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In this paper we produce many examples of thin subgroups of special lin-
ear groups that are isomorphic to the fundamental group nonarithmetic
hyperbolic manifolds. Specifically, we show that the nonarithmetic lattices
in SO(n, 1, R) constructed by Gromov and Piatetski-Shapiro can be embed-
ded into SL(n + 1, R) so that their images are thin subgroups.

Introduction

Let G be a semisimple Lie group and let I" be a finitely generated subgroup. We
say that I' is a thin subgroup of G if there is a lattice A C G containing I" such that

¢ " has infinite index in A,

e " is Zariski dense in G.

Intuitively, such groups are very sparse in the sense that they have infinite index in a
lattice, but at the same time are dense in an algebraic sense. Note, that if one relaxes
the first condition above, then I" would be a lattice, so another way of thinking of
thin groups is as infinite index analogues of lattices in semisimple Lie groups.

Over the last several years, thin groups have been the subject of much research,
much of which has been motivated by the observation that many theorems and
conjectures in number theory can be phrased in terms of counting primes in orbits
of groups that are “abelian analogues of thin groups.” Here are two examples. First,
let G=R, b,m eNsuchthat (b,m)=1, A=Z andI" =mZ. The orbit b+T  is an
arithmetic progression and Dirichlet’s theorem on primes in arithmetic progressions
is equivalent to this orbit containing infinitely many primes. Next, let G = R?,
A=7%T={(1,1))and b= (1,3) € 7> The orbit b+T = {(m, m +2) | m € Z}
and the twin prime conjecture is equivalent to the statement that this orbit contains
infinitely many points whose components are both prime. Note that in the first
case I' is a lattice in G, but in the second case I" has infinite index in A and is an
analogue of a thin group (sans Zariski density) in G.
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This orbital perspective was used by Brun to attack the twin primes conjecture
using “combinatorial sieving” techniques. Although the full conjecture remains
unproven these techniques did yield some powerful results. For instance, using
these methods, Chen [1978] was able to prove that there are infinitely many pairs n
and n + 2 such that one is prime and the other is the product of at most 2 primes.
More details of this perspective are explained in the excellent surveys of Bourgain
[2014] and Lubotzky [2012].

Inspired by these results, Bourgain, Gamburd, and Sarnak [Bourgain et al. 2010]
developed complementary “affine sieving” techniques to analyze thin group orbits.
In this context, the thinness property of the group gives enough control of orbits to
execute these counting arguments. Again, much of this is described in Lubotzky’s
survey [2012].

Given these connections it is desirable to produce examples of thin groups and
understand what types of groups are thin. Presently, there are many constructions
of thin groups. For instance, in recent work of Fuchs and Rivin [2017] it is shown
that if one “randomly” selects two matrices in SL(n, Z) then with high probability,
the group they generate is a thin subgroup of SL(n, R). However, the groups
constructed in this way are almost always free groups. There are also several
constructions that allow one to produce thin subgroups isomorphic to fundamental
groups of closed surfaces in a variety of algebraic groups (see [Cooper and Futer
2019; Kahn et al. 2018; Kahn and Markovic 2012; Kahn and Wright 2018], for
instance). Given these examples one may ask which isomorphism classes of groups
are thin? More precisely, if G is a semisimple Lie group and H is an abstract
finitely generated group then we say that H can be realized as a thin subgroup
of G if there is an embedding ¢ : H — G whose image is a thin subgroup of G.
With this definition in hand we can rephrase the previous question as: given a
semisimple algebraic group G, what isomorphism types of groups can be realized
as thin subgroups of G? Recent work of the author and D. Long [Ballas and Long
2020] shows that there are many additional isomorphism types of groups that can
arise as thin subgroups of special linear groups. More precisely, in [Ballas and Long
2020] it is shown that fundamental groups of arithmetic hyperbolic n-manifolds of
“orthogonal type” can be realized as thin subgroups. In the present work, we extend
the techniques of [Ballas and Long 2020] to produce infinitely many examples of
nonarithmetic hyperbolic n-manifolds whose fundamental groups can be realized
as thin subgroups of SL,;{(R). Our main result is:

Theorem 1. For each n > 3, there is an infinite collection C, of nonarithmetic
hyperbolic n-manifolds with the property that if M" € C, then mw(M) can be
realized as a thin subgroup of SL,11(R). Furthermore, the collection C,, contains
representatives from infinitely many commensurability classes of both compact and
noncompact manifolds.
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It should be noted that the collection C,, appearing in Theorem 1 can be described
fairly explicitly, and roughly speaking consists of the hyperbolic manifolds coming
from the nonarithmetic lattices in SO(n, 1, R) constructed by Gromov—Piatetski-
Shapiro in [Gromov and Piatetski-Shapiro 1988].

Outline of paper. In Section 1 we recall the Gromov—Piatetski-Shapiro construction
of nonarithmetic lattices in SO(n, 1, R) and define the collection C, appearing in
Theorem 1. In Section 2 we show that the fundamental group of any element of C,
can be embedded in several lattices in SL,1(R). Finally, in Section 3 we prove
Theorem 1 by showing that the images of the previously mentioned embeddings
are thin subgroups.

1. Gromov-Piatetski-Shapiro lattices

Gromov and Piatetski-Shapiro [1988], describe a method for constructing infin-
itely many nonarithmetic lattices in SO(n, 1, R). In this section we describe their
construction and the construction of the lattices appearing in Theorem 1.

Let K be a totally real number field of degree d + 1 with ring of integers Ok.
There are d + 1 embeddings {0y, ..., 04} of K into R. Using the embedding oy
we will implicitly regard K as a subset of R. In this way, it makes sense to say
that elements of F are positive or negative. Let sx : K™ — Z>(, where sg(a) =
[{i > 1| o;(a) > 0}]. In other words, sk (a) counts the nonidentity embeddings for
which a has positive image.

Next, let o, 8, a2, . .., a,+1 € Ok be positive elements such that

e B/a is not a square in K,
o sg(a) =sg(B) =skg(a;) =dforl1 <i<n,
* sg(ans1) =0.

Next, define quadratic forms

(1-1) Jl_ole—i-Zal —ap1x2,,, = ,Bxl—i-Za, —ap X2y,
i=2

If A C R is a subring containing 1 then we define
SO(J;, A) = {B € SL,41(A) | J;(Bv) = J;(v) Yv e R"*!}.

Using this notation, define I') = SO(Jy, Ok) and I'y = h SO(J,, Ox)h~!, where
h = Diag(s/B/a, ..., 1). Note that both I'; and I'; are lattices in SO(J, R),
however, since 8/« is not a square in K it follows from [Gromov and Piatetski-
Shapiro 1988, see Corollary 2.7 and §2.9] that these lattices are not commensurable.
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There is a model for hyperbolic n-space given by
H' = {veR"™ [ Ji(v) = —1, vu41 > 0}.

The identity component SO(Jy, R)° of SO(J;, R) consists of the orientation pre-
serving isometries of H" (see [Ratcliffe 2006, §3.2] for details). By passing to finite
index subgroups we can assume that I'; C SO(Jy, R)°, and so H"/I'; is a finite
volume hyperbolic orbifold for i =1, 2.

The lattice I'; C SO(J;, L), where L = K (,/B/a). Note that because o and 8 are
positive and sg (a) = sx (8) = d it follows that L is also totally real. Furthermore,
forevery y € I'p, tr(y) € Og C Or. The following lemma then shows that by passing
to a subgroup of finite index we may assume that I'y C SO(Jy, Op). This result
seems well known to experts, but we include a proof for the sake of completeness.

Lemma 1.1. Let k C C be a number field and let Oy be the ring of integers of k. If
' € GL, (k) acts irreducibly on C" and has the property that tr(y) € Oy, for each
y €T then there is a finite index subgroup T'" C T such that T' C GL,,(O).

Proof. If A C k is a subring then let AT = {Zl aiyilai €A,y € F}. Note that in
this definition all sums have finitely many terms. By [Bass 1980, Proposition 2.2],
OiT" is an order in the central simple algebra kI". The order O, I is contained in
some maximal order D in M, (k) (n x n matrices over k). Let D! c SL, (k) be
the norm 1 elements of D. Then M, (Ok) is also an order in M, (k) whose group
of norm 1 elements is SL, (Oy). It is a standard result using restriction of scalars
that groups of norm 1 elements in maximal orders of M, (k) are commensurable.
Roughly speaking this is a consequence of the fact that the intersection of two
orders is again an order and the unit groups of these orders are irreducible lattices
in SL,(R) x SL, (R) (see [Morris 2015, §5.1 and Example 5.1 #7]). It follows that
D' NSL,(O) has finite index in D! and so ' N SL, (O) has finite index in ['. O

Note that since I'; is a lattice in SO(Jy, R) it acts irreducibly on C™t! and so
by applying Lemma 1.1 we may assume that I'y C SO(Jy, Oy).

Denote by SO(n — 1, 1, R) the subgroup of SO(J;, R) that preserves both com-
plementary components in R"*! of the hyperplane P given by the equation x; = 0.
The intersection P N H" is a model for hyperbolic (n—1)-space, H"~! and the
group SO(n — 1, 1, R) can be identified with the subgroup of orientation preserv-
ing isometries of H"—!. Next, let [ = rNro,NSOm — 1,1, R). Since each
;NSO —1, 1, R) is sublattice of the lattice SO(n—1,1, O;) in SO(n—1, 1, R),
it follows that I is also a lattice in SO(n — 1, 1, R). It follows that H*~1/I" is a
hyperbolic (n—1)-orbifold. By passing to finite index subgroups we may arrange
the following properties:

(1) T is torsion-free and contained in the identity component of SO(Jy, R). This
component is isomorphic to Isom™ (H"), and so M; :=H"/T'; is a finite volume
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hyperbolic manifold (apply Selberg’s lemma and the fact that SO(J, R)° has
finite index in SO(J, R)).

(2) Since ¥ =H""!/ [isa totally geodesic we may assume that X is a hyperbolic
(n—1)-manifold and this manifold is embedded in both M; and M, (see
[Bergeron 2000, Theorem 1]).

(3) If M; is noncompact then all cusps of M; are diffeomorphic to an (n—1)-torus
times an interval (apply [McReynolds et al. 2013, Theorem 3.1])

(4) The complement A?,- = M;\ X is connected for i = 1, 2 (see [Bergeron 2000,
Theorem 2]).

The manifold A//i,- is a convex submanifold of M; and so AZ- =V;/ f‘i, where V; is
a component of the preimage of Z\Z in H” under the universal covering projection
H" - H"/T'; = M;, and f‘,- is a subgroup of I'; that stabilizes V;. The manifold
M;isa hyperbolic manifold with totally geodesic boundary equal to two isometric
copies of X, and so it is possible to glue M, and M, along ¥ to form the finite
volume hyperbolic manifold N (see [Morris 2015, §6.5] for details). The manifold
N can be realized as H" /A where, after appropriately conjugating [ in Iy, we
may assume that

(1-2) A= (I, s).

Here s comes from a “graph of spaces” description of N and can thus be written
as a product s = 5551, where s; is the isometry corresponding to an appropriate lift
to V; a curve in M; whose algebraic intersection with X is 1 (See Figure 1). In
[Gromov and Piatetski-Shapiro 1988, §2.9] it is shown that A is a nonarithmetic
lattice in SO(J1, R). If N =H"/A then we call N an interbreeding of M| and M.

Since I'y, I’y € SO(Jy, Op) it follows that A C SO(J;, Op). As a result, we
call the field L the field of definition of A. Let C, be the collection of hyperbolic
n-manifolds coming from the above interbreeding construction.

We close this section by proving the following result:

Proposition 1.2. The collection C, contains representatives of infinitely many
commensurability classes of both closed and noncompact hyperbolic n-manifolds
satisfying the properties (1)—(4) from above.

To prove this we will need the following invariant, originally due to Vinberg
[1971]. Let I be a Zariski dense subgroup of a Lie group H with Lie algebra h. The
adjoint action of I" on h gives a representation Ad : ' — gl(h). In [Vinberg 1971] it
is shown that the field Q({tr(Ad(y)) |y € I'}) is an invariant of the commensurability
class of I' in H. This field is called the adjoint trace field of T".

Next, let N = H*/A € C,, then A is a lattice in SO(J;, R), which is Zariski
dense by the Borel density theorem. The following lemma allows us to compute
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Figure 1. An graph of spaces description of the manifold N.

the adjoint trace field of A. It is an immediate corollary of a theorem of Mila (see
[Mila 2019, Theorem 4.7]) once it is observed that L is the smallest extension of
K over which the forms J; and J, are isometric.

Lemma 1.3. Let N =H"/A € C,, and let L be the field of definition of A. Then L
is the adjoint trace field of A.

Proof of Proposition 1.2. From [Gromov and Piatetski-Shapiro 1988], it follows
that N = H"/A is compact if and only if the field K used to construct A is not
equal to Q. For each choice of a totally real field K and a pair «, 8 € K so that
o/ B is not a square in K we can produce an element N € C, via the interbreeding
construction. By varying the choices of o and 8 we can produce infinitely many
distinct L = K (4/B/«) for each choice of K. It follows from Lemma 1.3 that the
corresponding N are representatives of infinitely many commensurability classes
of both compact and noncompact hyperbolic n-manifolds. U

2. Lattices in SL,,+1(R)

In this section we describe the lattices A C SL,,4+(R) in which our thin groups
will ultimately live. Let J; be one of the forms constructed in Section 1 and let
L be the corresponding (totally real) field of definition. Let M = L(./r), where
r € L is positive, square-free, and sy (r) = 0. The number field M is a quadratic
extension of L and we let T : M — M be the unique nontrivial Galois automorphism
of M over L. In this context, we can extend the quadratic form J; on L"*! to a
“Hermitian” form on M"t!. Let Ny : M — L given by N/ (x) = x7(x) be the
norm of the field extension M /L. Next let x = (x1, ..., X,+1) € M1 and define
Hy: M"t1 > [ as

n
Hi(x) =aNy/L(x1) + ZaiNM/L(xi) — a1 Ny (Xng1)-
i=1
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Note that this defines a Hermitian form in the sense that if x € M"* and » e M
then Hj(Ax) = Ny (A)H;(x). Furthermore, since L is the fixed field of 7 it
follows that H; reduces to J; when restricted to L" 1.

Next, we can define a unitary analogue of SO(J;, Oyy) as

SU(J1, 7, Oy) = [A € SL,11(On) | Hi(Av) = Hy(v) Vv € M"'}.

It is well known (see [Morris 2015, §6.8], for example) that SU(Jy, 7, Oy) is an
arithmetic lattice in SL,, 1 (R).

Let N =H"/A be one of the manifolds from C,. By construction, the manifold
N contains the embedded totally geodesic hypersurface ¥ = H"~!/ I, and so it is
possible to deform A inside of SL,,4 (R) using the bending construction of Johnson
and Millson [1987].

Specifically, let ¢; = Diag(e ™, €', ..., ") € SL,11(R). It is easy to check that
¢, centralizes SO(n — 1, 1, R). Since X is assumed to be nonseparating, we see that
write A as an HNN extension A = A*S, where A is isomorphic to the fundamental
group of N\¥ and s is a free letter. In this context, we may view A C SO(J;, Op)
and s € SO(Jy, Or) and observe that as a subgroup of SO(J;, Or) we can write
A= (A, s). We now define a new family of subgroups A; = (A, ¢;s) C SL,+1(R).
Using basic theory of HNN extensions, it is easy to see that, since c; centralizes the
fundamental group of X, as an abstract group A, is a quotient of A. However, by
using the following result due to Benoist [2005] in the compact case and Marquis
[2012] in the noncompact case, we can actually say much more.

Proposition 2.1. For each t, the group A, is isomorphic to A.

Next, we show for certain values of ¢ the group A, is contained in one of the
unitary lattices constructed above. Specifically, if N = H"/A is contained in C,,
let J; and L be such that A C SO(Jy, Or). Recall that the field L is totally real of
degree d+1 over (D and so there are d + 1 embeddings {op =1d, ..., o4} of L into R.
We can use Lemma 3.1 of [Ballas and Long 2020] to produce a unit u € OZ with
the property that |u| > 2 and 0 < |o;(u)| < 1 for 1 <i <d. Let p(x) =x>—ux+1
and let M = L(v), where v is one of the roots of p(x). It is easy to check that
the discriminant of p(x) is u?> —4 and so M = L(~Vu?—4). By construction
sp(u?> —4) =0, and so SU(J;, 7, Oy) is an arithmetic lattice in SL,+1(R), where
T : M — M is the nontrivial Galois automorphism of M over L. The next lemma
says that by carefully choosing ¢, we can arrange that A, C SU(Jj, 7, Oy).

Lemma 2.2. Let u be as above. Then if t = log(u) then A; C SU(Jy, T, Oy).

This is basically Lemma 3.4 of [Ballas and Long 2020], but the proof is short so
we include it here for the sake of completeness.
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Proof. Recall from above that there is a subgroup A C SO(J;,0p) and s €
SO(Jy, Op) sothat A = (A, s) and A, = (A, ¢;s), where

¢, =Diag(e ™™, €', ...,e") € SL,;1(R).

Since SO(Jy, Op) € SU(Jy, 7, Op) the proof will be complete if we can show that
Cr € SU(J], T, OM).

If t =log(u) then ¢, =Diag(u™", u, ..., u). Furthermore, since 7 () is the other
root of p(x) it follows that ut () = 1, or in other words 7(x) = u~'. It follows
that ¢ = Diag(u", u~!, ..., u~"). A simple computation then shows that for each

ve M, H\(cv) = Hi(v), and so ¢; € SU(Jy, T, Op). O
By combining Lemma 2.2 and Proposition 2.1 we get the following corollary:

Corollary 2.3. For each N = H"/A € C, there are infinitely many lattices A C
SL,.11(R) that contain a subgroup A’ isomorphic to A.

3. Certifying thinness

The main goal of this section is to complete the proof of Theorem 1. The proof
consist of proving that the subgroups constructed in the previous section are thin.

Proof of Theorem 1. Recall, that if N =H"/A € C, from Corollary 2.3 it follows
that we can find a lattice A C SL,,+;(R) and a subgroup A’ C A that is isomorphic
to A.

Since A’ was obtained from A via a bending construction if follows from [Ballas
and Long 2020, Proposition 4.1] that A’ is Zariski dense in SL,;(R). The proof
will be complete if we can show that A’ has infinite index in A. Suppose for
contradiction that this index is finite. Since A is a lattice in SL,, 1 (R) this implies
that A’ is also a lattice in SL,.1(R). However, A’ is isomorphic to A and A is
a lattice in the Lie group SO(n, 1)°. However, SO(n, 1)° and SL,+;(R) are not
isomorphic and so this contradicts the Mostow rigidity theorem (see [Morris 2015,
Theorem 15.1.2]). O
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