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Abstract. For spaces of analytic functions defined on an open set in Cn

that satisfy certain nice properties, we show that operators that preserve
shift-cyclic functions are necessarily weighted composition operators.
Examples of spaces for which this result holds true consist of the Hardy
space Hp(Dn) (0 < p < ∞), the Drury–Arveson space H2

n, and the
Dirichlet-type spaceDα (α ∈ R). We focus on the Hardy spaces and show
that when 1 ≤ p < ∞, the converse is also true. The techniques used to
prove the main result also enable us to prove a version of the Gleason–
Kahane–Żelazko theorem for partially multiplicative linear functionals
on spaces of analytic functions in more than one variable.
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1. Introduction

The results presented in this paper are motivated by a number of questions
about cyclic functions in the Hardy space. Fix n ∈ N, and let Dn be the
unit polydisc in Cn. That is, Dn := {z ∈ Cn

∣∣ |zi| < 1, ∀ 1 ≤ i ≤ n}. For
0 < p < ∞ we define the Hardy space,

Hp(Dn) :=




f ∈ Hol(Dn)
∣∣∣∣ ||f ||

p
p := sup

0≤r<1

∫

Tn

|f(rw)|p dσn(w) < ∞




 .

Here, for an open set D ⊂ Cn, Hol(D) is the set of holomorphic functions
on D. Also, σn is the normalized Lebesgue measure on the unit n-torus,
Tn :=

{
z ∈ Cn

∣∣ |zi| = 1, ∀ 1 ≤ i ≤ n
}
. It is known that Hp(Dn) is a Banach

space for all 1 ≤ p < ∞ with norm || · ||p. f ∈ Hp(Dn) is said to be cyclic if
S[f ] := span

{
zαf(z)

∣∣ α ∈ Z+(n)
}
= span

{
pf
∣∣ p - polynomial

}
= Hp(Dn),

where Z+(n) is the set of n-tuples α = (αi)ni=1 of non-negative integers, and
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zα := zα1
1 zα2

2 · · · zαn
n . We also have the space of all bounded analytic functions

defined on Dn,

H∞(Dn) :=
{
f ∈ Hol(Dn)

∣∣∣∣ ||f ||∞ := sup
w∈Dn

|f(w)| < ∞
}
.

Just like Hp(Dn) for 1 ≤ p < ∞, H∞(Dn) is a Banach space with the
supremum norm || · ||∞.
In Hp(D) for 0 < p < ∞, cyclic functions have been characterized using
Beurling’s theorem, and the canonical factorization theorem (see Theorem
7.4 in [4] and Theorem 4 in [5]). In the case when n > 1, we do not have
a version of Beurling’s theorem or the canonical factorization theorem (see
Sect. 4.4 in [14] for more details). Several sufficient conditions for cyclicity
in Hp(Dn) were provided by N. Nikolski (Theorems 3.3 and 3.4, [13]), but
in general, not a lot is known about cyclic functions in the Hardy spaces for
n > 1. One way of obtaining cyclic functions when n > 1 is through operators
that preserve cyclicity, i.e. linear maps T : Hp(Dn) −→ Hq(Dm) such that Tf
is cyclic whenever f is cyclic.

When p = q = 2 and n = m = 1, a result of P. C. Gibson, M. P.
Lamoureux and G. F. Margrave shows that all such operators have to be
weighted composition operators (Theorem 4, [6]). This was generalized to
Hp(D) for 0 < p ≤ ∞ by J. Mashreghi and T. Ransford for ‘outer-preserving’
operators in [11].

Definition 1.1. For 0 < p ≤ ∞, a non-vanishing function f ∈ Hp(Dn) is said
to be outer if

log |f(0)| =
∫

Tn

log |f |.

In Hp(D), using Beurling’s theorem, it is known that the class of cyclic func-
tions coincides with that of outer functions. With this in mind, the following
theorem of Mashreghi and Ransford (Theorem 2.2, [11]) is a generalization
of the result of P. C. Gibson, M. P. Lamoureux and G. F. Margrave.

Theorem 1.2. Let 0 < p ≤ ∞ and let T : Hp(D) −→ Hol(D) be a linear map
such that Tg(z) (= 0 for all outer functions g ∈ Hp(D) and all z ∈ D. Then
there exist holomorphic maps φ : D −→ D and ψ : D −→ C \ {0} such that

Tf = ψ · (f ◦ φ) (∀ f ∈ Hp(D)) .

It is important to note that continuity of T is not assumed in the above
theorem. For more general spaces over D that satisy some nice properties,
J. Mashreghi and T. Ransford prove a similar result. Let X ⊂ Hol(D) be a
Banach space that satisfies the following properties :
(X1) X contains the set of polynomials, and they form a dense subspace of

X.
(X2) For each w ∈ D, the evaluation map f *→ f(w) : X −→ C is continuous.
(X3) X is shift-invariant, i.e. f ∈ X ⇒ zf ∈ X.
We also need a subset Y ⊂ X that satisfies the following properties.
(Y 1) If g ∈ X and 0 < infD|g| ≤ supD|g| < ∞, then g ∈ Y .
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(Y 2) If g(z) = z − λ where λ ∈ T, then g ∈ Y .
For these spaces, we have the following theorem (Theorem 3.2, [11]).

Theorem 1.3. Suppose X ⊂ Hol(D) satisfies (X1)–(X3) and Y ⊂ X satis-
fies (Y 1)–(Y 2). Let T : X −→ Hol(D) be a continuous linear map such that
Tg(z) (= 0 for every g ∈ Y and z ∈ D. Then there exist holomorphic functions
φ : D −→ D and ψ : D −→ C \ {0} such that Tf(z) = ψ(z)f(φ(z)) for each
f ∈ X.

The proof of Theorem 1.3 relies on classifying Λ ∈ X∗ such that Λ(g) (=
0,∀g ∈ Y (Theorem 3.1, [11]). This is similar to a result now known as the
Gleason-Kahane-Żelazko (GKŻ) theorem (see [7] and [9]), which identifies
multiplicative linear functionals in a complex unital Banach algebra through
its action on invertible elements (see Theorem 5.1 below). In [11], it is shown
that a version of the GKŻ theorem holds for modules of a complex unital
Banach algebra and it can be applied to the multiplier algebra of the space
X satisfying properties (X1)–(X3) to obtain Theorem 1.3.
In [10], K. Kou and J. Liu provide a similar argument for Hp(D) when 1 <
p < ∞. It is essentially the same as that of Theorem 1.3, but instead of the
subset Y they consider the set {ew·z |w ∈ C} (see Theorem 2, [10]). They
also showed that the converse of Theorem 1.3 is true when 1 < p < ∞, i.e.
all weighted composition operators on Hp(D) for 1 < p < ∞ also preserve
outer (and thus, cyclic) functions.

Using techniques similar to those in [10] and [11], we can generalize
Theorem 1.3 to spaces of analytic functions in more than one variable, and
also over arbitrary domains. To that end, we shall work with spaces X con-
sisting of functions defined on a set D ⊂ Cn for some n ∈ N, and that are
holomorphic on an open subset of D. Furthermore, X satisfies the following
properties.
Q1 The set of polynomials P is dense in X .
Q2 The point evaluation map Λz : X −→ C, defined as Λzf := f(z), is a

bounded linear functional on X for all z ∈ D. Furthermore, if for some
z ∈ Cn the map Λzp := p(z) defined on P extends to a bounded linear
functional on all of X , then z ∈ D.

Q3 The ith-shift operator Si : X −→ X , defined as Sif(z) := zif(z) for every
(zi)ni=1 = z ∈ D and f ∈ X , is bounded for every 1 ≤ i ≤ n.

The domain D, in this case, is called the maximal domain of X . Here, the
maximality is with respect to bounded extension of point evaluations on the
set of polynomials. We will show that the maximal domain of Hp(Dn) is Dn

for all values of p, and provide more examples with details and references in
Sect. 3.

The main results of this paper are the following theorems.

Theorem 1.4. Suppose X satisfies Q1–Q3 over a set D ⊂ Cn. Let Λ ∈ X ∗ be
such that Λ(ew·z) (= 0 for every w ∈ Cn. Then, there exist a ∈ C \ {0} and
b ∈ D such that Λ(f) = a · f(b).
In Sect. 4, using Theorem 1.4, we will obtain the following generalization of
Theorem 1.3.
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Theorem 1.5. Suppose X satisfies Q1–Q3 over a set D ⊂ Cn. Let Y be a
topological vector space of functions, defined on a set E, such that Γug :=
g(u), g ∈ Y defines a continuous linear functional for all u ∈ E. Let T : X −→
Y be a continuous linear operator. Then, the following are equivalent :
(1) T (ew·z) is non-vanishing for every w ∈ Cn.
(2) Tf(u) = a(u)f(b(u)) for some non-vanishing function a ∈ Y, and a

map b : E −→ D.
Furthermore, a = T1 and b = T (z)

T (1) , where T (z) =
(
T (zi)

)n
i=1

.

In Sect. 4.1, using Theorem 1.5 and some facts about Hardy spaces in several
complex variables, we will prove the following generalization of Theorem 1.2,
and Theorem 2 in [10].

Theorem 1.6. (1) Fix 0 < p, q < ∞ and m,n ∈ N. Let T : Hp(Dn) −→
Hq(Dm) be a bounded linear operator such that Tf is cyclic whenever f is
cyclic. Then, there exist analytic functions a ∈ Hq(Dm) and b : Dm −→ Dn

such that Tf(z) = a(z)f(b(z)) for every z ∈ Dm and f ∈ Hp(Dn).
Furthermore, a = T1 is cyclic and b = T (z)

T1 , where T (z) =
(
T (zi)

)n
i=1

.
(2) Fix 0 < p, q ≤ ∞ and m,n ∈ N. Then, the conclusion of part (1) holds if
we replace ‘cyclic’ with ‘outer’.

For 1 ≤ q < ∞, the converse of part (1) is also true. That is, all
bounded weighted composition operators from Hp(Dn) into Hq(Dm) also pre-
serve cyclicity.

In Sect. 5, as an interesting byproduct of results proved in this paper, we will
prove the following version of the GKŻ theorem for Banach spaces of analytic
functions.

Theorem 1.7. Suppose X satisfies Q1–Q3 over a set D ⊂ Cn. Let Λ ∈ X ∗

such that Λ(1) = 1. Then, the following are equivalent :
(i) Λ(ew·z) (= 0 for every w ∈ Cn.
(ii) Λ = Λz for some z ∈ D.
(iii) Λ(fg) = Λ(f)Λ(g) for all f, g ∈ X such that fg ∈ X .
(iv) Λ(φf) = Λ(φ)Λ(f) for all φ ∈ M(X ) and f ∈ X .

Here, M(X ) := {φ ∈ Hol(D) | φf ∈ X for all f ∈ X} is the multiplier
algebra of X .

2. Notations and Preliminary Results

Before we consider spaces of functions defined over its maximal domain, we
will work with spaces of holomorphic functions defined on an open set in Cn

for some n ∈ N. The notation is much simpler in this case, and in Sect. 3,
we will show that all holomorphic function spaces that satisfy some nice
properties can be identified with a space of functions defined over its maximal
domain.

Fix n ∈ N. For an open set D ⊂ Cn, let X ⊂ Hol(D) be a Banach space
satisfying the following properties :
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P1 The set of polynomials P is dense in X .
P2 The point-evaluation map Λz : X −→ C, defined as Λz(f) := f(z) for

every f ∈ X , is a bounded linear functional on X for every z ∈ D.
P3 The ith-shift operator Si : X −→ X , defined as Sif(z) := zif(z) for

every (zk)nk=1 = z ∈ D and f ∈ X , is a bounded linear operator for
every 1 ≤ i ≤ n.

Examples of spaces that satisfy P1–P3 include the Hardy space Hp(Dn)
for 1 ≤ p < ∞, the Drury-Arveson space H2

n on the unit ball Bn :={
z ∈ Cn

∣∣∣
n∑

i=1
|zi|2 ≤ 1

}
, and the Dirichlet-type spaces Dα for α ∈ R.

H2
n =




f ∼
∑

f̂(a)za ∈ Hol(Bn)
∣∣∣∣
∑

a∈Z+(n)

a1! a2! · · · an!
(a1 + a2 + · · ·+ an)!

|f̂(a)|2 < ∞






Dα =




f ∼
∑

f̂(a)za ∈ Hol(Dn)
∣∣∣∣
∑

a∈Z+(n)

(
(a1 + 1) · · · (an + 1)

)α|f̂(a)|2 < ∞






The list of Dirichlet-type spaces consists of many important spaces like the
usual Dirichlet space (α = 1), the Hardy space H2(Dn) (α = 0), and also the
Bergman space (α = −1). For these spaces, we prove the following prelimi-
nary result.

Theorem 2.1. Suppose X satisfies P1–P3 over an open set D ⊂ Cn. Let
Λ ∈ X ∗ be such that Λ(ew·z) (= 0 for every w ∈ Cn. Then, there exist
a ∈ C \ {0} and b ∈ σr(S) such that Λp = a · p(b) for every p ∈ P. Here,
σr(S) is the right Harte spectrum of S = (Si)ni=1.

Recall that σr(S) is the complement in Cn of ρr(S), where

ρr(S) :=

{
λ ∈ Cn

∣∣∣∣ ∃ {Ai}ni=1 ⊂ B(X ) such that
n∑

i=1

(Si − λiI)Ai = I

}
.

Note that it is not immediate from P1–P3 that ew·z ∈ X . We address this
separately as a lemma before we prove Theorem 2.1.

Lemma 2.2. For each w ∈ Cn, we have ew·z ∈ X . In fact, pk :=
∑

|α|≤k

wαzα

α! −→

ew·z in X as k −→ ∞, where |α| := α1 + · · ·+ αn and α! := α1!α2! · · · αn! .

Proof. Fix w ∈ Cn. We show that lim
k−→∞

pk exists. This follows from the fact
that X is a Banach space and

∑

α∈Z+(n)

∣∣∣∣

∣∣∣∣
wαzα

α!

∣∣∣∣

∣∣∣∣ ≤
∑

α∈Z+(n)

|w|α ||S||α ||1||
α!

= ||1||e|w|·||S||

where |w| :=
(
|w1|, . . . , |wn|

)
and ||S|| :=

(
||S1||, . . . , ||Sn||

)
. Let g = lim

k−→∞
pn

in X . Note that pk converges to ew·z point-wise. By P2, this implies g(z) =
ew·z. !
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Proof of Theorem 2.1. Since Λ(ez·w) (= 0 for all w ∈ Cn, and Λ is continuous,
we get

∑

α∈Z+(n)

Λ(zα)wα

α!
(= 0, ∀w ∈ Cn.

Let λα := Λ(zα), ∀α ∈ Z+(n). Now, |λα| = ||Λ(zα)|| ≤ ||Λ|| · ||zα|| implies

|λα| ≤ ||Λ|| · ||S1||α1 · ||S2||α2 · · · ||Sn||αn · ||1|| for every α ∈ Z+(n).

Let F (w) :=
∑

α∈Z+(n)

λαwα

α! , and note that F is a non-vanishing entire function

such that

|F (w)| ≤ ||Λ|| · ||1|| · e|w|·||S||.

When n = 1, it is well-known that all such F are of the form ea0+b·w for some
a0 ∈ C and b ∈ Cn (see Sect. 3.2, Chapter 5 in [1]). We will show that this is
true for all values of n. !

Lemma 2.3. Fix n ∈ N. Let F ∈ Hol(Cn) be a non-vanishing entire function
for which there exist constants A,B such that |F (z)| ≤ AeBrm for all z in
(rD)n, and for all r > 0. Then, there exists a polynomial p with deg(p) ≤ m
such that F (z) = ep(z) for all z ∈ Cn.

Proof. Since F is non-vanishing, there exists an entire function G such that
F = eG. Note that the hypothesis then implies Re(G) ≤ lnA + Brm in
(rD)n. We need to show that G is a polynomial with deg(G) ≤ m. The
case n = 1 is known (see Sect. 3.2, Chapter 5 in [1]), so assume n > 1. Let
G(z) =

∑
Gk(z) be the homogeneous expansion of G. Fix z ∈ Cn and let

gz(λ) := G(λz) =
∑

λkGk(z) for λ ∈ C. Notice that

Re
(
gz(λ)

)
= Re

(
G(λz)

)
≤ lnA+B · Cm|λ|m

where C = sup
1≤j≤n

|zj |, since z ∈ (rD)n for every r > C. Thus, for λ ∈ rD

Re
(
gz(λ)

)
≤ lnA+B · Cmrm.

Applying the one variable case to gz, we get Gk(z) = 0 for all k > m. As
the choice of z ∈ Cn was arbitrary, this means Gk(z) = 0 for all z ∈ Cn and
k > m. Therefore, G is a polynomial with deg(G) ≤ m as required. !

Proof of Theorem 2.1 (cont.). By Lemma 2.3, we get that F (w) = ea0+b·w

for some a0 ∈ C and b ∈ Cn. Using the definition of F (w), and comparing
power-series coefficients, we get λα = ea0bα, ∀α ∈ Z+(n). Let a := ea0 ∈
C \ {0}. This means Λ(zα) = a · bα, ∀α ∈ Z+(n).

Note that we have shown Λp = a · p(b) for every polynomial p. It only
remains to show that b ∈ σr(S). For the sake of contradiction, suppose b (∈
σr(S). Therefore there exists {Ai}ni=1 ⊂ B(X ) such that

n∑

i=1

(Si − biI)Ai = I.
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In particular,
n∑

i=1

(zi − bi)Ai1 = 1.

Fix an ε > 0. Since X satisfies P1, we can pick pi ∈ P for each 1 ≤ i ≤ n
such that

||Ai1 − pi|| <
ε

n · ||Λ|| · ||Si − biI||
.

Note that,
∣∣∣∣∣

∣∣∣∣∣1 −
n∑

i=1

(zi − bi)pi

∣∣∣∣∣

∣∣∣∣∣ =

∣∣∣∣∣

∣∣∣∣∣

n∑

i=1

(zi − bi)(Ai1 − pi)

∣∣∣∣∣

∣∣∣∣∣

≤
n∑

i=1

||Si − biI|| ||Ai1 − pi|| <
ε

||Λ|| .

Based on the representation of Λ on polynomials, we know that

Λ

(
n∑

i=1

(zi − bi)pi

)
= 0.

This means

|a| = |Λ1| =

∣∣∣∣∣Λ1 − Λ

(
n∑

i=1

(zi − bi)pi

)∣∣∣∣∣ ≤ ||Λ|| ·

∣∣∣∣∣

∣∣∣∣∣1 −
n∑

i=1

(zi − bi)pi

∣∣∣∣∣

∣∣∣∣∣ < ε.

As ε > 0 was arbitrarily chosen and a (= 0, we get a contradiction. Hence,
b ∈ σr(S). !

Remark 2.4. It would be great if we could show that b ∈ D, but that need
not be the case. It is obvious that D ⊂ σr(S), but it may not be possible to
extend the domain of every function in X to the whole of σr(S) in order to
extend the functional in the theorem to all of X .

Example 1. When X = Hp(Dn), for some 1 ≤ p < ∞, it is easy to check that
σr(S) = Dn. So, b obtained in Theorem 2.1 lies in Dn. We claim that in this
case, b lies in Dn. For the sake of argument, assume b = (bi)ni=1 ∈ ∂Dn with
bj ∈ T for some 1 ≤ j ≤ n. Consider q(z) := zj − bj . Since z − β is cyclic
in Hp(D) for all 1 ≤ p < ∞ and β (∈ D, q is cyclic in Hp(Dn). This means
that for any given f ∈ Hp(Dn), there exist polynomials {qk}k∈N such that
qkq −→ f . Note that since q(b) = 0,

Λ(qkq) = a · qk(b)q(b) = 0 for every k ∈ N.
Thus, Λ(f) = 0 which implies Λ ≡ 0, a contradiction. So, b ∈ Dn and
Λ ≡ aΛb.

We can make a similar argument for spaces X that have an envelope of cyclic
polynomials over D. Recall that f ∈ X is cyclic if the shift-invariant subspace
S[f ], generated by f , is all of X . That is,

S[f ] = span
{
zαf(z)

∣∣ α ∈ Z+(n)
}
= span

{
pf
∣∣ p ∈ P

}
= X .
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By P1, it is easy to see that f ∈ X is cyclic if and only if 1 ∈ S[f ]. It is also
easy to see that all cyclic functions are non-vanishing.

Definition 2.5. X has an envelope of cyclic polynomials over D if there is a
family F ⊂ P of cyclic polynomials such that D̃F :=

⋂
q∈F

(
Cn \ Z(q)

)
⊆ D,

where Z(q) is the zero-set of q.

Proposition 2.6. Suppose X satisfies P1–P3 over an open set D ⊂ Cn, and
also has an envelope of cyclic polynomials with F ⊂ P. Let Λ ∈ X ∗ be such
that Λ(ew·z) (= 0 for every w ∈ Cn. Then, there exist a ∈ C \ {0} and b ∈ D,
such that Λf = a · f(b) for all f ∈ X .

Proof. We only need to show that b ∈ D since in that case, we get Λ ≡ aΛb

on X . For this, let q ∈ F be arbitrary and suppose q(b) = 0. Since q is
cyclic, for every f ∈ X we obtain a sequence of polynomials {qk}k∈N such
that qkq −→ f . This means

0 = a · qk(b)q(b) = Λ(qkq) −→ Λ(f).

Thus, Λ ≡ 0 and we get a contradiction. So q(b) (= 0 for every q ∈ F , and
b ∈ D̃F ⊆ D. !

Example 2. For Hp(Dn) when 1 ≤ p < ∞, {zi − β
∣∣ 1 ≤ i ≤ n and β (∈ D} is

an envelope of cyclic polynomials over Dn (see Example 1). The same set of
polynomials works for the Dirichlet-type spaces Dα when α ≤ 1. For α > 1
and 1 ≤ i ≤ n, the polynomial zi − w is not cyclic in Dα for all w ∈ T, and
hence the same example does not work. In fact, every f ∈ Dα is continuous
up to the boundary when α > 1. Plus Λb is a bounded linear functional on
Dα even when b ∈ ∂Dn. Therefore Dα cannot have an envelope of cyclic
polynomials over Dn. A detailed discussion on cyclicity of polynomials in the
Dirichlet-type spaces can be found in [3].

3. Maximal Domains

Let us try to make sense of how big the domain of functions in a general space
X that satisfies properties P1–P3 can become without losing the structure
we need.

Definition 3.1. Given X satisfying P1–P3 over an open set D ⊂ Cn, we define
the maximal domain of functions in X to be the set

D̂ :=
{
w ∈ Cn

∣∣ Λwp := p(w), ∀p ∈ P has a bounded linear extension to X
}
.

First, we prove an important property of the maximal domain.

Theorem 3.2. Suppose X satisfies P1–P3 over an open set D ⊂ Cn. Then,
we have

D ⊂ D̂ ⊂ σr(S).
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Proof. D ⊂ D̂ is obvious from P2. To show D̂ ⊂ σr(S), let b ∈ D̂. By P1, we
get

Λb(ew·z) = ew·b (= 0 for all w ∈ Cn.

By Theorem 2.1, there exists b̂ ∈ σr(S) such that Λb|P ≡ Λb̂|P . Evaluating
both functionals at zi for each 1 ≤ i ≤ n, we get b = b̂ ∈ σr(S) as needed.
!

Remark. This shows that the maximal domain is not a very large set, since
it is contained in a nice compact set. In the case of Hp(Dn) for 1 ≤ p < ∞
and Dα for α ≤ 1, we saw earlier in Example 2 that D̂ = Dn. However for
Dα when α > 1, D̂ = Dn. Therefore, both inclusions in the theorem can be
proper.

We now show that in general, X can be identified with a space X̂ of functions
over D̂, which satisfies Q1–Q3. The following discussion is similar to that of
Sect. 5 in [8], where the author talks about the idea of ‘algebraic consistency’
and considers a couple different notions of maximal domains. Our notion of
maximal domain is different from those discussed in [8], so we will provide
all the details here for the sake of completeness.
Let us begin with some notation before proving the identification. For every
f ∈ X , define f̂(ẑ) := Λẑf for every ẑ ∈ D̂ where, with the abuse of notation,
we write Λẑf to represent the extension of Λẑ|P on X evaluated at f . Notice
that for z ∈ D, f̂(z) = f(z) for every f ∈ X . This also implies f̂ |D ∈ Hol(D).
Also, for p ∈ P, we have p̂(ẑ) = p(ẑ) for every ẑ ∈ D̂. Thus, P̂ := {p̂ | p ∈ P}
is the same set as P.
Now, let X̂ := {f̂ : D̂ −→ C | f ∈ X} and endow it with the natural vector
space structure of point-wise addition and scalar multiplication. This can be
done because it is obvious that f̂ + ĝ = f̂ + g, and αf̂ = α̂f for every α ∈ C,
f, g ∈ X .

Define the map ι : X −→ X̂ as ι(f) := f̂ for every f ∈ X . ι is clearly
a vector space isomorphism, and we can define ||f̂ ||X̂ := ||f ||X for every
f̂ ∈ X̂ . This implies fk −→ f in X if and only if f̂k −→ f̂ in X̂ . So, X̂ turns
into a Banach space, and ι becomes an isometric isomorphism of Banach
spaces. Note that since X̂ |D :=

{
f̂ |D

∣∣ f̂ ∈ X̂
}
= X , we can say that X̂ is an

extension of X to D̂.

Proposition 3.3. X̂ satisfies Q1 and Q2 over D̂.

Proof. In order to show Q1, first recall that fk −→ f in X if and only if f̂k −→ f̂
in X̂ . Since P is dense in X by P1, it implies easily that the set of polynomials
P̂ is dense in X̂ .
In order to show Q2, notice that the map Λẑ f̂ := f̂(ẑ) is bounded for every
ẑ ∈ D̂ since

|Λẑ f̂ | = |f̂(ẑ)| = |Λẑf | ≤ ||Λẑ||X∗ ||f || = ||Λẑ||X∗ ||f̂ ||.
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For the second part of Q2, suppose for some ẑ ∈ Cn, Λẑ defined as above
extends to all of X̂ . As P and P̂ are identical, we can evaluate Λẑ on poly-
nomials in P to get

|Λẑp| = |p(ẑ)| = |p̂(ẑ)| ≤ ||Λẑ||X̂∗ ||p̂|| ≤ ||Λẑ||X̂∗ ||p||.

By P1, Λẑ extends to a bounded functional on X , and by definition of D̂, we
get ẑ ∈ D̂. !

Instead of showing that X̂ satisfies Q3 directly, we will prove a general
result about multipliers. Recall that φ ∈ Hol(D) is a multiplier of X , if
φf ∈ X for every f ∈ X . Denote the set of multipliers by M(X ). It is not
difficult to check that M(X ) is a Banach algebra with the norm

||φ||M(X ) := sup
{
||φf ||

∣∣ ||f ||X ≤ 1
}
.

As 1 ∈ X , we get that M(X ) ⊂ X . Using closed graph theorem, it is easy to
check that φ is a multiplier if and only if multiplication by φ, i.e. Mφ : X −→ X
defined as Mφf := φf for every f ∈ X , is a bounded linear operator on X .
Using P2 and the above equivalence, it is easy to check that |φ(z)| ≤ ||φ||M(X )

for all z ∈ D and φ ∈ M(X ). Thus, M(X ) ⊂ H∞(D). With this notation,
we have the following result.

Proposition 3.4. φ ∈ M(X ) if and only if φ̂ ∈ M(X̂ ).

Proof. First, note that for every choice of polynomials p, q we have p̂q = p̂q̂.
Let f ∈ X be arbitrary, and let {qk}k∈N be a sequence of polynomials that
converges to f in X . Then for every ẑ ∈ D̂, since pqk −→ pf implies p̂qk −→ p̂f ,
we get

p̂f(ẑ) = lim
k−→∞

p̂qk(ẑ) = lim
k−→∞

p̂(ẑ)q̂k(ẑ) = p̂(ẑ) lim
k−→∞

q̂k(ẑ) = p̂(ẑ)f̂(ẑ).

Thus p̂f̂ = p̂f ∈ X for every p ∈ P, f ∈ X . This implies p̂ ∈ M(X̂ ).
Suppose now that φ ∈ M(X ). We already know φ̂q = φ̂q̂ for every

q ∈ P. Let f ∈ X and suppose again that qk −→ f for some polynomials qk.
It is now easy to see for every ẑ ∈ D̂,

φ̂f(ẑ) = lim
k−→∞

φ̂qk(ẑ) = lim
k−→∞

φ̂(ẑ)q̂k(ẑ) = φ̂(ẑ) lim
k−→∞

q̂k(ẑ) = φ̂(ẑ)f̂(ẑ).

Therefore φ̂f̂ = φ̂f ∈ X̂ for every φ ∈ M(X ), f ∈ X . This implies φ̂ ∈ M(X̂ ).
The converse is easy since φ̂f̂ ∈ X̂ implies there exists g ∈ X such that
φ̂f̂ = ĝ. This means g = ĝ|D = φf and so, φf ∈ X . Thus φ ∈ M(X )
whenever φ̂ ∈ M(X̂ ). !
Corollary 3.5. X̂ satisfies Q3 over D̂.

Proof. This follows from Proposition 3.4 as shift operators are multiplication
operators. !
Now that the shift operators are bounded, we can talk about cyclic functions
in X̂ . However, the way we have defined the norm in X̂ , it is obvious that
f ∈ X is cyclic if and only if f̂ ∈ X̂ is cyclic. This and the propositions above
prove the following identification theorem.
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Theorem 3.6. Given a space X that satisfies P1–P3 over an open set D ⊂ Cn,
there exists a space X̂ , consisting of functions defined over the maximal do-
main D̂ of functions in X , that satisfies Q1–Q3 and is isometrically isomor-
phic to X with the map ι(f) := f̂ , for f ∈ X .

Furthermore X̂ |D :=
{
f̂ |D

∣∣ f̂ ∈ X̂
}

= X , and X̂ has the same set of
multipliers and cyclic functions as X . That is, φ ∈ M(X ) if and only if
φ̂ ∈ M(X̂ ), and f is cyclic in X if and only if f̂ is cyclic in X̂ .

With the help of Theorems 2.1 and 3.6, we can easily prove Theorem 1.4.

Proof of Theorem 1.4. The proof of this theorem is the same as that of The-
orem 2.1 except, by Q2, we directly obtain b ∈ D instead of having to show
that b ∈ σr(S). !
It should be noted that while Theorem 1.4 is technically not a better result
compared to Theorem 2.1, it shows that the point b is not completely arbi-
trary; functions in X are well-behaved around b, and most of the structure
we need can be extended to it.

4. Cyclicity Preserving Operators

We have now covered all the preliminaries required to identify all cyclicity
preserving operators on these spaces. First, we prove Theorem 1.5.

Proof of Theorem 1.5. (2) ⇒ (1) is obvious.
Suppose now that (1) holds. Fix u ∈ E and define Λ := Γu ◦ T ∈ X ∗. Note
that for every w ∈ Cn, as T (ew·z) is non-vanishing, we get

Λ(ew·z) = Γu

(
T (ew·z)

)
= T (ew·z)(u) (= 0.

By Theorem 1.4, we get that Λf = a(u)f(b(u)) for some a(u) ∈ C \ {0}, and
b(u) ∈ D.
As the choice of u ∈ E was arbitrary, we get the functions a = T (1) ∈ Y and
b = T (z)

T (1) : E −→ D as desired. Also, Tf(u) = a(u)f(b(u)) for every u ∈ E.
!
The only thing we require to identify cyclicity preserving operators is the
following lemma.

Lemma 4.1. ew·z is a cyclic multiplier in X for every w ∈ Cn.

Proof. Fix w ∈ Cn. We need to find polynomials pk so that ||pkew·z −1|| −→ 0
as k −→ ∞. Let pk be truncations of the power-series of e−w·z. By Lemma 2.2,
pk −→ e−w·z in X .

First, we show that ew·z is a multiplier. Let qk be truncations of the
power-series of ew·z. Given f ∈ X , we need to show ew·zf lies in X . Note
that by the triangle inequality, we get

||qlf − qkf || ≤




∑

k<|α|≤l

|w|α ||S||α ||1||
α!



 ||f ||, for every k ≤ l.
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Therefore qkf is a Cauchy sequence and thus, converges to some function
g ∈ X . As qk −→ ew·z point-wise, by Q2 we get that qkf −→ ew·zf , which
implies ew·z ∈ M(X ). This means,

lim
k−→∞

pke
w·z = lim

k−→∞
Mew·z (pk) = Mew·z (e−w·z) = 1.

That is, pkew·z −→ 1 as k −→ ∞ and thus, ew·z is cyclic. !

With this in mind, the following is a trivial consequence of Theorem 1.5.

Theorem 4.2. (Cyclicity Preserving Operators)
Let m,n ∈ N. Suppose X and Y satisfy Q1–Q3 over D ⊂ Cn and

E ⊂ Cm respectively. Let T : X −→ Y be such that Tf is cyclic whenever f is
cyclic. Then, there exist analytic functions a ∈ Y and b : E −→ D such that
Tf(u) = a(u)f(b(u)) for every u ∈ E.

Moreover, a = T (1) is cyclic and b = T (z)
T (1) , where T (z) =

(
T (zi)

)n
i=1

.

Remark. One can immediately observe in Theorems 1.5 and 4.2, that the
spaces X and Y may be defined for functions in different number of variables.
Also note that for Theorem 4.2, we do not get a proper equivalence easily
as in Theorem 1.5 since it is not at all trivial to determine when a weighted
composition operator preserves cyclicity.

In the case when X = Hp(Dn) and Y = Hq(Dm) for some 1 ≤ p, q < ∞,
we get that all operators that preserve cyclicity are weighted composition
operators. The same is true for the Dirichlet-type spaces Dα when α ≤ 1.
When α > 1, we need to consider the space over its maximal domain Dn.

4.1. Cyclicity Preserving Operators on Hardy Spaces

The aim of this subsection is to provide a proof of Theorem 1.6. We will start
by showing that the converse of Theorem 4.2 is true whenever Y = Hq(Dm)
for some 1 ≤ q < ∞. We need the following important properties of S[f ], the
shift-invariant subspace generated by a function f ∈ Hp(Dn).

Lemma 4.3. Let f ∈ Hp(Dn) for some 1 ≤ p < ∞. Then, φf ∈ S[f ] for each
φ ∈ H∞(Dn).

Proof. For the sake of contradiction, let φf (∈ S[f ]. By the Hahn-Banach
theorem, there exists Γ ∈ (Hp(Dn))∗ such that Γ(φf) (= 0 and Γ|S[f ] ≡ 0.
Since Hp(Dn) ⊂ Lp(Tn) is a closed subspace, by duality of Lp(Tn) there
exists h ∈ Lp′

(Tn) such that for every g ∈ Hp(Dn)

Γ(g) =
∫

Tn

gh,

where p′ is the exponent dual to p (see Theorem 7.1 in [4] for more details).
As φ is the weak∗-limit of some sequence of analytic polynomials pk in

L∞(Tn) (take Fejér means, for example), and fh ∈ L1(Tn) for f ∈ Hp(Dn),
we get that

Γ(φf) =
∫

Tn

φfh = lim
k−→∞

∫

Tn

pkfh = 0.
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The last equality follows from the fact that pkf ∈ S[f ] for each k, and∫
Tn gh = Γ(g) = 0 for every g ∈ S[f ]. Thus, we reach a contradiction since Γ
was chosen so that Γ(φf) (= 0. !
Proposition 4.4. Let f ∈ Hp(Dn), 1 ≤ p < ∞. Let {fk}k∈N ⊂ H∞(Dn) be
such that fkf −→ g for some g ∈ X . Then, g ∈ S[f ]. In particular, if there
exists a sequence {fk}k∈N ⊂ H∞(Dn) such that fkf −→ g for some cyclic
g ∈ Hp(Dn), then f is cyclic.

Proof. The first part of the proposition follows easily from Lemma 4.3, since
fkf ∈ S[f ] for each k ∈ N, and S[f ] is closed implies g = lim

k−→∞
fkf ∈ S[f ].

For the second part, note that g ∈ S[f ] implies S[g] ⊂ S[f ]. Since g is assumed
to be cyclic, S[g] = Hp(Dn) which means S[f ] = Hp(Dn). Therefore in this
case, f is also cyclic. !
The following result follows easily from Theorem 4.2 and Proposition 4.4.

Theorem 4.5. Suppose X satisfies properties Q1–Q3 over D ⊂ Cn. Let T :
X −→ Hq(Dm) be a bounded linear map for some 1 ≤ q < ∞. Then, the
following are equivalent :
(1) T preserves cyclicity.
(2) Tf = a · (f ◦ b), f ∈ X for some cyclic a ∈ Hq(Dm), and analytic

b : Dm −→ D.

Proof. (1) ⇒ (2) follows from Theorem 4.2.
For the converse, let a ∈ Hq(Dm) and b : Dm −→ D be as in (2). We show
that for every cyclic f ∈ X , Tf = a · (f ◦ b) is cyclic in Hq(Dm).

As f is cyclic, there exist polynomials pk such that pkf −→ 1 in X . Since
T is a bounded operator, T (pkf) −→ T (1) in Hq(Dm). Note that T (1) = a is
cyclic and that

T (pkf) = a · (pk ◦ b) · (f ◦ b) = (pk ◦ b) ·
(
a · (f ◦ b)

)
.

It is easy to see (pk ◦ b) ∈ H∞(Dm) for each n, since the image of b lies in
D ⊂ σr(S) by Theorem 3.2. From the second part of Proposition 4.4, as

(pk ◦ b) ·
(
a · (f ◦ b)

)
−→ a,

and a is cyclic, we get that Tf = a · (f ◦ b) is cyclic in Hq(Dm). Thus,
(2) ⇒ (1). !
Remark 4.6. (i) The proof of (2) ⇒ (1) relies on Proposition 4.4, which

further relies on the fact that the dual of Lp(Tn) for 1 ≤ p < ∞ is
Lp′

(Tn) where 1/p + 1/p′ = 1 and thus, does not translate easily to
other general spaces of analytic functions.

(ii) Note that the proof of Theorem 1.2 and Theorem 2 in [10] uses the
canonical factorization theorem for Hardy spaces on the unit disc D
(Theorem 2.8, [4]). We do not have such a result when n > 1 (see Sect.
4.2 in [14]), hence a different approach was needed.

(iii) Recall that Theorem 1.2 does not require boundedness of T for the proof
of (1) ⇒ (2) to work when X = Hp(D). Plus, Theorem 1.2 is valid even
for 0 < p < 1. This is because its proof also depends on the canonical
factorization theorem as mentioned above.
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(iv) We will see later in this section that (1) ⇒ (2) is still valid for the case
when X = Hp(Dn) and Y = Hq(Dm) for 0 < p, q < 1 even though they
are not Banach spaces. The case p, q = ∞ shall be treated separately
as well since H∞(Dn) is not separable and hence the standard notion
of cyclicity does not make any sense.

We now show that the assumption ‘T is a bounded operator’ can be
dropped in a specific case for the Hardy spaces. First, we need the following
fact about boundedness of certain composition operators.

Proposition 4.7. For 1 ≤ p < ∞ and a given analytic function b : Dm −→ D,
the map T : Hp(D) −→ Hp(Dm) defined as Tf := f ◦ b is a well-defined
bounded linear operator.

Proof. First, we show that f ◦b ∈ Hp(Dm) for every f ∈ Hp(D), which shows
T is well-defined. The linearity of T is immediate after that. We use the
existence of harmonic majorants for functions in the Hardy spaces and their
properties for the rest of the proof. See Sect. 3.2 in [14] for more details. The
argument here is inspired by the one given in the corollary of Theorem 2.12
in [4] for the case m = 1.
Let U be the smallest harmonic majorant of |f |p, i.e. the Poisson integral of
|f(eiθ)|p,

U(reiθ) =
1
2π

∫ 2π

0
P (r, θ − t) |f(eit)|p dt, where P (r, θ) := Re

(
1 + reiθ

1 − reiθ

)
.

Then, |f(u)|p ≤ U(u) for all u ∈ D, which implies |Tf(z)|p ≤ U
(
b(z)
)
for

every z ∈ Dm.
Since U is harmonic, U = Re(g) for some analytic function g : D −→ C.

This means that U ◦ b = Re(g ◦ b) is an m-harmonic function and thus, a
harmonic majorant for |Tf |p = |f ◦ b|p. This proves that f ◦ b ∈ Hp(Dm) and
so, T is well-defined.
To show T is bounded, observe that

Mp(r, f ◦ b)p ≤ U(b(0)) ≤
(
1 + |b(0)|
1 − |b(0)|

)
||f ||p,

where

Mp(r, f ◦ b) :=




∫

rTm

|f ◦ b|pdσm





1
p

.

The first inequality follows from the mean value property of m-harmonic
functions, and the second inequality follows from the fact that P (r, θ) ≤
(1+ r)/(1− r) for all values of r and θ. Taking supremum over r in the above
inequality, we get

||f ◦ b|| ≤
(
1 + |b(0)|
1 − |b(0)|

) 1
p

||f || for every f ∈ Hp(D).

Thus, T is bounded. !
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Theorem 4.8. Fix 1 ≤ p < ∞ and let T : Hp(D) −→ Hp(Dm) be a linear map
such that T1 = 1. Then, the following are equivalent :
(1) T is a bounded linear map that preserves cyclicity.
(2) Tf = f ◦ b, f ∈ Hp(D) for some analytic b : Dm −→ D.

Proof. As before, (1) ⇒ (2) follows directly from Theorem 4.5.
For the converse, let b : Dm −→ D be an analytic function such that Tf = f ◦b
for each f ∈ Hp(D). By Proposition 4.7, T is a bounded linear operator.
(2) ⇒ (1) in Theorem 4.5 shows that T preserves cyclicity. !
Remark 4.9. Note that the only place we use that the domain of Hp(D) is
in one variable, is to show boundedness of f *→ f ◦ b for every b : Dm −→ D.
More precisely, we use the fact that any harmonic function U in one variable
is the real part of some holomorphic function. This is not true for n > 1 (see
Sect. 2.4 in [14]).

As mentioned in Remark (iv) under Theorem 4.5, we now consider the cases
0 < p < 1 and p = ∞. First, we address the case X = Hp(Dn) for 0 < p < 1.

Example 3. (0 < p < 1) Note that Hp(Dn) satisfies P1–P3 if we replace
boundedness with continuity. The issue is thatHp(Dn) is not a Banach space.
Even thoughHp(Dn) is not normable, it is still a complete metric space under
the metric dp(f, g) := ||f − g||pp where || · ||p is as defined in Sect. 1. Using
this, its bounded linear functionals can be defined in the usual manner. That
is, we say that Λ : Hp(Dn) −→ C is bounded if

||Λ|| := sup
||f ||p=1

|Λ(f)| < ∞.

This means that |Λ(f)| ≤ ||Λ|| · ||f || for all bounded Λ, and f ∈ Hp(Dn). It is
easy to verify that this notion of boundedness is equivalent to the continuity of
Λ. Similarly, we say an operator T : Hp(Dn) −→ Hq(Dm) for some 0 < q ≤ ∞
is bounded if

||T || := sup
||f ||p=1

||Tf ||q < ∞.

As was the case with linear functionals, it is easy to verify that this notion
of boundedness is equivalent to the continuity of T . This implies that for all
bounded linear operators T on Hp(Dn) and f ∈ Hp(Dn), ||Tf || ≤ ||T || · ||f ||.
So, Lemmas 2.2 and 4.1 hold for Hp(Dn) even when 0 < p < 1. In order
to show that Theorem 4.2 holds for X = Hp(Dn), we only need to show
that Theorem 1.4 holds since the arguments in the proof of Theorem 4.2 do
not rely on the Banach space structure of X except when Theorem 1.4 is
applied. First, we show that the maximal domain for functions in Hp(Dn)
when 0 < p < 1 is also Dn.
We will show as in Example 2 that the family F := {zi−β

∣∣ 1 ≤ i ≤ n, β (∈ D}
is an envelope of cyclic polynomials in Hp(Dn) for 0 < p < 1. Let b ∈ Dn

be such that Λb|P extends to a bounded linear functional Λ ∈ Hp(Dn). Thus
bj ∈ T for some 1 ≤ j ≤ n.

It is known that outer functions are cyclic in Hp(D) for 0 < p < 1 (see
Theorem 4, [5]). This implies z − bj is cyclic in Hp(D) and thus, q(z) :=



14 Page 16 of 20 J. Sampat IEOT

zj − bj is cyclic in Hp(Dn). Clearly F defined above is then an envelope of
cyclic polynomials. This means that for any given f ∈ Hp(Dn), there exists a
sequence of polynomials {pk}k∈N such that pkq −→ f . Since q(b) = 0, we get

Λ(f) = lim
k−→∞

Λ(pkq) = lim
k−→∞

pk(b)q(b) = 0.

This means Λ ≡ 0, a contradiction. So, b ∈ Dn and we get D̂ = Dn.
Notice that the only other place we use the norm in the proof of Theorem 2.1
(and hence Theorem 1.4) is to obtain the non-vanishing entire function F (w)
using

|Λ(zα)| ≤ ||Λ|| · ||zα|| ≤ ||Λ|| · ||S1||α1 . . . ||Sn||αn · ||1||, for every α ∈ Z+(n).

As we saw above, this should not be an issue forHp(Dn) since ||Λ||makes just
as much sense and ||zα|| = 1 for all α ∈ Z+(n). This gives us |Λ(zα)| ≤ ||Λ||,
which is good enough for the rest of the proof to work. Therefore Theorem 1.4
holds for X = Hp(Dn) and Y = Hq(Dm), and so does Theorem 4.2 even when
0 < p, q < 1.

Example 4. (p = ∞) H∞(Dn) is different from Example 3 as it is a Banach
space, but it does not satisfy Q1 over Dn. In fact H∞(Dn) is not separable,
so cyclicity of functions does not make sense. Since outer functions (see Defi-
nition 1.1) do make sense for n ≥ 1 and 0 < p ≤ ∞, we can talk about outer
functions instead of cyclic functions in this case.

Note that for p = ∞, the hypothesis of Theorem 1.4 does not make sense.
In fact, we will completely avoid using maximal domains for H∞(Dn) since
without cyclicity, we cannot even determine if D̂ ⊂ σr(S). Instead, consider
Λ ∈

(
H∞(Dn)

)∗ such that Λ(f) (= 0 for all outer functions f ∈ H∞(Dn).
Since ew·z is an outer function for all w ∈ Cn, we proceed as in the proof of
Theorem 2.1 to obtain Λ|P ≡ aΛb|P for some a ∈ C \ {0} and b ∈ Cn.
Now, proceed as in Example 2 and instead of having an envelope of cyclic
polynomials, we have an envelope of outer polynomials which is the same set
{zi − β | 1 ≤ i ≤ n, β (∈ D}. Since Λ(f) (= 0 for all outer functions f , we
get bi − β (= 0 for all 1 ≤ i ≤ n and β (∈ D which implies bi ∈ D for every
1 ≤ i ≤ n. Therefore, b ∈ Dn and Λf = a · f(b) for all f ∈ H∞(Dn).

Thus, the conclusion of Theorem 2.1 is valid for H∞(Dn) if we consider
all Λ ∈

(
H∞(Dn)

)∗ that act on outer functions as above and so, Theorem 4.2
is valid for X = H∞(Dn) if we replace cyclic functions with outer functions.
A similar logic can be applied to operators that preserve outer functions in
Hp(Dn) for 0 < p < ∞.

This discussion about Hardy spaces above yields the proof of Theorem 1.6.

Proof of Theorem 1.6. (1) For 1 ≤ p, q < ∞, this follows from Theorems 4.2
and 4.5. For 0 < p < 1 or 0 < q < 1, this follows from the discussion in
Example 3.

(2) This follows from the discussion in Example 4. !

Remark 4.10. (i) Note that the proof of Proposition 4.4 above is not valid
for 0 < q < 1 or q = ∞ since we use the duality of Lq(Tm) when
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1 ≤ q < ∞. Therefore, we do not obtain a result like Theorem 4.5 when
0 < q < 1 or q = ∞. Theorem 1.6 is probably the best we can expect in
these cases with our techniques.

(ii) If all bounded weighted composition operators preserve outer functions
as well, we get a kind of ‘linear rigidity ’ between outer and cyclic func-
tions. The following result shows that this is not the case when n > 1.

Theorem 4.11. Let 0 < q < 1/2. There exists a bounded linear map T :
H2(D2) −→ Hq(D) such that it preserves cyclicity, but not outer functions.

Proof. This example is from [14] but it was used in a different context; to
obtain an outer function in H2(D2) which is not cyclic. We refer the reader
to the discussion surrounding Theorem 4.4.8 in [14] for details on the facts
mentioned below.
Fix 0 < q < 1/2. Let T : H2(D2) −→ Hq(D) be defined as

Tf(z) = f

(
1 + z

2
,
1 + z

2

)
for every z ∈ D and f ∈ H2(D2).

T is a bounded linear operator that preserves cyclicity (Theorem 4.4.8 (a),
[14]). Also, f ∈ H2(D2) defined below is outer (Theorem 4.4.8 (b), [14]), but
Tf is not.

f(z1, z2) = exp
(
z1 + z2 + 2
z1 + z2 − 2

)
.

T f(z) = exp
(
z + 3
z − 1

)
=

1
e
·
(
exp
(
z + 1
z − 1

))2

.

Therefore, T does not preserve outer functions. !

It would be interesting to characterize all weighted composition operators
that preserve outer functions since it might help us understand the difference
between outer and cyclic functions when n > 1.
(iii) Notice that the proof of (1) ⇒ (2) in Theorems 1.5 and 4.2 depends
mostly on the properties of X , since Y can be chosen to be fairly general. On
the other hand, all the discussion about Hardy spaces shows that the proof
of (2) ⇒ (1) depends on the properties of Y. In Proposition 4.4, we saw that
the proof relies heavily on the properties of Hp(Dn) and might not work for
other spaces. This shows that it is not completely obvious what properties Y
needs to have generally in order for the converse of Theorem 4.2 to hold.

5. GKŻ-type theorem for spaces of analytic functions

To show some different application of the abstract results proved in Sects. 2
and 3, we conclude our discussion by proving a GKŻ-type theorem (Theo-
rem 1.7) for spaces of analytic functions. The following result was proved
independently by A. M. Gleason (Theorem 1, [7]), and J.-P. Kahane and W.
Żelazko (Theorem 1, [9]) for commutative Banach algebras. Żelazko extended
the result to non-commutative Banach algebras shortly after in [15].
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Theorem 5.1. Let B be a complex unital Banach algebra, and let Λ ∈ B∗ be
such that Λ(1) = 1. Then, Λ(ab) = Λ(a)Λ(b) for every a, b ∈ B if and only if
Λ(a) (= 0 for every a which is invertible in B.

We shall prove a similar result about partially multiplicative linear functionals
on spaces of analytic functions as an interesting byproduct of the topics
discussed in Sects. 2 and 3.

Definition 5.2. Suppose X is a space of functions that satisfies Q1–Q3 over
D ⊂ Cn. We will consider two types of partially multiplicative linear func-
tionals Λ ∈ X ∗ as follows.

M1 For every φ ∈ M(X ), f ∈ X we have Λ(φf) = Λ(φ)Λ(f).
M2 For every f, g ∈ X such that fg ∈ X we have Λ(fg) = Λ(f)Λ(g).

Note that M2 ⇒ M1, but it is not obvious if the converse is true in general.
Theorem 1.7 states that when X satisfies Q1–Q3 over its maximal do-

main D ⊂ Cn, both M1 and M2 are equivalent. Not only that, but they are
precisely the set of point evaluations on D, and can be identified by their
action on a certain set of exponentials. The proof of this theorem is easy and
follows from Theorem 1.4.

Proof of Theorem 1.7. (i) ⇒ (ii) follows from Theorem 1.4, and (ii) ⇒
(iii) ⇒ (iv) is obvious from Definition 5.2.
For the proof of (iv) ⇒ (i), assume Λ is M1 and note that ew·z ∈ M(X ) for
every w ∈ Cn. Thus, for every w ∈ Cn, we get

Λ(ew·z)Λ(e−w·z) = Λ(ew·z · e−w·z) = Λ(1) = 1.

Therefore, Λ(ew·z) (= 0 for every w ∈ Cn as required. !

This shows that all reasonable notions of partially multiplicative linear func-
tionals align when we consider these nice spaces of analytic functions. A sim-
ilar result for reproducing kernel Hilbert spaces with complete Pick property
was recently proved (Corollary 3.4, [2]). It was shown that in the case of a
complete Pick space, M1 and M2 are equivalent. It should be noted that this
is not a special case of Theorem 1.7 since it covers Hilbert spaces of functions
that are not necessarily analytic. On the other hand, Theorem 1.7 covers
certain Banach spaces of analytic functions and not just Hilbert spaces.
It is worth mentioning that, just as we devised a maximal domain from point
evaluations on polynomials that extend to X , one can construct a different
notion of maximal domain from M1 and M2. We end this section by showing
that our notion of maximal domain can also be identified with some form of
partially multiplicative functionals.
Suppose X satisfies P1–P3 over an open set D ⊂ Cn. We say Λ ∈ X ∗ is M0
if it satisfies the following property.

M0 For every p, q ∈ P we have Λ(pq) = Λ(p)Λ(q).

Proposition 5.3. Λ is M0 if and only if Λ|P ≡ Λb|P for some b ∈ D̂.
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Proof. If Λ is M0, then Λ(zki ) =
(
Λ(zi)

)k for all 1 ≤ i ≤ n and k ∈ N. Pick
b =

(
Λ(zi)

)n
i=1

and note that Λ(p) = p(b) for all p ∈ P. As Λ ∈ X ∗, and X
satisfies P1, this means Λ|P extends to X . Thus b ∈ D̂, and Λ|P ≡ Λb|P as
required. The converse is trivial. !

Depending on what properties we want the extension X̂ to have, we may
want to choose between M0–M2. For more details, refer to Sect. 2 in [12],
and Sect. 5 in [8].

Acknowledgements

This paper would not have been possible without the guidance of my PhD
advisor, Greg Knese. I would like to thank Greg for providing partial finan-
cial support as well, through his NSF grant DMS-1900816. I would also like
to thank John McCarthy, Brett Wick, and my colleagues Alberto Dayan and
Christopher Felder for discussions on topics covered in this paper, and math-
ematics in general. I am also grateful for the suggestions provided by the
referee, who reviewed this paper, to help improve it.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Ahlfors, L.V.: Complex Analysis: An Introduction to the Theory of Analytic
Functions of One Complex Variable. New York, London, 177 (1953)

[2] Aleman, A., Hartz, M., McCarthy, J.E., Richter, S.: The Smirnov class for
spaces with the complete Pick property. J. Lond. Math. Soc. 96(1), 228–242
(2017)
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