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ABSTRACT: Computational protein design, ab initio protein/
RNA folding, and protein−ligand screening can be too computa-
tionally demanding for explicit treatment of solvent. For these
applications, implicit solvent offers a compelling alternative, which
we describe here for the polarizable atomic multipole AMOEBA
force field based on three treatments of continuum electrostatics:
numerical solutions to the nonlinear and linearized versions of the
Poisson−Boltzmann equation (PBE), the domain-decomposition
conductor-like screening model (ddCOSMO) approximation to
the PBE, and the analytic generalized Kirkwood (GK) approx-
imation. The continuum electrostatics models are combined with a
nonpolar estimator based on novel cavitation and dispersion terms.
Electrostatic model parameters are numerically optimized using a
least-squares style target function based on a library of 103 small-molecule solvation free energy differences. Mean signed errors for
the adaptive Poisson−Boltzmann solver (APBS), ddCOSMO, and GK models are 0.05, 0.00, and 0.00 kcal/mol, respectively, while
the mean unsigned errors are 0.70, 0.63, and 0.58 kcal/mol, respectively. Validation of the electrostatic response of the resulting
implicit solvents, which are available in the Tinker (or Tinker-HP), OpenMM, and Force Field X software packages, is based on
comparisons to explicit solvent simulations for a series of proteins and nucleic acids. Overall, the emergence of performative implicit
solvent models for polarizable force fields opens the door to their use for folding and design applications.

■ INTRODUCTION

Solvation plays a key role in accurately portraying the natural
processes of molecules in vitro and in vivo.1 Hydrophilic and
hydrophobic interactions govern protein folding2 and impact
molecular recognition.3 For these reasons, solvent4 must be
considered during computational protein design and optimiza-
tion,5−9 RNA folding,10,11 and biocatalyst design.12 While
explicit solvent often provides a more complete depiction of
solvation effects on molecular interactions, its use can become
impractical for biomolecular folding and design applications. To
help alleviate this computational expense, implicit solvation
models have been developed.13,14

Implicit solvents are designed to replicate explicit solvent
while treating water as a continuum to avoid the cost of
calculating the interactions of thousands of individual water
molecules. The total implicit solvent potential of mean force
ΔWhydration(X) as a function of atomic coordinates X can be
formulated as a sum of cavitation, dispersion, and electrostatic
contributions

Δ = Δ + Δ + ΔW W W WX X X X( ) ( ) ( ) ( )hydration cav disp elec

(1)

where ΔWcav is the unfavorable cost of forming a solute-shaped
cavity within solvent, ΔWdisp is the favorable contribution of
including solute−solvent van der Waals interactions, andΔWelec
captures the difference between charging themolecule in solvent
and in vacuum environments (Figure 1).13,15,16 Collectively,
cavitation and dispersion are termed the nonpolar contribu-
tion17−21 to solvation free energy, while the electrostatic term is
referred to as the polar contribution.4,22−27 For the latter,
previous widely used implicit solvents for biomolecules include
approaches based on numerical solutions to the Poisson−
Boltzmann equation (PBE)26,28−31 and the analytic generalized
Born (GB) approximation.32−40 The majority are built upon
fixed partial charge force fields that maintain constant dipole
moments across vacuum and aqueous environments. On the
other hand, the family of implicit solvents described here is
parameterized for use with the polarizable atomic multipole
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AMOEBA force field.41,42 These models combine intra-
molecular solute polarization with the electrostatic response of
the dielectric continuum via a self-consistent reaction field
(SCRF) that leverages numerical solutions to the PBE43,44 or the
much faster analytic generalized Kirkwood (GK) approxima-
tion45 (GK extends GB to polarizable multipoles using work by
Kirkwood46). In principle, polarizable biomolecular charge
distributions (i.e., induced dipoles for the AMOEBA model) are
then able to respond to both low-dielectric (e.g., benzene or
carbon tetrachloride) and high-dielectric (e.g., methanol or
water) environments.
Efforts to combine polarizable biomolecular force fields with

implicit solvents began in the ∼2000s with the introduction of
the polarizable force field (PFF) and its initial application to
protein−ligand interactions.47 The PFF defines solute electro-
statics using permanent atomic multipoles (through dipole
order) and induced dipoles, while the PBE was solved using a
finite element mesh.48 A more recent example combined a
Drude oscillator force field49,50 with numerical solutions of the
PBE.51 Application of this model to pKa prediction

52 showed
superior accuracy relative to the additive CHARMM36 force
field,53,54 although it increased the computational cost. A second
recent example combined the bond capacity (BC) polarization
model with both the generalized Born (GB) model and the
conductor-like polarizable continuum model (C-PCM).55 For
the BC−GBmodel, NVEmolecular dynamics (MD) was shown
to conserve energy at a modest increase in cost of only 15%
relative to vacuum.56 Cooper et al. have developed an
electrostatics solver called PyGBe, which employs a tree-code
accelerated boundary-element formulation. PyGBe specifically
addresses the multisurface problems common to boundary-
element method (BEM) solvers and is able to achieve directly
comparable accuracy to the adaptive Poisson−Boltzmann solver
(APBS) with increased speed.57,58 Although beyond our focus
on implicit solvents for biomolecular polarizable force fields,
there is a large body of work dedicated to quantum mechanical
SCRF implicit solvents,59−61 including the polarizable con-
tinuum model (PCM),62,63 the solvent model (SM) series,64−66

and conductor-like screening models (COSMOs).67,68

Here, we describe the theory, implementation, and para-
metrization of implicit solvents compatible with the polarizable

AMOEBA force field. We describe a nonpolar estimator
consisting of novel cavitation and dispersion terms, which is
combined with electrostatic contributions based on solving the
PBE numerically with the adaptive Poisson−Boltzmann solver
(APBS),43 the domain-decomposition COSMO (ddCOSMO)
approach,44 and the analytic generalized Kirkwood (GK)
model.45 Model parameters are fit to experimental solvation
free energy differences for a set of 103 small molecules. The
resulting implicit solvent hydration free energy differences are
compared to those obtained previously using explicit solvent
AMOEBA free energy simulations. Furthermore, the electro-
static response of the resulting models is validated for a series of
proteins and nucleic acids in continuumwater compared to both
explicit solvent AMOEBA simulations and to widely used fixed-
charge force fields. Finally, the relative computational speed of
the models is compared.

■ METHODS

AMOEBA Parameterization Using PolType2. The
PolType2 protocol was used to generate AMOEBA small-
molecule parameters, beginning from an initial optimization at
the MP2/6-31G* level of theory. Ab initio quantum mechanics
(QM) calculations were performed using Gaussian 09. All
molecular mechanics (MM) force field-based calculations
needed for parameterization were performed using the Tinker
8 Software.69 Valence parameters were taken from the small-
molecule parameter database in PolType2. Atomic multipole
moments were initially assigned from the QM electron density
calculated at the MP2/6-311G** level via Stone’s distributed
multipole analysis.70 Further optimization of permanent multi-
poles was performed using the Tinker Potential program to fit
the electrostatic potential around each molecule to a QM
electron density at the MP2/6-311++G(2d,2p) level. All small-
molecule AMOEBA parameter files (Tinker “prm” format) are
available as Supporting Information.

Small-Molecule Data Set. A test set of 103 small molecules
was used to parameterize the implicit solvent models. The
experimental solvation free energy differences for neutral
compounds were taken from the FreeSolv Database, version
0.51,71,72 unless otherwise indicated.73,74 Experimental hydra-

Figure 1. Total implicit solvent potential of mean forceΔWhydration(X) can be formulated using a thermodynamic cycle composed of five steps. Step 1:
the solute is decharged in vacuum −Uelec

vacuum(X). Step 2: dispersion interactions are removed between the solute and the surrounding medium, which
has no energetic cost in vacuum. Step 3: a solute-shaped cavity is formed in water ΔWcav(X), which is unfavorable and proportional to the solvent-
excluded volume for small solutes. Step 4: favorable solute−solvent dispersion interactions are added ΔWdisp(X). Step 5: the solute is charged in
solvent Uelec

water(X) to yield an overall electrostatic contribution of ΔWelec(X) = Uelec
water(X) − Uelec

vacuum(X).
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tion free energy differences for charged compounds (ΔGsolv
ion )

were calculated using eq 2

Δ = Δ ± Δ ± Δ

∓ ×

+
G G G G

RT K2.303 p

solv
ion

solv
neutral

gas
basicity

solv
H

a (2)

where the upper signs are used for cations, and the lower signs
for anions. ΔGsolv

neutral is the solvation free energy difference of the
neutral molecule, ΔGgas

basicity is the gas-phase basicity from

NIST,75,76 ΔGsolv
H+

is the solvation free energy difference of a
proton, R is the universal gas constant in kcal/mol, T is the
temperature in Kelvin, and pKa is the negative decimal logarithm
of the acid dissociation constant from Stewart.77 For phosphate
and guanidinium compounds, experimental values for the
neutral solvation free energy difference and/or gas-phase
basicity were not available. Due to their importance in fitting
electrostatic implicit solvent parameters for proteins (i.e.,
arginine) and nucleic acids (i.e., the phosphate backbone),
target solvation free energy differences for these compounds
were calculated from AMOEBA explicit solvent solvation free
energy simulations.
The value for the solvation free energy difference of the

proton used here (−254.22 kcal/mol) was calculated as the sum
of potassium ion solvation free energy (−74.32 kcal/mol78) and
the experimental free energy of transfer K+ → H+ (−179.90
kcal/mol79). Using an intrinsic value for proton solvation, we
avoid implicitly fitting to the interface potential (i.e., the
potential created by preferential orientation of water molecules
at the vacuum−liquid interface; see Figure S1, Supporting
Information), while the preferential orientation of water around
uncharged solute cavities (i.e., the cavity potential) is included.
The potential energy contribution due to a charged molecule
crossing the vacuum−liquid interface can be added to implicit
solvent free energy differences in the same manner as for
periodic explicit solvent simulations.80 By excluding the
interface potential from implicit solvent parameterization,
ensemble averages, conformational distributions, and free
energy differences from implicit solvent and periodic boundary
explicit solvent simulations are directly comparable.78,81

Of the molecules tested, 91 were neutral and 12 were charged.
Charged compounds were chosen based on their chemical
similarity to charged groups in biomolecules. All starting
structures were obtained from PubChem and parameterized
for AMOEBA using PolType2 as described above,81 then
energy-minimized in vacuum. We see close agreement between
the vacuum dipole moments from single point MP2/6-
311G**(2d,2p) calculations and those from the AMOEBA
small-molecule parameters, shown in Figure 2.
Cavitation Free Energy. The Lum−Chandler−Weeks

theory of hydrophobicity predicts contrasting behavior for the
cavitation free energy of small and large solutes.1,82−84 At all
length scales, the driving force for phase separation is
proportional to the solute volume, while the cost to form an
interface is proportional to the surface area. These competing
factors are exhibited in a cross-over in the dependence of the
cavitation free energy change between volume scaling for small
solutes and surface area scaling for large solutes, which, for a
spherical cavity, occurs at a radius of approximately 10 Å.

Δ ∝
≤ ∼

> ∼

l
m
oo
n
ooW r

r

r
( )

volume, 10 Å

surface area, 10 Å
cav

(3)

For spherical solutes with a radius below this threshold, water
molecules are generally able to form a hydrogen bond network
surrounding the solute that maintains a complement of
hydrogen bonds similar to bulk water (i.e., ∼4 per water). As
the solute size increases toward mimicking a flat liquid−vacuum
interface, each water molecule on average sacrifices a single
hydrogen bond (i.e., one hydrogen from each water molecule is
directed toward vacuum giving rise to a phase potential). For
solutes with varying shapes, such as biomolecules, the cavitation
cost is neither proportional to the volume nor the surface area
but rather some local mixture of the two regimes. For example,
the cost to form a cavity scales more with volume character for
an extended chain than for a compact spherical conformation,
where both conformations have equal surface areas. One can
imagine protein conformations with both extended loops and
large compact regions, suggesting that cavitation terms that do
not consider local conformation are clearly an approximation. It
is beyond the scope of the current work to develop a general
functional form for the cavitation free energy of a biomolecular
solute of arbitrary size and shape, although approaches that
adjust the effective surface tension (ST) based on local curvature
are promising.85 Fortunately, as small-molecule cavitation free
energies are in the volume-scaling regime, the magnitude of the
cavitation term for the AMOEBA implicit solvents is not
expected to change for the small-molecule parameterization
discussed here, even if an improved cavitation model for larger
biomolecules is defined in the future.
An effective radius for a nonspherical solute conformation X

can be determined from the calculation of either the solvent-
excluded volume SEV(X)

π= ×r X X( ) 3 SEV( )/4SEV
3 (4)

or the solvent-accessible surface area SASA(X)

π=r X X( ) SASA( )/4SASA (5)

using algorithms developed by Connolly86−88 and implemented
in Tinker69 and Force Field X.89 As first described by Richards,
SEV and SASA are defined by rolling a spherical probe (i.e., with
a radius of 1.4 Å to approximate water) around the surface of a

Figure 2. Total dipole moments for the parameterization set of 103
molecules from QM using MP2/6-311G**(2d,2p) are compared to
those of the resulting AMOEBAmodels (red dashed line: Y = 0.9986·X
+ 0.0011; R2 = 0.9999).

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.0c01286
J. Chem. Theory Comput. 2021, 17, 2323−2341

2325

http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.0c01286/suppl_file/ct0c01286_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01286?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01286?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01286?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01286?fig=fig2&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.0c01286?rel=cite-as&ref=PDF&jav=VoR


molecule.90 The cavitation free energy of an (approximately)
spherical solute can then be described by a piecewise continuous
function of its effective radius

λ χ

γ χ
Δ =

× ≤

× >

l
m
ooo
n
ooW r

r

r

X

X
( )

SEV( ),

SASA( ),
sphere

(6)

where in the volume-scaling regime, cavitation free energy is
defined by the product of SEV and solvent pressure (SP)
denoted by λ (kcal/(mol Å3)); in the surface-area-scaling
regime, cavitation free energy is defined by the product of SASA
and surface tension (ST) denoted by γ (kcal/(mol Å2)). For our
model, SP was assessed using two explicit solvent simulation
approaches that are in general agreement. The first approach
assumes that the SEV and SASA cavitation free energies are
equal at the cross-over point χ for a spherical solute, which yields
the relationship λ = (3·γ)/χ. This defines SP to be 0.031 kcal/
(mol Å3), using the experimental surface tension of water (0.103
kcal/(mol Å2)) and an approximate cross-over point of 10 Å
from fixed-charge simulations.1 The second approach leverages
explicit solvent free energy perturbation simulations91 using the
AMOEBA water model92 and 39 AMOEBA small molecules as
described elsewhere,41 which resulted in a mean SP of 0.0334
kcal/(mol Å3). Using the relationship between the experimental
surface tension of water and the latter SP, the volume-to-surface-
area cross-over radius is 9.251 Å. Both SP estimates are within
0.003 kcal/(mol Å3) of each other, and both define cross-over
radii that differ by less than 0.75 Å. For the current model, the
latter SP of 0.0334 kcal/(mol Å3) and the cross-over radius of
9.251 Å were chosen due to their consistency with the
AMOEBA model.
The simple definition in eq 6 for the transition between the

volume-scaling and surface-area scaling regimes is not useful for
molecular dynamic simulations or optimization algorithms
because it lacks continuous first and second derivatives. To
address this, it is possible to introduce a simple multiplicative
switch sv(r) to smoothly turn off the volume term and a second
switch ssa(r) to smoothly turn on the surface area term. Each
switch acts over a window of length w = 7 Å centered on the
cross-over point χ, such that the switch begins at b = χ−w/2 and
ends at e = χ + w/2 to give

λ

λ
γ

γ

Δ =

× ≤

× ×
+ × ×

< ≤

× <

l

m

ooooooooo

n

ooooooooo

W r

r b

s r
s r

b r e

e r

X

X
X

X

( )

SEV( ),

SEV( ) ( )
SASA( ) ( ),

SASA( ),

switch
v

sa

(7)

The volume-scaling switch sv(r) is a fifth-order polynomial
whose six coefficients are uniquely determined by constraining
its value at b to sv(b) = 1 and at e to sv(e) = 0, as well as
constraining first and second derivatives at b and e to be zero.
This gives

= + + + + +s r c c r c r c r c r c r( )v 0 1 2
2

3
3

4
4

5
5

(8)

where

= − +

= −

= +

= − + +

= +

= −

= −

c e e eb b d

c e b d

c eb e b d

c e eb b d

c e b d

c d

d e b

( 5 10 )/

30 /

30 ( )/

10( 4 )/

15( )/

6/

( )

0
3 2 2

1
2 2

2

3
2 2

4

5

5
(9)

The surface area switch in this symmetric case is

= −s r s r( ) 1 ( )sa v (10)

The behavior of the cavitation free energy using a symmetric
switch showed a modest peak at the cross-over point, which is
removed by shifting the center of the switching region for the SA
term to larger effective radius values by a small offset o = 0.2 Å.
This gives the final functional form used here

λ

λ

γ

γ

Δ =

× ≤

× × < ≤

<

+

≤ +

× × − + < ≤ +

× + <

l
m
oooooo

n
oooooo

l
m
oooooo

n
oooooo

W

r b

s r b r e

e r

r b o

s r o b o r e o

e o r

X

X

X

X

X

( )

SEV( ),

SEV( ) ( ),

0,

0,

SASA( ) ( ),

SASA( ),

cav v

sa

(11)

where the surface area switch is now slightly offset from the
volume switch. The smooth behavior ofΔWcav(X) as a function
of the effective radius is shown in Figure 3. In this work, the
effective radius of the molecule is determined using SASA (eq
5), rather than SEV (eq 4), due to the former being faster to
compute for large solutes (i.e., SEV does not need to be
computed for large biomolecules). The gradient of SEV and
SASA with respect to atomic coordinates has been described
previously.93−95

Dispersion Free Energy. The pairwise dispersion energy
for the AMOEBA model is given by a buffered 14-7 potential97

ε=
+ +

−−

i

k
jjjjjj

y

{
zzzzzz

i

k

jjjjjj
y

{

zzzzzzU r
r

r r

r

r r
( )

1.07

0.07

1.12

0.12
2ij ij

ij

ij ij

ij

ij ij
14 7

0,

0,

7
0,

7

7
0,

7
(12)

where rij is the separation distance between atoms i and j, εij is
the well depth, and r0,ij is the minimum energy separation
distance.41 This can be used to define a purely repulsiveWeeks−
Chandler−Andersen (WCA) potential98,99 as

ε
=

+ <

≥
−

l
m
ooo
n
ooo

U r
U r r r

r r
( )

( ) ,

0,ij
ij ij ij ij

ij ij
rep

14 7 0,

0, (13)

which is shown in Figure 4.
Work by Gallicchio, Kubo, and Levy (GKL) demonstrated

that the free energy of adding dispersion interactions to the
WCA repulsive potential, thereby restoring full van der Waals
interactions between solute and solvent, is nearly equal to the
change in the solute−solvent enthalpy for a series of small
alkanes studied using free energy perturbation (FEP)100

Δ ≈ ⟨ ⟩ − ⟨ ⟩−W U Udisp 14 7 rep (14)
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This led to their suggestion of a dispersion free energy estimator
based on Born radii, such that the dispersion free energy of the
solute is

∑ πρ ε σ
Δ =

−

=

W
R

16

3i

n
w iw iw

i
GKL

1

6

3
(15)

where ρw is the number density of water (0.033428 per Å3), εiw
and σiw are the well depth and sigma value of the interaction of
atom iwith the TIP3P watermodel, respectively, n is the number
of solute atoms, and Ri is the Born radius.

37,73 In effect, the term
acts like a tail correction, assuming solvent to be a continuum
outside the solute and integrating the 1/r6 attractive portion of a
6-12 Lennard-Jones potential. In the limit of a spherical solute,
the use of the Born radii in eq 15 is exact; however, for other
geometries, it is an approximation.
The goal for the dispersion free energy model is to build on

the insights described above by removing the Born radii from the
GKLmodel given in eq 15 and instead integrating the trueWCA
attractive potential (Figure 4) outside of the solute cavity for
each atom.

ε
= − =

− <

≥−
−

l
m
ooo
n
ooo

U r U r U r
r r

U r r r
( ) ( ) ( )

,

( ),ij ij ij

ij ij ij

ij ij ij
WCA 14 7 rep

0,

14 7 0,

(16)

We present an analytic approach based on the Hawkins−
Cramer−Truhlar (HCT) pairwise integration method also used
for GK.34,101 Due to the use of the buffered 14-7 potential by
AMOEBA, the underlying pairwise integration machinery needs
to account for the constant portion of the WCA potential for r <
r0,io (where in this case r0,io is the minimum energy separation for
solute atom i with an AMOEBA water oxygen) and integrate
both 1/r7 and 1/r14 for r > r0,io. The general analytic form for the
dispersion free energy,ΔWdisp(X), of a solute with coordinatesX
is given by

∫ ∫ ∫∑ρ

θ ϕ θ ϕ θ

Δ =

×

π π
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W U r

S r r r
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X R
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2
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2
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where the solvent indicator function S is unity if the point (r,θ,ϕ)
is located within the solvent but zero otherwise, ρw is the number
density of water, and R are the AMOEBA minimum energy
separation distance values (r0,ij) for each atom. The radial
integral for atom i with continuum water oxygen begins from
half their combined r0,ij (in this case, r0,io for atom i with water
oxygen) value plus an offset (d = 1.056 Å), which is one of two
free parameters in the model. The beginning of the radial
integral is defined asR0 = r0,ij/2 + d. The second free parameter is
a scale factor (s = 0.75) that accounts for the overlapping
volumes of neighboring atoms during evaluation of the
dispersion integral over solute atoms. Both parameters, which
appear below in eq 18 forΔWdisp(X), were fit against dispersion
enthalpies (eq 18) measured from explicit solvent simulations as
described in the Supporting Information (Table S1). For a single
water oxygen atom, the behavior of ΔWdisp is shown in Figure
5A, and the dispersion interactions of explicit water atoms
(oxygen and hydrogen) with continuum water oxygen and
hydrogen are shown in Figure 5B,C.
After performing the two angular integrals in eq 16, inverting

the integration domain and applying the HCT pairwise
approximation34 gives
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Figure 3. Surface tension is not constant for small solutes but increases
approximately linearly until the effective radius of the solute increases to
beyond ∼10 Å. For large (flat) solutes, surface tension asymptotes
toward the experimental value for a water-vapor interface of 0.103 kcal/
(mol Å2).96 This length scale dependence can be approximately
captured by a cavitation free energy difference that switches between
using SEV and SASA via either a simple, nondifferentiable form
(ΔWsphere(r) given by eq 6, black dashed line) or the smooth form used
in this work (ΔWcav(r) given by eq 11, green solid line). The asymptotic
surface tension ofΔWcav(r) can be reduced relative to the experimental
value (e.g., to 0.08 kcal/(mol Å2), dotted blue line) to capture cavitation
for solutes with a large effective radius but which are more highly curved
than a simple sphere (e.g., a DNA double helix, RNA molecule, or
protein).

Figure 4. Pairwise buffered 14-7 potential (U14‑7) can be decomposed
into purely repulsive (Urep, eq 13) and attractive (UWCA, eq 16)
contributions, which are plotted for the AMOEBA water oxygen atom
(r0,ij = 3.405 Å, εij = 0.11 kcal/mol). The cavitation free energy (ΔWcav)
represents the process of growing in the repulsive potential (Urep) for
solute atoms. Subsequently, the dispersion free energy (ΔWdisp) models
the process of adding the attractiveUWCA solute−solvent interactions to
recover the full U14‑7 potential in the context of an uncharged solute.
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where H is the fraction of the area of the current spherical
integration shell of radius r that is covered by atom j located a
distance rij from atom i and whose radius is scaled to ρj = sRj, and
H is given by (eq 12 in Hawkins et al.34)
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The integrated WCA potential UWCA* (rij) uses a simplified form
of the buffered 14-7 for the interaction of solute atoms with
water (i.e., the buffering constants are set to zero)
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Fortunately, the difference between this (unbuffered) UWCA*
potential and the buffered 14-7 form is negligible for separations
greater than the minimum energy distance. The analytic tail
correction based on eq 20 is given by
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and the total tail correction for the interaction of atom i with
water is then given by

ε ε= + ×U d U d r U d r( ) ( , , ) 2 ( , , )io io ih ihtail,water tail 0, tail 0,

(22)

where the well depths (εio, εih) and minimum energy distances
(r0,io,r0,ih) are based on the AMOEBA mixing rules for atom i
with the AMOEBA water model.92 The final piece to this model
is the solution to the integral in eq 18, which uses integration
bounds shown in Figure 6.
If integration of the WCA dispersion begins inside the

minimum energy distance R0 < r0,ij, then a contribution of

Figure 5. (A) Dispersion free energy differences (ΔWdisp, solid black curve) are given by the integral of the attractive WCA potential (UWCA, dotted
blue curve) over solvent for the interaction of two AMOEBA water oxygen atoms. The derivative of ΔWdisp with respect to R0 (dashed green curve)
shows a maximum slightly beyond the minimum energy separation distance (vertical red line) due to the volume element 4πr2 dr increasing more
quickly than UWCA approaches zero just beyond r0,ij. (B) Dispersion interactions of an explicit water oxygen atom with continuum water oxygen (also
plotted in (A)) and hydrogen. The interaction of oxygen with continuum hydrogen is multiplied by 2 (two hydrogen atoms per water molecule). (C)
Same as (B) but for two explicit water hydrogen atoms interacting with continuum water.
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is included. The lower limit L is R0 or rij − ρj, whichever is
greater. The upper limit U of this integral is r0,ij or rij+ρj,
whichever is smaller. If rij+ρj is greater than r0,ij, the integration of
the repulsive contribution outside r0,ij is given by
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and the attractive contribution by
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where the upper limit is always rij + ρj. As before, the lower limit
L is R0 or rij − ρj, whichever is greater, unless this result is inside
the minimum energy distance r0,ij. In this case, a contribution up
to r0,ij has already been included from eq 23 and L takes the value
r0,ij. The distances and parameters used to define integration
limits for the WCA potential are shown in Figure 6.
Electrostatic Free Energy. The continuum electrostatics

contribution to solvation free energy of a small molecule can be
determined by solving the nonlinear PBE (NPBE) or the
linearized PBE (LPBE) form shown here

ε ϕ κ ϕ πρ∇·[ ∇ ] − ̅ = −r r r r r( ) ( ) ( ) ( ) 4 ( )2 (26)

for all r in a domainΩ, where ε(r) is the dielectric constant,ϕ(r)
is the electrostatic potential, κ̅2(r) is the modified Debye−
Hückel screening factor, and ρ(r) is the solute charge density.
For polarizable force fields, the solute charge density ρ(r)
responds to the reaction field of the solvent, and thus eq 26 is
solved repeatedly during iterations of an SCRF solver (e.g.,
Jacobi over-relaxation (SOR),92 conjugate gradient (CG)
methods,102,103 the Jacobi algorithm coupled to direct inversion
in the iterative subspace (JI/DIIS),102 and an optimized
perturbation theory (OPT) method104). This work compares
three distinct continuum electrostatics models: numerical
solutions to both the NPBE and LPBE using the adaptive
Poisson−Boltzmann solver (APBS),31 a domain-decomposition
solution of the conductor-like screening model (ddCOS-
MO),44,105−107 and the analytic generalized Kirkwood (GK)
theory.45

Adaptive Poisson−Boltzmann Solver. APBS determines
the solution to the PBE using parallelized finite difference
multigrid and finite element algebraic multigrid numerical
methods. Finite difference methods subdivide the domain in
which the PBE is to be solved using Taylor expansions to model
the differential operators in each subdomain as difference
matrices and solving them via linear algebra techniques. The
final algebraic equations obtained by this discretization can be
solved via a multilevel solver: iteration is used to reach solutions
at varying resolutions, where long-range errors in the iterations
are allowed to converge on coarser grid spacings before using a
finer grid for the final solution. Though it provides one of the
more accurate numerical solutions to the PBE, APBS can
become computationally expensive for larger domains and finer
final multigrid spacings. The combination of Tinker108 with
APBS to support the AMOEBA force field has been described
previously,43 including convergence of the SCRF and
calculation of atomic forces for the LPBE. APBS was run in
Tinker using a grid spacing of 1293 and a probe of radius 0.0 Å to

Figure 6. Illustration of the integration limits for the dispersion free energy based on solute van derWaals parameters and separation distance. (A) The
minimum separation distance r0,ij for atoms i and j is based on AMOEBA mixing rules and used to determine the beginning of the WCA dispersion
integralR0. When R0 < r0,ij, integration for the constant portion of theWCApotential begins at either R0 or rij− ρj, whichever is larger, and ends at r0,ij or
rij + ρi, whichever is smaller. If R0 > r0,ij, then only the variable portion of the WCA potential factors into the dispersion free energy. (B) If atom j is
completely engulfed by the sphere defined by R0, no solvent is blocked and no dispersion energy must be removed. (C)When the two atoms overlap or
are close together such that rij − ρj < R0, integration of the attractive WCA potential begins at R0 and ends at rij + ρj (the furthest edge of atom j). (D)
When atom j is outside the beginning of the integration, integration of the variable portion of the WCA potential begins at rij − ρj (the closest edge of
atom j) and ends at rij + ρj.
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define a van der Waals solute cavity. The average grid length for
the small-molecule test set was 0.105 Å. APBS was run using
multiple Debye−Huckle boundary conditions, a water dielectric
constant of 78.3, and a solute dielectric constant of 1.0. The
APBS parallel multigrid (PMG) solver26,109,110 was used for all
calculations, as it is currently the only solver within APBS
available for use with AMOEBA via Tinker.
Domain-Decomposition Conductor-Like Screening

Model. The ddCOSMO electrostatics model44,105−107 treats
the solvent as an infinite conductor surrounding a solute-shaped
cavityΩ, determined by a union of spheres (one sphere per atom
of solute)

Ω = ∪ Ω
=

R r( , )
j

M
j j j

1 (27)

The electrostatic interactions are calculated by integrating the
charge density ρ of the solute molecule multiplied by the
reaction potentialW of the conductor over the molecular cavity

∫ε ρ=
Ω

E f r W r r
1
2

( ) ( ) ( ) ds (28)

where f(ε) is a scaling factor used to adjust for the nonconductor
nature of the solvent based on its dielectric constant ε. The
scaling factor f(ε) is defined as

ε ε
ε

= −
+

f
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( )
1

(29)

where x is an empirical constant.111 In the original derivation of
COSMO, xwas set to 0.5. This value was later updated to use x =
0.5 for neutral molecules and x = 0 for ionic molecules.112,113

The value of x used here was 0 in all cases, such that
parameterized electrostatic radii described below are implicitly
optimized for transferability between small molecules and
charged biomolecules. The value ofW in eq 28 is obtained from
the solution of the following boundary value problem
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whereΦ is the solute’s electrostatic potential in vacuum and Γ is
the boundary of the cavity. ddCOSMO uses Schwarz’s domain-
decomposition method to solve this boundary value problem by
splitting it into a series of smaller problems, each defined on a
single spherical domain. This decomposition allowed for the
ddCOSMO implementation for AMOEBA (including con-
vergence of the SCRF and calculation of atomic forces44) to be
parallelized and is available in the Tinker-HP package,114 which
is part of the Tinker 8 distribution.

Generalized Kirkwood.GK is an analytic approximation to
the PBE that simplifies to the generalized Born (GB) model in
the absence of permanent multipoles and induced dipoles (e.g.,
for fixed partial charge force fields). The GB electrostatic
energy115 (equivalent to the GK monopole term GGK

(0)) is given
by
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where εs is the permittivity of the solvent, εh is the permittivity of
a homogeneous reference state, qi and qj are partial charges, and
the empirical generalizing function f GB is given by

= +f r a a fij i j ijGB
2

(32)

where rij is the distance between sites i and j, effective “Born
radii” ai and aj are given by an integral over solvent,116−118
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and f ij is given by
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Figure 7. (A) Fit of GK self-energies to perfect PB self-energies (Y = 1.040X + 0.048, R2 = 0.996). (B) Fit of GK cross-term energies to perfect PB cross-
term energies (Y = 1.059X − 0.089, R2 = 0.994). Both self and aggregate cross-term energies are reported for 1424 atoms.
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where cGK is a tuning parameter that typically ranges from 2 to 4.
GK extends GBmethods to polarizable atomic multipole charge
distributions using Kirkwood’s analytic solution to the electro-
static component of solvation free energy for an arbitrary (i.e.,
multipolar) charge distribution.46 For example, the GK
interaction between two permanent dipoles is expressed as
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where ui and uj are permanent dipole vectors and the subscripts
α and β indicate the use of the Einstein summation convention.
GK interaction tensors up to the quadrupole−quadrupole order,
as well as their inclusion in the AMOEBA SCRF calculation and
calculation of atomic forces, were described previously.45

Perfect self and cross-term energies were calculated with APBS
for each of the 1424 atoms in our set of 103 test molecules. The
results were used to fit a unitless generalizing constant in the
cross-term (cGK = 2.455) and a unitless scale factor (cHCT = 0.72)
that avoids overestimation of descreening due to atomic
overlaps when computing Born radii.119 An initial fit based on
small-molecule self-energies produced a scale factor of 0.77;
however, testing with larger macromolecules led to excessive
descreening. For this reason, the scale factor was reduced to
0.72. PB self and cross-term energies were calculated using
Tinker with an APBS grid spacing of 1293 and a van der Waals
definition of the solute cavity using AMOEBA force field radii.
Since Born radii are used in the calculation of cross-term
energies, the HCT scale factor was chosen before finalizing the
generalizing constant by minimizing the mean signed error
(MSE) between PB and GK self-energy values. The final HCT
scale factor of 0.72 gave an MSE of −0.10, mean unsigned error
(MUE) of 0.29, and root mean square error (RMSE) of 0.87
(Figure 7A). The slightly negative MSE is compensated for
implicitly during the fitting of base solute radii described below.

Testing with generalizing constants (cGK) between 2 and 4
showed little change in theMSE between PB and GK cross-term
energies. The final value of 2.455 was chosen for consistency
with prior work45 and gave an MSE of 0.07, MUE of 0.35, and
RMSE of 1.17 (Figure 7B). In both cases, GK energies are
strongly correlated with PB energies, with R2 values of 0.996 and
0.994, respectively.

Target Function for Electrostatic Radii Optimization.
Electrostatic radii for 41 atom types were fit using the following
target function
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where the first term favors minimizing the unsigned error
between experimental and model solvation free energy over n
molecules, the second term favors minimizing the overall signed
error, and the final term penalizes electrostatic radii that deviate
from the AMOEBA force field definition of minimum energy
van der Waals separation (Rmin). The optimization was
performed using an L-BFGS minimizer for each of the APBS,
ddCOSMO, and GKmodels. The optimization was seeded with
electrostatic radii based on AMOEBA van derWaals Rmin values,
and after trial and error, all three optimization weights were set
to 1.0.

■ RESULTS
Small-Molecule Hydration Free Energy. The nonpolar

portion of the model consists of an unfavorable cavitation free

Figure 8. Comparison of experimental and APBS solvation free energy differences using either AMOEBA van der Waals Rmin radii to describe the
solute−solvent boundary (A) or using fit radii is shown (B).When using AMOEBA Rmin radii, the linear regression gave Y = 0.9683·X + 0.3215 with R2

= 0.9702. When using fit radii, the linear regression gave Y = 1.0080·X + 0.1416 with R2 = 0.9979.
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energy term and a favorable dispersion free energy term. One
tunable parameter, solvent pressure, was used in calculating
cavitation, and two tunable parameters, a dispersion offset and
an atomic overlap scale factor, were used in calculating
dispersion. The solvent pressure of 0.0334 kcal/(mol Å3) for
cavitation was chosen based on previous testing. The dispersion
integral offset (d = 1.056 Å) and the unitless HCT dispersion

atomic overlap scale factor (s = 0.75) were chosen to match
dispersion values from solute−solvent enthalpy simulations in
explicit water (Table S1, Supporting Information).
For the electrostatic portion of the model, a total of 41 solute

radii classes were optimized using L-BFGS minimization as
described above. Solvation free energy difference values from the
FreeSolv database71,72 were used as experimental targets. Each

Figure 9.Comparison of experimental and ddCOSMO solvation free energy differences using either AMOEBA van derWaalsRmin radii to describe the
solute−solvent boundary (A) or using fit radii is shown (B).When using AMOEBA Rmin radii, the linear regression gave Y = 1.0017·X− 0.1465 withR2

= 0.9738. When using fit radii, the linear regression gave Y = 1.0001·X + 0.0015 with R2 = 0.9981.

Figure 10. Comparison of experimental and GK solvation free energy differences using either AMOEBA van der Waals Rmin radii to describe the
solute−solvent boundary (A) or using fit radii is shown (B).When using AMOEBA Rmin radii, the linear regression gave Y = 0.9245·X + 0.0360 with R2

= 0.9567. When using fit radii, the linear regression gave Y = 0.9999·X − 0.0046 with R2 = 0.9987.
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radii class was determined based on SMARTS strings that were
automatically generated for each atom type by PolType2. A total
of 78 unique SMARTS strings were generated for the test set of
103 molecules. These 78 SMARTS strings were then reduced
into 41 groups based on element, chemical environment, and
electrostatic radii sizes from an initial optimization using all
SMARTS strings under GK electrostatics (Table S2, Supporting
Information). The use of fewer parameters helps to avoid
overfitting and improves generalizability. Optimization was
performed using the 41 radii classes to parameterize the APBS,
ddCOSMO, and GK electrostatic models. Parameterized radii
deviated from original AMOEBA van der Waals radii by an
average of 9.3% for APBS, 9.9% for ddCOSMO, and 14.9% for
GK. The quality of the resulting implicit solvent model for small
molecules using APBS, ddCOSMO, and GK is shown below in
Figures 8−10, respectively, and full data is available in Tables
S3−S8, Supporting Information.
The data shown in Figures 8−10 is summarized in Tables 1A

and 1B, which give the root mean square error (RMSE) and

mean signed error (MSE) between experimental and computed
solvation free energy differences. Overall, parameterized solute
radii resulted in RMSE/MUE/MSE values of 1.00/0.70/0.05,
0.92/0.63/0.00, and 0.75/0.58/0.00 kcal/mol for the APBS,
ddCOSMO, and GK models, respectively (Table 1B).
Comparison to Explicit Solvent Free Energy Differ-

ences. Although the implicit solvents described here were fit to
experimental data, a direct comparison to AMOEBA explicit
solvent hydration free energy differences helps illuminate if the
continuum models are either overfit or if they exhibit relatively
higher errors. A subset of 26 neutral small molecules used to
parameterize the implicit solvent model is compared to available
data from a recent AMOEBA explicit solvent study120 in Table 2.
The explicit solvent gave an RMSE of 0.70 kcal/mol compared
to the experiment, while implicit solvents using APBS,
ddCOSMO, and GK electrostatics gave RMSEs of 0.91, 0.65,
and 0.63 kcal/mol, respectively. The concordance between the
RMSEs for the explicit and implicit hydration free energy

differences supports the conclusion that the continuum models
are neither clearly overfit nor of worse quality than what is
observed for AMOEBA solutes in the explicit solvent.

Validation Simulations on Proteins, DNA, and RNA.
Nine nucleic acids (≤24 nucleotides) and nine proteins (≤129
residues) of modest size were used to test the electrostatic
energy and polarization response of the implicit solvents. Of the
nucleic acids, seven were RNA and two were DNA. Starting
structures for all 18 validation set molecules are shown in Figure
11 and were obtained from the Protein Data Bank (PDB). In the
case of NMR ensembles, the first conformer was used. For
explicit solvent simulations, each molecule was solvated in an
explicit water box with neutralizing sodium or chloride ions.
With the validation set molecule fixed, minimization to an RMS
gradient of 0.1 kcal/(mol Å) was performed on each system to
allow for relaxation of the water and ions.
Electrostatic energies were calculated for each validation set

molecule with van der Waals and fit radii using all three
electrostatics models. When using van der Waals radii (Figure
12A), the mean GK electrostatic energy was 1.65% more
positive than APBS (R2 = 0.9999), while that for ddCOSMO
was 6.71% more negative (R2 = 0.9990). The relatively large
disparity between ddCOSMO and APBS when using identical
van der Waals radii suggests that the COSMO approximation is
not entirely ameliorated by its empirical scaling function. When
using fit radii (Figure 12A), the mean GK electrostatic energy
was 0.01% more negative than APBS (R2 = 0.9991), while that
for ddCOSMO was 0.11% more positive (R2 = 0.9991). This
shows that the COSMO approximation is compensated for to a
large degree implicitly during the fitting of electrostatic radii.
The slight reduction in R2 between APBS and GK electrostatic
energies moving from van der Waals radii to fit radii suggests
that the use of a single HCT overlap scale factor is not perfectly
transferable across the range of atomic sizes found in proteins
and nucleic acids. The optimization of element-specific HCT
scale factors for GK electrostatics will be explored in future work
that also focuses on handling interstitial spaces too small to
accommodate water molecules (i.e., calculation of Born radii
based on integration over a molecular volume rather than a van
der Waals volume).

Table 1A. RMSE/MSE Values for Test Molecules Using
AMOEBA van der Waals Radii Are Given by Functional
Group Categories and Overall (kcal/mol)

AMOEBA radii

functional group N APBS ddCOSMO GK

alkanes 18 0.50/−0.24 0.71/−0.47 1.16/−0.89
alcohols and
phenols

16 1.48/+1.27 2.02/−0.19 2.40/+2.09

amines 12 2.51/+2.40 2.36/+2.17 3.04/+1.10
amides 8 2.25/+1.98 1.28/+0.40 3.18/+2.63
nitrogen
heterocyclic

8 2.02/+0.99 1.93/+0.14 2.33/+1.60

arenes 5 0.77/−0.57 0.95/−0.56 1.35/−0.54
ethers 5 0.86/+0.80 0.74/+0.49 1.45/+1.41
oxanes and oxines 4 1.05/+0.79 0.58/−0.16 2.29/+1.75
thiols 4 1.68/−1.63 1.25/−1.16 1.93/−1.85
carboxylic acids 3 1.31/+1.18 0.68/+0.38 2.58/+2.39
sulfides 3 1.20/−1.17 0.61/−0.48 1.49/−1.46
aldehydes 2 0.61/+0.58 0.22/−0.16 1.52/+1.52
other 3 1.55/+0.49 3.01/−1.38 13.04/−6.04
total neutrals 91 1.58/+0.76 1.58/+0.09 3.22/+0.62
charged 12 9.90/+0.01 9.13/−2.12 9.80/+2.80
total 103 3.69/+0.67 3.45/−0.17 4.51/+0.87

Table 1B. RMSE/MSE Values for Test Molecules Using
Parameterized Electrostatic Radii Are Given by Functional
Group Categories and Overall (kcal/mol)

fit solute radii

functional group N APBS ddCOSMO GK

alkanes 18 0.49/−0.24 0.42/−0.20 0.49/−0.17
alcohols and phenols 16 1.01/+0.50 1.31/+0.65 1.00/+0.56
amines 12 1.49/+0.92 1.37/+0.06 0.92/−0.20
amides 8 0.66/+0.13 0.66/+0.13 0.76/−0.12
nitrogen heterocyclic 8 1.31/+0.56 0.50/+0.07 0.88/+0.27
arenes 5 0.50/−0.44 1.00/−0.61 0.80/−0.20
ethers 5 0.23/−0.03 0.35/−0.11 0.57/−0.36
oxanes and oxines 4 1.16/−0.33 0.58/−0.36 1.05/+0.07
thiols 4 0.65/−0.49 0.38/−0.26 0.32/−0.09
carboxylic acids 3 0.09/−0.08 0.11/−0.01 0.24/+0.00
sulfides 3 0.36/−0.33 0.19/+0.09 0.32/−0.29
aldehydes 2 0.48/−0.38 0.39/−0.39 0.11/−0.03
other 3 1.96/−0.06 0.88/−0.56 0.51/−0.31
total neutrals 91 0.97/+0.14 0.87/+0.01 0.76/+0.00
charged 12 1.18/−0.59 1.25/−0.07 0.73/−0.03
total 103 1.00/+0.05 0.92/+0.00 0.75/+0.00
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Dipole moment magnitudes were calculated for each
validation set molecule in vacuum, explicit solvent, and implicit
solvent. Prior to computing explicit solvent dipole moments, a
series of short molecular dynamics (MD) simulations were used
to equilibrate the system. Ensemble average dipole moment
values were then calculated from 1 ns MD simulations with the
biomolecule fixed (i.e., solvent degrees of freedom were
converged). For detailed simulation conditions, see Table S10,
Supporting Information. In addition, dipole moment magni-
tudes were calculated for the validation set using three fixed-
charge force fields: AMBER ff99SB,121 OPLS-AA/L,122 and
CHARMM22/CMAP.123,124 Tinker version 8.8.1 (August
2020) did not include nucleic acid force field parameters for
OPLS-AA/L or CHARMM22/CMAP; therefore, only AMOE-
BA and AMBER ff99SB dipole moment magnitudes are
reported for nucleic acids. Dipole moment magnitudes
calculated using available force fields for nucleic acids and
proteins are presented in Figure 13. All fixed-charge dipole
moment magnitudes are plotted against ensemble average
AMOEBA explicit solvent dipole moment magnitudes, as well as
AMOEBA vacuum dipole moments. AMBER ff99SB, OPLS-
AA/L, and CHARMM22/CMAP dipole moment magnitudes
had R2 values of 0.987, 0.979, and 0.982, respectively, when
compared to AMOEBA vacuum dipole moment magnitudes,
and R2 values of 0.998, 0.996, and 0.996, respectively, when
compared to AMOEBA explicit solvent dipole moment
magnitudes. The better agreement of the fixed-charge force
fields with AMOEBA in explicit (or implicit) solvent, relative to

the worse agreement with AMOEBA in vacuum, is consistent
with fixed-charge biomolecular force fields being prepolarized
for aqueous simulations. This also demonstrates that the
AMOEBA electrostatics model produces molecular dipole
moments that are consistent with previous generation force
fields.
AMOEBA implicit solvent dipole moment magnitudes were

calculated using each of the three parameterized electrostatics
models and compared to those from explicit solvent ensemble
averages, as shown in Figure 14. All three electrostatics models
achieved near-perfect correlation with explicit solvent values
based on R2 values for the APBS, ddCOSMO, and GKmodels of
0.999 in each case. Notably, each AMOEBA implicit solvent
electrostatics model produces dipoles moments that agree more
closely with AMOEBA in explicit solvent than does any fixed-
charge force field. This supports the conclusion that if the
AMOEBA biomolecular dipole moments are closer to reality
than those from any of the fixed-charge models, then AMOEBA
simulations in implicit solvent are in some ways more realistic
than fixed-charge simulations in explicit solvent. The relative
merits of fixed-charge explicit water simulations compared to
polarizable implicit solvent simulations will be further explored
in the future. In Figure 14, dipole moment magnitudes for the
APBS electrostatics model were calculated without implicitly
adding ions. A full comparison of dipole moment magnitudes
and electrostatic energy components for all validation set
molecules is available in Tables S11−S13, Supporting
Information. This includes dipole moment magnitudes

Table 2. Comparison of Solvation Free Energy Differences in AMOEBA Explicit and Implicit Solvents to Experimental Solvation
Free Energy Differences (All Values in kcal/mol)

explicit solvent ΔGimplicit signed error

molecule ΔGexpt ΔG error APBS COSMO GK APBS COSMO GK

isopropanol −4.74 −4.21 0.28 −3.77 −3.66 −3.92 0.97 1.08 0.82
hydrogen sulfide −0.70 −0.41 0.08 −1.06 −0.77 −0.80 −0.36 −0.07 −0.10
p-cresol −6.13 −5.6 0.28 −6.22 −5.37 −4.99 −0.09 0.76 1.14
dimethylsulfide −1.61 −1.85 0.06 −2.11 −1.56 −1.99 −0.50 0.05 −0.38
phenol −6.60 −5.05 2.40 −6.23 −5.48 −5.49 0.37 1.12 1.11
benzene −0.90 −1.23 0.11 −1.30 −1.70 −1.54 −0.40 −0.80 −0.64
ethanol −5.00 −4.69 0.10 −4.09 −3.89 −3.57 0.91 1.11 1.43
ethane 1.83 1.73 0.01 2.31 2.10 2.54 0.48 0.27 0.71
n-butane 2.10 1.11 0.98 2.09 2.21 1.80 −0.01 0.11 −0.30
methylamine −4.55 −5.46 0.83 −4.00 −4.53 −4.71 0.55 0.02 −0.16
dimethylamine −4.29 −3.04 1.56 −2.72 −4.03 −5.48 1.57 0.26 −1.19
trimethylamine −3.20 −2.09 1.23 −3.34 −3.09 −1.78 −0.14 0.11 1.42
propane 2.00 1.69 0.10 2.24 2.28 2.39 0.24 0.28 0.39
methane 2.00 1.73 0.07 2.43 2.39 1.89 0.43 0.39 −0.11
methanol -5.10 −4.79 0.10 −3.55 −3.51 −3.40 1.55 1.59 1.70
n-propanol −4.85 −4.85 0.00 −4.33 −4.53 −4.23 0.52 0.32 0.62
toluene −0.90 −1.53 0.40 −1.41 −1.60 −1.12 −0.51 −0.70 −0.22
ethylbenzene −0.79 −0.8 0.00 −1.21 −1.41 −0.87 −0.42 −0.62 −0.08
n-methylacetamide −10.00 −8.66 1.80 −9.50 −9.09 −9.05 0.50 0.91 0.95
water −6.30 −5.86 0.19 −5.36 −6.34 −6.27 0.94 −0.04 0.03
acetic acid −6.69 −5.63 1.12 −6.56 −6.75 −6.37 0.13 −0.06 0.32
methylethylsulfide −1.50 −1.98 0.23 −1.64 −1.19 −1.89 −0.14 0.31 −0.39
imidazole −9.63 −10.25 0.38 −9.43 −9.79 −9.36 0.20 −0.16 0.27
acetamide −9.70 −9.3 0.16 −10.78 −10.22 −10.46 −1.08 −0.52 −0.76
ethylamine −4.50 −4.33 0.03 −4.14 −4.97 −4.28 0.36 −0.47 0.22
pyrrolidine −5.48 −4.88 0.36 −2.31 −4.61 −4.24 3.17 0.87 1.24
MSE 0.19 0.36 0.24 0.31
MUE 0.57 0.64 0.50 0.64
RMSE 0.70 0.91 0.65 0.63
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calculated in APBS using the nonlinear and linearized forms of
the PBE with 150 mM salt. Overall, these results suggest the
electrostatics models scale up well from initial optimization
against small-molecule hydration free energy differences to
applications to larger biomolecules.

The performances of the APBS, ddCOSMO, and GK
electrostatics models implemented in Tinker were compared
by timing an energy and gradient calculation on a single CPU
core (Intel Xeon CPU E5-2680 v4 at 2.40 GHz). Calculations
were performed for one nucleic acid (1ZIH) and one protein

Figure 11. Validation set includes nine nucleic acids and nine proteins. The nucleic acid set can be further broken down into sets of four RNA helices
(2JXQ, 1F5G, 1MIS, and 2L8F), three RNA hairpins (1ZIH, 2KOC, and 1SZY), and two DNA double helices (1D20 and 2HKB). Additional
information on individual molecules and simulation conditions can be found in Table S10, Supporting Information. Coordinate files for each molecule
(Tinker “XYZ” format) are provided in the Supporting Information.

Figure 12. APBS energy values for the biomolecular validation set are plotted vs ddCOSMO and GK for both van der Waals radii and fit radii. (A)
APBS electrostatics energy using van der Waals radii vs ddCOSMO (Y = 1.0523X, R2 = 0.9990) and GK (Y = 0.9854X, R2 = 0.9999). (B) APBS PBE
electrostatics energy using fit radii vs ddCOSMO (Y = 0.9884X, R2 = 0.9991) and GK (Y = 0.9833X, R2 = 0.9991). Full data is available in Tables S11
and S13, Supporting Information.
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(1VII) from the validation set. Results in Table 3 show that
APBS is the costliest model, while GK is currently the most
efficient. Timings for the same systems using AMOEBA/GK
electrostatics implemented within FFX-OpenMMand executing
on a single GPU (NVIDIA GeForce RTX 2080 Ti) were also
collected. The latter performance (less than 0.005 s per time

step) is consistent with the molecular dynamics performance of
∼20 ns/day using a conservative 1 fs integration scheme, which
opens the door to tuning the AMOEBA/GK continuum model
using extensive simulations of proteins and nucleic acids. As of
this writing, the APBS and ddCOSMO electrostatics models are
not yet available for use on GPUs.

■ CONCLUSIONS

Implicit solvent models were developed for use with the
polarizable AMOEBA force field. Novel cavitation and
dispersion nonpolar terms were designed to replicate explicit
solvent free energy differences using only three free parameters:
a single cavitation parameter to describe solvent pressure for
small cavities and two dispersion parameters (one to define the
beginning of the dispersal integral and a second to account for
atomic overlaps during integration). Based on these nonpolar
terms, the solute−solvent electrostatic boundary (i.e., atomic
radii) was optimized for three continuum electrostatics models,
ABPS, ddCOSMO, and GK, using numerical optimization
against experimental small-molecule solvation free energy
differences. Overall, the APBS, ddCOSMO, and GK models
producedmean unsigned errors of 0.70, 0.63, and 0.58 kcal/mol,
respectively, compared to the experiment. All three implicit
solvent models produced hydration free energy difference
RMSEs within 0.2 kcal/mol of AMOEBA explicit solvent
solvation free energy difference simulations for a collection of 26
small molecules (Table 2). This supports the conclusion that the
implicit solvent models presented here are of similar quality to
that of explicit solvent for hydration free energy differences and
are not clearly overfit to the test data (i.e., overfitting might be
suggested by implicit solvent RMSEs that are artificially much
lower than those achieved by explicit solvent simulations).
Each small molecule used to parameterize the implicit solvent

model fell within the volume-scaling regime of the cavitation
model, such that the contribution to solvation was calculated
using SEV. For larger proteins or nucleic acids, the cavitation
free energy of the model falls within the surface-area-scaling
regime. A future goal is to account for local molecular curvature
to promote transferability of the cavitation free energy to
biomolecules of complex shapes. The dispersion model

Figure 13.Comparison of dipole moment magnitudes for fixed-charge force fields and AMOEBA across environments. (A) AMOEBA vacuum dipole
moment magnitudes vs those for fixed-charge force fields (AMBER ff99SB R2, 0.987; OPLS-AA/L R2, 0.979; CHARMM22/CMAP R2, 0.982). (B)
AMOEBA explicit solvent dipole moment magnitudes vs those for fixed-charge force fields (AMBER ff99SB R2, 0.998; OPLS-AA/L R2, 0.996;
CHARMM22/CMAP R2, 0.996). Dashed lines at x = y are a guide to the eye.

Figure 14.Comparison of dipole moment magnitudes for AMOEBA in
explicit solvent vs vacuum, PB, ddCOSMO, and GK environments for
the validation set (vacuum R2: 0.990, PB/ddCOSMO/GK R2: 0.999 in
each case). The dashed line at x = y is a guide to the eye.

Table 3. Performance of the APBS, ddCOSMO, and GK
Electrostatics Models Implemented in Tinker on a Single
CPU Core and for the GK Model Using FFX-OpenMM on a
Single GPU

calculation of the energy and gradient (s)

Tinker (1 CPU thread) FFX-OpenMM (1 GPU)

molecule APBS ddCOSMO GK GK

1ZIH 48.804 11.285 0.250 0.0042
1VII 53.772 21.245 0.533 0.0047
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integrates the WCA attractive potential for each atom in the
solute. This analytic, pairwise approach is well equipped to
handle nonspherical solutes, which adds physical detail to the
previously described Born radii-based dispersion model.73 Both
the cavitation and dispersion models described here are
currently limited by their lack of treatment of interstitial spaces,
which is elaborated on below.
To optimize the agreement of GK self-energies with the

calculated perfect PBmultipolar self-energies, it may be beneficial
to use separate HCT scaling factors for each chemical element
instead of a single parameter, as was done here. The precedent
for this split is given in the original description of the HCT
pairwise descreening approximation, where the scale factor
magnitude generally decreases with the increasing atomic size.34

Additionally, the agreement between GK cross-term energies
and calculated perfect PB multipolar cross-term energies might
be improved using separate generalizing function constants for
monopoles, dipoles, and quadrupoles, rather than a single
constant. The physical motivation is that the electrostatic
potential is of a longer range for monopoles than for dipoles.
Therefore, the transition between the Born ion regime (or the
Kirkwood multipole regime) and the Coulomb regime, which is
tuned by the constant in the generalizing function (eq 34), could
in principle be optimized for each multipole order separately.
For simplicity, this work used a single HCT scale factor (0.72)
and a single generalizing constant (2.455) for GK.
At the length scale of small molecules, continuum electro-

statics is known to be sensitive to the definition of the solute−
solvent boundary,125−129 and thus optimization of electrostatic
radii is required to implicitly account for physical details like
solute−water hydrogen bonding. Overall, the quality of the
resulting models using fit solute radii for PB (RMSE 1.0, MSE
0.1), ddCOSMO (RMSE 0.9, MSE 0.0), and GK (RMSE 0.8,
MSE 0.0) are comparable to that of the recent Drude/PB
implicit solvent (RMSE 0.8, MSE 0.0).51 The fit radii reproduce
experimental solvation free energy differences better than the
original van derWaals radii, which gave RMS errors of 3.69, 3.45,
and 4.51 kcal/mol for APBS, ddCOSMO, and GK, respectively
(Table 1A). Additionally, it may be beneficial to consider using
optimized GK (or ddCOSMO) electrostatic radii as a starting
point for electrostatics calculations in quantum mechanical
continuum solvents.61,130

Dipole moment calculations using each AMOEBA implicit
solvent for 18 protein and nucleic acid biomolecules show nearly
exact agreement with explicit solvent dipole moments computed
by averaging over solvent degrees of freedom (Figure 14). This
suggests that all three models (APBS, ddCOSMO, and GK)
successfully reproduce the polarization response observed in
explicit water simulations at the resolution of overall
biomolecules. Future work will focus on molecular dynamic
simulations of biomolecules in implicit solvent compared to
explicit solvent to access stability and the agreement of
conformational ensembles. Furthermore, although the implicit
solvent models discussed here have been developed for use with
the AMOEBA polarizable force field, their support for
polarizable atomic multipole electrostatics should permit
adaptation to emerging models such as AMOEBA+ and
HIPPO.131−133

An important limitation of the current models is their focus on
the use of a van derWaals description of the solute for cavitation,
dispersion, and electrostatic contributions, rather than a
molecular surface.134,135 The approximation of a van der
Waals description is modest for small solutes but becomes

problematic as the molecular size and complexity increase (e.g.,
for biomolecules). For example, a simple van der Waals surface
does not account for interstitial spaces (i.e., spaces between
biomolecular residues or domains where water molecules
cannot fit), and thereby allows for continuum water access to
spaces not accessible to explicit water. Favorable hydration
effects of continuumwater in interstitial spaces promote swelling
of biomolecules and oppose hydrophobic compaction forces.
For this reason, future workmust incorporate methods that have
been proposed to account for interstitial spaces118,135−137 into
the AMOEBA family of implicit solvents.
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