in
this paper particularly refers to the errors/uncertainty in the numerical model. A hierarchical Bayesian
modal analysis framework has been recently developed to quantify the variability of modal properties
due to modal analysis errors [45]. It has been demonstrated that modal properties vary over datasets,
even if ambient and environmental conditions over different datasets are unchanged. This variability
is mainly due to the linear model assumption used in modal analysis, and to a lesser extent, due to the
data processing errors.

2.1.2. Changing Ambient and Environmental Conditions

An important source of variability on effective structural properties, which is relatively unique
to civil structural systems, is the changing ambient and environmental conditions. Past studies
have shown that effective structural properties, such as stiffness, mass or boundary conditions, can
vary due to the changes in ambient conditions (e.g., wind load, traffic load, occupancy, and human
activity), as well as environmental conditions (e.g., temperature, temperature gradient, humidity,
and rainfall) [46-50]. For example, structural mass property changes due to occupancy in a building,
traffic on a bridge, or precipitation. The freezing of a bridge deck can contribute to the structural
stiffness significantly, as reported in a year-long monitoring of the Z-24 bridge in Switzerland [46].
Some experimental studies on the Alamosa Canyon Bridge also showed that temperature differentials
across the concrete deck had a strong influence on the bridge natural frequency and its stiffness
(first mode frequency varied approximately 5% during a 24 h period) [47], and evident reductions
in natural frequencies were observed because of the increase of bridge mass, due to rainfall [48].
Clinton et al. [49] studied the long-term natural frequencies of the Millikan Library and the Broad
Center, and observed significant variations in their natural frequencies when weather conditions
change, e.g., heavy rain decreased fundamental frequencies by up to 3%, and high temperatures raised
all natural frequencies by 1-2%, while strong winds decreased the natural frequencies by up to 3%.
Moser and Moaveni [50] also reported a significant increase in natural frequencies of the Dowling Hall
footbridge, when temperatures go below the freezing point. They attribute this to stiffer boundary
conditions (soil freezing) and deck hardening. This type of variability in structural properties is referred
to as ‘inherent variability” in this study to be distinguished from the other types of uncertainties:
modeling errors and measurement noise. For mechanical systems, other factors such as manufacturing
variability can contribute to the inherent structural variability as well [51].
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2.1.3. Modeling Errors

Modeling errors are often the most critical and influential source of uncertainty in modeling,
model updating and response predictions, especially for civil structures, due to their complexity and
large-scale size [37,52]. Different modeling assumptions and simplifications can introduce errors in the
numerical models, including, but not limited to, structural linearity assumption, boundary conditions
simplification, unmodeled non-structural components, material property uncertainty, discretization,
geometry errors, and connection simplification. Sedehi et al. [44,53] have demonstrated that different
model updating results can be obtained using different sets of measurements (or different windows
of data from a single experiment), even when all experiment factors are kept constant, including
ambient and environmental conditions, and excitation characteristics, such as frequency content and
intensity. In these applications, time history measurements were used with negligible measurement
noise; therefore, the observed parameter estimation variability is attributed to the effects of modeling
errors of the numerical model used for model updating.

2.2. Hierarchical Bayesian Model Updating

2.2.1. Hyperparameters

Due to the uncertainties concerning model updating, i.e., measurement noise, the inherent
variability of structural properties and modeling errors, it is reasonable to consider unknown updating
structural parameters as random variables with underlying probability distributions, to be estimated
in the hierarchical Bayesian approach. It is worth noting that, in the classical Bayesian inference, true
values of updating structural parameters (e.g., stiffness) are not assumed to follow an underlying
probability distribution, but some unknown constant values. The updating structural parameters are
estimated to follow the joint posterior probability density function (PDF) in the classical Bayesian
approach, from combining the information from prior PDF and likelihood function. However,
the estimation uncertainty of parameters observed in the posterior PDF is only caused by measurement
noise, and represents the confidence of parameters estimation. Therefore, the posterior PDF will shrink
to a Dirac delta function, with increasing data points used in the likelihood function if the inverse
problem is globally or at least locally identifiable [40]. In the reviewed applications of hierarchical
Bayesian modeling in this paper, structural parameters 0, i.e., effective stiffness of different structural
components, are considered to follow a priori distribution (e.g., Gaussian), characterized by unknown
distribution parameters referred to as ‘hyperparameters’, e.g., mean vector ug and covariance matrix
Lo of the Gaussian distribution. Then, the hyperparameters are directly updated in the hierarchical
framework, which govern the structural parameters variability through the assumed distribution.
Note, that since hyperparameters are the updating parameters in this framework, posterior marginal
distributions of hyperparameters quantify their estimation uncertainties similar to the estimation
uncertainty of structural parameters in the classical Bayesian method. These estimation uncertainties
are reduced by feeding more datasets, but their MAP estimates (most probable values) converge
to constant values with an adequate number of data points. Therefore, the structural parameters
variability is not affected by the number of data points used and represents the system uncertainty.

In the hierarchical approach, alternative distribution models, such as lognormal or Gamma
distributions, can be assumed for updating structural parameters. However, in the reviewed
applications, truncated (to be positive) Gaussian distribution is chosen for stiffness parameters
due to the maximum entropy theory, i.e., the Gaussian distribution provides the maximum uncertainty,
given that the mean and variance of the distribution are bounded. Stiffness parameters are the most
common updating structural parameters in the literature, but other parameters, such as mass or
geometric properties, can also be considered in a similar manner [34].
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2.2.2. Error Function

Similar to classical model updating methods, an error function is defined to represent the misfit
between model-predictions and the measurements. The error function is based on the available
measured data, e.g., modal properties or time history measurements. Common forms of error functions
using natural frequencies and mode shapes are defined by Equations (1) and (2).
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where ¢,, and eg,, are the error functions of natural frequencies and mode shapes for mode m,
respectively. ©; is the structural parameter at test or dataset t. Xtm and atm are the identified
eigenvalues (square of circular natural frequency in rad/s) and mode shapes, and A,,(0;) and ®,,(6;)
are their model-predicted counterparts. I is the selection matrix which maps ®,,(6;) to El;tm. Apy 1S
a scaling factor which makes the identified and model-predicted mode shapes comparable. Error
functions can also be defined using time history measurements (e.g. acceleration, displacement or
strain) if the excitation loads are known, as done in [44]:

e(kr 91‘) = Y(k) - Tx(k, et)/ (3)

where y refers to time history measurements, x is model-predicted counterparts and k is the time index.

In the hierarchical Bayesian framework, the error function is considered as a random variable,
following a priori distribution (similar to structural parameters) with unknown distribution parameters.
In this paper, Gaussian distributions are considered to maximize the information entropy, but other
distributions can be considered. The mean vector p, and covariance matrix X, of the error function are
estimated, along with the structural hyperparameters pg and Zg.

2.2.3. Model Updating Process

In the hierarchical approach, the updating structural parameters @, stiffness parameters
used in this paper, consists of vector of effective stiffness for different structural components
corresponding to different individual test t, ® = {6y, t =1,---,N;}, and N; refers to the total
number of datasets/experiments. Stiffness hyperparameters are denoted by mean vector pg (v, f) and
covariance matrix g (A), while the error function distribution is characterized by mean vector p,
and covariance matrix Z.. The hyperparameters pg (o, ) and Zg (A1) can be assumed to be functions
of higher-level variables (optional higher-level hyperparameters) «, 5, A, or even more variables, as
needed. These higher-level hyperparameters can represent coefficients of a model between stiffness
mean (or covariance) and other influential factors of interest, such as ambient temperature and
excitation level. When such relationship models are considered, then these coefficients variables
a, p, and A will be directly estimated, and hyperparameters pg and Zg are computed using these
coefficients. In the absence of such relationship, ng and Zg will be estimated directly. It is worth
noting that by constructing the relationships between hyperparameters and other influential factors,
the estimated stiffness variability (covariance matrix Xg) will be reduced compared to when estimating
ng and Xg directly without considering this relationship. This is due to the fact that these influential
factors account for different sources of uncertainty, and by including them in the hierarchical model,
more accurate predictions with tighter confidence bounds are obtained from the updated model.
The hierarchical Bayesian framework has the capability to model several levels/hierarchies of correlated
information, and therefore reduce the estimated variability of structural parameters by including extra
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distributions of hyperparameters p(pg (e, B)) and p(Ze(A)). In the following three applications,
specific priors are used which are defined as ‘conjugate priors’ in the Bayesian theory [43]. The selection
of conjugate priors has the advantage of simplifying the mathematical derivation and computation
of the posterior PDFs, since posterior distributions belong to the same family of distributions as the
prior one. For example, in Application 1, gamma distribution is used for Lg, and in Application 3,
inverse-Wishart distribution is selected for £o. However, use of conjugate priors is not a requirement
and other distributions can be alternatively used.

To reduce the number of independent updating parameters, the covariance matrix Zg can be
assumed to be diagonal, i.e., only diagonal terms need to be estimated, as has been done in past
studies [40,54-56]. This assumption ignores the stiffness correlations of different structural components.
Alternatively, a full covariance matrix Xg can be estimated to characterize the stiffness correlations in
off-diagonal terms, as it is done in some recent studies [53,57,58]. The error function distribution is often
assumed to be zero-mean, i.e., 4, = 0, which neglects error bias and causes an inflated estimation of
error covariance X, in applications with error bias. The choice of u, depends on the specific application
of whether an error function bias is observed, as shown in Application 2. The error covariance matrix
L. is often assumed to be a diagonal matrix which ignores the error correlations (similar to Xg). This is
a common simplification and often a reasonable assumption, and its accuracy depends on the specific
application and available data. Other options are available to reduce independent updating variables
in the error covariance matrix, including the use of the covariance matrix function, which considers the
exponential relationship for covariance components [59,60]. The full error covariance matrix can also
be estimated if needed, demanding a higher computational effort.

By substituting the likelihood functions and prior distributions into Equation (6), the joint
posterior PDF can be obtained. This is often a complicated distribution, and it is challenging to
evaluate it analytically. Therefore, numerical methods are often employed to estimate the joint and
marginal posterior distributions. Note that analytical asymptotic approximate solutions for marginal
distributions of hyperparameters can be obtained when a large number of data points are available in
each dataset as done by Ballesteros et al. [51] using natural frequencies, and Sedehi et al. [44,53] using
time history measurements.

2.3. Probabilistic Response Prediction

Introducing structural parameters distribution governed by hyperparameters embeds uncertainties
into the structural parameters by providing variability and flexibility to the numerical model to
represent the measured data. As discussed before, realistic parameters uncertainty is obtained
through hyperparameters in the hierarchical framework, while the parameters uncertainty in classical
Bayesian inference is significantly underestimated, since it only accounts for estimation uncertainty
which decreases monotonically with more data. The error function in the hierarchical approach
represents the remaining uncertainty between model-predictions and measurements after a portion of
the uncertainties has been embedded and accounted for by hyperparameters. Therefore, it captures the
remaining prediction misfit, which cannot be captured by the hyperparameter-characterized structural
parameters variability. As a result, the error function term in the hierarchical Bayesian method is
smaller (often significantly smaller) than the one obtained using classical Bayesian methods, since the
hierarchical method only assigns the residual prediction errors to the error function, while classical
Bayesian methods lump all sources of uncertainties into the error function.

Note, that in the hierarchical approach, there is a compensation effect between structural parameters
variability Zg and error function covariance Z,, and the portion of total uncertainty that is assigned
to each term depends on specific applications and factors such as model accuracy, plausibility of the
assumed structural parameters distribution in the view of measurements, dimension of parameter
space (a larger dimension of hyperparameters provides a higher flexibility of model predictions).
For example, in Applications 1-3 of this paper, larger uncertainties are assigned to the error functions,
and therefore error function uncertainties have to be propagated into probabilistic response predictions,
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history response predictions, as shown in Application 3.
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Figure 2. Uneertainties propagation into response predictions.

2.4. K9pssthg ﬁtfgﬁ&%W%%E?ﬁlftpﬁtgﬁﬁrm%ﬁﬁﬂ% error function distribution parameters (1,

and X.) are estimated, probabilistic model predictions can be performed using Monte Carlo simulation.

Q%.ﬁi%ﬁﬁﬁag%ﬁﬁﬂﬁﬂnN N(pe, XZe) fori =1, ---, n denote n independent samples generated from

the stiffness and error distribution, then n independent response predictions can be computed as:
The Markov chain Monte Carlo (MCMC) sampling technique has been shown to be an efficient

numerical tool for sampling the posteryprpd'i@bfabi:hty@%r_i’bgit,ion using Bayesian inference. Differ?%
MCMC algorithms have been developéd, including the Metropolis-Hastings (MH) algorithm [21],
Adatisks MES leaithmst o6 4p srapspicar MGG R Gibhs gastingd o fioe the @osterias
only structural parameters variability is propagated into response predictions, the error function term
e; in Equation (7) is neglected. The predictions can be performed for any type of structural response
depending on the error function used, e.g., modal properties (natural frequencies and mode shapes) or
time history response (acceleration, velocity, displacement, and strain). If modal properties are used
in model updating, then the modal superposition principle can be utilized to obtain the time history
response predictions, as shown in Application 3.
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2.4. Numerical Methods for Estimating Posterior Distributions

2.4.1. Sampling Approach

The Markov chain Monte Carlo (MCMC) sampling technique has been shown to be an efficient
numerical tool for sampling the posterior probability distribution using Bayesian inference. Different
MCMC algorithms have been developed, including the Metropolis-Hastings (MH) algorithm [21],
adaptive MH algorithms [22,61], transitional MCMC [23], and Gibbs sampling [62]. For the posterior
PDF in Equation (6), sampling techniques like MH or adaptive MH can be inefficient since the
acceptance rate of samples becomes too small, yielding very few distinct samples even after many steps.
This is due to the high dimension of sampling space as the dimension of © increases with datasets
number N, and dimensions of p, and Z. increase with number of sensors employed. The appropriate
selection and tuning of the proposal distribution might improve the acceptance rate in some cases, but it
becomes more challenging for sampling very peaked posterior PDFs [23,30]. Gibbs sampling is shown
to be computationally efficient for this task, as it transforms the joint posterior PDF into individual
conditional PDFs where the samples are taken from, as shown in [40,57,58,62]. Since conditional PDFs
have smaller dimensions, the sampling acceptance rate can be adjusted to the desired range. For the
sampling of the conditional PDFs, other MCMC algorithms can also be applied as needed, for example,
the MH within Gibbs sampling algorithm is applied in two recent applications by the authors [57,58].

2.4.2. Simplified Approach for Estimating Map Values

Gibbs sampling is more efficient to generate samples of high-dimension posterior PDF by sampling
conditional distributions instead of joint posterior distribution. However, it can still be computationally
prohibitive for applications to complex dynamic systems, especially when detailed FE models with
large DOFs are employed. This is because the sampling process requires evaluating likelihood function
at each step forward, which demands computing the response of FE models. A simplified and
computationally efficient approach is proposed to estimate the MAP values of updating parameters
through an optimization algorithm [56]. The simplified approach could not provide the estimation
uncertainty of updating parameters. However, the estimation uncertainty of parameters decreases
monotonically with increasing datasets used in the updating process and become negligible with
adequate amount of data. It is worth remembering that since the hyperparameters (mean vector and
covariance matrix of structural parameters) are updated, their estimation uncertainties are reduced
using more datasets, but their MAP will converge to constant values representing the stiffness
probability distribution. Therefore, realistic estimates of stiffness variability can be provided by the
proposed simplified numerical approach within the hierarchical framework. However, in the classical
Bayesian inference, even complete sampling of the posterior PDF can only represent the uncertainty
due to measurement noise, which is monotonically reduced using more datasets. A combination of the
simplified MAP-only approach with the Gibbs sampling technique can be implemented to promote
the computational efficiency and provide parameters estimation uncertainty, as shown in Application
3. Alternatively, surrogate models can be employed to replace FE models in the sampling process to
reduce the computation burden of evaluating the model-predicted response [59,63].

3. Applications to Three Full-Scale Civil Structures
3.1. Application 1: Footbridge at Tufts University Campus

3.1.1. Test Structure and Measured Data

The first case study considers the Dowling Hall footbridge located at Tufts University campus in
Medford, Massachusetts [54]. Figure 3 shows the south-east view of the footbridge at above-freezing
and below-freezing conditions. The footbridge is a continuous two-span (22 m each span) steel frame
bridge with a concrete deck (width of 3.9 m). The footbridge was instrumented with a continuous
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monitoring system, including 12 accelerometers located along the two sides of the bridge deck
measuring vertical vibration, and 10 thermocouples measuring the air, steel and concrete temperatures.
The monitoring system recorded bridge ambient vibration for five minutes at the beginning of every
hour. From each 5-min window of data, a set of modal parameters of the footbridge (natural frequencies
and mode shapes) are extracted using the Stochastic Subspace Identification [64] method. Six vibration

modes pf the bridee are ideptified, and a total of 8721 datasets of modal parameters are extracted, from,
Shesorilzpaticn, d #aR SEGRIREMIEWN January 2010 to March 2012. Among all datasets, 1824 sets correspofiat

Mﬁwzm@m&%ﬂf&aﬁqﬁmmwgﬁi@@mwﬁmlfaﬁaf@ls&é@rﬁfégmégﬁsrglmﬁ@%
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e Sun Ipmp‘nfarv Materials section at the end of this paper. )

Figure 3. South-east view of Dowling Hall footbridge in (a) above- freezmg, and % ) below-freezing
Mﬁéﬁéﬁ%ﬁ]‘w view of Dowling Hall footbridge in (a) above-freezing, and (b) below-freezing

conditions [54].
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3.1.2. Hierarchical Bayesian Modeling at Different Information Levels

A linear FE model of the footbridge was created in Matlab [65]. Effective Young’s modulus
of the concrete deck is selected as the only updating model parameter 0 in this study. Therefore,
hyperparameters g and aé are also scalar, which has reduced the computation burden of model
updating. Hierarchical Bayesian model updating is implemented using different levels of information,
namely (i) only modal parameters, (ii) modal parameters and temperatures, and (iii) modal parameters,
temperatures, and excitation levels.

Information level 1: only modal parameters

At this information level, the stiffness variability was characterized by hyperparameters ug and
Lo, as 0 ~ N(pg, Lp ), while the effects of temperature and excitation amplitude are not explicitly
modeled. This is the basic scenario of hierarchical Bayesian inference, where stiffness is assumed to
follow a normal distribution, with no explicit relationship between stiffness and measurable sources of
uncertainty considered.

Information level 2: modal parameters and temperatures

In this case, in addition to the identified modal parameters, measured temperatures are used in
the updating process. A model to represent the relationship between stiffness hyperparameters and
measured temperatures is considered in Equations (8) and (9):

[Jg(Tt):Q—FSth—FRX(l—erf(Tt;Y)), ®)

oé(Tt) = ‘ué(Tt) X 02, )

where Q, 5, R, ¥, T and o are higher-level hyperparameters, describing the stiffness-temperature model.
Moreover, T; is the average temperature (over five minutes) recorded for dataset t. The function
representing stiffness mean versus temperature (Equation (8)) consists of a straight line, i.e., the first
two terms, to capture the trend for temperatures above freezing point, and a nonlinear term (the ‘erf’
function denotes Gauss error function) to model the trend for temperature near and below freezing
point. The stiffness standard deviation is assumed to change linearly with stiffness mean resulting a
constant coefficient-of-variation (CoV) ¢. This is assumed because larger variabilities are observed for
larger stiffness and lower temperatures. It is worth noting that these higher-level hyperparameters (Q,
S, R, Y, t and o) will be updated in the hierarchical Bayesian framework instead of g and aé, which
are functions of these higher-level hyperparameters based on Equations (8) and (9).

Information level 3: modal parameters, temperatures, and excitation amplitudes

In this case, the effects of excitation amplitudes are included in modeling stiffness hyperparameters
in addition to temperature measurements. The stiffness mean model is similar to that of information
level 2, with an additional excitation amplitude term added to the model:

T =Y

1o(Ty) = Q+S><Tt+R><(1—erf( ))—i—YxLog(st), (10)

In this equation, Y refers to a new higher-level hyperparameter for excitation levels ¢;, which
is defined as the root-mean-square (RMS) of acceleration measurements at test t. The fourth term
represents the linear trend observed in Figure 4. The stiffness variance model is assumed to be the
same as Equation (9).

For all three information levels, the error function is assumed to follow a zero-mean
Gaussian distribution, with a diagonal covariance matrix parameterized by only one parameter
2. This simplification reduces the number of updating parameters, however, the diagonal components
of estimated error covariance might be inflated or underestimated, due to the smearing effect among
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different natural frequencies and mode shape components. A more accurate error covariance estimation
can be obtained by updating all diagonal terms, or even the full matrix.

3.1.3. Model Updating Results and Response Predictions

Senshhentistidofpear RAAEBndard deviation) of higher-level hyperparameters for informatiein27
level 3 are reported in Table 1, which are evaluated from Gibbs sampling. It can be seen that, except for
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defipevihegonl ertisansitiihiidta elaWidndrferiiisRANRRAINt. The estimated $tfErest raRafation
ang{piMide iformplinmipielidvd adrharelshomen inikighie - alReaseainid showiinm fBretiedn
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of Figure 7). The error function uncertainty has to be propagated into predictions to contain the
identified values in both loading scenarios (bottom row of Figure 7). Therefore, a larger portion of
uncertainties is captured by the error function rather than structural parameters due to large
modeling errors and small flexibility of structural parameter distribution (only one stiffness
parameter considered in the FE model). This indicates the importance of accounting for the effects of
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identified natural frequencies when only structural parameters uncertainty is propagated (top row of
Figure 7). The error function uncertainty has to be propagated into predictions to contain the identified
values in both loading scenarios (bottom row of Figure 7). Therefore, a larger portion of uncertainties
is captured by the error function rather than structural parameters due to large modeling errors and
small flexibility of structural parameter distribution (only one stiffness parameter considered in the
FE model). This indicates the importance of accounting for the effects of error function to provide
FealstROL AT ERBS BBRBY W der future loading conditions. The confidence bounds are relathéR7
\ﬁetdertmﬁpa&edmﬂéﬁl?aiiﬁ%ﬁ&my of identified frequencies, due to the fact that zero-mean error fulttitiy
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for error function (top row: without error function; bottom row: with error function).
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3.2.1. Test Structure and Measured Data

3‘2'1’ﬂ%gg’&)ﬂqléfﬁp%gt%ﬁglgﬁé—B&?’ RC building in Utica, New York, as shown in Figure 8a [55].
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3.2. Application 2: Ten-Story RC Building in Utica, NY

3.2.1. Test Structure and Measured Data

The second application is a 10-story RC building in Utica, New York, as shown in Figure 8a [55].
The eight-bay by four-bay building consisted of a slab-column structural system with peripheral RC
walls. Dynamic tests were performed on the structure before it was demolished for the construction of a
new highway bridge. The building was instrumented with accelerometers at north-west and south-east
corners on each floor, measuring the acceleration in two horizontal and the vertical directions resulting
in 60 channels of acceleration measurements. The Natural Excitation Technique combined with the

%ﬁg%rﬁé%%% T{F%%EE%EEX EBrithm (NEXT-ERA) [66,67] is used to extract modal parameters Gffité
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Figure 8, (a) South-west view of 10-story building; (b) location of removed walls for moderate and
severe damage states.
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G- L
o=~

M=

¢, (11)

t

in which €, denotes the evaluated error function with the updated stiffness 0, for dataset t.
The model updating process using the non-zero-mean error function follows exactly the same

procedure as the prevrous zero-mean approach except that the estimated lle in Equatron (11) is

o — -~
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The model updating process using the non-zero-mean error function follows exactly the same
procedure as the previous zero-mean approach, except that the estimated fi, in Equation (11) is included,
similar to past numerical studies [57,58]. The comparisons of model-predicted natural frequencies
and their identified counterparts are shown in Figure 10, using non-zero-mean error function for
fifth mode. It can be observed that the bias between two clouds (gray vs. black) is eliminated, and
the predictions have a comparable uncertainty for fifth mode as the identified values. The non-zero
error mean i, denotes the residual prediction bias, and it should be considered/propagated into
response predictions to provide more accurate and tighter confidence bounds. The MAP values of

10N considered, lower

hyperparameters and error covariance for both cases (zero-mean vs. non-zero-mean error function) are
reported in Table 2, together with the evaluated error mean for the 5th mode (last row). It can be seen
that all hyperparameters and error covariance values have been kept almost the same except for 5,
between zero-mean and non-zero-mean error function cases. The value of §,, has been significantly
reduced from 0.188 to 0.021, which provides significantly tighter response predictions for the 5th mode,
as can be seen in Figures 9 and 10.
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is defined when four exterior walls in the third story were removed, while the severe damage state
denotes the removal of two additional walls in the second story, as shown in Figure 8b. The building
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Figure 11. Model-predicted (with the propagation of error function) (gray) vs. identified (black)

Figmre e Medelsprsintedoerdh, haininpasation b e tamispetions @ asagsingsrsifisd-black
Ratyralfrassersiesiniihgd 0-story building at moderate damage state, considering non-zero-mean
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3.3. Application 3: Two-Story RC Building in El Centro, California

3.3.1. Test Structure and Measured Data

The third application is a two-story RC building located in El Centro, California, shown in
Figure 13a [6,56,69,70]. The building was severely damaged by past earthquakes and left uninhabited,
which provided an opportunity to perform wall removals and destructive shaking tests on this
full-scale RC building. The structure consisted of six RC frames in north-south direction which were
connected by beams and slabs, and peripheral masonry panels on both stories. Ambient and forced
vibration tests were performed on the structure, and acceleration responses were recorded using
15 tri-axial accelerometers located at four corners and the center on the first story, second story and roof.
The shaking tests were performed using an eccentric mass shaker (Figure 13b), located on the second
floor. The shaker was used to generate harmonic shaking forces in either north-south or east-west
directions, and in the form of since-sweep or sine step.
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Modal parameters of the building are identified from ambient and forced vibration data. The
first two vibration modes of the building are identified for a total of 30 datasets from ambient
vibration, and 11 datasets from forced vibration. The identified natural frequencies are plotted
against vibration levels in Figure 14. A clear trend (shown as dash lines) can be observed between
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The trend between natural frequencies and vibration amplitude is modeled as a linear relationship
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as the average RMS of acceleration measurements. Based on a sensitivity analysis, the structure is
divided into five substructures with five stiffness parameters, i.e., west (01), east (02), north (63) and
south (04) walls of the 2nd story, and walls of the 1st story and all columns in the building (65).
Therefore, a and b are 5 x 1 vectors. The stiffness variance Xg is assumed to be a constant diagonal
matrix, as the variance of identified natural frequencies does not appear to be affected by different
vibration levels (Figure 14). The error function is assumed to follow a zero-mean Gaussian distribution
with a diagonal covariance matrix Z.. The hierarchical Bayesian method is applied to estimate the
hyperparameters (a, b, and Lg) and the error covariance matrix (X.). In this application, the MAPs of
updating parameters are computed using the simplified approach reviewed in Section 2.4.2, and then,
MH within Gibbs sampling method was employed to sample the joint posterior PDF using the MAPs
as starting point, to save computational efforts. This two-step sampling approach can provide the
MAP values and the parameters estimation uncertainties. The MAP values of hyperparameters and
error covariance using the simplified approach are reported in Table 3. It can be seen that all values
of b which represents the slope in Figure 14 have negative values, as expected, while the values of 4
represent the mean of structural stiffness at zero vibration level.
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Table 3. MAP values of hyperparameters and error covariance using simplified approach.

a b 7 6 (%)
(61) 0.11 -2.41 0.011 (A1) 0.02
(62) 0.85 —4.68 0.008 Error (A2) 0.98
Hyperparameters (63) 0.08 —0.44 0.010 covariance (@) 1.32
(04) 0.40 -4.91 0.017 (@) 1.98
(65) 1.82 -22.66 0.065

3.3.3. Time History Response Predictions

The FE model of the building is created in OpenSees [72], an open source FE analysis software.
The masonry walls are modeled as struts, and floor slabs are assumed to be rigid in-plane. The model is
calibrated through the proposed hierarchical framework using identified modal parameters, and is then
used to generate 1000 predictions of natural frequencies with vibration levels uniformly distributed
within the test range. Structural parameters variability and error function uncertainty are both
propagated into these predictions. The predicted natural frequencies are compared with their identified
counterparts in Figure 15. It can be seen that model predictions follow the same decreasing trend
and cover the scattering uncertainty of the identified values. Acceleration response time histories to a
shaker excitation are also predicted from the calibrated model, using the modal superposition method,
based on the two modes used in model updating. The comparisons between acceleration time history
predictions and their measured counterparts are shown in Figure 16 for a shaker test. It is observed that
model predictions have good agreements with measured data, and measurements generally fall in the
95% confidence intervals. The predictions have similar but slightly larger peak amplitudes compared
to the measurements. The calibrated model is also used to predict acceleration time histories without
considering the stiffness-amplitude relationship, and the comparisons are shown in Figure 17. It is
seen that, in this case, the confidence bounds do not fully contain the measurements. A comparison of
these two cases demonstrates the importance of accounting for vibration levels in response predictions,
Yelvers gheoeic:tFIR T EEReRE¥ighi ficantly affect the dynamic behavior of the structure. 22 of 27
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Figure 15. Natural frequencies predictions with their identified counterparts [56].
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influential factors, e.g., temperatures and excitation levels, to reduce the stiffness variability X,. The
error function is modeled as Gaussian distribution to quantify the remaining misfit and uncertainty of
prediction error, with its own distribution parameters p, and X, . The estimated stiffness
hyperparameters and error function distribution can then be propagated into response predictions to
provide robust and realistic confidence bounds. Three full-scale real-world abpovlications are reviewed in
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excitation levels, to reduce the stiffness variability Zg. The error function is modeled as Gaussian
distribution to quantify the remaining misfit and uncertainty of prediction error, with its own
distribution parameters p, and Z.. The estimated stiffness hyperparameters and error function
distribution can then be propagated into response predictions to provide robust and realistic confidence
bounds. Three full-scale real-world applications are reviewed in this paper, and the findings are
summarized below:

(1) In the application of the Dowling Hall footbridge, different information levels are considered
for stiffness hyperparameters formulation and compared for their performance. It is found that
the stiffness variability is reduced when information about ambient temperatures and excitation
amplitudes is considered, thus providing tighter confidence intervals for model-predictions. In this
study, error function must be included in model predictions to provide realistic confidence bounds.

(2) Inthe application of the 10-story building, the effects of error bias are studied, and it is found
that more accurate and tighter prediction bounds are obtained when the error bias u, of the fifth
mode (which was observed to be biased) is considered. It is also found that the estimated error
distribution may not be valid outside the calibration range. Therefore, special precautions should
be taken when the calibrated model is used for extrapolation.

(3) Inthe application of the two-story building, the stiffness mean vector is assumed to have a linear
relationship with the vibration levels. Accurate predictions are observed for modal parameters and
acceleration time histories using the calibrated model when the stiffness-amplitude dependency
is explicitly considered, while inaccurate results are observed when this correlation is neglected.

The reviewed applications highlight the benefits of hierarchical Bayesian model updating compared
to traditional deterministic and classical Bayesian model updating methods, including the following.

(@) The hierarchical framework is capable of quantifying structural inherent variability and modeling
errors, through postulating probability distributions for structural parameters, and estimating the
hyperparameters of these distributions. The estimated structural parameters uncertainty would
converge to a constant variation level depending on MAP values of hyperparameters, while
parameters uncertainty using classical Bayesian methods is reduced infinitely with more data.

(b) More accurate and robust prediction bounds are achieved by hierarchical framework through
propagating of parameters variability and error function. This is often more valuable than just
obtaining an accurate prediction fit with measurements. Moreover, more reasonable prediction
bounds are obtained compared to the classical Bayesian approach, even when only propagating
parameters variability, which is especially useful for predictions of unobserved quantities where
error function estimate is not available.

(c) Different relationships and factors that contribute to structural parameters uncertainty can be
embedded into the hyperparameters, e.g., ambient temperature and excitation amplitude, in the
hierarchical framework, which would reduce the parameters variability and provide tighter
prediction confidence bounds.

(d) The hierarchical framework is capable of quantifying the residual prediction errors, by estimating
the distribution parameters of error function. The inclusion and propagation of error function
into response predictions is important and necessary in some cases when a significant amount of
uncertainties is retained in the error function, e.g., Applications 1-3. Considering non-zero-mean
error distribution in the presence of error bias reduces the error covariance matrix, thus providing
tighter confidence bounds.

Supplementary Materials: The experimental data of the Dowling Hall footbridge in Application 1
is available online at https://engineering.tufts.edu/cee/shm/research_ BM_continuousMonitoring.asp#weeks.
The experimental data of the 10-story RC building in Utica, New York in Application 2 are available
online at https://www.designsafe-ci.org/data/browser/public/designsafe.storage.published/PR]J-1710/#details-
9050751670063796711-242ac11c-0001-012.
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