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A SIMPLE PROOF OF NECESSITY

IN THE MCCULLOUGH-QUIGGIN THEOREM

GREG KNESE

(Communicated by Stephan Ramon Garcia)

Abstract. A short and simple proof of necessity in the McCullough-Quiggin
characterization of positive semi-definite kernels with the complete Pick prop-
erty is presented.

1. Introduction

Given N points z1, . . . , zN in the unit disk D ⊂ C and N “targets” w1, . . . , wN ∈
C, when does there exist a holomorphic function f : D → D that interpolates
f(zi) = wi for i = 1, . . . , N? Pick’s theorem of 1916 says this interpolation can be
done if and only if the matrix

(
1 − wiw̄j

1 − ziz̄j

)

i,j

is positive semi-definite [13].

In the hundred intervening years, this theorem has been generalized and reinter-
preted a number of ways; see [9]. The theorem generalizes to matrix valued func-
tions, and it can be reinterpreted as a special property of multipliers of reproducing
kernel Hilbert spaces. The remarkable McCullough-Quiggin theorem precisely de-
scribes which reproducing kernel Hilbert spaces have this property. It is not our
goal to delve into motivation and background, as this is already done in the paper
[1] and related book [2]. Instead, our goal is to give a short and simple proof of
necessity in the McCullough-Quiggin theorem.

Let k : X×X → C be a positive semi-definite (PSD) kernel on X with associated
reproducing kernel Hilbert space H. Let L1, L2 be auxiliary Hilbert spaces and let
B(L1, L2) denote the bounded linear operators from L1 to L2. A function Φ : X →
B(L1, L2) is a multiplier of norm at most one, i.e., belongs to Mult1(H⊗L1, H⊗L2),
if and only if for every f ∈ H ⊗ L1 we have Φf ∈ H ⊗ L2 and ‖Φf‖ ≤ ‖f‖. This
property is equivalent to the property that the operator valued kernel

(I − Φ(x)Φ(y)∗)k(x, y) is PSD.

Definition 1. A kernel k has the complete Pick property if for all natural numbers
s, t, whenever S ⊂ X is finite and W ∈ Mult1(H|S ⊗ Ct, H|S ⊗ Cs), then there
exists Φ ∈ Mult1(H ⊗ Ct, H ⊗ Cs) such that Φ|S = W .

Definition 2. The kernel k is irreducible if k(x, y) )= 0 for all x, y ∈ X and kx, ky

are linearly independent for x )= y.
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Theorem 1 (McCullough [10, 11], Quiggin [6]). Let k : X × X → C be PSD and
irreducible. Then, k has the complete Pick property if and only if for each z ∈ X,

Fz(x, y) := 1 − k(x, z)k(z, y)

k(z, z)k(x, y)
is PSD.

Agler-McCarthy [1] first formulated and proved the theorem in precisely the form
above. The original proofs dig into precisely what needs to be satisfied in order to
extend a multiplier on a set of points to one more point (“the one point extension
property”). Some sort of axiom of choice is invoked to build a multiplier on all of
X. The proof of necessity given below is a short inductive proof. One innovation
worth mentioning is that we do not use full irreducibility of k; we only need k to be
non-vanishing. A straightforward proof of sufficiency is due to Ball-Trent-Vinnikov
[4]. It proves a realization formula for multipliers that builds a multiplier directly
and uses Hilbert space geometry instead of the axiom of choice. The master’s thesis
[8] contains a nice treatment.

While this paper is about a foundational aspect of complete Pick kernels, a lot of
fascinating work has been done in recent years on more advanced aspects of these
kernels and related Drury-Arveson type spaces. See [3,5,7] for a sampling of some
recent literature. In particular, the paper [5] contains an interesting characteriza-
tion of the complete Pick property in terms of completely contractive embeddings.

We shall assume knowledge of the rudiments of vector-valued reproducing kernel
Hilbert spaces, including multipliers and the Schur product theorem. See [2, 12].

2. Proof of necessity

We need three basic lemmas which apply to any PSD kernel k with associated
reproducing kernel Hilbert space H such that k(z, z) )= 0 for some fixed z ∈ X. Set

kz(x, y) := k(x, y) − k(x, z)k(z, y)

k(z, z)
.

Lemma 1. Consider the closed subspace Hz = {f ∈ H : f(z) = 0}. The reproduc-
ing kernel for Hz is kz(x, y).

Proof. Note that H = Hz ⊕ Ckz. The reproducing kernel for Ckz is simply
k(z, z)−1kz(x)kz(y). Then, kz

y(x) = kz(x, y) as defined above belongs to Hz and
reproduces elements of Hz. !

Lemma 2. Let L be a Hilbert space. Given f ∈ H ⊗ L, we have f(z) = !0 if and
only if f ∈ Hz ⊗ L.

Proof. Evidently, f ∈ Hz⊗L implies f(z) = !0 because the tensor project is a closed
span of elements with this property. Conversely, let P be the orthogonal projection
from H ⊗ L to Hz ⊗ L. Let f ∈ H ⊗ L with f(z) = !0. Note by Lemma 1 that

〈f, kz
y ⊗ v〉 = 〈f, (ky − kz

k(z, y)

k(z, z)
) ⊗ v〉 = 〈f(y), v〉L.

On the other hand, since kz
y ⊗ v = P (kz

y ⊗ v) ∈ Hz ⊗L, 〈f, kz
y ⊗ v〉 = 〈Pf, kz

y ⊗ v〉 =
〈Pf(y), v〉L. So, f = Pf ∈ Hz ⊗ L. !

Lemma 3. Let L1, L2 be Hilbert spaces. If Φ ∈ Mult1(H ⊗ L1, H ⊗ L2), then

Φ ∈ Mult1(Hz ⊗ L1, Hz ⊗ L2).
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Proof. If f ∈ Hz ⊗L1, then Φf ∈ H ⊗L2 and Φ(z)f(z) = !0 so that Φf ∈ Hz ⊗L2.
The inequality ‖Φf‖ ≤ ‖f‖ holds for f ∈ Hz ⊗ L1 ⊂ H ⊗ L, so

Φ ∈ Mult1(Hz ⊗ L1, Hz ⊗ L2).

!

The following corollary is the PSD kernel interpretation of the above lemma.

Corollary 1. If Φ : X → B(L1, L2) is a function such that (I −Φ(x)Φ(y)∗)k(x, y)
is PSD, then (I − Φ(x)Φ(y)∗)kz(x, y) is PSD.

We now assume k is non-vanishing and that the complete Pick property holds
for k. We proceed to show that Fz from the statement of Theorem 1 is PSD.

For x, z ∈ X, Fz(x, x) = 1 − |k(x,z)|2
k(x,x)k(z,z) ≥ 0 by Cauchy-Schwarz. Now take any

x1, . . . , xN , xN+1 ∈ X where N ≥ 2. Assuming (FxN (xi, xj))i,j=1,...,N−1 ≥ 0 we
will show that (FxN+1(xi, xj))i,j=1,...,N ≥ 0. Note that since FxN (xi, xN ) = 0, the
matrix expanded with zeros A := (FxN (xi, xj))i,j=1,...,N is PSD. Factor the entries
of A as Ai,j = viv∗j using row vectors vi. For simplicity we will write kij = k(xi, xj)
below. Note that

(1 − Ai,j) = (1 − viv
∗
j ) =

kiNkNj

kNNkij

so that (1−viv∗j )kij = kiN kNj

kNN
is rank one and PSD. By the complete Pick property,

there exists a contractive multiplier Φ with Φ(xi) = vi. By Corollary 1 applied to
z = xN+1,

(1 − viv
∗
j )

(
ki,j −

ki,N+1kN+1,j

kN+1,N+1

)
=

kiNkNj

kNN
FxN+1(xi, xj) is PSD.

Here i, j = 1, . . . , N . The matrix
(

kNN
kiN kNj

)

i,j
is rank one and PSD, so by the Schur

product theorem we see that (FxN+1(xi, xj))i,j=1,...,N is PSD. By induction, this
proves that Fz(x, y) is PSD for all z ∈ X.
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