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1. Introduction

The dynamics of Newton maps of planar holomor-
phic maps has been extensively studied over the
last hundred years as a chapter of the more general
problem of the discrete dynamics of maps in one
complex variable, after the seminal works of Julia
[1918] and Fatou [1919, 1920a, 1920b]. This field
saw a strong acceleration when computers became
powerful enough to visualize the intricacies of their
attractors and retractors, a moment often identi-
fied with the publication of the celebrated article
of Mandelbrot on his homonymous fractal [Mandel-
brot, 1980].

Despite the large number of articles and books
dedicated to this topic and to its extension to gen-
eral rational functions (we mention here just the
classic books by Beardon [2000] and Milnor [2006]
and the rich survey by Lyubich [1986] and refer
the interested reader to [De Leo, 2019] for extensive
comments and bibliography on this topic), very lit-
tle attention has been dedicated so far, on the con-
trary, to Newton maps associated with general (as
opposed to holomorphic) maps on the plane. There
are indeed only a handful of articles dedicated to
this topic: a series of articles by Peitgen and Richter
[1986], Peitgen et al. [1988, 1989] in the late eighties
where, in particular, they study some case relative
to some of the simplest (but still far from trivial)

polynomial maps in two variables, in particular
quadratic ones; an article by Miller and Yorke [2000]
where they study the size of the basins of attractions
of real Newton maps on the plane; finally, a recent
article by the present author [De Leo, 2019] where
some general conjecture is made based on analogy
with the real one-dimensional case and on a signif-
icant experimental evidence.

Note that the numerical studies in [De Leo,
2019] aimed to provide a panoramic view as wide
as possible of the dynamics of Newton maps on the
real plane but were not meant (by any means) to
be exhaustive. The main goal of the present article
is exactly to study in detail a single case, the one of
Newton maps of polynomial transformations of the
plane into itself with both components quadratic,
to show that, at least at the experimental level,
all properties conjectured in [De Leo, 2019] hold
for it. Incidentally, the present article has several
points related to the works of Peitgen et al. but the
points of view of our and their works is completely
different. Finally we also point out that quadratic
complex maps have also been the focus of an article
by Hubbard and Papadopol [2008] and of the PhD
thesis of Hubbard’s pupil Roeder [2005].

The structure of the article is the following: in
Sec. 2 we introduce all definitions and fundamental
results we refer to in Sec. 3, where we present and
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R. De Leo

discuss our numerical results on the attractors and
retractors of Newton maps associated to quadratic
maps of the plane into itself. Ultimately, the numer-
ical results in Sec. 3 suggest that all conjectures
made in [De Leo, 2019] hold for this class of Newton
maps.

2. Newton Maps

The concept of Newton map arises from the so-
called Newton method, which is at the same time
the most well-known method for solving numeri-
cally nonlinear systems of equations and one of the
most important analytical tools to prove the exis-
tence of solutions to nonlinear equations in infinite-
dimensional Banach spaces.

Definition 1. Let F : D ⊂ B1 → B2, be a continu-
ous map between the Banach spaces B1 and B2.
We call Newton map associated to F the map
NF : E ⊂ B1 → B2 defined by

NF (x) = x − [F ′(x)]−1(F (x)),

where E is the subset of B1 over which the Fréchet
derivative F ′(x) exists and is invertible.

Clearly all zeros of F are fixed points for NF .
Newton’s method is based on the fact that all such
points are attracting (in fact, super-attracting when
F is a Morse function), so that the iterates of any
point “close enough” to a root of F will converge
to it:

Theorem 1 [Kantorovich, 1949]. Let F : D ⊂ B1 →
B2, be a continuous map between the Banach spaces

B1 and B2 and assume that :

(1) F is Fréchet differentiable over some open con-

vex subset D0 ⊂ D;
(2) F ′ is Lipschitz on D0.

Then, for every x0 ∈ D0 such that [F ′(x0)]
−1 exists

and is defined on the whole B2, there is a neighbor-

hood S of x0 and an isolated root x∗ of F such that

limn→∞ Nn
F (x) = x∗ ∈ S for every x ∈ S.

As it often happens in Mathematics, Newton’s
method was not really first introduced by Isaac
Newton but rather arose naturally from the works
of several authors, including of course Newton
himself — the interested reader is referred to the
review article by Ypma [1995] for a detailed dis-
cussion on the history of this method. According
to Ypma, the first appearance in literature of the
Newton method in the form above, formulated for

the one-dimensional real case only, goes back to the
Traité de la résolution des équations numériques

[Lagrange, 1798], published by Lagrange in 1798,
while the above generalization to Banach spaces
by Kantorovich arrived only 151 years later [Kan-
torovich, 1949].

The point of view of discrete dynamics is, in
some sense, complementary with respect to the
Kantorovich theorem, namely its main question is
what happens to the iterates under NF when the
starting point is far enough from every root of F .
The following concepts and theorems are central in
this regard.

Definition 2. Let M be a compact manifold with
a measure µ and f a surjective continuous map of a
manifold M into itself. The ω-limit of a point x ∈ M
under f is the (closed) set of all points to whom x
iterates are eventually close, namely

ωf(x) =
⋂

n≥0

⋃

m≥n

{fm(x)},

while its α-limit is the (closed) set of points to
whom x iterated counterimages are eventually close,
namely

αf (x) =
⋂

n≥0

⋃

m≥n

{f−m(x)}.

The ω- and α-limits of a set is the union of the ω-
and α-limits of all of its points. The forward (resp.,
backward) basin Ff (C) (resp., Bf (C)) under f of
a closed invariant subset C ⊂ M is the set of all
x ∈ M such that ωf (x) ⊂ C (resp., αf (x) ⊂ C).
Following Milnor [1985], we say that a closed subset
C ⊂ M is an attractor (resp., repellor) for f if:

(1) Ff (C) (resp., Bf (C)) has strictly positive
measure;

(2) there is no closed subset C ′ ⊂ C such that
Ff (C) (resp., Bf (C)) coincides with Ff (C ′)
(resp., Bf (C ′)) up to a null set.

Definition 3. Given a compact manifold M and a
continuous map f : M → M , the Fatou set Ff ⊂ M
of f is the largest open set over which the family of
iterates {fn} is normal, namely the largest open set
over which there is a subsequence of the iterates of
f that converges locally uniformly. The complement
of Ff in M is the Julia set Jf of f . Finally, we denote
by Zf the set of points x ∈ M where the Jacobian
Dxf is degenerate.
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Dynamics of Newton Maps of Quadratic Polynomial Maps of �2 into Itself

Definition 4. An Iterated Function System (IFS)
I on a metric space (X, d) is a semigroup gen-
erated by some finite number of continuous func-
tions fi : X → X, i = 1, . . . , n. We say that
I is hyperbolic when fi are all contractions. The
Hutchinson operator associated to I is defined as
H(A) =

⋃n
i=1 fi(A), A ⊂ X.

Theorem 2 [Hutchinson, 1981; Barnsley & Demko,
1985]. Let I be a hyperbolic IFS on X. Then there

exists a unique nonempty compact set K ⊂ X such

that H(K) = K. Moreover, limn→∞Hn(A) = K for

every nonempty compact set A ⊂ X.

Theorem 3 [Barnsley, 1988]. Let (Y, d) be a com-

plete metric space and X a compact nonempty

proper subset of Y . Denote by K(X) the set of the

nonempty compact subsets of X endowed with the

Hausdorff distance h (recall that h makes K(X)
a complete metric space). Assume that one of the

following conditions is satisfied :

(1) f :X →Y is an open map such that f(X)⊃X;
(2) f : Y → Y is an open map such that f(X) ⊃ X

and f−1(X) ⊂ X.

Then the map F : K(X) → K(X) defined by

F (K) = f−1(K) is continuous, {Fn(K)} is a

Cauchy sequence, its limit K0 = lim Fn(X) ∈ K(X)
is a repellor for f and it is equal to the set of points

that never leave X under the action of f .

The main result on the dynamics of real Newton
maps is the following result by Barna [1953] in one
dimension:

Theorem 4 [Barna, 1953]. Let p be a generic real

polynomial of degree n ≥ 4 without complex roots

and denote its roots by r1, . . . , rn. Then:

(1) FNp =
⋃n

i=1 F(ci);
(2) FNp has full Lebesgue measure;
(3) Np has no attractive k-cycles with k ≥ 2;
(4) Np has repelling k-cycles of any order k ≥ 2;
(5) JNp is equal, modulo a countable set, to a

Cantor set ENp of Lebesgue measure zero.

In 1984, this result was independently general-
ized by several authors in three different directions:

Theorem 5 [Wong, 1984]. A sufficient condition for

Barna’s theorem to hold is that the polynomial p has

no complex root and at least four distinct real roots,
possibly repeated.

Theorem 6 [Saari & Urenko, 1984]. Let p be a

generic polynomial of degree n ≥ 3, Ap the collec-

tion of all bounded intervals in �\Zp and Ap the set

of all sequences of elements of Ap. Then the restric-

tion of Np to the Cantor set ENp is semiconjugate

to the one-sided shift map S on Af , namely there

is a surjective homomorphism hp : ENp → Ap such

that T ◦ hp = hp ◦ Np.

Theorem 7 [Hurley & Martin, 1984]. Let p be a

generic polynomial of degree n ≥ 3. Then Np has

at least (n − 2)k k-cycles for each k ≥ 1 and the

topological entropy of Np is at least log(n − 2).

In our knowledge, no further generalization of
Barna’s result has been published since the three
above and no general theorem has been proved
for Newton maps coming from real maps in more
than one dimension. In a recent article [De Leo,
2019], based on several numerical observations and
in analogy with Barna’s theorem, we posed the fol-
lowing “simple dynamics” conjectures for the two-
dimensional case:

Definition 5. We say that a point p of the Julia
set JF of a rational map F : �2 → �2 is regular if
there is a neighborhood U of p such that JF ∩ U
is a connected one-dimensional submanifold and U
contains points from two different basins.

Conjecture 1. Let f : �2 → �2 be a generic poly-

nomial map of degree n ≥ 3. Then there is some

nonempty open subset A ⊂ f(��2) such that αNf
(x)

is equal to the set of nonregular points of the bound-

ary of JNf
for all x ∈ A.

Conjecture 2. Let f : �2 → �2 be a polynomial

map of degree n ≥ 3 with n distinct real roots {ci}.
Then:

(1) JNf
is the countable union of wedge sums of

countable number of circles and of Cantor sets

of circles of measure zero;
(2) FNf

has no wandering domains;
(3) the union of the basins of attraction FNf

(ci) has

full Lebesgue measure;
(4) every neighborhood of any point of JNf

con-

tains points from at least two distinct basins of

attractions;
(5) unlike the holomorphic case:

(a) basins of attractions are not necessarily

simply connected ;
(b) immediate basins of attraction are not nec-

essarily unbounded ;
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R. De Leo

(c) JNf
can have interior points without being

equal to the whole ��2.

In the next two sections we study numerically
in some detail the dynamics of the Newton maps
of two of the simplest families of polynomial homo-
morphisms of the plane. Our results fully support
both our conjectures.

In the remainder of this section we recall some
well known properties of the Newton maps (e.g. see
[Hubbard & Papadopol, 2008; Hubbard & Hubbard,
2015]) that we will use below.

Let (xα), α = 1, . . . , n, be a coordinate system
in �n, where � = � or �, and let us denote by fa,
a = 1, . . . , n, the components of the map f : �n →
�n, by ∂αfa the entries of its Jacobian matrix and
by ∂af

α those of the Jacobian of f ’s inverse, namely
the inverse matrix of (∂αfa). Then, in coordinates,
the components of Nf are given by

Nα
f (x) = xα − ∂af

α(x)fa(x).

Proposition 1. The entries of the Jacobian matrix

DxNf are given by

∂γNα
f (x) = ∂bf

α(x)∂2
βγf b(x)∂af

β(x)fa(x).

Proof. A direct calculation shows that

∂γNα
f = ∂γ(xα − ∂af

αfa)

= δα
γ − ∂γ(∂af

α)fa − ∂af
α∂γfa.

Since

∂αfa∂af
β = δβ

α,

then

∂2
γαfa∂af

β + ∂αfa∂γ(∂af
β).

Hence

∂γ(∂af
α) = −∂af

β∂2
γβf b∂bf

α

and the claim follows. �

Corollary 1. The set Zf = {x ∈ KPn |det DxNf =
0} of all degenerate points of Nf is given by all

points x such that the matrix

(Ab
γ) = (∂2

γβf b(x)∂af
β(x)fa(x))

is degenerate. Equivalently, Zf is the set of all x

such that either f(x) = 0 or the vector ∂bf
α(x)fa(x)

is a critical direction of the quadratic map vα 	→
∂2

γβfa(x)vγvβ.

Points where DN f is degenerate play an impor-
tant role in the dynamics of Nf , for example, in the
one-dimensional case JNf

is equal to αf (Zf ). More-
over, the fact that DN f is identically zero at every
root of f gives us immediately the following funda-
mental property:

Corollary 2. All simple roots of f are super-

attractive fixed points for Nf .

Remark 1. Note that, while in the one-dimensional
case the fixed point at infinity of a polynomial
is always repelling, fixed points at infinity in the
multidimensional case can be attractive (e.g. see
Example 4 in [De Leo, 2019]).

Proposition 2. If ψ, φ : �n → �n are, respectively,
affine and linear automorphisms of �n, namely

ψα(x) = Aα
βxβ + uα and φa(y) = Bb

ay
a for some

A,B ∈ GLn(�) and u, v ∈ �n, then

Nφ◦f◦ψ = ψ∗Nf

namely the Newton map Nf has the same dynamics

as Nφ◦f◦ψ.

Proof. In this case ∂βψα = Aα
β and ∂bφ

a = Ba
b , so

that

ψ∗Nα
f (x)

= Aα
β [Nβ

f (Ax + b) − bβ]

= Aα
β [Aβ

γxγ + bβ − ∂bf
β |Ax+bf

b(Ax + b) − bβ ]

= δα
γ xγ − Aα

β∂bf
β|Ax+bB

b
aB

a
cf

c(Ax + b) − bβ

= xα − ∂a(φ ◦ f ◦ ψ)α(x)(φ ◦ f ◦ ψ)a(x)

= Nα
φ◦f◦ψ(x)

since

∂a(φ ◦ f ◦ ψ)α(x) = ∂a(ψ ◦ f ◦ φ)α(x)

= ∂aφ
b∂bf

β|Ax+b∂βψα. �

Definition 6. Let f = (p, q) ∈ Ck(�2,�2). We call
pencil Pf associated to f the linear subspace of
Ck(�2) generated by p and q. If p and q are polyno-
mials, by type of the pencil, denoted by τ(Pf ), we
mean the pair of the highest and lowest degrees of
polynomials in the pencil.

Thanks to Proposition 2, we can replace the
components of a Newton map Nf with any two
independent linear combination of them without
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Dynamics of Newton Maps of Quadratic Polynomial Maps of �2 into Itself

altering its dynamics, so what really counts is the
pencil of its components rather than the compo-
nents themselves.

3. Dynamics of Newton Maps

of Quadratic Maps

We consider maps f = (p, q) : �2 → �2 where both
p and q are quadratic polynomials in x, y in general
position. Hubbard and Papadopol [2008] showed
that, in the complex case, one can reduce this prob-
lem to the study of the Newton maps Ng with

g(x, y) = (y − x2, (x − x0) − (y − y0)
2),

(x0, y0) ∈ �2.

As to be expected in the real case we have, instead,
two distinct cases:

Proposition 3. Let f(x, y) = (p(x, y), q(x, y)) :
�2 → �2, with p and q quadratic polynomials in

generic position. Then Nf is smoothly conjugated

to Ng, where g(x, y) has one of the following two

forms:

(1) fx0,y0
(x, y) = (y − x2, (x − x0) − (y − y0)

2),
x0 ≥ 0, y0 ∈ �;

(2) fx0,y0;a(x, y) = (xy − 1, (x − x0)
2 − a(y − y0)

2 −
1), y0 ≥ x0 ≥ 0, a > 0.

Proof. We say that a quadratic polynomial is ellip-
tic, hyperbolic or parabolic depending on the type
of its generic level set. Through an affine transfor-
mation, we can always reduce p to one of the fol-
lowing quadratic polynomials:

(1) 
(x, y) = x2 + y2 − 1 (elliptic);
(2) �(x, y) = xy − 1 (hyperbolic);
(3) �(x, y) = y − x2 (parabolic).

When p is elliptic, given the rotational symmetry of
the circle, we can always find a second affine trans-
formation that reduces q to one of the following
quadratic polynomials:

(a) qe(x, y) = a(x − x0)
2 + b(y − y0)

2 − 1, with
y0 ≥ x0 ≥ 0 and a > b > 0;

(b) qh(x, y) = a(x − x0)
2 − b(y − y0)

2 − 1, with
y0 ≥ x0 ≥ 0 and a > b > 0;

(c) qp(x, y) = y − y0 − a(x − x0)
2, with a > 0,

x0 ≥ 0 and y0 ∈ �.

In the first two cases we can easily find two linear
combinations that give us two parabolic polynomi-
als, in the last case we can use qp to cancel one of
the two quadratic terms of 
. In all three cases then

we can find an affine map ψ and a linear map φ such
that f = φ ◦ f̂ ◦ ψ where both components of f̂ are
parabolic. With yet another affine transformation,
we can finally transform f̂ in the final form fx0,y0

,
namely Nf is conjugated to Nfx0,y0

.
When p is hyperbolic, we can assume that q is

either parabolic or hyperbolic (the elliptic case is
covered above). In the first case, q(x, y) = ax2 +
2bxy + cy2 + ℓ(x, y), where ℓ is linear and ac −
b2 = 0. By adding 2λxy to q we get a parabola if
and only if ac− (b+ λ)2 = 0, namely λ = 0,−2b, so
again we reduce to the case of two parabolic poly-
nomials and so to f. In the second case, q(x, y) =
ax2 + 2bxy + cy2 + ℓ(x, y) with ac − b2 < 0. After
adding 2λxy to q, its type is determined by the
sign of d(λ) = ac − (b + λ)2 = ac − b2 − 2bλ − λ2.
Since the discriminant of d(λ) is 4ac, the sign of d is
strictly negative for all λ when a and c have oppo-
site signs. In this case, therefore, all linear combina-
tions of p and q are hyperbolic and Nf is conjugate
to some Nfx0,y0;a

. �

Definition 7. We denote respectively by Nx0,y0
and

Nx0,y0;a the Newton maps associated to fx0,y0
and

fx0,y0;a and, analogously, we use the symbols Jx0,y0
,

Jx0,y0;a, Zx0,y0
and Zx0,y0;a for their Julia sets and

for the sets of degeneracy of their Jacobians.

Below we present our numerical analyses of
some Newton maps Nx0,y0

and Nx0,y0;a and com-
pare it against our conjectures. We focus on the
basins of attraction and of retraction of those New-
ton maps. We obtain the first by considering a reg-
ular lattice of points inside a square (of the order of
103 × 103 points), evaluating the iterates of all such
points under those maps and assigning to each point
different colors depending on which root of the cor-
responding quadratic polynomial map they appear
to converge. We obtain the second by choosing an
arbitrary point within a suitable open set, evaluat-
ing its backward iterates until some fixed recursion
order (usually between 10 and 20) and plotting all
points obtained at the last recursion step.

3.1. The map N0,0

The Newton map

N0,0 =

(

y
2x2 + y

4xy − 1
, x

2y2 + x

4xy − 1

)

was first studied, in this context, in great detail by
Peitgen et al. [1988, 1989] and later, in the complex
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R. De Leo

setting, by Hubbard et al. [2001]. In homogeneous
coordinates, this map writes as

[x : y : z]→ [y(2x2 + yz) : x(2y2 + zx) : z(4xy − z2)],

from which it can be seen that N0,0 has the fol-
lowing three points of indeterminacy: one bounded,
[1 : 1 :−2], and two at infinity, [1 : 0 : 0] and [0 : 1 : 0].
The restriction of N0,0 to the circle at infinity, where
defined, is the identity. On each point at infinity, the
eigenvalues of DN0,0 are equal to 1 in the direction
tangent to infinity and to 2 in the eigendirection
transversal to it, namely the points at infinity where
DN0,0 is defined are all repelling with respect to
points lying outside of the circle at infinity. Never-
theless, the iterates of the points on the half-lines
{x = 0, |y| > 1} and {|x| > 1, y = 0} diverge while
bouncing back and forth between the two half-lines
just as if [1 : 0 : 0] and [0 : 1 : 0] were an attracting
cycle — this is not a contradiction because N0,0 is
not defined at these points.

Rational maps of degree three can have at
most six invariant lines. As Hubbard and Papadopol
showed in [2008], in the complex case the Newton
map of a generic polynomial map with quadratic
components has the maximal number of invariant
lines, namely the lines joining all pairs of its four
roots, and it restricts on each such line to the
one-dimensional Newton method for a quadratic
polynomial in one variable with those roots.
Correspondingly, in the real case the invariant (real)
lines are all those joining pairs of distinct roots plus,
in case not all roots are real, the intersections with
the real plane of the complex lines passing through
pairs of distinct complex roots with nonzero imag-
inary part. For such a generic map therefore there
will be exactly six invariant straight lines when all
roots are real and only two otherwise. In this last
case, we call ghost line the invariant one that does
not contain any root. Hence there will be a single
ghost line when there are two real and two complex-
conjugate roots and two ghost lines when there are
two pairs of complex-conjugate roots.

The two lines invariant under N0,0 are the
bisectrix of the first and third quadrants, joining
the two real roots, and the ghost line ℓ = {y + x +
z = 0}, intersection with the real plane of the com-
plex line passing through the two complex roots
e2πi/3 and e4πi/3 [in brown in Fig. 2(top, left)]. N0,0

restricts on ℓ to the Newton map of the polynomial
p(x) = x2 + x + 1 and, correspondingly to the
absence of real roots of this polynomial, Jp is the

Fig. 1. Basins of attraction of N0,0 in the rectangle
[−6, 10] × [−10, 6]. The only real roots of f0,0 are the points
(0, 0) (whose basin is colored in red) and (1, 1) (in green).
The yellow points are those for which the Newton method
converges only after a large number of iterations — as the
numerical and analytical data shown in Fig. 2 suggest, these
are all points belonging to the counterimages of Z0,0. Lighter
tints correspond to higher convergence time.

whole line and Np has nontrivial repelling cycles,
for instance Np(0) = −1 and Np(−1) = 0. On the
bisectrix, instead, it coincides with the Newton map
of the polynomial q(x) = x2 − x, whose dynamics,
correspondingly to the fact that q has a maximal
number of real roots, is known to be trivial: its Julia
set is the single point x = 1/2, the only point where
N ′

q is zero. This point, that has no counterimages,
separates the two basins of attraction of the two
roots. In particular, Nq has no nontrivial cycles.

Now, let C = {(x, y) | y > x2 or x > y2} [white
region in Fig. 2(top, left)], denote the two dis-
joint connected components of �2\C by A (the
one contained in the first quadrant) and B, by C0

and C1 the two disjoint connected components of
C\Z0,0 having at their boundary respectively the
roots (0, 0) and (1, 1) and by D ⊂ B the half-
plane below the invariant line ℓ. The (formal) coun-
terimages of a point (x0, y0) are the four points

wm,n = (x0+(−1)m
√

x2
0 − y0, y0+(−1)n

√

y2
0 − x0),

m,n = 0, 1, so that:

(1) N0,0(�
2) = A ⊔ B;

(2) N0,0(C1) ⊂ A, N0,0(C0) ⊂ B;
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Dynamics of Newton Maps of Quadratic Polynomial Maps of �2 into Itself

Fig. 2. (Top, left) Fixed points (red), indeterminacy point (blue) and invariant lines of N0,0 and set Z0,0 together with some
of their counterimages: the ghost line is in orange and its first and second counterimages in red and brown respectively, Z0,0

in light blue and its counterimages in purple and gray. The black points are the counterimages via N0,0 of a single point of the

plane up to the fifth level of iteration. (Top, center & right) Basins of attraction and Julia set of N0,0 in the rectangles [−3, 3]2

and [0.95, 1.05]× [−0.05, 0.05]. (Center) Approximations of J0,0 obtained as the first 3 ·105 points of a random backward orbit

(left) and as the points of the set N
−11
0,0 (1,−3.6) (center, right). (Bottom) Basins and Julia set of N0,0 in the squares of side

respectively 10−3 (left), 10−4 (center) and 10−5 centered at (−1, 0). Lighter colors correspond to higher convergence time.

(3) three of the counterimages of each point in the
interior of A belong to C and one to A;

(4) the counterimages of each point in the interior
of B belong to B ∪ C and no more than two
belong to C;

(5) the three counterimages w1,0, w0,1, w1,1 of each
point of D belong to D and the fourth to C0.

The branch of Z0,0 in the first quadrant is the
boundary between the two basins, while the other
one is tangent at [1 : 1 : −2] to ℓ. Some other compo-
nent of the Julia set of N0,0 is plotted in Fig. 2(top,
left). The counterimage of ℓ under N0,0 has three
connected components, namely ℓ itself and the two
red curves, one inside C and one inside A. The one

in C of course has no counterimage while the one
in A has four of them, plotted in brown, three of
which inside A and one inside C. Similarly, the
branch of Z0,0 in C has no counterimage while
the other one has four, plotted in purple, three of
which inside A and one inside C. Moreover, two
of them (corresponding to the solutions w00 and
w11) are tangent to the two nontrivial counterim-
ages of ℓ while the other two are tangent to ℓ. In
the limit, infinitely many components of J0,0 will be
tangent to ℓ, forming a shape similar to the delta of
a river on the shore represented by the straight line.
The numerical evidence therefore suggests that,
just as in the complex case, J0,0 is the α-limit
of Z0,0.
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R. De Leo

Another way of looking at J0,0 is through The-
orem 3. Let U be a small enough neighborhood
of the boundary of C and set X = ��2\U . Then
N0,0(X) ⊃ X, since every point inside U has a coun-
terimage in A ⊔ B (take w0,0 for points in U ∩ A
and w1,1 for points in U ∩B), and it is an open map
on X because we are away from the zeros of the
radicands. Hence limn→∞ N−n

0,0 (X) defines a repel-
lor for N0,0 which is exactly the set of points that
do not leave X under N0,0 (see [Barnsley, 1988]).
In Fig. 2(center), we show the set N−11

0,0 (10,−3.6),
suggesting that the counterimage of a single point,
rather than the whole X, can be enough to give the
whole J0,0. Numerical experiments also show that
every point of B gives rise to similar counterim-
age sets while the corresponding sets for points in
A are empty — in this case indeed the only coun-
terimage of each point lying in A goes to infinity.
Now, since the Julia set is invariant and numerical
evidence suggests that the only attractors of N0,0

are the roots of f , the only points that leave X are
those in the basins of attractions of the two roots
and so it must be J0,0 = limn→∞ N−n

0,0 (X). Notice
that the presence of points of indeterminacy inside
X is not a problem because these singularities can
be eliminated by blow-ups [Hubbard & Papadopol,
2008].

A third way is to see J0,0 as the invariant com-
pact set of the IFS I generated by the restriction of
the maps {w10, w01, w11} to the set D = {x + y ≤
−1} ⊂ B. Indeed D is invariant under the action of
I and

w10(D) ∪ w01(D) ∪ w11(D) = N−1
0,0(D) ∩ D

so that the Hutchinson operator H(S) = w10(S) ∪
w01(S) ∪ w11(S), S ⊂ D associated to this IFS,
based on the discussion in the previous paragraph,
has a fixed point given by K = limn→∞ N−n

0,0 (D) =
J0,0 ∩ D. Note that this point of view also sug-
gests that the component of J0,0 inside C is simply
w00(K), namely J0,0 = K ⊔ w00(K).

Again, by Theorem 3, this is precisely the
set of points that do not converge to (0, 0). The
picture of the Julia set in black and white in
Fig. 2(center, left) has been obtained by plotting
the first 3 · 105 points of a random backward orbit
of the point (3,−3.6) and the picture does not
appear to depend on the initial point taken within
the set B. On the contrary, backward orbits start-
ing in A diverge to infinity. We are not aware of
any systematic investigation of this fractal and,

in particular, it is unknown whether its measure
is zero or not and what its Hausdorff dimension
might be.

3.2. The map N
−2,2

The map f−2,2 has four roots, namely the points
p1 = (−1, 1), p2 = (2, 4), p3 ≃ (−1.62, 2.62) and
p4 ≃ (0.62, 0.38). Its Newton map is

N−2,2 =

(

2x2y + y2 − 4x2 − 1

4xy − 8x − 1
, x

2y2 + x − 4

4xy − 8x − 1

)

,

namely, in homogeneous coordinates,

[x : y : z] → [2x2y + y2z − 4x2z − z3 :

x(2y2 + xz − 4z2) : z(4xy − 8xz − z2)].

In this case we have five points of indeterminacy:
three bounded, namely [−1, 3, 2], [−7 − 3

√
5 : 1 +

3
√

5 : 4] and [−7 + 3
√

5 : 1 − 3
√

5 : 4], and two
unbounded, namely [1 : 0 : 0] and [0 : 1 : 0].

Fig. 3. Basins of attraction of N
−2,2 in the square

[−10, 10]2. The four real roots of g are the points (0, 0), (2, 4)
and, approximately, (−1.62, 2.62) and (0.62, 0.38) and each
basin corresponds to a different color. In this picture, it is
possible to see a qualitative difference among the boundary
points of the basins: the ones between the orange and the light
blue regions close to the symmetry axis of the basins and the
ones close to the nodal point on the same axis are regular,
namely a small enough neighborhood of them is cut by the
boundary in just two regions; all others instead seem irreg-
ular, namely each of their neighborhood intersects infinitely
many basin components. Darker shades correspond to higher
convergence time.

2030027-8

In
t.

 J
. 
B

if
u

rc
at

io
n

 C
h

ao
s 

2
0

2
0

.3
0

. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o

rl
d

sc
ie

n
ti

fi
c.

co
m

b
y

 U
N

IV
E

R
S

IT
Y

 O
F

 N
E

W
 E

N
G

L
A

N
D

 o
n

 0
9

/0
6

/2
0

. 
R

e-
u

se
 a

n
d

 d
is

tr
ib

u
ti

o
n

 i
s 

st
ri

ct
ly

 n
o

t 
p

er
m

it
te

d
, 
ex

ce
p
t 

fo
r 

O
p
en

 A
cc

es
s 

ar
ti

cl
es

.



Dynamics of Newton Maps of Quadratic Polynomial Maps of �2 into Itself

Fig. 4. (Top, left) Some important elements of the dynamics of N
−2,2 in the square [−10, 10]2: fixed points (red), indeter-

minacy points (blue), the six invariant lines, the set Z
−2,2 (light blue) and its first two counterimages (resp., red and purple).

The shaded region is N
−2,2(�

2) and the black points are the counterimages via N
−2,2 of a single point of the plane up to the

fifth level of iteration. (Top, right) Basins of N
−2,2 in the square [−10, 10]2. (Bottom, left) First 3 · 105 points of a random

backward orbit of a point below the light blue invariant line under the three branches w1,0, w0,1, w1,1 of N
−2.2 (in black).

Notice that there is a small white open set below the line. When the orbit falls there we paint the point in green and choose a
different counterimage. The red points are the images of the black points under w0,0. (Bottom, right) This picture shows the

set N
−13
−2,2(−20,−1.4). These two bottom pictures strongly suggest that through α-limits we can only get the set of irregular

points of the Julia set.

Just like in the previous case, the restriction
of N−2,2 to the circle at infinity is the identity,
where it is defined, and all these fixed points are
repelling in the direction orthogonal to the circle
at infinity. Corresponding to the four roots of f−2,2,
N−2,2 has six invariant lines on which it restricts
to the Newton map of some quadratic polynomial
in one variable [see Fig. 4(top, left)]. As for f0,0,
we set f−2,2(�

2) = A ⊔ B, with A the compo-
nent contained in the first quadrant. We denote
by C0 and C1 the two disjoint connected compo-
nents of C\Z−2,2 containing respectively the roots
(−1, 1) and (2, 4) and by H the half-plane below
the line x + y = 1, joining the roots p2 and p3.
The four (formal) preimages of a point (x0, y0)

are given by wm,n = (x0 + (−1)m
√

x2
0 − y0, y0 +

(−1)n
√

(y0 − 2)2 − x0 + 2), m,n = 0, 1, and satisfy
properties similar to those of f , namely:

(1) N−2,2(�
2) = A ⊔ B;

(2) N−2,2(C1) ⊂ A, N−2,2(C0) ⊂ B;
(3) three of the counterimages of each point in the

interior of A belong to C and one to A;
(4) three of the counterimages of each point of the

interior of B belong to B ∪ H and one to C.

In Fig. 4(top, left), we show the four roots (in
red) together with the lines joining them, the
three bounded indeterminacy points (in blue), the
region C (in white), the hyperbola Z−2,2 (in blue)
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R. De Leo

and its first two counterimages (resp., in red and
purple) under Nf . The numerical evidence suggests
that the α-limit of the set of points where DN−2,2 is
degenerate coincides with the set of irregular points
of J−2,2.

Now let U be a small enough neighborhood
of C and set X = ��2 \ U . Then, similarly to
what happens for N0,0, N−2,2(X) ⊃ X and the
restriction of N−2,2 to X is an open map. Hence
limn→∞ N−n

−2,2(X) defines a repellor for N−2,2 which
is exactly the set of points that do not leave X
under N−2,2. In Fig. 4(bottom, right), we show the
set N−13

−2,2(−20,−1.4), suggesting that this repellor
coincides with the set of irregular points of J−2,2. As
in the previous case, the counterimages of any point
in B give similar results while the counterimages of
points in A go to infinity.

Similarly to the previous case, we can get the
set of irregular points of J−2,2 as the invariant com-
pact set of the IFS I generated by the restriction of
the maps {w10, w01, w11} to the set D = {x + y ≤
1} ⊂ B. In this case though I is not, strictly speak-
ing, a well-defined IFS on D since there is a bounded
open subset N ⊂ D where the maps are not defined.
Nevertheless it is reasonable to believe, supported
by numerical experiments, that the concept of IFS
can be extended to this type of maps and that a
unique compact subset still exists. In Fig. 4(bottom,
left), we show in black the first 3 · 105 points of a
random backward orbit of (3,−3.6) under I; the
green points are points that fell, during the back-
ward iteration, in N , in which case we select a dif-
ferent random counterimage in order to keep going
backwards; the red points are the image of the black
ones under the map w00. Numerical experiments
suggest that the limits of such backward orbits do
not depend on the initial point inside D\N .

3.3. The map N
−1,2

The Newton map

N−1,2(x, y)

=

(

2x2y + y2 − 4x2 − 3

4xy − 8x − 1
, x

2y2 + x − 6

4xy − 8x − 1

)

shares many characteristics with N0,0. Like N0,0,
N−1,2 has two attracting fixed points p1 ≃ (−1.9,
3.7) and p2 ≃ (0.81, 0.65), corresponding to the two
roots of f−1,2 and three points of indeterminacy:
one bounded, approximately [−0.067 :−1.7 : 1], and
two unbounded, namely [1 : 0 : 0] and [0 : 1 : 0]. The

restriction of N−1,2 to the circle at infinity is the
identity, where defined, and all these fixed points
are repelling in a direction transversal to the circle
at infinity. Even in this case, N−1,2(�

2) = A ⊔ B
and Z−1,2 divides C = �2\N−1,2(�

2) into two
open sets C0 and C1 so that N−1,2(C1) ⊂ A,
N−1,2(C0) ⊂ B and the half-space D below the
ghost line is invariant under the first three of the
inverse branches

wm,n = (x0 + (−1)m
√

x2
0 − y0,

y0 + (−1)n
√

(y0 − 2)2 − x0 − 1),

with m,n = 0, 1.
Unlike N0,0, though, N−1,2 shows evident signs

of the presence of a third attractor C, whose basin
is shown in gold color in Fig. 5, lying on its ghost
line. Numerics suggest that the dynamics on F(C)
is chaotic (namely highly dependent on the initial
point). In particular, this means that F(C) ⊂ J−1,2,
suggesting furthermore that J−1,2 has nonempty
interior and so a nonzero measure. Consistently
with Conjecture 1, the numerical evaluation of the
α-limits of points in B [Fig. 6(bottom, right)] and of
the invariant set of the IFS generated by the maps
w1,0, w0,1, w1,1 [Fig. 6(bottom, left)] suggests that

Fig. 5. Basins of attraction of N
−1,2 in the square [−10,

10]2. The two real roots of f
−1,2 are the points p1 ≃ (1.9, 3.7)

and p2 ≃ (0.81, 0.65) and the corresponding basins have been
colored in cyan and red, respectively. The basin in gold cor-
responds to a chaotic attractor on the ghost line of N

−1,2.
Darker shades correspond to higher convergence time.
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Dynamics of Newton Maps of Quadratic Polynomial Maps of �2 into Itself

Fig. 6. (Top, left) Main elements in the dynamics of N
−1,2: fixed points (red), point of indeterminacy (blue), invariant line

joining the two roots and ghost line with its first and second counterimages (purple and gray), the set Z
−1,2 (light blue) with

its first and second counterimages (red and brown) and first 500 points of the orbit of a random point in the gold region
(green). The green points suggest the existence of an attracting chaotic set in the ghost line. (Top, right) Basins of attraction
of N

−1,2 in the square [−10, 10]2. (Bottom, left) First 3 · 105 points of a random backward orbit of a point below the light
blue invariant line under the three branches w1,0, w0,1, w1,1 of Nh (in black). Notice that there is a small open set below the
line, when the orbit falls there we paint the point in green and choose a different counterimage. The red points are the images
of the black points under w0,0. (Bottom, right) This picture shows the set N

−15
−1,2(−10,−0.23). These two bottom pictures

suggest that through α-limits we can only get the set of irregular points of the Julia set.

they are both equal to the set of nonregular points
of the boundary of J−1,2.

3.4. A panorama of maps Nx0,y0

In Figs. 7 and 8 we show, respectively, the basins
of attraction and a α-limit of the Newton maps of
20 parabolic maps fx0,y0

with x0 = −2,−2, 0, 1 and
y0 = −2,−1, 0, 1, 2 to support our Conjectures 1
and 2 under several different situations.

The maps f−2,2 and f−1,1 have both four roots
and the unions of the four relative basins of attrac-
tion of the corresponding Newton maps appear to
be full-measure. Similarly, although it has only two
roots, it happens for the map f0,0 already discussed

at length in Sec. 3.1. Their α-limits shown in Fig. 8
suggest that regular points of the Julia set are not
reached and that these limit sets coincide with the
closure of the set of counterimages, under their
Newton maps, of the set where these Newton maps
have a degenerate Jacobian. Note, though, that each
point of the Julia set of the first two Newton maps is
a boundary point between basins of attraction cor-
responding to different roots while, for x = y = 0,
almost all points of the Julia set have a neighbor-
hood containing the basin of a single root.

For all other maps in Fig. 7 with y ≥ −1 and
x ≤ y, fx,y has only two real roots but three attrac-
tors arise: two of them are the basins of attraction
of the two real roots while the third one is some
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R. De Leo

Fig. 7. Basins of attraction for Nx0,y0
corresponding to the values x0 = −2,−1, 0, 1 and y0 = −2,−1, 0, 1, 2. The numerical

results strongly suggest that the union of the basins of attraction of the fixed points corresponding to the roots of fx0,y0
has

full Lebesgue measure when the map has four roots and that chaotic attractors, some of which lying on the map’s ghost lines,
arise when the number of roots of fx0,y0

is not maximal. Darker shades correspond to higher convergence time.

subset on the corresponding ghost line. Numerics
suggest that the dynamics on the basin of this
third attractor is chaotic, namely it is a subset
of the Julia set rather than of the Fatou set like
the other two basins. In particular, this means that
all corresponding Julia sets have nonempty interior
and nonzero measure. The corresponding α-limits
shown in Fig. 8 suggest that the interior points of
Julia sets cannot be reached.

The remaining maps fx,y in Fig. 7 have no real
roots and therefore the corresponding Newton maps
have two ghost lines. For x = y = −2, on each of

these two lines lie an attractor, corresponding to
the two basins that are visible in the correspond-
ing picture. Note that, in this case, the Julia set is
the whole ��2 since on both basins the dynamics
appears to be chaotic. Nevertheless, the correspond-
ing α-limit seems to be the set of boundary points
between the two basins. In case of the maps corre-
sponding to pairs (x, y) with y = x − 1, only one
attractor is visible, the one corresponding to the
ghost line associated to the first pair of complex
solutions that disappears when y increases. A trace
of the α-limit shown in Fig. 8 can be seen also as the
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Dynamics of Newton Maps of Quadratic Polynomial Maps of �2 into Itself

Fig. 8. α-limit of a generic point under the parabolic Newton maps Nx0,y0
corresponding to the values x0 = −2,−1, 0, 1 and

y0 = −2,−1, 0, 1, 2. All these sets are also visible in the previous figure as the nonregular points of the basin boundaries.

darker area, namely the points that converge more
slowly, in the picture showing the ω-limits, suggest-
ing again that this α-limit is the closure of the set
of the counterimages of the set of degeneracy of the
Newton maps Jacobian. Finally, the remaining pic-
tures show, again, a single basin of attraction. This
time, though, the attractor is not a subset of either
one of the ghost lines — the orbits of generic points
seem rather to fill up some two-dimensional region.
Just like in the previous case, a trace of the α-limit
shown in Fig. 8 can be seen as the darker area in
the basin of attraction.

3.5. The map N5,0;1

The Newton map

N−5,0;1 =

(

x3 + xy2 + 2y − 24x

2(x2 + y2 − 5x)
,

y3 + x2y − 10xy + 2x + 24y − 10

2(x2 + y2 − 5x)

)

has four attractive fixed points p1 ≃ (−0.20,−5.1),
p2 ≃ (0.21, 4.7), p3 ≃ (4.0, 0.25) and p4 ≃
(6.0,−0.17), corresponding to the four roots of f5,0;1,
and restricts to the identity on the circle at infinity.
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R. De Leo

The four bounded fixed points are super-attractive
while the ones at infinity have eigenvalue 1 in the
direction of the circle at infinity and a repulsive
eigenvalue 2 in some transversal direction depend-
ing on the point. The five points of indeterminacy of
this map are all bounded: (0, 0), (5, 0) and, approx-
imately, (4.9,−0.81), (4.7, 1.2) and (0.035, 0.42).

Unlike the parabolic case, the map N−5,0;1 is
surjective and open, so that its Fatou and Julia
sets are fully invariant, as in the complex case. The
counterimages of a point (x0, y0) are given by

w±(x0, y0) =

(

x0 ±
√

S+

2
, y0 ∓

√

S−

2

)

,

where

S± =
√

Q ± (24 − 10x0 + x2
0 − y2

0)

and

Q = 4 + 96x2
0 − 40x3

0 − 8x0y0

+ (−24 + 10x0 + x2
0 + y2

0)
2.

Every point has exactly two distinct counterimages
except for the fixed points, on which the two coun-
terimages coincide. In Fig. 10 (top, left), we show
the fixed (red) and indeterminacy (blue) points, the

Fig. 9. Basins of attraction of N5,0;1 in the square

[−10, 10]2. The four real roots of f5,0;1 are the points p1 ≃

(−0.20,−5.1), p2 ≃ (0.21, 4.7), p3 ≃ (4.0, 0.25) and p4 ≃

(6.0,−0.17); the corresponding basins of attraction have been
colored, respectively, in red, cyan, blue and mustard. Darker
shades correspond to higher convergence time.

six invariant lines joining the fixed points, the circle
of zeros of the denominator of N−5,0;1 (in blue) and
its first counterimage under N−5,0;1 (in purple). The
black dots are the 212 points of N−12

h (−10,−0.23)
and show how the curves and points drawn fit with
the Julia set. Once again the picture suggests that
J−5,0;1 is the α-limit of Z−5,0;1.

Now, let U be a small enough neighborhood
of the four fixed points and X = ��2\U . Then
N−5,0;1(X) ⊃ X and so the set limn→∞ N−n

−5,0;1(X)
is the compact nonempty repellor of all points
that do not leave X under forward iterations of
N−5,0;1. Just taking the α-limit of a single point
suggests that this limit is the set of irregular points
of J−5,0;1 for any nonfixed point of N−5,0;1 [see
Fig. 10(bottom right)]. Similarly, w±(X) ⊂ X and
so the these two maps define a IFS on X. The
numerical evaluation of random orbits under I [see
Fig. 10(bottom, left)] suggests that the irregular
points of the Julia set is the unique compact invari-
ant set of I.

3.6. The map N3,−4;1

The Newton map

N3,−4;1 =

(

8 + 8x + x3 + 2y + 8xy + xy2

2(−3x + x2 + 4y + y2)
,

−6 + 2x − 8y − 6xy + x2y + y3

2(−3x + x2 + 4y + y2)

)

has properties very similar to those of the parabolic
map N−1,2.

Like N−1,2, also this map has only two attrac-
tive fixed points, namely p1 ≃ (7.3, 0.14) and
p2 ≃ (−0.14,−7.0), and, correspondingly, only two
invariant straight lines and three points of indeter-
minacy, all bounded: (0,−4), (3, 0) and, approxi-
mately, (2.8,−4.1). Like N5,0;1, this map is surjec-
tive and open and every point except the fixed one
has two counterimages. In Fig. 12 we show all these
elements plus the circle Z3,−4;1 and its first coun-
terimage under N3,−4;1.

Just as in case of N−1,2, numerics strongly sug-
gests the presence of a chaotic attractor K lying on
the ghost line, whose basin of attraction is shown
in gold in Fig. 11. The orbit of a point in F(K)
is shown in green in Fig. 12. Like N5,0;1, both ran-
dom backward orbits [see Fig. 12(bottom, left)] and
the α-limit of a generic point [see Fig. 12(bottom,
right)] appear to converge to the set of nonregular
points of the Julia set.
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Dynamics of Newton Maps of Quadratic Polynomial Maps of �2 into Itself

Fig. 10. (Top, left) Some important elements of the dynamics of N5,0;1 in the square [−10, 10]2: fixed points (red), indeter-
minacy points (blue), the six invariant lines, the set Z5,0;1 (light blue) and its first counterimage (purple). The black points
are the counterimages via N5,0;1 of a single point of the plane up to the fifth level of iteration. (Top, right) Basins of N5,0;1

in the square [−10, 10]2. (Bottom, left) First 3 · 105 points of a random backward orbit of a random point under the two
branches of N

−1
5,0;1. (Bottom, right) This picture shows the set N

−20
5,0;1(−10,−3.6). These two bottom pictures suggest that

through α-limits we can only get the set of irregular points of the Julia set.

Fig. 11. Basins of attraction of N3,−4;1 in the square [−10, 10]2. The two real roots of f3,−4;1 are the points p1 ≃ (7.3, 0.14)
and p2 ≃ (−0.14,−7.0), the corresponding basins are colored in cyan and red, respectively. The basin of the third attractor,
a chaotic invariant set lying on the ghost line, is colored in gold. Darker shades correspond to higher convergence time. The
ghost line is visible in the picture as the set of brightest points of the chaotic attractor.
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R. De Leo

Fig. 12. (Top, left) Main elements in the dynamics of N3,−4;1: fixed points (red), point of indeterminacy (blue), invariant
line joining the two roots (light blue) and ghost line (orange), the set Z3,−4;1 (light blue) with its first counterimage (purple).
The green and black points are, respectively, the first 500 points of the forward orbit of a random point in the basin of the
chaotic attractor and of the backward orbit of a generic point on the plane. (Top, right) Basins of attraction of N3,−4;1 in

the square [−10, 10]2. (Bottom, left) First 3 · 105 points of a random backward orbit of a point below the light blue invariant
line under the two branches of N

−1
3,−4;1 (in black). (Bottom, right) This picture shows the set N

−20
3,−4;1(−10,−3.6). These two

bottom pictures suggest that through α-limits we can only get the set of irregular points of the Julia set.
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Dynamics of Newton Maps of Quadratic Polynomial Maps of �2 into Itself

Fig. 13. Basins of attraction, in the square [−10, 10]2, for the hyperbolic Newton maps Nx0,y0;1 corresponding to the values
x0 = 1, 3, 5 and y0 = −4,−2, 0. The numerical results strongly suggest that the union of the basins of attraction of the roots
of the corresponding polynomials fx0,y0;1 has full Lebesgue measure when the map has four roots and that a third, chaotic
attractor can arise when the number of roots is nonmaximal. Darker shades correspond to higher convergence time.
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R. De Leo

Fig. 14. α-limit of a generic point belonging to some suitable open subset of ��2 under the parabolic Newton maps Nx0,y0;1

for the values x0 = 1, 3, 5 and y0 = −4,−2, 0. All these sets are also visible in the previous figure as the nonregular points of
the basin boundaries.
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Dynamics of Newton Maps of Quadratic Polynomial Maps of �2 into Itself

Fig. 15. (Top) Morphology in parameter space for the families of Newton maps Nx0,y0
and Nx0,y0;1 in the squares [−10, 5]×

[−5, 10] and [−10, 10]2, respectively. The initial point is (0, 6) for the parabolic maps and (5, 5) for the hyperbolic ones.
(Bottom) Number of solutions in the corresponding squares above: white means four real solutions, gray two real solutions
and black no real solution. No attractor besides those of the attracting fixed points were detected in the white regions for the
initial points above and several other choices of initial points, supporting Conjecture 2.

3.7. A panorama of maps Nx0,y0;a

In Figs. 13 and 14 we show the basins of attrac-
tion and some α-limits of several hyperbolic New-
ton maps Nx0,y0;a. Similarly to what we found in
the parabolic case, whenever fx0,y0;a has four roots,
the union of the corresponding four basins appear
to have full Lebesgue measure in ��2 while when
only two roots appear (a generic map fx0,y0;a has at
least two roots) a third attractor often arises as an
invariant subset of the map’s ghost line. While the
data shown is relative only to the value a = 1, we
could not detect any particular new phenomenon
for different values of this parameter. The pictures
in Fig. 14 are fully consistent with Conjecture 1 and
suggest in a more evident way than their parabolic
counterparts that regular points of the Julia set can-
not be reached by α-limits.

4. Morphology in Parameter Space

In a celebrated article, Curry et al. [1983] found
numerical evidence for the existence of cubic holo-
morphic polynomials of degree 3 whose Newton
map has attractive periodic cycles. The theoretical
basis of that article is an important general result
of Fatou on rational holomorphic maps in one vari-
able: if such a map has an attracting periodic cycle,
then one of its critical points must converge to it.

Newton maps of cubic holomorphic polynomi-
als can be parametrized, modulo the equivalence
described in Proposition 2, by two real parameters
and only one of their critical points is not bound
to converge to any of the three bounded attractive
fixed points, so checking the ω-limit of this “free”
critical point for some large lattice of such maps is
enough to detect any “large enough” open subset
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R. De Leo

of them admitting an attracting cycle. They called
the map resulting from this study “Morphology in
Parameter Space” (MPS).

In the real case Fatou’s result does not hold but
analyzing the MPS is anyway interesting for us. For
instance, discovering some Newton map of a poly-
nomial with maximal number of real roots having a
basin of attraction in addition to those correspond-
ing to those roots would disprove our Conjecture 2.
We explored numerically the two-parametric fami-
lies Nx0,y0

and Nx0,y0;1 for several different initial
points and found results qualitatively equivalent to
those shown in Fig. 15. In both cases, with a strik-
ing precision, we detected no extra basin in the
region where the corresponding polynomial map has
four real roots. Whenever some pattern intersects
that region, e.g. like the rocket-shaped pattern in
Fig. 15(left), on the intersection the pattern is filled
up only with the colors of the basins of attraction
of the four roots, giving reason to believe that Con-
jecture 2 is true for Newton maps of polynomials
of type (2, 2). Interestingly enough, notice that the
main patterns observable in the basins of the maps
Nx0,y0

and Nx0,y0;1 appear also in the correspond-
ing MPS.
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Numériques (Paris).
Lyubich, M. [1986] “The dynamics of rational trans-

forms: The topological picture,” Russ. Math. Surv.

41, 43.
Mandelbrot, B. B. [1980] “Fractal aspects of the iteration

of z → λz(1−z) for complex λ and z,” Ann. NY Acad.

Sci. 357, 249–259.
Miller, J. & Yorke, J. [2000] “Finding all periodic orbits

of maps using Newton methods: Sizes of basins,”
Physica D 135, 195–211.

Milnor, J. [1985] “On the concept of attractor,” The

Theory of Chaotic Attractors (Springer), pp. 243–
264.

Milnor, J. [2006] Dynamics in One Complex Variable,
Vol. 160 (Springer).

Peitgen, H. & Richter, P. [1986] The Beauty of Fractals:
Images of Complex Dynamical Systems (Springer Sci-
ence & Business Media).
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