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ARTICLE INFO ABSTRACT

Keywords: The existence of late Cambrian (Furongian) trilobites in Myanmar (Burma) has been acknowledged since the
Burma 1970s, but no formal systematic descriptions of such fossils have been published to date. Herein, we provide such
Eosaukia. descriptions of some trilobites from the Molohein Group’s Myet-Ye Formation from the Linwe area, Ye-Ngan
ﬁ;‘;ﬂ 1?; Ci’:la'gp ' Township of the southern Shan State. Three species from two genera are reported: Asioptychaspis (A. asiatica,
Palacotethys previously known from the North China Block, and a new species, A. lata) and Eosaukia buravasi, also known
Mesotethys from peninsular Thailand. The Molohein Group was initially assigned a late Cambrian age based on the reported,

but unsubstantiated, occurrence of the Laurentian genera Saukiella and Drumaspis, and this age assessment is
supported by the fauna we present, although Saukiella or Drumaspis remain unconfirmed from Myanmar.
Asioptychaspis asiatica first appears in late Jiangshanian strata, and Eosaukia buravasi ranges up to the middle of
Stage 10. Thus these ranges provide a more specific constraint on the age of the Molohein Group. Similarities are
strong between upper Cambrian and Lower Ordovician successions in Sibumasu and northwestern Australia,
particularly those from the Canning Basin succession. Regional geological data supports placement of Sibumasu
adjacent to Western Australia during the Cambrian, without the Lhasa Block intervening between them, and
Baoshan at the western end of Sibumasu during the early Paleozoic, towards the Himalayan margin. The new
Burmese fauna is consistent with these suggestions, as they belong to the Sino-Australian faunal province.

1. Introduction

Myanmar is one of the few remaining countries on Earth that host
fossil-bearing Cambrian deposits but from which no systematic de-
scriptions of such fossils have yet been published. Here we describe
several Cambrian trilobites from the Shan Plateau, the defining phys-
iographic feature of the Shan State in Myanmar, which is marked by the
uplift of a large mass of Precambrian, Palaeozoic, and Mesozoic rock. We
also review constraints on the early Palaeozoic palaeogeography of this
and adjacent regions. The Shan plateau is part of the ancient terrane
termed Sibumasu by Metcalfe (1984), which is conventionally shown as
being separated from the West Burma Block of western Myanmar by the
Shan Scarp and associated Sagaing Fault (Ridd, 1971) (Fig. 1). In
addition to part of eastern Myanmar, Sibumasu encompasses parts of
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southwest Yunnan, western Thailand, the northern part of peninsular
Malaysia, and some of Sumatra (Metcalfe, 2013a, 2013b, 2017; Mitchell
et al., 2012; Udchachon et al., 2018). Lower Palaeozoic faunal assem-
blages are a key source of evidence for determining palaeogeographic
relationships and tectonic history among equatorial peri-Gondwanan
terranes (e.g., Fortey and Cocks, 1998, 2003; Hughes et al., 2002; Laurie
and Burrett, 1992; Metcalfe, 1992; Niko and Sone, 2015), and here we
consider the implications of the newly discovered fossils for tectonic
affinities. We use the term equatorial peri-Gondwana to include Sibu-
masu, the West Burma Block, North China (=Sino-Korea), South China,
Tarim, Indochina, Simao, and other smaller putative terranes.
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Fig. 1. The modern extent of the Sibumasu terrane. Modified from Wernette
et al. (2020a). Suture and fault abbreviations are as follows: N-U = Nan
Uttaradit Suture Zone; SFZ = Sagaing Fault Zone/Shan Scarp.

1.1. Prior palaeontological work on the Cambrian of Myanmar

Cowper Reed (1906, 1908, 1915, 1936) published descriptions of
Ordovician through Devonian fauna as part of the Geological Survey of
India’s early work on the regional geology of the Myanmar region,
including the “Lower Palaeozoic Faunas of the Southern Shan State”
(Reed, 1936), but Myanmar’s Cambrian strata were unrecognized at that
time, as the Ordovician Naungkangyi beds were thought to directly, and
unconformably, overlie the Precambrian Chaung Magyi (La Touche,
1913). Following an initial, informal conference report on Cambrian
rocks from the Pangyun Formation in the northern Shan State (Thaw
Tint, 1972), the Molohein Group was the first Cambrian unit to be
described in a formal publication (Myint Lwin Thein, 1973). Although
these Cambrian deposits have been mentioned in numerous subsequent
publications on Burmese geology (e.g., Aye Ko Aung and Cocks, 2017;
Bender, 1983; Bhargava, 1995; Wolfart et al., 1984), including the
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cursory application of several previously established trilobite species
names (e.g., Myint Lwin Thein, 1973; Thaw Tint, 1972, 1974) and
illustration of three unidentified saukiid pygidia (Aye Ko Aung, 2012,
Fig. 1), no material has ever been formally described. Taxa historically
reported from the Molohein Group include Saukiella junia (Walcott) var.
A Winston and Nicholls, 1967, Eosaukia buravasi Kobayashi, 1957, and
Drumaspis texana Resser, 1942 (Aye Ko Aung, 2012; Aye Ko Aung and
Cocks, 2017; Myint Lwin Thein, 1973; Thaw Tint, 1972, 1974). The
recognition of saukiids has been considered sufficient to assign an up-
permost Cambrian age to the Molohein Group (e.g., Aye Ko Aung, 2012;
Aye Ko Aung and Cocks, 2017; Bender, 1983; Wolfart et al., 1984), but
given that Saukiella and Drumaspis are both characteristically Laurentian
taxa, these generic assignments are surprising and, without published
illustrations and descriptions, remain unconfirmed.

The only figured and described record of Myanmar’s Cambrian tri-
lobites is a comprehensive, but unpublished, Master’s thesis on the
lower Palaeozoic fauna and stratigraphy of the Ye-Ngan township (Soe,
1983). In his faunal analysis for this area, Soe (1983) did not suggest the
occurrence of any new or endemic species, assigning all material to the
following taxa: Saukiella junia (Walcott) var. B Winston and Nicholls,
Saukiella cf. S. junia (Walcott) var. A Winston and Nicholls, Saukiella cf.
S. fallax (Walcott), Saukiella sp., Calvinella cf. C. prethoparis (Longacre),
Calvinella cf. C. ozarkensis (Walcott), Calvinella sp., Eosaukia buravasi
Kobayashi, Ptychaspis cf. P. (Asioptychaspis) delta (Shergold), Sol-
enopleura sp., Prosaukia cf. P.? absoma Shergold, and Ptychaspis sp. While
this thesis provided valuable new information about the fauna of
Myanmar, the specimens, which were predominantly from float mate-
rial, were subsequently lost.

Based on specimens collected during an expedition to the Linwe area
in November-December 2016 we describe the Cambrian trilobite fauna
in the southern Shan State to include Eosaukia buravasi, Asioptychaspis
lata n. sp., and Asioptychaspis asiatica Endo and Resser. This article is the
first of several reports on the fauna, environments, and geochronology of
upper Furongian and Lower Ordovician Burmese sections, and reviews
in some detail what is currently known of the early Paleozoic history of
the region. This will provide context for a series of forthcoming works on
the geochronology of Sibumasu during that interval.

2. Geological setting
2.1. Sibumasu

Sibumasu was first recognized as a discreet entity based on its
emergence as an isolated continental fragment following rifting from
Gondwana, perhaps conjoined with the Qiantang block of Tibet (Audley-
Charles, 1988; Cai et al., 2017, Fig. 9; Metcalfe, 1994, 2013a; Sengor,
1984; Sone and Metcalfe, 2008; but also see Xu et al., 2014a, Fig. 1). The
opening of the ocean between Sibumasu and Gondwana, which in
southeastern Asia is commonly referred to as Meso-Tethys (Metcalfe,
1994, 1998, 2011a, Fig. 5, 2013a,b, 2017), occurred by the late
Carboniferous to earliest Permian (Metcalfe, 1996; Ridd, 2015),
although some suggest that it was perhaps earlier (Zhao et al., 2017; Zhu
et al., 2013). Prior to rifting from Gondwana, Sibumasu had formed part
of the supercontinent’s leading margin, a position obtained after other
Asian material rifted away with the opening of the Palaeo-Tethys Ocean
(e.g., Sengor, 1979; Metcalfe, 1994, 1996, 2006, 2013a, 2017; Li et al.,
2004, p. 293; Torsvik and Cocks, 2017; Veveers, 2004). As Palaeo-
Tethys closed in the Triassic, the eastern flank of Sibumasu collided
with Indochina and South China (Aye Ko Aung and Cocks, 2017; Met-
calfe, 2006, 2017; Ridd, 2015, 2016; Searle and Morley, 2011), forming
the Lincang-Sukhothai-Lao fold belt (a continental arc) and the Chiang
Mai-Chiang Rai-Bentong-Raub suture zone (Metcalfe, 1994, 2017,
Fig. 12; Searle et al., 2007). Sibumasu’s bounding faults (Fig. 1)
encompass a unit with a unique Permian climatic history (Metcalfe,
1984, 1992, 2013a,b, 2017, but also see Ridd, 2016) related to its rapid
migration as a continental fragment toward the tropics. The West Burma
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Fig. 2. Asian Equatorial Gondwanan terranes in their modern configuration. The full names of abbreviated terranes are: B = Baoshan; C = Chanthaburi Terrane; I =
Inthanon; K = Kontum; L = Loei; S = Simao; SD = Song Da; ST = Sukhothai; T = Tenchong; TS = Truong Son; Y = Yunling Collage. Modified from Burrett et al.

(2014), Cai and Zhang (2009), Hughes et al. (2002), Li et al. (2016), Metcalfe (200

Block, possibly with the Lhasa Block attached to it, may have collided
with Sibumasu’s western flank in the Late Jurassic to Early Cretaceous
(Gardiner et al., 2015; Mitchell et al., 2012; Searle et al., 2012, 2017),
closing the Meso-Tethys ocean. Associations of the West Burma Block
are currently in debate (Metcalfe, 2017, p. 37-39).

6, 2011, 2017), Xie et al. (2016) and Zhao et al. (2017).

2.2. Sibumasu precursor relationships of the Shan-Thai area to the
Gondwanan margin

The pre-Tethyan history of the Sibumasu Block is interpreted by
linking its geology and biota to that of other regions. Recent early
Palaeozoic reconstructions consistently show Sibumasu as one of several
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continental fragments located peripheral to the equatorial Gondwanan
core, and placed adjacent to northwestern Australia (e.g., Ali et al.,
2013, Fig. 19; Burrett et al., 2014, Figs. 11-13; Domeier, 2018, Fig. 19;
Hu et al., 2015, Fig. 12a; Lin et al., 2013, Fig. 1; Metcalfe, 2013b,
Fig. 11a; Niko and Sone, 2015, Fig. 3; Torsvik and Cocks, 2017, Fig. 5.5;
Tran et al., 2014, Fig. 12; Xie et al. 2016, Fig. 7; Xing et al., 2017,
Fig. 10a; Zhang et al., 2015, Fig. 12; Zhao et al., 2017, Fig. 9; Zhu et al.,
2013, Fig. 7b). Most reconstructions (e.g., Boger and Miller, 2004;
Cawood and Buchan, 2007; Cocks and Torsvik, 2013; Meert, 2003;
Torsvik and Cocks, 2017, Fig. 5.1) suggest that core Gondwana, con-
sisting of South America, Africa, India, Antarctica, and Australia, had
amalgamated by the early Cambrian, although this view is not univer-
sally accepted (e.g., Schmitt et al., 2004).

Evidence for the specific placement of Sibumasu adjacent to north-
western Australia is based on the cumulative Palaeozoic history of the
two regions prior to the opening of the Meso-Tethys ocean (e.g., Met-
calfe, 2013b, Fig. 6). Four lines of evidence have been used: palae-
omagnetic data, detrital zircon geochronology, tectonostratigraphy, and
palaeobiology. Estimates of Sibumasu’s paleolatitude are well estab-
lished for Devonian and younger rocks (Ali et al., 2013; Domeier, 2018;
Fang et al., 1989; Li et al., 2004, Figs. 3-5; Metcalfe, 2011a, Fig. 4;
Torsvik and Cocks, 2004, Table 1), but no data for pre-Devonian strata
are currently available for the Thai-Burmese part of Sibumasu. How-
ever, palaeomagnetic data for the Cambrian of Baoshan (Li et al., 2004,
Fig. 4) suggests a low latitude Cambrian setting, similar to that for North
China (Huang et al., 1999, 2000; Zhao et al., 2020), South China, and
Australia (Li et al., 2004, Fig. 4) during that period, although the reli-
ability of these data has been queried (Burrett et al., 2014).

Sibumasu’s detrital zircon age profiles for Cambrian sandstone from
peninsular Thailand’s Tarutao Island (Burrett et al., 2014, Fig. 3A-C;
McKenzie et al., 2014, Fig. 2) and Myanmar (Cai et al., 2017), span a
wide range of grain ages, with distributions broadly characteristic of
most late Cambrian equatorial Gondwana terranes (Myrow et al., 2010).
These data suggest that the sedimentary material accumulating in
Sibumasu and other equatorial Gondwanan terranes was similarly
sourced, and thus part of the continuous margin. Based on comparing
grain age distributions using the Kolmogorov-Smirnov statistical test,
Burrett et al. (2014, p. 35) made the case that profiles of upper Cambrian
sandstone samples from Tarutao, and a sample from the Ordovician
Tumblagooda Sandstone of northwestern Australia, are notably similar
(p = 0.895), but typically the similarity metrics between the pooled
Tarutao sample and various Western Australian samples are notably
lower, with the next highest sample yielding p = 0.210 (Burrett et al.,
2014, Table 2). As for the associations between Sibumasu and other
“outboard” terranes, the profiles of Cambrian samples from Sibumasu,
North China, and the Himalaya appear comparable (McKenzie et al.,
2014, Fig. 2), although such linkages receive very weak support from the
Kolmogorov-Smirnov test statistic (p < 0.01; Burrett et al., 2014,
Table 2). As is generally the case with statistical tests, the Kolmogor-
ov-Smirnov test assumes that the distributions of grain age in the in-
dividual samples are drawn from the same underlying distribution of
ages, unless a significant difference can be detected between them. As
the ability to detect a significant difference depends on sample size, non-
significant differences between individual, rather than pooled, samples
are more prone to Type II error. Hence, although the apparent similarity
between the Tumblagooda Sandstone and one of the Tarutao samples
may suggest that they shared the same set of sediment sources, the result
is not conclusive. The pooled Cambrian data from South China shows a
broad peak of Neoproterozoic zircons that distinguishes it from some
other Asian samples, including Sibumasu (McKenzie et al., 2014, Fig. 2),
even though the test statistic hints at stronger association between
Sibumasu and South China than between Sibumasu and North China.
This similarity is particularly strong if northeast Vietnam is considered
as part of South China (Burrett et al. 2014, Table 2). Other parts of south
China, especially northwest Yangtze, suggest weaker association with
Sibumasu according to the Kolmogorov-Smirnov test (Burrett et al.
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2014, Table 2). Overall, the grain age distributions are consistent with
widespread sediment transport and mixing along the peri-Gondwanan
margin (Myrow et al., 2010), but do not presently provide strong evi-
dence for distinctions within the region.

The temporal history of rifting and suturing on either flank of
Sibumasu, discussed above, provides important constraints on Sibuma-
su’s original position within the complex of “outboard” peri-Gondwanan
terranes. Middle to late Palaeozoic rifting history places Sibumasu more
“inboard” within peri-Gondwana than those areas that had earlier rifted
from its now eastern margin. However, this does not constrain from
whence Sibumasu rifted. Metcalfe (1996, Fig. 6; 2013b, Fig. 7) sum-
marized Palaeozoic stratigraphic correlations between Sibumasu and
Australia, which are mostly of a general lithologic nature, and highlight
distinctive correlative horizons, such as the Permian diamictite deposits
present in both regions (but also found widely elsewhere in Gondwana).
For the upper Cambrian, Shergold et al. (1988, p. 305) suggested an
“inner detrital belt” depositional environment extending across
Australia, northern Vietnam, Yunnan, western Thailand, western
Sichuan, Ganzu, and eastern Qinghai. He equated this to the “Sino-
Burma geosyncline” of Sun (1945), and proposed that this outcrop belt
was the onshore, siliciclastic-dominated equivalent of carbonate plat-
forms that were developing in North China at the time. This is akin to the
well documented inner detrital belt/carbonate platform association in
the late Cambrian of Laurentia (e.g., Aitken, 1966; Palmer, 1960, 1971;
Robison, 1960). Shergold (1988) considered both this “inner detrital
belt”, and the carbonate platform deposits of the North China block, to
host the “tsinaniid-saukiid biofacies”, which was interpreted to have
occupied a shallow epiric sea. This suggestion of a continuous belt of
nearshore siliciclastic facies contrasts with more recent sedimentolog-
ical and tectonic investigations that show the northern part of this region
to comprise a complex set of island arc and accretionary complexes,
including the Qaidam Block (Chen et al., 2012; Xiao et al., 2009), the
Qilian Block, and mobile belts (Zhang, 1988, chart 4; Fu et al., 2019;
Huang et al., 2000; Song et al., 2013; Zhou et al., 1996), and the Alxa
Terrane (Zhang et al., 2015), each with an individual history, including
episodes of deep water siliciclastic deposition. Furthermore, the
Cambrian of Vietnam, although it contains a fine-grained siliciclastic
component in places, is almost exclusively carbonate (Pham, 2008), and
is thus not “inner detrital”. Accordingly, Shergold’s (1988) and Shergold
et al.’s (1988) concept of a continuous belt of clastic inner detrital belt
facies spanning all these regions is no longer tenable.

That said, shallow shelf siliciclastic facies of both the Molohein and
the Tarutao groups do sedimentologically resemble a set of “inner
detrital” shallow marine sandstone units of similar age in Australia
(Shergold, 1988), as also do slightly older rocks from Bhutan (Hughes
et al., 2011). The comparable Australian rocks include the lower Nam-
beet Formation of the Canning Basin (Normore et al., 2018), the Clark
and Pander sandstone units of the Bonaparte Basin, the Goyder and
Pacoota sandstone formations of the Amadeus Basin, the Mootwingee
Group of the Gnalta area (Shergold et al., 1985, Charts 1,5,6), and an
unnamed sandstone/siltstone unit in Tasmania’s Misery Hill (Jago and
Corbett, 1990). The Pander Sandstone of the Bonaparte Basin, which is
the part of Australia to which Sibumasu is placed most closely in the
largest number of recent reconstructions, contains notable glauconite,
which is absent from similarly aged rocks in Sibumasu. A core into the
Canning Basin reveals at least 1000 m of sandstone unconformably
overlying basement and underlying latest Tremadocian and Floian age
limestone with conodonts and tuffs (Normore et al., 2018). This strati-
graphic succession is comparable to the upper Cambrian-Tremadocian
successions in the Shan-Thai region, and is specifically similar to the Ao
Phante Malacca section on Ko Tarutao (Stait et al., 1984; Udchachon
et al., 2018, Fig. 8). Compared to that succession, the limestone facies
may be slightly younger in the Canning Basin, as indicated by conodont
fauna (Agematsu et al., 2008; Normore et al., 2018), possibly reflecting a
transgressive succession in which Ko Tarutao was located somewhat
further offshore. Comparable sandstone facies are also found in Bhutan,



S.J. Wernette et al.

although the part of the Bhutanese succession that has been precisely
dated is slightly older stratigraphically (Hughes et al., 2011; Greenwood
et al., 2016) than the dated Sibumasu Cambrian succession.

The Cambrian sedimentary rocks of Sibumasu, where dated, are all
uppermost Cambrian (Kobayashi, 1957; Shergold et al., 1988; Wernette
et al.,, 2020a,b). In Malaysia and the Satun Province of Thailand, the
basement upon which these rocks rest is not exposed, but in Myanmar
these upper Cambrian sedimentary rocks unconformably overly the
poorly dated but possibly upper Neoproterozoic Chaung Magyi Group.
In these areas the oldest dated Cambrian rocks are those bearing
Asioptychaspis asiatica Endo and Resser, whose presence in Myanmar is
first documented herein. In Baoshan, the succession extends lower into
the Cambrian (Luo 1985a) (see below), but the age of the oldest
Cambrian strata in Baoshan, and its basal relationship is also poorly
constrained. In contrast, in some parts of peninsular Thailand the
gneissic basement has a metamorphic age as young as 501.5 + 7.5 Ma
(Lin et al.,, 2013). Such an age is consistent with that of widespread
granite bodies in the region and, at the younger end of its error margin,
is equivalent to the depositional age of part of the Tarutao Group.
Accordingly, the record of the oldest sedimentary rocks within Sibumasu
is regionally variable, but upper Cambrian sedimentary successions are
preserved in most parts of it.

A notable aspect of the upper Cambrian geology of Sibumasu is the
presence of numerous volcanogenic deposits. Tuffs are common
throughout many of the Tarutao and southern Shan State sections, and
there is an extensive rhyolite body at Bawdwin in the northern part of
the Shan State (Brinckmann and Hinze, 1981; Gardiner et al., 2017;
Mitchell, 2018). At the regional scale, late Cambrian — early Ordovician
intrusive magmatism was widespread along the equatorial margin of
Gondwana (e.g., Hu et al., 2015, Fig. 12; LeFort et al., 1986; Li et al.,
2016, Fig. 16; Lin et al., 2013; Liu et al., 2009; Miller et al., 2001; Shi
et al., 2016; Zhu et al., 2012, Fig. 9a), but the occurrence of volcano-
genic deposits is geographically confined, with Sibumasu bearing the
most notable record. Middle Cambrian ophiolitic remnants in the Qilian
mobile belt and adjacent areas and the flood basalts of the lower
Cambrian Kalkarindji Igneous Province (e.g., Shergold et al., 1985,
Charts 1-3,7,8; Cocks and Torsvik, 2013, Fig. 10) are unlikely to be
directly related to marginal Gondwana’s late Cambrian-Ordovician,
mostly felsic magmatism, but the record of Lower Ordovician ash beds in
the Nambeet Formation of the Canning Basin (Normore et al., 2018),
along with a comparable stratigraphic succession to peninsular Thai-
land’s Lower Ordovician sections (see above), provide a stratigraphic
link between Australia and Sibumasu. An ash dated at 500 Ma + 4
(Greenwood et al., 2016), and possible correlative upper Cambrian ba-
salts from the Bhutanese Himalaya (Bhargava, 1995; Tangri and Pande,
1994, 1995), may also suggest association between Bhutan and Sibu-
masu during the late Cambrian.

Palaeontological evidence constraining the Gondwanan relation-
ships of Sibumasu spans the full range of Palaeozoic sedimentary rocks
(e.g., Metcalfe, 2013b, Fig. 6) and has recently been aptly summarized
by Burrett et al. (2016). Particular associations between Western
Australia and Sibumasu have been posited for the Carboniferous and
Permian (e.g., Wang et al., 2001) but biotic evidence supports recog-
nition of a broad “Sino-Australian faunal province” prior to the opening
of Paleo-Tethys (Metcalfe, 2013b, Fig. 11; Zhan et al., 2014; Zhou and
Dean, 1989). This province comprises the Australian sector of core
Gondwana and the peri-Gondwanan terranes of South China, North
China, Indochina, and Sibumasu, along with parts of Tibet and the Hi-
malayan margin. Resolving specific paleogeographic relationships
within this region using biotic data has proven to be challenging. With
regard to the Cambrian through Tremadocian, palaeontological data
suggests affinity between Shan-Thai and Australia faunas (Kobayashi,
1957; Shergold, 1991; Shergold et al., 1988; Wernette et al., 2020a,b),
but also with North China faunas. All three terranes contain such genera
as Tsinania, Mansuyia, Parakoldinioidia, Pseudkoldinioidia, Pagodia, Asa-
phellus, Haniwa, Eosaukia, Lophosaukia, Quadraticephalus, Akoldinioidia,
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and Koldinoidia, though some have not yet been formally described from
Sibumasu. All of these, excluding Quadraticephalus, also occur in South
China, although South Chinese specimens of Eosaukia and Haniwa are
only tentatively assigned to those genera (Zhou and Zhen, 2008).
Research on Early and Middle Ordovician cephalopod and brachiopod
faunas allies Thai, northern Malaysian, and Burmese forms to Australian
fauna (e.g., Laurie and Burrett, 1992; Niko and Sone, 2015), to North
Chinese fauna (e.g., Niko and Sone, 2014; Stait and Burrett, 1982), or to
both (e.g., Fang et al., 2018; Stait and Burrett, 1984). The relatively deep
water Upper Ordovician Pa Kae Formation in Satun province, Thailand
shares multiple trilobite genera (including 4 species) and facies in
common with the Pagoda Limestone of the South China Block (Fortey,
1997; Zhou et al., 2016). Studies of conodont faunas from Satun and
northern Malaysia show a coincident shift from shelf assemblages in the
Early and Middle Ordovician to deeper water forms (Agematsu et al.,
2007, 2008), consistent with the trilobite data (Fortey, 1997). Burrett
et al. (2016) suggested that faunal links to South China increased in
association with Late Ordovician sea level rise, and they noted that there
may be some regional biofacies differences within Sibumasu itself (see
below).

In summary, Sibumasu’s Cambrian placement adjacent to, or close
to, some part of the northern Australian margin is a consistent feature of
recent palaeogeographical reconstructions, although its particular
location is debated and not precisely constrained. Most characteristics
shared between Sibumasu and Australia’s Palaeozoic geology are gen-
eral to the wider Sino-Australian region (as defined above), but some
more specific lithostratigraphic and faunal similarities, including
notable tuffs, may link Shan Thai Cambrian-Ordovician strata to those
of this interval preserved in the Canning Basin of Western Australia.

2.3. The peri-Gondwanan branch of Proto-Tethys

Early Palaeozoic reconstructions of the peri-Gondwanan margin
commonly use either the term Proto-Tethyan (e.g., Hu et al., 2015,
Fig. 12) or Palaeo-Asian (Li et al., 2018; Han et al., 2016; Zhao et al.,
2017) to refer to the ocean bordering the margin from Arabia to
Australia. At a global scale, this ocean is considered to separate this
sector of the Gondwanan rim from Baltica and Siberia (e.g., von Raumer
and Stampfli, 2008). The ocean linked the Panthalassic ocean, which
occupied much of the northern hemisphere at the time, to the Rheic/Ran
ocean, located at higher southern latitude (Domeier, 2018). Gondwana’s
early Palaeozoic margin along the Proto-Tethyan ocean is commonly
represented as an oceanic trench with subduction beneath the super-
continent (e.g., Domeier, 2018, Fig. 19). However, in the specific
context of the early Palaeozoic history of the equatorial peri-Gondwanan
margin, the term Proto-Tethyan has also been applied to a relatively
short lived, early Palaeozoic branch of that wider ocean that separated
continental crust from Gondwana across an oceanic trench.

The regional history of this branch of the Proto-Tethyan ocean is the
subject of ongoing debate. The occurrence of extensive granitic intrusion
around the equatorial Gondwana margin (e.g., LeFort et al., 1986)
suggests widespread subduction about its rim (Cawood and Buchan,
2007; Cawood et al., 2007), but debate continues regarding the early
Paleozoic positions of the various parts of the margin that were later
defined by association with the Palaeo-, Meso-, Ceno-Tethyan oceans.
Some reconstructions of Cambrian and early Ordovician paleogeog-
raphy suggest that these ultimately Asian landmasses were contiguous
during those times and formed the equatorial Gondwanan margin (e.g.,
Han et al., 2016, Fig. 4, Niko and Sone, 2014, Fig. 2, 2015, Fig. 3). In
such a case, this would have been an Andean type margin, but this
scenario is difficult to reconcile with the occurrences of granite bodies
far inboard of what would later form eastern Asia (Cawood and Buchan,
2007; Cawood et al., 2007; Zhu et al., 2012; Lin et al., 2013; Zhang et al.,
2014; Hu et al., 2015). Other authors view this inboard igneous activity
to be associated with the closure of the equatorial peri-Gondwanan
branch of the Proto-Tethys, and that it involved the accretion of
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continental material to the peri-Gondwanan rim. This would include
either closure of an intracontinental basin on the Gondwanan side of the
oceanic trench (Zhai et al., 2016, Fig. 13), accretion of exotic continental
material derived from the other side of the subduction zone (Wang et al.,
2012, Fig. 9), or some combination of events such as closure of a back
arc basin and subsequent merger of the arc with a continental mass
approaching from across the subduction zone (Li et al., 2016, Fig. 16; Li
et al., 2018, Fig. 10).

Tectonic models involving the collision of continental crust derived
exotically from across the trench differ widely in the identities proposed
for such crust. Zhai et al. (2016, Fig. 13) showed all the terranes that
later broke from equatorial peri-Gondwana to form eastern Asia as
comprising a single “Asia Hun super terrane”, which collided with core
Gondwana during the Cambrian (also see Wang et al., 2015). In other
reconstructions, those terranes that later rifted from Gondwana with the
opening of Meso-Tethys and Ceno-Tethys (Metcalfe, 2017) formed part
of core Gondwana in the early Palaeozoic, whereas most that left at the
initiation of Palaeo-Tethys were not. The complement of exotic terranes
within the proto-Tethys ocean varies widely among authors (Lin et al.,
2013, Fig. 1; Hu et al., 2015, Fig. 12a; Xie et al., 2016, Fig. 7; Xing et al.,
2017, Fig. 10; Xu et al., 2014b, Fig. 9; Zhao et al., 2017, Fig. 9; Zhu et al.,
2011, Fig. 4; Zhu et al., 2012, Fig. 9; Zhu et al., 2013, Fig. 7; Li et al.,
2018, Figs. 7, 10), partly reflecting ongoing debate about the later
Phanerozoic histories of individual terranes.

In addition to basin closure/collision during the Cambrian — Ordo-
vician boundary interval, other models for this time show narrow ocean
basins opening at the distal edge of equatorial Gondwana, associated
with the isolation of the North China block, and of the Alxa and Qilian
terranes (Han et al., 2016, Fig. 4; Xing et al., 2017, Pan et al., 2012,
Fig. 5, Fig. 10; Xiao et al., 2009, Fig. 12). Improved knowledge of the
regional early Palaeozoic geology of the region is critical to deciding
among the various models for both Proto-Tethys and the original
disposition of the peri-Gondwana margin.

2.4. Palaeozoic position of the Lhasa Block

In early Palaeozoic reconstructions, the Lhasa Block (Fig. 2) has
conventionally been placed to the north of the Indian subcontinent and
adjacent to the western margin of Australia, to which Sibumasu was
shown attached (Ali, 2013, Fig. 18; Domier, 2018, Fig. 19; Lin et al.,
2013, Fig. 1; Torsvik and Cocks, 2009, Fig. 3, 2013, Fig. 10, 2017,
Fig. 5.4; Tran et al., 2014, Fig. 14). More recently, many papers have
placed the Lhasa Block directly adjacent to western or northern
Australia, i.e., in the position that Sibumasu has conventionally occu-
pied. In several such cases Sibumasu (along with other peri-Gondwanan
terranes) is shown further to the east along Australia’s northern margin
(Ferrari et al., 2008, Fig. 9; Hu et al., 2015, Fig. 12; Xie et al., 2017,
Fig. 11; Yao et al., 2014, Fig. 9; Zhai et al., 2016, Fig. 13; Zhang et al.,
2015, Fig. 12; Zhu et al., 2012, Fig. 9). Other reconstructions retain
Sibumasu in association with northwestern Australia but insert the
Lhasa Block in between the two cratonic areas (Ridd, 2016, Fig. 8; Xie
et al., 2016, Fig. 7; Zhao et al., 2017, Fig. 9; Zhu et al., 2011, Fig. 4,
2013, Fig. 7). In such reconstructions Sibumasu sits immediately
outboard (i.e., distally) to the Lhasa Block, and thus is attached to
Australia only indirectly via the Lhasa Block itself. Another recon-
struction (Cai et al., 2017, Fig. 9A) offers a combination of the two
models, with Sibumasu placed eastwards along the Australian margin,
but with the Lhasa Block separating it from Australia at its western end.
All these reconstructions require significant later right lateral displace-
ment of the Lhasa Block to bring it to its current disposition.

The principal argument for an eastward position of the Lhasa Block
in Gondwana relative to India is the presence of a 1.2 Ga detrital zircon
peak in Lhasa Block samples, which is reportedly absent in profiles from
the north Indian margin and Qiantang Block (Zhu et al., 2011). In their
modern geographical configuration, these terranes are adjacent to the
south and north of Lhasa, respectively, so the 1.2 Ga peak has been used
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by Zhu et al. (2011) to suggest a geographically separate origin for the
Lhasa Block. However, a difficulty with this idea is that prominent peaks
of 1.2 Ga detrital zircon grains occur in upper Vindhyan and Delhi Su-
pergroup sandstone samples that accumulated on the Indian craton
during the Neoproterozoic (Hughes et al., 2015, Fig. 6). Hence, abun-
dant 1.2 Ga grains are not exclusive to the Australian sector of Gond-
wana, and thus do not link the Lhasa Block specifically to that region.
Likewise, Cambrian-Ordovician samples from Sibumasu and Western
Australia also show peaks of ~950 Ma zircons (Burrett et al., 2014,
Fig. 10; McKenzie et al., 2014, Fig. 2), which Zhu et al. (2011) consid-
ered diagnostic of samples derived from the Indian sector of the peri-
Gondwanan margin. Therefore, the argument that the Lhasa Block has a
detrital signature that is characteristically different from that of the
Indian sector of the Gondwana margin is questionable.

The idea of the direct Lhasa—Australia Palaeozoic connection has
been previously questioned based on their differing geological records
(Pan et al., 2012; Zhang et al., 2014), and recent studies of the Lhasa
Block’s Neoproterozoic record associate it with India and South China
(Zhou et al., 2019, Fig. 9). Nor are there compelling biogeographic ar-
guments for specific links between Australia and the Lhasa Block:
Palaeozoic and early Mesozoic faunas from various parts of Tibet show
general similarities with Australia, as they do with other parts of the
“Sino-Australian province” (see Wright et al., 2000 and the papers
therein), but evidence of a specific biotic association between the Lhasa
Block and Western Australia (and/or Sibumasu) is scant.

In contrast, with respect to the early Palaeozic record, there is strong
stratigraphic evidence for the Lhasa block being associated with the
Himalaya. As discussed above, sedimentation was relatively continuous
from the late Cambrian into the Tremadocian in Sibumasu, and in the
Canning Basin. However, in the Himalaya, there is a marked angular
unconformity between the Cambrian marine sedimentary rocks and
Ordovician molasse (Hayden, 1904; Myrow et al., 2016). A comparable
angular unconformity between Ordovician and reportedly Cambrian
clastic rocks containing metarhyolites exists in the Lhasa block (Hu
etal., 2013, Fig. 2; Wang et al., 2015, Fig. 9). This angular unconformity
is characteristic of the Himalayan sector of equatorial peri-Gondwana,
including Qiantang (Yang et al., 2014), but is unknown in the Australian
sector. Accordingly, in our view, association of the Lhasa block with the
Australian sector of core peri-Gondwana is likely incorrect, and its as-
sociation with the Himalayan margin is supported, although the meta-
rhylolites will bear comparison both with those at Bawdwin in
Myanmar, and with other Cambrian volcanic deposits reported in
Bhutan (Bhargava, 1995; Greenwood et al., 2016) and elsewhere in the
Himalaya (Garzanti et al., 1986).

2.5. The Baoshan Block and regional variation within the precursor of the
Sibumasu terrane

Western Yunnan’s Cambrian rocks around the city of Baoshan, and
further southwest in the Mangshi area, are distinct from those in the
Kunming region of the South China Block. The two areas are separated
by the Ailaoshan and Lancangjiang faults, and the Changning—Menglian
suture (Metcalfe, 1996). Between these structures lies the Simao-Qamdo
Terrane, which apparently represents another, independent peri-Gond-
wanan fragment (Metcalfe, 2017; Stokes, 2008) but has commonly also
been considered an extension of Indochina/Annamia (Metcalfe, 1996,
2006; Xie et al., 2016; Zhao et al., 2017). Western Yunnan’s Cambrian
rocks belong to the “Baoshan Block”, which is generally viewed as part
“of the same tectono-stratigraphic terrane” as the Shan-Thai sector of
Sibumasu (Ridd, 2015, p. 172). Many authors include Baoshan as an
integral part of Sibumasu without distinguishing it. The Permian record
of Baoshan, like that of the Shan-Thai region, indicates rifting from the
Gondwana margin as Meso-Tethys opened. The two regions are gener-
ally accepted to have been connected when Sibumasu was an isolated
terrane (Ueno, 2003; Wang et al., 2001; Yan and Liang, 2005), although
it has also been suggested that they amalgamated only after collision
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with South China and Indochina (Zhang et al., 2013). As detailed below,
there are features of the geological record of the Baoshan Block that
differ from those of the Shan-Thai region, and their original relationship
merits further consideration.

In those palaeogeographic reconstructions of Gondwana prior to the
opening of Meso-Tethys in which Baoshan is distinguished within
Sibumasu, Baoshan is consistently shown to the west of the Shan-Thai
sector, but its specific placement with respect to core Gondwana de-
pends largely on where the authors position the Lhasa Block. Permian
palaeomagnetic data (Ali et al., 2013, Fig. 13) place Baoshan at quite
high latitude, consistent with the area between the Australian and India
sectors of equatorial Gondwana. Metcalfe (1994, Fig. 3; 2013, Fig. 7)
showed the generalized Palaeozoic stratigraphy from east to west across
Sibumasu and across Australia, and illustrated some broad regional
variations within Sibumasu, despite its narrow girth. Such differences
occur even within the Baoshan block itself, where a lower Carboniferous
shelf-slope transition is preserved (Wang et al., 2001).

The Baoshan Cambrian succession differs from the sandstone “inner
detrital” facies in the Malaysia-Thai border area and in both the
southern and northern parts of the Shan State of Myanmar. There are six
principal differences. Firstly, the Cambrian succession in Baoshan is
substantially thicker than in the Shan-Thai region, with individual
sections spanning up to 3000 m of Cambrian rock, and the entire suc-
cession possibly substantially thicker (Luo, 1985a, Fig. 1). Secondly, the
Baoshan section encompasses a markedly greater span of Cambrian
time, with reports of the trilobite Cyclolorenzella, a Guzhangian genus
dated to ~500 Ma (Zhou and Zhen, 2008), undated Cambrian rocks
beneath with sponge spicules beneath this (Luo, 1985a), and a section
that extends upwards to the Cambrian-Ordovician boundary. Thirdly,
sections of the Baoshan Cambrian succession that are of equivalent age
to those of the Shan State and Malay Peninsula include sandstone units
similar to those in the Shan-Thai region but also have thick and repeated
intervals of carbonate and shale, with carbonate possibly suggesting a
more distal depositional setting. Fourthly, the abundant tuff beds known
from the Shan-Thai region have not been reported from Baoshan,
although metabasites interbedded among sedimentary rocks have
recently been recorded within the Cambrian Gongyanghe Group (Li
etal., 2016; Yiand Yang, 2012; Wang et al., 2015), possibly comparable
to, but apparently predating, those at Bawdwin in the northern part of
Shan State (Brinckmann and Hinze, 1981; Mitchell, 2018). Fifthly, a
notable erosional unconformity is reported at the contact between up-
permost Cambrian and overlying Ordovician sedimentary rocks in some,
but not all, parts of the Baoshan Block (Huang et al., 2009, 2012, Figs. 3,
7; Lietal., 2016, Fig. 1¢c; Wang et al., 2015, Fig. 9), unlike the Cambrian
successions in the Shan-Thai region. Sixthly, crustal model age data
(Gardiner et al., 2015) question whether the Baoshan and “Shan-Thai”
parts of Sibumasu were contiguous before development of the Palaeo-
and Meso-Tethyan oceans.

These differences notwithstanding, there are also important simi-
larities between the Cambrian rocks of the Baoshan Block and the
Shan-Thai region. Upper Cambrian/Lower Ordovician granite bodies
are present in both areas (Lin et al., 2013; Kanjanapayont et al., 2019;
Kawakami et al., 2014), but these formed widely along the peri-Gond-
wana margin at the time (Li et al., 2016; Liu et al., 2009; Wang et al.,
2015; Zhao et al., 2017). Despite Baoshan’s more complete upper
Cambrian record, in all three regions sedimentary rocks of the same
depositional age are present. In these directly comparable units, the
reported trilobite fauna (Huang et al., 2009, 2012; Kobayashi and
Hamada, 1981, 1984; Luo, 1982, 1983, 1984, 1985a,b; Sun and Xiang,
1979) are comparable and are generally consistent with other shelfal
trilobite assemblages from the Sino-Australian province (Shergold,
1988). Although such trilobites have been reported from several sites on
the Baoshan Block, many are strongly tectonically deformed, hindering
their confident identification. A curious occurrence is the unfigured and
undescribed report of Hedinaspis from the Mangshi area by Kobayashi
and Hamada (1984). This report is interesting because this genus is
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consistently associated with slope facies (see Taylor, 1976; Zhou and
Zhen, 2008), and apparently would suggest deepening of the Baoshan
shelf to the east, which is inconsistent with other data. It may also be
that tuffs are present within comparably aged successions from Baoshan
but have yet to be recognized. Furthermore, limestone and shale, in
addition to sandstone, are also reported from what may be an upper
Cambrian succession, the Kyaukpulu Formation in Kayin state in
southeastern Myanmar, although no unconformity between Cambrian
and Ordovician strata has been reported (Udchachon et al., 2018).

Additional stratigraphic and palaeontological work is needed to
further resolve the relationships between the Cambrian of the Baoshan
block and that of the Shan-Thai sector, but two points deserve further
comment. First, the presence of a locally substantial Cam-
brian—Ordovician erosional unconformity on the Baoshan block not only
contrasts markedly with the Shan-Thai region, but may also correspond
to the widely known and important angular unconformity marking the
Kurgiakh Orogeny in the western Himalayan and southern Tibet sectors
of the peri-Gondwana margin (Myrow et al., 2016; Wang et al., 2015;
Zhou et al., 2004), also recorded on the Lhasa block (Hu et al., 2013).
The presence of a correlative unconformity in Baoshan might support a
closer connection between Baoshan and the Himalayan/Lhasa region
than between the Himalaya and the rest of the Shan-Thai, supporting
reconstructions that place Baoshan at the western end of Sibumasu. If
this is correct, it may be consistent with the idea that the unconformity
cut deeper toward the Indian sector of the peri-Gondwanan margin,
because upper Cambrian rocks are present in the Shan-Thai region, in
Baoshan, and also in Bhutan (Hughes et al., 2011), but absent in the
western Himalaya (Peng et al., 2009; Myrow et al., 2016). Secondly, the
presence of lower Palaeozoic granite in Baoshan is also similar to that
along the Himalayan margin, and also in other sectors of the peri-
Gondwana rim (Cawood et al., 2007; Zhu et al., 2012; Zhang et al., 2014;
Hu et al., 2015; Wang et al., 2015). Ganitoids of this age are also present
in Thailand (Lin et al., 2013). Several authors have suggested that these
granites are associated with accretion of continental material to the
Gondwanan margin with the early Palaeozoic closure of the
Proto-Tethys ocean. The Shan-Thai part of Sibumasu contains the best
record regionally of volcanic rocks of this age, but there may be cor-
relatives in Bhutan, and possibly on the Lhasa bock and Himalayan
margin.

2.6. Stratigraphy of the southern Shan State

The lowest sedimentary unit (Fig. 3) of the Shan Plateau is the mildly
metamorphosed Chaung Magyi Group (La Touche, 1907), which is
interpreted as Precambrian in age (La Touche, 1913; Mitchell et al.,
1977; Myint Lwin Thein, 1973). The Chaung Magyi is characterized by
greywacke, whitish-gray siltstone, red or gray quartzite, and slate, with
a minor carbonate component (Aye Ko Aung and Cocks, 2017; Wolfart
et al., 1984). Sedimentary structures include flute casts and soft-
sediment deformation (Wolfart et al., 1984). Its uppermost member,
the Tawngma Siltstone (Mitchell et al., 1977), purportedly contains
horizontal burrows, although the burrows are not figured or described in
any publications to date; this member of the Chaung Magyi is limited to
the northern Shan State. The presence of metamorphism and horizontal
burrows led Garson et al. (1976) and Mitchell et al. (1977) to interpret
the Chaung Magyi as latest Precambrian to Cambrian in age. The
Furongian Molohein Group and Pangyun Formation, which overlie the
Chaung Magyi with an angular unconformity (Myint Lwin Thein, 1973),
are not metamorphosed. Near Bawdwin, the Tawng Peng granite in-
trudes the Chaung Magyi but not the Pangyun Formation. The intrusion,
angular unconformity, and metamorphism suggest a substantial time
interval between the deposition of the Chaung Magyi and the overlying,
definitively Cambrian strata (Krishnan, 1968).

In the southern part of Shan State, the oldest definitively Palaeozoic
unit is the Molohein Group, which we show here to be Furongian in age,
at least in part. Although good exposure of the Chaung Magyi-Molohein
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Fig. 3. Precambrian-lower Ordovician stratigraphic successions for each area of Sibumasu including Myanmar’s northern and southern Shan State, western Thailand,
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Luo (1985b).

boundary is sparse, a thin basal conglomerate of quartzite pebbles and
an angular unconformity reportedly marks the boundary of the Chaung
Magyi and Molohein Group (Wolfart et al., 1984). The Molohein Group
is a siliciclastic succession of red, gray, white, or purple sandstone with
thin interbedded siltstone and mudstone. The sandstone contains rip-
ples, is trough cross-bedded, and shows hummocky cross stratification.
Carbonate lenses are also reported in some places (Aye Ko Aung and
Cocks, 2017; Wolfart et al., 1984). The Pandung and Myet-Ye formations
together comprise the Molohein Group (Myint Lwin Thein, 1973),
though most authors refer to the group as a whole. The Pandung For-
mation is more quartz-rich with a pinkish-white colour, whereas the
overlying Myet-Ye Formation is generally darker pink or purple; both
are micaceous, although the Myet-Ye Formation is reportedly more so
(Wolfart et al., 1984). To date, upper Cambrian fossils have been re-
ported only from the Myet-Ye Formation (Aye Ko Aung and Cocks,
2017). The collective thickness of the Molohein Group is poorly un-
derstood, with various estimates being 300 m (Myint Lwin Thein, 1973),
1200 m (Wolfart, et al. 1984), or even 2400 m (Garson et al., 1976). Soe
(1983) estimated a thickness of 540 m for the Pandung Formation and
230 m for the Myet-Ye Formation in the Ye-Ngan area. All of these es-
timates are rough, compiled from many isolated outcrops (Maung Kyi
Soe pers. comm. 2020). The Shan State’s heavy forestation, sharp
topographic relief, and numerous faults hinder establishing a continuous
section. Furthermore, given that the base of the Pandung Formation is an
angular unconformity, it is likely the thickness of this unit varies
laterally.

The Molohein Group includes both siliciclastic deposits and volcanic
tuffs. This unit’s counterpart in the northern portion of the Shan State,
the Pangyun Formation, refers only to the sedimentary rocks that
interfinger with the Bawdwin Volcanic Series (Aye Ko Aung and Cocks,
2017). The Molohein Group’s volcanic deposits are not as thick as those
to the north, where a remnant volcanic center is preserved, and thus the

lithostratigraphic nomenclature is undifferentiated for sedimentary and
volcanogenic components. The Molohein Group’s rhyolitic tuffs are
commonly welded into a flinty texture, with a dull to bright green tinge.
These tuffs may be up to a meter or more thick.

The upper boundary of the Molohein Group is marked by a gradual
reduction of grainsize into the siltstone of the Ordovician Lokepyin
Formation, the lowest unit of the Pindaya Group, which is the equivalent
of the northern Shan State’s Naungkangyi Group (Aye Ko Aung and
Cocks, 2017; Reed, 1936; Myint Lwin Thein, 1973). In addition to the
reduction of grain size, the Lokepyin Formation is marked by a distinct
buff or tan colour to its siltstone, rather than the purple, pink, red, or
white of the Molohein sandstone.

3. Material and methods

Sampling localities for the 2016 excursion (Fig. 4) were chosen based
on Soe’s (1983) thesis, though most, if not all, of that material was found
in float. At each locality, where possible, detrital zircon samples, fossils,
and tuff beds were collected. Fossils were collected on a bed-by-bed
basis, each bed marked as a separate collection. Four localities with
Cambrian fossils (PG1-PG4) were found on the unpaved, poorly devel-
oped truck road to Padongaing village, and one locality was found near
Kyauknget Monastery (KY). PGl (21°856.82"N, 96°32'57.42"E) is
adjacent to where the road crosses a stream; this is the only location at
which identifiable fossils were found in multiple beds (Fig. 5). PG2
(21°8'54.06"N, 96°33'3.00"E) is a roadcut about 200 m east along the
road from PG1l. PG3 (21°8'53.58"N, 96°33'4.26"E) comprises sparse,
intensely weathered blocks of sandstone jutting out from an outcrop
otherwise surrounded by mud on the inside of the bend in the road. PG4
(21° 8'53.97"N, 96°33'5.06"E) also consists of material from the next
rocky but poorly exposed outcrop further up the track from PG3.

The KY (21°11’6.60”N, 96°33'3.12"E) sample is from the stream bed
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Fig. 4. Map of the Linwe area with localities of fossil collections.

down the foot trail running south of Kyauknget Monastery, collected
where a bamboo bridge crosses the stream. Fossils at KY were collected
from loose, well-rounded cobbles.

Within the Molohein Group, trilobites are preserved as undeformed
or only mildly deformed internal and external molds in very fine to fine-
grained quartzarenite with varying quantities of mica; the mica is, in
cases, concentrated on the surface of the fossil, imparting a smooth,
almost glittery appearance. Other specimens show a slight infilling of
limonite that leaves an orange film on the mold. Diagenetic pyrite cubes
occur within the sandstone; the pyrite is in the matrix, and is not asso-
ciated with fossil preservation.

The specimens were prepared manually using a Dremel tool, then
blackened with India ink, whitened with ammonium chloride, and
photographed with a Leica stereoscopic camera model MZ16 or M205C.
All figures and plates were created using Adobe Photoshop CC2017 and
Adobe Illustrator CS2.

Morphometric analysis used the following software created by H.
David Sheets as part of the Integrated Morphometrics Package: Coor-
dGen8, BigFix8, Regress8, and PCAGen8 (Webster and Sheets, 2010;
available free of charge at http://www.filogenetica.org/cursos/Morf
ometria/IMP_installers/index.php). Statistical tests for allometry of
Asioptychaspis lata n. sp. were performed using PAST4.01 (Hammer
et al., 2001).

In agreement with senior scientists in Myanmar, specimens are
reposited at the Cincinnati Museum Center as CMC IP87051-1P87137.

4. Palaeogeographic distribution and biostratigraphic
correlation

There is currently a limited set of known fossils by which to spatio-

temporally constrain the Cambrian units of Shan State. Two species
from the southern Shan State’s Cambrian fauna are known to occur
elsewhere, Asioptychaspis asiatica Endo and Resser (1937) and Eosaukia
buravasi Kobayashi, 1957. Of these only Eosaukia buravasi is known to
occur elsewhere in Sibumasu, common in the Thailand’s Tarutao Group
(Kobayashi, 1957; Shergold et al., 1988). This species is also likely
present in the Bonaparte Basin of Western Australia (Shergold et al.,
2007). Asioptychaspis asiatica Endo and Resser (1937) was recovered in
the Liaoning Province of the North China Block (Endo and Resser, 1937).
The recovery of these two species are consistent with Furongian palae-
ogeographic reconstructions that place Sibumasu adjacent to northwest
Australia with the North China Block nearby (see section 1.2.2 above).

Asioptychaspis asiatica is found in the Tsinania—Ptychaspis zone of
North China (Zhou and Zhen, 2008); alternatively known as the Asiop-
tychaspis-Tsinania Zone or Asioptychaspis Zone (Choi et al., 2016; Park
and Kihm, 2015), which is the latest part of the Jiangshanian (Peng
et al., 2012) (Fig. 6). All Chinese species of Ptychaspis or Asioptychaspis
date to this interval (Park and Kihm, 2015; Zhou and Zhen, 2008), but
Asioptychaspis delta Shergold (1975) occurs in Cambrian Stage 10 of
Australia. Asioptychaspis lata n. sp. co-exists with E. buravasi. Eosaukia is
distinctive of Cambrian Stage 10 (Choi et al., 2016; (Zhou and Zhen,
2008)), and E. buravasi co-exists with numerous other Cambrian Stage
10 taxa such as Quadraticephalus and Pagodia (Kobayashi, 1957; Sher-
gold et al., 1988). Therefore, like A. delta, A. lata is apparently a later
species of Asioptychaspis. Between the latest Jiangshanian A. asiatica and
the Stage 10 E. buravasi, the stratigraphic range of the Molohein Group
covers at least upper Jiangshanian through the middle of Cambrian
Stage 10. Additional field observations in 2020 of a taxon assemblage
similar to the Ordovician fauna of Ko Tarutao (Stait et al., 1984) suggest
the Molohein Group extends into strata at least as young as middle
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Tremadocian.
5. Systematic palaeontology

This section is by Shelly Wernette and Nigel Hughes.

Institutional abbreviations. CMC, Cincinnati Museum Center; UMUT,
University Museum of the University of Tokyo.

Family PTYCHASPIDIDAE Raymond, 1924

Genus Asioptychaspis Kobayashi, 1933

Type species: Ptychaspis ceto Walcott, 1905 from the Chaumitien
Formation of Shandong Province, China.

Remarks: The possible synonymy of Asioptychaspis and Ptychaspis
Hall, 1863 has been repeatedly debated. Kobayashi (1933) erected
Asioptychaspis to contain some Asian species formerly assigned to Pty-
chaspis. Shergold (1975) recognized differences between the genera but
did not consider these to be sufficient to warrant generic distinction,
relegating Asioptychaspis to a subgenus within Ptychaspis. Westrop
(1986) disagreed, returning Asioptychaspis to generic level based on the
flat, poorly defined pygidial border found in Asioptychaspis but not in
Ptychaspis. Zhang and Jell (1987) thought these differences insufficient
for even subgeneric distinction. Sohn and Choi (2007) expanded the list
of characters differentiating Asioptychaspis from Ptychaspis including a
strongly convex, long, parallel-sided or forward expanding glabella and
large palpebral lobes situated anteriorly to glabellar midlength. We
follow Sohn and Choi’s (2007) differential diagnosis herein.

Asioptychaspis lata n. sp.

Fig. 7A-M, 8

Holotype: CMC IP87078, Fig. 7D-F; Molohein Group, Myet-Ye For-
mation; Furongian, lower to middle of Cambrian Stage 10; Padongaing
1, 450 m. Paratypes: CMC IP87051-87057, IP87060-87066,
IP87068-87072, IP87074, IP87076-87078, IP87080-87084, IP87087,
IP87090-87094, IP87096-87098, and IP87100-87111.

Diagnosis: Species of Asioptychaspis with particularly wide fixigena,
width (tr.) at anterior corners of palpebral lobes ~ 1.5 times preoccipital
glabellar length (sag.); midpoint of palpebral lobes anterior to S2.
Glabella inflated and anteriorly extended above and beyond strongly
ventrally curved frontal area. Pygidia effaced, pleural and interpleural
furrows weakly incised; axis strongly tapering with four rings and ter-
minal piece; entire pleural field with fine granular texture including
broad, flat border overlying equally long (sag., exsag.) doublure.

Ocurrence: Linwe Area of the southern Shan State, Myanmar at
Padongaing (PG) 1, beds 0.75 m and 4.50 m, and as float at Soe (1983)
locality 6; Myet-Ye Formation, Molohein Group; Furongian, lower to
middle Cambrian Stage 10.

Description: Cranidium subtrapezoidal; glabella occupies entire cra-
nidial length (sag.) with inflated anterior lobe protruding over anterior
cranidial margin; cranidial width (tr.) at posterior end of palpebral lobe
1.5-2.1 times preoccipital glabellar length (sag.) and 2.0-2.3 times
glabellar width across anterior lobe; frontal area slopes ventrally with
gently inflated frontal area separated from glabella by firmly-incised
furrow; anterior margin forms straight line from preglabellar margin
to anterior tip of palpebral lobe, oriented ~15° from transverse, and
medially gently curved. Glabella parallel-sided or gently narrowing at
L2; S1 firmly incised and medially continuous, bowed posteriorly; S2
posteriorly oblique to transverse and variably medially continuous or
effaced, deeply impressed laterally and shallowing medially; anterior
lobe equal width or broader (tr.) than rest of glabella with strong
anterior expansion but dorsally not inflated above height of L2. SO
firmly incised evenly or with slight medial shallowing across glabella
and transverse to slightly posteriorly bowed; LO broader (tr.) than L1
and subequal in length (sag.) and dorsal inflation, occipital spine absent.
Cranidial posterior border short (exsag.) and defined by broad, deep
furrow; posterolateral projections broad (exsag.) and short (tr.) with the
maximum cranidial width (tr.) at the posterolateral projection 1.1-1.15
times cranidial width (tr.) at posterior corner of palpebral lobe; posterior
facial suture branch curves gently posterolaterally. Palpebral lobe
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Fig. 6. Upper Jiangshanian and Cambrian Stage 10 trilobite zones for northern Gondwanan terranes. Hatching indicates the likely range of the fauna described
herein. Some genera have been abbreviated in the chart for readability; the full names are: Caznaia squamosa, Hapsidocare lilyiensis, Leiostegium constrictum, Mic-
tosaukia striata, Neoagnostus denticulatus, Neoagnostus quasibilobus, Rhaptagnostus clarki, Rhaptagnostus papillo, Rhaptagnostus bifax, and Shenjiania brevis. The South
Korean biozones are for the Taebaek Group. Zone correlations are compiled from Choi et al. (2016) and Ogg et al. (2016).

weakly curved and anteriorly positioned with palpebral midpoint
opposite or anterior S2; palpebral lobe, 40-50% preoccipital glabellar
length; fixigena expanded (tr.) little or not at all across palpebral area.

Pygidium wide (tr.), width at anterior corners ~1.6 times pygidial
length (sag.); anterior margin gently curved; posterior margin strongly
curved, median portion of posterior margin transverse or slightly
embayed. Axis ~75% pygidial length, conical with 4 axial rings and
terminal piece; first three transverse axial furrows strongly incised and
last axial furrow faint. Pleural field nearly effaced with only faint pleural
furrows; furrows nearly straight and parallel to anterior pleural furrow;
furrows become completely effaced near margin; pleural field covered in
fine granules. Doublure occupies entire postaxial length and narrows
only slightly from postaxial position to anterior corners.

Etymology: lata, Latin for wide, referring to the wideset eyes that
differentiate this species from other Asioptychaspis.

Material: 41 cranidia from Padongaing (PG) 1 0.75 m (CMC IP87128)
and 4.50 m (CMC IP87052-87054, IP87056, IP87057, IP87060 —
external mold, IP87061-87064, IP87065 - external mold,
IP87069-87072, IP87076, IP87078, IP87080 — external mold, IP87081,
IP87082, IP87083 — external mold, IP87084, IP87087, IP87090-87094,
IP87096 - external mold, IP87097 - external mold, IP87098,
IP87100-87109, and IP87111). 11 pygidia from PGl 0.75 m (CMC
IP87127) and 4.50 m (CMC IP87051, IP87055, IP87057 — internal and
external mold, IP87066 — external mold, IP87075, IP87077 — internal
and external mold, IP87085 — external mold, IP87088, IP87089 —
external mold, and IP87110). All internal molds unless otherwise
indicated.

Remarks: In the horizons in which it occurs near Padongaing village,
Asioptychaspis lata is the dominant taxon. The collection from the hori-
zon at 4.50 m in the Padongaing 1 section contains 41 cranidia of A. lata
and only 5 other cranidia, including Eosaukia buravasi Kobayashi, 1957,
indeterminate saukiids, and another indeterminate cranidium; the ho-
rizon at 0.75 m contains only A. lata, but the sample size is only two.
Asioptychaspis lata is readily distinguishable from all other species of the
genus by its exceptionally wide (tr.) fixigena. In a set of 25 individuals,
with preoccipital glabellar lengths ranging from 1.7 mm to 8.25 mm,
there is a subtle trend of the cranidial width increasing relative to the
preoccipital glabellar length. The smallest specimens have an average
cranidial width versus preoccipital glabellar length ratio of ~1.5 and the
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largest a ratio of ~1.65. However, when the logarithms of glabellar
length and cranidial width are plotted against each other using ordinary
least squares regression (OLS; Fig. 9), the slope is 1.0293, with a 95%
confidence bracket of 0.91548-1.1322. A slope of 1, indicating isome-
try, is well within this confidence interval suggesting no significantly
detectable allometry.

The cranidial width (tr.) of A. lata at all sizes considerably exceeds
that of other species of Asioptychaspis. For comparison, the largest
known specimen of the Asioptychaspis type species, A. ceto (Wacott,
1905), has a glabellar length of 14 mm, including LO, but a width to
length ratio less than 1.42, less than the average of the smallest speci-
mens of A. lata, 1.5. There are nine heretofore recognized species of
Asioptychaspis (Sohn and Choi, 2007): A. ceto (Walcott, 1905), A. calyce
(Walcott, 1905), A. cacus (Walcott, 1905), A. calchas (Walcott, 1905),
A. asiatica (Endo and Resser, 1937), A. subglobosa (Sun, 1924),
A. brevicus (Sun, 1935), A. fengshanensis (Sun, 1935), and A. shansiensis
(Sun, 1935), all of which have narrower fixigenae than A. lata. The
wideset, anteriorly positioned eyes of A. lata contribute to a more box-
like, rectangular shape with longer (exsag.) posterolateral projections
and a more gently curved margin than in other Asioptychaspis. The
exceptionally broad (tr.) and deep axial furrows occupy much of the
palpebral areas as opposed to the more inflated palpebral areas common
in other Asioptychaspsis. However, because all these characters are
attributable to the outward and anterior movement of the eyes, they do
not prevent the assignment of this new species to Asioptychaspis, such
that a new, monspecific genus is uncalled for. Asioptychaspis lata was
identified and figured by Soe (1983, p. 151-154, pl. 3, Fig. 27) as Pty-
chaspis sp. from cobbles found at his locality 6 (Fig. 4).

Ptychaspis sp. cf. P. asiaticus Resser and Endo (sensu Shergold et al.,
2007) has nearly similarly broad fixigenae, but its occipital ring is
strongly dorsally expanded. Its anterior border is also strongly sloped,
and almost completely dorso-ventral in orientation. The most dorsal
point of the occipital ring of A. lata is on the same plane as the most
dorsal points of the other glabellar lobes, and the frontal area is more
gently sloped.

Asioptychaspis lata co-occurs with Eosaukia buravasi, which occurs in
Cambrian Stage 10 in the Tarutao Group on the southern end of Sibu-
masu. However, most known species of Asioptychaspis date to the Pty-
chaspis-Tsinania Zone of the latest Jiangshanian (Peng, 2009; Peng et al.,
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Fig. 7. A-M Asioptychaspis lata n. sp. (A) CMC IP87061, cranidium, internal mold, dorsal view; (B,C) CMC IP87084, cranidium, internal mold, B dorsal view, C right
lateral view; (D-F) CMC IP87078, cranidium, internal mold, D dorsal view, E right lateral view, F anterior view; (G-I) CMC IP87056, cranidium, internal mold, G
dorsal view, H left lateral view, I anterior view; (J) CMC IP87052, cranidium, internal mold, dorsal view; (K) CMC IP87065, cranidium, external mold with inverted
colours, dorsal view; (L) CMC IP87060, cranidium, latex peel of external mold, dorsal view; (M) CMC IP87128, cranidium, internal mold, dorsal view; (N) CMC
1P87079, indeterminate librigena, internal mold, dorsal view. All scale bars 2 mm.
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Fig. 8. Asioptychaspis lata n. sp., all pygidia. (A-C) CMC IP87051, A internal mold dorsal view, B internal mold left lateral view, C external mold dorsal view; (D)
CMC IP87083, internal mold dorsal view; (E, F) CMC IP87057, E internal mold dorsal view, F external mold dorsal view; (G) CMC IP87055, internal mold, dorsal
view; (H-J) CMC IP87075, internal mold, H dorsal view, I left lateral view, J posterior view; (K) CMC IP87088, external mold, dorsal view. All scale bars 2 mm.

2012; Zhou and Zhen, 2008). The wideset eyes of A. lata may be a furrow comparable with A. lata. The eye is large and strongly rounded,

derived feature of this later-occurring ptychaspid. and where palpebral lobes are preserved on the cranidium, they widen
The only associated librigena (Fig. 7N) is a potential but uncertain (tr.) at their midpoint, possibly being able to fill this space. The overall
match. It has a narrow genal field and a broad and deep posterior border morphology of the librigena is similar to that of A. subglobosa (Sun,

13
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Fig. 9. Log of preoccipital glabellar length (sag.) versus log of cranidial width
(tr.) using ordinary least squares regression. Preoccipital glabellar length is
used as a standardization of size; cranidial width was measured across the
anterior corners of the palpebral lobes. The slope is 1.0293 with 95% confi-
dence intrvals (N = 1999) of 0.91548-1.1322). All units are in mm.

1924). However, in the one specimen available the preservation is
incomplete and it appears that there is not sufficient postpalpebral
length (exsag.) to allow this librigena to be paired with the cranidium of
A. lata. Without additional and better preserved librigenae, the assign-
ment of this sclerite is tentative.
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Asioptychaspis asiatica (Endo and Resser 1937)

Fig. 10

1937 Ptychaspis asiatica Endo and Resser, p. 272-273, pl. 56,
Figs. 4-9

1987 Ptychaspis asiatica Zhang and Jell, p. 228, pl. 112, Figs. 12,13,
pl. 113 Figs. 1-4

Lectotype: “Ptychaspis” asiatica Endo and Resser, 1937 pl. 56, Fig. 4
USNM 86895a designated in Zhang and Jell, 1987.

Occurrence: Linwe area of the southern Shan State, Myanmar at
Kyauknget (KY) and as float at Soe (1983) locality 1, Myet-Ye Forma-
tion, Molohein Group; Furongian, upper Jiangshanian.

Material: Cranidia: Five internal molds (CMC IP87130, IP87133,
1P87431, IP87136, and IP87137). Thoracic segments: one internal mold
(CMC 1P87131). All from float at Kyauknget (KY).

Remarks: The cranidium of A. asiatica, first known from Liaoning
(formerly southern Manchouko) in north China, is recognizable by its
anteriorly expanding glabella, pustulation, medially shallowing lateral
glabellar furrows, and subtriangular pygidium, all of which are visible in
the material from Kyauknget. The anteriorly expanding glabella differ-
entiates it from A. calchas (Walcott, 1905) which can also have granu-
lation. Asioptychaspis brevicus (Sun, 1935) lacks both granulation and the
medial shallowing of the lateral glabellar furrows.

Ptychaspis sp. cf. P. asiaticus Resser and Endo (sensu Shergold et al.,
2007 from Bonaparte Basin, Western Australia) has broader fixigenae
compared with A. asiatica as well as a more strongly ventrally curved
frontal area. An unusual trait shared by both species is the expanded LO
that is strongly elevated along the posterior margin.

Family SAUKIIDAE Ulrich and Resser, 1930

Genus Eosaukia Lu, 1954

Fig. 10. A-L Asioptychaspis asiatica (Endo and Resser, 1937), M indeterminate thoracic segment. (A-C) CMC IP87130, cranidium, A dorsal view, B left lateral view, C
anterior view; (D-F) CMC IP87133, cranidium, D dorsal view, E left lateral view, F anterior view; (G, H) CMC IP87134, cranidium, G dorsal view, H anterior view; (I,
J) CMC 1P87137, cranidium, I dorsal view, J oblique view; (K, L) CMC IP87136, cranidium, K dorsal view, L oblique view; (M) CMC IP87131, indet. thoracic

segment;. All internal molds; all scale bars 2 mm.
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Fig. 11. Eosaukia buravasi Kobayashi (1957). (A, B) CMC IP87121, cranidium, A dorsal view, B oblique view; (C, D) CMC IP87120, cranidium, C dorsal view, D right
lateral view; (E-G) CMC IP87112, cranidium, E dorsal view, F left lateral view, G anterior view; (H-J) CMC IP87113, cranidium, H dorsal view, I anterior view, J left
lateral view; (K-M) CMC IP87117, cranidium, K dorsal view, L anterior view, M left lateral view; (N) CMC IP87115, pygidium, dorsal view. All internal molds; all
scale bars 2 mm.
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Fig. 12. Eosaukia buravasi Kobayshi 1957. Originals of type material produced from vinyl polysiloxane casts. (A) CMC IP87025, holotype, cranidium, from UMUT
PA02298b-1, Kobayashi, 1957, pl. 5, Fig. 5; (B) CMC IP87043, cranidium, from UMUT PA02299, previously unfigured; (C) CMC IP87035, cranidium, from UMUT
PB02299, previously unfigured; (D) CMC IP87042, cranidium, from UMUT PA02299c-3, Kobayashi, 1957, pl. 5, Fig. 6; (E) CMC IP87027, librigena, from UMUT
02298b-3, Kobayashi, 1957, pl. 5, Fig. 8; (F) CMC IP87022, pygidium, from UMUT PB02297b-2, Kobayashi, 1957, pl. 5, Fig. 5. All scale bars 2 mm.

Fig. 13. Landmark scheme showing the 18 landmarks used in the morpho-
metric analysis of Eosaukia buravasi.

Type species.—Eosaukia latilimbata L.u, 1954

Remarks.— Species of Eosaukia have often been erroneously assigned
to other genera, particularly to Mictosaukia Shergold, 1975. However,
following the work of Lee and Choi (2011) it is clear that Eosaukia is
distinguished from other saukiids by the lack of a preglabellar field, the
strongly incised, anterolaterally oblique furrows separating the fixigena
from the anterior border, and the short (sag.), lenticular pygidial axis
with four or fewer axial rings (Kobayashi, 1957; Lee and Choi, 2011).
The cranidium of Eosaukia is distinguished from that of Mictosaukia
particularly by the lateral segments of the anterior border furrow being
anterolaterally oblique in the former and posterolaterally oblique in the
latter (Lee and Choi, 2011). Saukia also has anterolaterally oblique
furrows in many species, but, compared with Eosaukia, Saukia has nar-
rower fixigena, longer palpebral lobes, and no occipital spine or node.
Both Mictosaukia and Saukia possess a more typically rounded saukiid
pygidium rather than the lenticular pygidium of Eosaukia.

Eosaukia buravasi Kobayashi, 1957

Figs. 11, 12
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1957 “Eosaukia” buravasi Kobayashi, p. 376-368, pl. 5, Figs. 1-10,
13-20

1988 “Eosaukia” buravasi Kobayashi, Shergold et al., p. 310, Fig. 4.
0-X

2007 Ptychaspis? sp. aff. P. cacus (Walcott 1905) Shergold et al., p. 65,
Fig. 38

Material: Cranidia: One from Padongaing (PG) 1 (CMC IP84059),
eight from PG3 (CMC IP87112-87114, IP87116, IP87120, IP87121, and
IP87124), and one from PG4 (CMC IP87128). One pygidium from PG3
(CMC IP87115). All internal molds

Occurrence: Linwe area of the southern Shan State, Myanmar at
Padongaing (PG) 1 and PG3 and Soe (1983) localities L-1, L-2, and L-7,
Myet-Ye Formation, Molohein Group; Furongian, lower to middle
Cambrian Stage 10.

Remarks: Kobayashi (1957) expressed uncertainty regarding the
nomenclatorial validity and family-level association of Eosaukia by
using quotation marks to dub this species “Eosaukia” buravasi. Though
its cranidium resembled that of E. latilimbata, the only Eosaukia species
then known, Kobayashi (1957) thought the E. buravasi pygidium, the
first Eosaukia pygidium discovered, is too short and pauci-segmented to
be saukiid. Rather he thought it resembled Asioptychaspis or
Quadraticephalus.

Shergold (1975) moved E. buravasi to Mictosaukia when first
describing the latter genus. However, Shergold et al. (1988) later
returned it to “Eosaukia” on account of its relatively short palpebral
lobes, wide fixigena, and small, lenticular pygidium compared to species
of Mictosaukia. Shergold et al. (1988) retained the quotation marks
around “Eosaukia” though without comment regarding Kobayashi’s
(1957) original use of the quotations marks or the choice to retain them.
The later study excluded some of Kobayashi’s specimens attributed to
the species, referring these to Lophosaukia cf. jiangnanensis Lu and Lin, in
Lu et al. (1984), an assignment herein rejected in recognition of sub-
stantial intraspecific variation within E. buravasi and the lack of the
distinctly angular cranidial anterior margin that characterizes Lopho-
saukia. Considering that other Eosaukia species subsequently discovered
have a similarly short pygidium, such as E. bella (Walcott, 1906; genus
designation by Lee and Choi, 2011) and E. micropora (Qian, 1985; genus
designation by Lee and Choi, 2011), there is little doubt that E. buravasi
is a typical member of this genus.
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Fig. 14. Landmark distribution plot using Procrustes superimposition for 120 specimens of Eosaukia buravasi from the Tarutao Group, Thailand (black) and 2 from

the Myet-Ye Formation, Myanmar (grey). See Fig. 13 for the landmark scheme.
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Fig. 15. Relative Warps 1 and 2 for 122 specimens of Eosaukia buravasi from
the Tarutao Group, Thailand (black) and the Myet-Ye Formation, Myanmar
(grey. See Figs. 13 and 14 for the landmark scheme and landmark distribution
plot. Relative Warp (RW) 1 accounts for 27.48% of variance and RW 2 accounts
for 17.38%.

There is a high level of intraspecific variation within E. buravasi. This
variation is apparently independent of geographic or stratigraphic dis-
tribution. A morphometric analysis was conducted on 120 specimens
recently collected from the Ao Mo Lae Formation, Tarutao Group,
Thailand and two sufficiently complete specimens from the Myet-Ye
Formation (CMC IP87113 and IP87116). The analysis used 18 land-
marks (Fig. 13); non-axial landmarks were reflected across the axis in
order to optimize sample size. A Procrustes superimposition (Fig. 14)
shows that both Myanmar specimens lie within the range of variation
exhibited by the Thai material. The first two relative warps (RW) of a
thin plate spline analysis of these cranidia shows that the Myanmar
specimens do not form an independent grouping. They do have similar
second relative warp (RW2) scores, but this is within the range of RW2
scores of specimens from Thailand (Fig. 15). RW1 and RW2 account for
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Fig. 16. Size-related shape change in Eosaukia buravasi Kobayashi (1957), ac-
counting for 3.6% of overall variance, p < 0.000625 for generalized Goodall’s F
value over 1600 bootstraps. Based on partial Procrustes distance regressed
against log centroid size with three smallest specimens as reference.

27.48% and 17.38% of the variance respectively.

Shergold et al. (1988) suggested that much of the variation within
E. buravasi was likely due to ontogenetic change. Using the same set of
landmarks and specimens as for the thin plate spline detailed above, we
compared the regression of partial Procrustes distances with the natural
log of the centroid size, a technique for determining the extent to which
shape change is related to size (Webster and Sheets, 2010). The mean of
the three smallest specimens was used as the reference form. Statistically
significant size-related shape change accounts for <5% of variation (test
for generalized Goodall’s F value, boot-strapped 1600 times, p <
0.000625). Allometric growth is most prominent in the lateral move-
ment of the cranidium’s anterolateral corner and anterior movement of
the palpebral lobe’s posterior point (Fig. 16). Shape variance, measured
by distance-based (Foote) disparity, across all 122 specimens of
E. buravasi was 0.0079 (bootstrapped by 1600 repetitions with a 95%
confidence interval of 0.0068-0.0088). Although comparative studies of
intraspecific variation in cranidial shape remain in infancy, what com-
parisons can be made (e.g., Hong et al., 2014) apparently suggest that
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E. buravasi displayed a high degree of variance, particularly when not
associated with clear ontogenetic changes. For comparison, a single
specimen was remounted, photographed, and marked for landmarks ten
times; the variance for these ten images of a single specimen was 0.0005
over 1600 bootstraps.

Shergold et al. (1988) reassigned many of the librigena and cranidia
included as “E.” buravasi by Kobayashi (1957; pl. 5 Figs. 6, 7, 13-15, 19,
20) to Lophosaukia cf. jiangnanensis Lu and Lin in Lu et al. (1984). After
reexamining Kobayashi’s material (Fig. 12) we revert all specimens that
Shergold et al. (1988) transferred to L. cf. jiangnanensis back to
E. buravasi. Variation among this material is attributable to the intra-
specific variation recognized in the geometric morphometric analysis
described herein.

Eosaukia sp. (Shergold et al., 2007, p. 61) from the Bonaparte Basin
of Western Australia differs from E. buravasi in the pygidium possessing
a third, though poorly developed axial ring, and a more robust occipital
spine. While these differences are sufficient to recommend a separate
species for the Australian material, cranidia with poorly preserved oc-
cipital lobes are indistinguishable from E. buravasi.

A different set of specimens from the Bonaparte Basin was assigned
to Ptychaspis? Sp. aff. P. cacus (Walcott, 1905) (Shergold et al., 2007p.
65, Fig. 38). These specimens may belong to Eosaukia buravasi.
Certainly, the anterolaterally oriented lateral segments of the anterior
border furrow are characteristic of Eosaukia rather than Ptychaspis, and
both the Myanmar and Thai collections contain notably bulbous, ante-
roventrally curved cranidia (e.g., CMC IP87112; Fig. 11E-G). However,
apart from fig. 38.L,J of Shergold et al. (2007) the fixigenae of P.? sp. aff.
P. cacus are generally narrower than those the E. buravasi from Sibu-
masu. Ptychaspis? Sp. aff. P. cacus may be a variant of E. buravasi with a
tendency towards narrower fixigena or it may be a separate species.

6. Conclusions

Myanmar’s Shan State belongs to the Sibumasu terrane, one of many
continental blocks that made up the Gondwanan margin during the
lower Paleozoic and now compose South, Southeast, and East Asia. The
limited Cambrian-Ordovician fossil material available from the Shan
State links Sibumasu with North China and northwestern Australia, a
position supported by the more extensive material of similar age known
from Thailand, and questions placement of the Lhasa block between
Sibumasu and western Australia. The new fossil material described
herein demonstrates that the Molohein Group’s Myet-Ye Formation
extends from the late Jiangshanian through the middle of Cambrian
Stage 10. The fossiliferous support for these paleogeographic and
biostratigraphic conclusions comes from the first Cambrian fossils to be
formally described from Myanmar: Eosaukia buravasi, which was pre-
viously reported but not figured; Asioptychaspis asiatica, previously
known from North China; and Asioptychaspis lata, a new species endemic
to Myanmar. Considerable additional diversity may exist within the
Myet-Ye Formation, which will permit further test of the above
biostratigraphic and paleogeographic conclusions.
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efforts to Myanmar children as well as co-led educational outreach for California high
schoolers through an NSF-funded geoscience development program.
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