Self-Stabilizing Task Allocation In Spite of Noise

Anna Dornhaus Nancy Lynch Frederik Mallmann-Trenn
University of Arizona, Department of MIT, CSAIL King’s College London, Department
Ecology and Evolutionary Biology Cambridge, MA, US of Informatics
Tucson, AZ, US London, UK

Dominik Pajak
Wroctaw University of Science and
Technology
Wroclaw, Poland

ABSTRACT

We study the problem of distributed task allocation by workers in an
ant colony in a setting of limited capabilities and noisy environment
feedback. We assume that each task has a demand that should
be satisfied but not exceeded, i.e., there is an optimal number of
ants that should be working on this task at a given time. The goal
is to assign a near-optimal number of workers to each task in
a distributed manner without explicit access to the value of the
demand nor to the number of ants working on the task.

We seek to answer the question of how the quality of task alloca-
tion depends on the accuracy of assessing by the ants whether too
many (overload) or not enough (lack) ants are currently working
on a given task. In our model, each ant receives a binary feed-
back that depends on the deficit, defined as the difference between
the demand and the current number of workers in the task. The
feedback is modeled as a random variable that takes values lack
or overload with probability given by a sigmoid function of the
deficit. The higher the overload or lack of workers for a task, the
more likely it is that an ant receives the correct feedback from this
task; the closer the deficit is to zero, the less reliable the feedback
becomes. Each ant receives the feedback independently about one
chosen task. We measure the performance of task allocation algo-
rithms using the notion of inaccuracy, defined as the number of
steps in which the deficit of some task is beyond certain threshold.

We propose a simple, constant-memory, self-stabilizing, dis-
tributed algorithm that converges from any initial assignment to
a near-optimal assignment under noisy feedback and keeps the
deficit small for all tasks in almost every step. We also prove a
lower bound for any constant-memory algorithm, which matches,
up to a constant factor, the accuracy achieved by our algorithm.

The authors were supported in part by NSF Award Numbers CCF-1461559 and CCF-
0939370. D. Pajak was also supported by the National Science Centre, Poland—Grant
Number 2019/33/B/ST6/02988.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SPAA 20, July 15-17, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6935-0/20/07...$15.00

https://doi.org/10.1145/XXXXXX XXXXXX

Tsvetomira Radeva
MIT, CSAIL
Cambridge, MA, US

CCS CONCEPTS

» Theory of computation — Distributed algorithms; Design
and analysis of algorithms.

KEYWORDS

ants, biologically inspired algorithms, noise, task-allocation

ACM Reference Format:

Anna Dornhaus, Nancy Lynch, Frederik Mallmann-Trenn, Dominik Pajak,
and Tsvetomira Radeva. 2020. Self-Stabilizing Task Allocation In Spite of
Noise. In ACM/IEEE Joint Conference on Digital Libraries in 2020 (SPAA °20),
July 15-17, 2020, Virtual Event, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/XXXXXX.XXXXXX

1 INTRODUCTION

Task allocation in social insect colonies is a process of assigning
workers to various tasks such as foraging, scouting, nursing, etc. in
a way that maximizes the reproductive success of the colony. Each
ant is capable of working on each of the tasks but at any time it can
only work on at most one of them. Each task has associated demand
which is the number of ants that should work on this task that is
optimal from the perspective of the colony needs. The ants probably
neither know the demand nor can count the current number of ants
working on a given task [17]. Moreover, in the colony there is no
central control to decide about the actions of each individual [15].
Therefore the allocation has to be performed by each ant locally,
based only on feedback from the environment about the tasks and
limited local communication with other individuals. The feedback,
in biology called ‘task stimulus’, corresponds, for example, to sens-
ing a too-high temperature in the nest, seeing light through a hole
in the nest-wall, or smelling a pheromone produced by hungry
brood. Despite using limited communication, local observations,
and noisy sensing, many ant species are known to excel at task
allocation. How do ants perform task allocation and what can we
learn from their behavior?

In [8], the authors proposed a solution to the problem of task
allocation in the case where there is no communication between
the ants and the feedback received by the ants is binary and always
correct. More precisely, in [8] if the load, i.e., the number of ants
working on the task j € [k], exceeds the demand d), then all
ants receive feedback overload. Conversely, if the load is below or
equals the demand of the task, then all ants receive feedback lack.
Such a feedback function is rather unrealistic in ant colonies due
to its sharp transition between overload and lack— it requires

https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX

SPAA 20, July 15-17, 2020, Virtual Event, USA

each ant to be able to tell the difference between d/) and dV/) + 1
number of workers at a task. The authors in [8] therefore pose
the open problem of considering a weaker, noisy version of the
binary-feedback—the focal point of this paper.

We study the performance of task allocation in a realistic, sto-
chastic noise model, in which the feedback from the environment
for each ant in each step is a random variable with possible values
lack and overload. The probability that it takes value lack equals
to the sigmoid function of the deficit (demand minus load). The
deficit is negative in case when the load is larger than the demand.

We assume that all the ants regularly receive the feedback. How-
ever, there is a delay between the moment when an ant collects the
feedback and when it changes its allocation, during which other
ants may also make some decisions. To model this delay we assume,
similarly to [8], synchronous rounds: at the beginning of each round
each ant receives binary feedback of the load of the chosen task.
The ants then concurrently make a decision of whether to join
some task or to leave their current task. In our model, the ants
make choices synchronously as if each of them had a local clock
ticking at the same rate. However, we do not assume a global clock
which means that the ants do not have access to round number
hence cannot for example discriminate odd and even rounds.

How can the ants make independent decisions and achieve a
‘good’ task allocation in spite of outdated observations, in spite of
noise and in spite of the lack of global information—not knowing the
demands nor the current loads of the tasks nor the current round
number?

In order to define what a ‘good’ task allocation means we use
the notion of inaccuracy. The inaccuracy in our setting in some
time step for some task means that the absolute value of the deficit
(demand minus the load) is larger than the demand times some
constant ¢ > 0. The algorithm will be called e-accurate if in any
(sufficiently long) time interval of length T, in only o(T) steps,
the algorithm will be inaccurate for any task. Here we penalize
overload and underload equally: An underload corresponds to work
that is not being done, and each ant exceeding the demand of a task
corresponds to work being wasted (or, even worse, sometimes the
excessive number of workers in a task may block each other and
decrease the efficiency [9, 12]). Note, that we do not charge any
cost for switching tasks.

We first provide a simple, constant-memory, self-stabilizing Al-
gorithm Controlled Oscillations that utilizes the oscillations in the
number of workers in each task in order to achieve a stable alloca-
tion in the synchronous model. The size of the oscillation at each
task in our algorithm is proportional to the demand of the task
times the critical value of the deficit (see Section 2 for a formal
definition). Intuitively, the critical value is a value of the deficit
(seen as a fraction of the demand) for which the feedback is correct
for each ant with high probability. This corresponds to the smallest
value of the deficit at which the sigmoid is very close to 1 and the
largest value for which it is very close to 0. We then show that our
algorithm is e-accurate for ¢ being equal to the critical value times
a constant.

As our second result, we prove a lower bound showing that
no distributed, constant-memory algorithm can be ¢’-accurate for
¢’ smaller than or equal to the critical value times a constant de-
pending on the number of bits of memory available to the ants. In

Dornhaus et al.

light of this lower bound, our Algorithm Controlled Oscillations
achieves a constant-factor approximation of the optimal accuracy
factor. In our lower bound we show that, for any strategy, if the
deficit gets too close to 0 for some number of steps then (due to the
noisy feedback) it drastically increases. It is therefore impossible to
keep the absolute value of the deficit very small for too long. This
means that small oscillations in the number of workers at each task
are unavoidable in any algorithm that ‘tries’ to achieve a good and
stable allocation. Our proposed solution is to avoid getting too close
to 0 with the absolute value of the deficit and use the oscillations
(jumping between positive and negative deficit) to achieve stable
allocation and asymptotically optimal accuracy factor.

1.1 Related Work

The most related previous work on task allocation is [8], in which
the authors also assume synchronous rounds and binary feedback.
The authors present a very simple algorithm that converges to
an almost-optimum allocation (the allocation that differs from the
demand by at most 1 at each task) and analyze its convergence
time. Considering a noisy version of the model was left as an open
question.

Moreover, the authors of [26] provide a model similar to that
of [8] but they also study different versions of the feedback that
ants receive from the environment, which varies in the amount of
information the ants receive about the deficits of the tasks. The
model consists of two feedback components: a success component
that informs each ant in each round whether it is successful, e.g.,
needed for the task it is currently working on, and a choice com-
ponent that provides unsuccessful ants with an alternative task to
work on. The results in [26] analyze the convergence time of task
allocation, and as such are not directly comparable to our work
here. In [26], the noise model is very rudimentary: in each round
the feedback of the binary success component can be noisy for at
most a fixed number of ants. The results do not generalize to our
setting.

The problem of task allocation in social insect colonies has been
well studied in the communities of theoretical and experimental
biology. The observations show that social insect colonies are self-
organized, with no individuals directing the task choices of others,
with interactions between individuals potentially affecting task
selection [15]. Workers in a colony may switch tasks as needed
[14], although this may come at additional cost [22]. The concept
of task switching gives rise to an intriguing question: what is the
algorithm used by the ants to decide whether to switch and which
tasks to choose? Some notable examples of models of task allocation
[3] include (1) the threshold-based model where ants compared the
stimulus of a task to their built-in threshold to determine whether
to work on a given task, and (2) the *foraging for work’ model [30]
where the ants are believed to actively look for work when they are
idle or redundant in the current task. In some species the ants are
believed to choose the tasks based on physical suitability (physical
polyethism) [21], whereas in other species, the ants are physically
similar and suitable to do any task (temporal polyethism) [4]. In this
paper, we assume that the ants are identical (no thresholds) and
they can work on any task.

Self-Stabilizing Task Allocation In Spite of Noise

Some biological studies have focused on the efficiency of the task
allocation process itself, and how it is determined by the specific
algorithm used by the ants. For example, [24] and [10] model task
allocation determined by social interactions and response thresh-
olds, respectively, and both demonstrate that perfect task allocation
of workers to tasks cannot be achieved, potentially due to the speed
and accuracy of task allocation trading off against each other. In [29],
an algorithm of task allocation is analyzed in a setting where there
are no thresholds, the tasks are arranged in a line and there is no
noise in sensing of the demand. The goal of [29] is to explain the
experimental observations where certain tasks were preferred by
older ants.

Additional factors such as individual experience, interactions
with other workers, spatial and hierarchical position in the colony,
and random encounters with tasks are also known to affect the spe-
cific task allocation mechanism employed [5, 11, 15]. Unfortunately,
most often it is not precisely known what is the actual algorithm
that the ants use to select tasks or how the factors listed above
interact to produce variation in preferences across tasks or across
individuals [25].

A key property that we observe in our results—oscillations in
the task allocation behavior of ants—is also a commonly observed
biological phenomenon more generally known as cyclical activity
patterns [6]. Although the role of cyclical activity patterns is not
completely understood [7], several studies make conjectures that
may be related to the conclusions in our paper. First, our assumption
that ants perform actions in synchronized rounds and phases as
a means of introducing ‘delay’ between one another’s actions is
also observed in biological studies. Ants perform actions in bursts
of activity and inactivity in order to clear stale information from
spreading through the colony [27]. Second, our results suggest
that, assuming that ants have constant memory (i.e., they cannot
even store the total number of ants n let alone use it), and noisy
environmental feedback, the oscillations are inevitable as the deficit
becomes small. We conjecture that such cyclic activity patterns
(switching between different tasks and being idle) are necessary
and a product of the limitations of the ants and the noisy feedback
about number of workers at a task.

Another key assumption we make is that the noise follows a
sigmoid function (also known as a logistic sigmoid activation func-
tion). Such functions appear in countless biological contexts (e.g.
[13, 19, 28]), to model the uncertainty with which the ants sense the
need for work at different tasks. We believe that the versatility and
applicability to the real-world problems of the sigmoid noise model
makes it a good choice to model the noise of the environment in
our setting.

Finally, somewhat related load-balancing processes have been
studied under the term user-based migration in which the tasks
move in a network of resources [1, 2, 20] by querying the load of
the current resource and moving to a neighbor in case of an overload.
However, this line of research assumes that the communication
noise-free and that each resource knows an upper bound on how
many tasks it can accept.

SPAA 20, July 15-17, 2020, Virtual Event, USA

2 MODEL

We have a collection of n ants and a constant number of k tasks
where each task j € [k] (we use notation [k] = {1,2,...,k}) hasa
fixed demand d/). We assume, that each ant has some number of
bits of memory and that there is no direct communication between
the ants. Time is divided into discrete steps. We assume that at

the beginning of step t, each ant i receives feedback Ft(j) (i) about
one, chosen task j € [k] (the value of the feedback depends on
the number of ants working on task j in previous step). Based
on this feedback and the current memory state, the ant decides
whether or not to work and on which task during this round. The
ant also decides about its new memory state and chooses a task
about which it will receive feedback at the beginning of the next
round. We assume that the ant can choose to receive feedback about
any task however in our algorithm it always chooses between the
same task as in the previous step or a new task chosen uniformly
at random.

Let Wt(J), Jj € [k] denote the number of ants performing task j

during step t. In the following we call value d) - Wt(j) a deficit of
task j in step t. Value Wt(j) — () will be referred to as overload.

2.1 Noisy Feedback

We seek to model the noise in the sensing of the lack or overload
by the ants such that the following conditions are fulfilled. First, in
case of a very large overload or lack, almost all ants should notice
this (w.h.p. all ants should receive the correct feedback). Second,
whenever exactly the correct number of ants are working on a given
task, then the ‘uncertainty’ in this task should be the largest and
the ants should receive lack and overload with equal probability.
In the following we define the sigmoid feedback model that fulfills
these requirements. At the beginning of round ¢, ant i receives for
chosen task j noisy feedback:

Ft(j)(i) _ {lack Ww. p. s(dW) — Wt(f;),

overload otherwise,

where s(x) = m+bc, for fixed A € R.

It is not crucial for our results to have a sigmoid function; in fact
all our results apply for any monotone antisymmetric function s
with exponential decay and limy——c $(x) = 0 and limy 0 S(x) =
1and s(0) =1/2.

Reliability of the feedback depends on how the absolute value of
the deficit is far from 0. As the absolute value of the deficit increases,
it is more and more likely for ants to receive the correct feedback.
We would like to define a critical value of the deficit beyond which
the feedback is (almost) completely reliable and an interval which
we call a grey zone, within which we will not rely on the correctness
of the feedback.

DEFINITION 2.1 (CRITICAL VALUE AND GREY ZONE). Let y(x) =
min, g {x’ : s(-x’-d)) < x for all j € [k]}. We define the critical
value to be y* = y(1/n°). We define for each task j € [k] the grey
zone to be interval [-y*dY), y*d)]. We say that a task j is in step
t in grey zone, when its deficit is inside this interval.

SPAA 20, July 15-17, 2020, Virtual Event, USA

Prob. of receiving feedback overload

Dornhaus et al.

L e e e e e A e o P AN
2
w.h.p all ants w-h.p all ants
receive feedback receive feedback
lack overload
% ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
t f () "
—y*d v*d overload (W,” —d\@))

Figure 1: Whenever the overload of a task is in the green (red, respectively) region, all ants will receive w.h.p. the feedback
lack (overload, respectively). Whenever the overload is in the grey region (falling tilling pattern), and the closer the overload

is to 0, the more noisy is the feedback received by the ants.

2.2 Accurate algorithms

For any ¢ > 0 and for any j € [k] we denote:

£ - .
Inaq;(7) = 13,004 |5 eqi

The function Inaq{ (7) indicates whether the algorithm is inaccurate
in step for task j. For any time interval [1, T| we define lnaq? (T) =

AsSUMPTION 3.1. Assume that for all j € [k] we have) >
6001nn/(y*)? for each j € [k]|. Moreover, assume that the sum of the
demands satisfies (1+17y) X je (k) d) < n for somey € [y*,1/100].

We proceed by giving the precise statements of Theorem 3.2
showing that the assignment of Algorithm Controlled Oscillations
is w.h.p. O(1)-accurate.

THEOREM 3.2. Assuming Assumption 3.1 with parametery holds,

Sr<r lnaqj(r), and Inaq? () = min {1, 2 jelk] lnaq?(r)}, and Inaq? (T) —then for any initial allocation at time 0. Algorithm Controlled Oscil-

Yir<T Inaq?(7). Function Inaq®(T) indicates in how many steps of
the time interval [1, T] the algorithm was inaccurate for at least
one task.

Finally, we will call an algorithm ¢-accurate if Inaq®(T) € o(T)
for any T € Q(n) and assuming arbitrary initial state. This means
that when a colony of ants is using such an algorithm, then almost
all the time (i.e, in all steps except a smaller order term) the loads
of all the tasks are close to their demands.

We assume that k = O(1) motivated by the fact that the number
of tasks is much smaller than the number of ants. Hence the ant
can in constant memory store an identifier of a task.

We use the shorthand w.p. for ‘with probability’. We say an
event happens w.h.p. ‘with high probability’ to mean that the event
happens w.p. at least 1 — O(1/n). We say an event happens with
overwhelming probability if it happens w.p. at least 1 — e Q)

3 OUR RESULTS

In this section we present the assumptions and the statements of
our main results.

3.1 Upper Bound

In our upper bound we use the following assumptions on the de-
mand vector. First, we require the demands to be at least logarithmic
in the number of ants. Second we assume that the sum of the de-
mands does not exceed the total number of ants.

lations with y € [y*,1/100], is w.h.p. 15y-accurate.

Note that we allow t to take arbitrary values—in particular, values
that are super-polynomial in n.

REMARK 3.3. The guarantees from Theorem 3.2 apply even if the
feedback is arbitrarily correlated as long as the marginal probability
for each ant to receive incorrect feedback outside the grey zone is
1/n%. Moreover, our algorithm also works—due to its self-stabilizing
nature—for changing demands.

3.2 Lower Bound

We show a lower bound for a class of algorithms in which the
states of all the ants are always reachable from each other. We do
not allow for example algorithms where an ant working on some
task can never leave this task. It is well-known (e.g. [16]) that ants
do not stabilize to a fixed allocation but switch between the tasks
whenever it is needed.

ASSUMPTION 3.4. We assume that for any pair of states s1, sz (idle
or working on one of the tasks j € [k]), there must exists a finite
sequence of feedback values such that an ant being initially in state
s1, after receiving this sequence of feedbacks, transitions with nonzero
probability to state s3.

Under this assumption we show a lower bound on the accuracy
factor of any constant memory algorithm.

THEOREM 3.5. Assumey* < 1. Let ¢ € (0,1/4) and let n (num-
ber of ants) be a large enough integer. There exists a demand vector

Self-Stabilizing Task Allocation In Spite of Noise

(d(l), d(z), .. .,d(k)) such that for any collection of n ants execut-
ing (possibly distinct) algorithms A1, Ay, . . ., Apn, each using at most
[In(1/(16¢))] bits of memory, the resulting taks-allocation algorithm
cannot be 2ey*-accurate.

4 UPPER BOUND

In this section, we present the definition of the algorithm, an
overview of the execution and the analysis.

4.1 Definition of the Algorithm

Let a = 2.5 and b = 5.6 and y be a parameter of the algorithm
satlsfymg v € [y*,1/100]. For each task j we have 9 states out of
which wl, .. wé are workmg states and zj é, é, i are idle states.
We also have one idle state i* that is common for all the tasks (see
Figure 2 for an overv1ew of the machine). When an ant is in one of
the states w{ yeens durmg step t for j € [k], then it is working
on task j during thlS step. Otherwise the ant is idle.

The state machine for each task j € [k] is divided into two
submachines: the filtering submachine consisting of the states Fi =
{11, Y w/ } and the osc1llat1ng submachine consisting of the states

o0l = {13, Wy wé, J} Let S/ = F/ U O/ denote the set of all
states of task j. We say that when an ant is in any of the states from
set S/ that it is committed to task j in this step. Notice that not all
ants that are committed to a task work on the task (ants in states
i{, ié, lé, li are committed to task j but are not working on it) and
that the ants may change their commitment.

When an ant transitions to state i¥, it selects a task j € [k]
uniformly at random to collect its feedback. When the observed
feedback is lack for 5 times in a row, then the ant joins the task
(transitions to state wl) Otherwise, when observing overload the
ant picks another task at random among all k tasks. Whenever
the ant is not in i*, it is in a state in S/ of some task j and then it
receives the feedback about task j. Based on the feedback from at
most three previous steps and the current state, the ant is making
a probabilistic choice of its next state. The exact list of transitions
and probabilities is in Table 1 and on Figure 2.

4.2 Intuition of the Algorithm

The intuition is presented from the perspective of a fixed task
J € [k]. For other tasks, the algorithm works analogously. The goal
of the filtering machine is to reduce the number of ants carefully
until a number close to the demand of the task is reached. These ants
then all transition independently to the oscillating machine. The
transition is accomplished by the following mechanism (assume for
a moment that all the ants committed to task j are in three states
{ , { and i/) when the number of ants in the filtering machine
is too large, the ants in state w1 receive feedback overload and
leave with some small probability ay. However, before leaving to
the common idle state i*, these leaving ants go through a path

w

of two idle states l and z] If one of such decreases changes the
number of ants workmg on the task from more than (1 + y)d)
to less than (1 — y)d(j), then we say that we jump over the grey
zone. In this case, all ants committed to task j receive in the next
step feedback lack and move from filtering machine to oscillating
machine. In this case we say that the ants move to the oscillating

SPAA 20, July 15-17, 2020, Virtual Event, USA

State From Feedback State To Prob.

Wg, é Wi’ wé, lé ,i 3 timierzls;);/(()evzload w{ 1

w{ overload w{ 1-ay

wy overload i ay

w]{ lack wé 1—-ay

w{ lack ig ay

i{ overload ié 1

i{ lack ié 1

ié overload i’f 1

i lack i 1

wg both wi 1

ig both wi 1

wg both wg 1

il both i] 1

wi both wé 1

wé both wg 1-by

w; both ifl by

i+ 5 times lack w{ 1

in a row

Table 1: The rules are stated in decreasing order of priority;
in case two rules are applicable, the rule with the higher pri-
ority is executed.

machine in one wave. In the opposite case, if we end up in the grey
zone, some number of ants will receive feedback overload and
some lack and we cannot predict how many will receive which
feedback. Our objective in this case is to quickly leave the grey
zone because if the system remains in the grey zone for several
steps, then we will not be able to say anything meaningful about
the number of ants in different states of this task. To avoid this, our
state machine is constructed in such a way, that regardless of the
feedback, each ant from w] transitions with probability ay to an

idle state (or i/ 3)- The ants that receive lack in this step move to
the osc111at1ng machme in the first wave. By carefully choosing q,
after this step, the number of working ants is already small enough
that it is outside of the grey zone (on the other, underload side), and
in the next step, all ants receive feedback lack from task j. Then
the ants that are still in the filtering machine move to the oscillating
machine in the second wave.

In both cases, all ants from the filtering machine move in at most
two waves to states l and w of the oscillating machine. Notice
that the number of ants that move to the oscillating machine is
shghtly larger than the demand (because also the ants from states

and i are triggered by lack to move to 13) but not much larger
(the reason for this is that the number of ants in 1l and i/ 12 is much

smaller than the number of ants in w{).

SPAA 20, July 15-17, 2020, Virtual Event, USA

Dornhaus et al.

Figure 2: Illustration of the state machine used in Algorithm Controlled Oscillations. Red arrows indicate the transitions taken
by the ants that receive feedback overload and green arrows by the ones that receive lack. Values over the arrows (e.g. ay and
1 — by) denote probabilities of the transitions. Notation 3x (and 5x) indicates that the feedback associated with this transition
needs to be received 3 (or 5) times in a row. Transition with 3x is from every state in O/ and has higher priority (i.e, is taken
with probability 1 from every state in O/ by each ant that receives 3 times overload in a row).

Having a correct (but slightly too large) number of ants in the
oscillating machine of our task j, now the goal is to maintain it,
which means to make sure that the ants do not leave the task and
that no new ants join the task. This is accomplished by having some
steps in which all ants in the oscillating machine are guaranteed
to be working in which case all ants receive overload from this

task. To achieve this, we use two states wi and wé in which all

ants committed to j work on j (we need two states because we
might have two waves). This is followed by rounds in which only
a fraction of the ants are working; this fraction is small enough
so that all ants receive feedback lack and large enough to ensure
that the underload is small. After leaving wé the ants are split into
two groups out of which only one is working (one group moves
to the working state wé and the other one to idle state ii). The

i, transitions in the next step to ié. This

is necessary because the ants moved to the oscillating machine in
one or two waves. With such a mechanism a roughly by fraction of
the total number of ants in the oscillating machine will be in idle
states at least once every 4 time steps. Out of every 4 time steps we
have one sure lack and one sure overload separated by one step
of a (possible) grey zone and such a pattern of feedbacks prevents
ants from joining and leaving the task hence guarantees a stable
allocation.

fraction that moves to i

Our machine has few additional features that ensure its ro-
bustness to arbitrary initialization. The oscillating machine gets
“cleaned” after the ants see an overload 3 times in a row. In such a
case all the ants from the oscillating machine transition to w{ . The
idea is that it is easier to argue about the system when the ants are
in every step either in the filtering or in the oscillating machine
and since our system has to work from any initial state, we cannot
exclude the case where the ants are in both machines. Another
reason for this feature is when a small number of ants (i.e., much
smaller than the demand) joins the task, we want these ants stay in
the oscillating machine until a large number joins w{ from i* (note
that these ants cannot wait in the filtering machine because there
is a constant “flow” from filtering machine to i*). Using this feature
we can argue that, informally speaking, until the first overload,
the total number of ants committed to the task is nondecreasing.

The second feature is that the ants from i* can join w{ only after
seeing lack for 5 times in a row. The idea is that such a situation
can occur only when the total number of ants committed to task j
is small. If the number of ants in the oscillating machine is close to
optimal, we also obtain feedback lack (because some ants may in
idle states ifl and i;) but not 5 times in a row because once every 4
steps there is a step when all the ants from oscillating machine are
working on the task.

Self-Stabilizing Task Allocation In Spite of Noise

4.3 Memory

Each ant is equipped with memory in which we want to store
its state, previous feedbacks and id of the task from which the
ant wants to collect feedback in the next round. In our Algorithm
Controlled Oscillations we need [log, k] bits to store task id. If the
ant is in i* it is the id of the task from which the ant is collecting
feedback and otherwise it is the id of the task to which the ant is
committed. Note that if the ant is not in i* then it collects feedback
from the environment about the task to which it is committed hence
we do not need to store its identifier again. Also, when the ant joins
a task from i* it always joins the task from which it just collected
feedback thus remembering only one task id is sufficient.

We need few more bits to encode the remaining information. If
the ant is in i* we need the information about how many (0, 1, 2, 3 or
4) previous feedbacks from currently observed task was lack. If the
ant is not is i* we need to store the state (9 values) and how many
previous observations of the task feedback returned overload (3
values). Thus together we have 5 different values if ant is in i* and 27
different values otherwise. We can enumerate all these values and
store them on 5 bits of memory hence [log, k] + 5 bits of memory
per ant are sufficient for Algorithm Controlled Oscillations.

4.4 Analysis

In the following analysis we consider an interval of time steps
I =1[1,2,...,T] of length T < n? and we will analyze the evo-
lution of the system and the total number of inequalities in this
interval assuming an arbitrary initial configuration in step 1. We
will later show how to combine such intervals and obtain the result
for arbitrarily large T.

Our proof idea is as follows. We first define several 'bad’ events
(e.g. ant receiving incorrect feedback outside of the grey zone) and
prove that w.h.p. none of such events happen during interval 7.
Conditioning on this, we can analyze the process deterministically
by always assuming the worst case within the bounds on which we
conditioned. We divide the evolution of the load of each task in time
into three phases and bound the number of inaccuracies in each of
these phases separately, we note that the phases of the tasks are not
necessarily aligned across different tasks. Transitions between the
phases happen when for the first time the load (or the total number
of ants committed to a task) crosses certain fixed threshold value.
We will show that the construction of our algorithm guarantees
that for each task each such an event can only happen at most once
in interval 7. In the first phase, the task is underloaded and always
returns feedback lack. Therefore, the number of ants committed
to this task monotonically increases. To bound the inaccuracies
caused by the tasks in the first phase we have to first argue about
the availability of idle ants (we prove how fast the ants leave the
overloaded tasks). Then, even though we cannot argue about how
quickly any specific task advances to the second phase, we can show
that in each interval of 12 steps there is some progress across all the
tasks. Using this we can bound the total number of inaccuracies of
all the tasks in the first phase. When the number of ants committed
to some task crosses a certain threshold, then the task enters a
second phase during which the load of the task is close to the
demand. We can guarantee that within this phase the load never
falls below a certain value and this phase ends when the number

SPAA 20, July 15-17, 2020, Virtual Event, USA

of working ants increases above another threshold. This starts the
third phase in which there is a (possibly very) large load at the task.
We prove that after such an event all the ants in the task transition
to the filtering machine. Then, the ants leave the task (the number
of ants in the task decreases geometrically) until an almost correct
number remains. This group then moves to the oscillating machine
where the number of workers oscillates in a controlled way around
the demand ensuring that no ants leave nor join the task.

For each ant i we define aii) to be the state in which ant i is

during round t. We denote by ft(s) the number of ants that are
in state s during round ¢, ie., ft(s) =, lam*s' We abuse the
h_

notation slightly and write ft(j) to denote the total number of

ants committed to task j, ie., ft(j) = Dsesi ft(s). By, ft<i*) we
denote the number of ants that are not committed to any task
at time . The total number of ants working on task j in step
0 _ (s) s
t equals Wt] = ZSE{W,-’WZ,- wlowl ol) f;”’ and we can similarly
define the number of idle ants committed to task j in step ¢ as:
It(j) = Zse{i{,ii,ii,ig} ft(s). Let A be the set of transitions of our
(probabilistic) state machine. Let random variable Aga) denote the
number of ants applying transition § € A in step ¢.

We start by defining several ‘good’ events. We will later prove
that all of these events occur w.h.p. in all steps t € T for every ant
i € [n] and for each task j € [k].

(1) Efeedback: If |d) — ngl > y*d(/) then at the beginning
of step ¢, the feedback from j received by all the ants is
correct, meaning that Ft(]) (i) = lack if /) — Wt(_ji > y*d(j)
and Ft(j)(i) = overload if dV) — W,(j; < —y*d(j) for each
ant i that receives feedback from task ;.

(2) Etransition: For any transition § € A, the number of ants
applying this transition is close to its expected value:

‘AE‘S) ~E [A@ ” < max {E [AE‘S)] /20,360 In n},

(3) Eselection: Ifft(i*) > 48k In n then feedback about j is col-
lected by at least f, i*)/(Zk) ants in state i*.

(4) E;id1e: The number of ants in idle states of any task is bounded
by a fraction of ants in the working states of this task: I, t(j) <
max{lZth(j), 1296 Inn} and ifft(j) > 1101lnn/y, then the
total number of ants committed to any task does not decrease
too quickly: ft(fl) >(1- 12}/)ft(j).

(5) Eleque: If th > 360 Inn/y then the number of ants work-
ing on any task does not decrease too quickly: Wt(+]1) >
(1- 11w,

Using Chernoff bound we can prove that event & = Efeedpack N
Stransition N Eselection N Eidie N Sleave happens w.h.p.

LEMMA 4.1. P[&] = 1—1/n?.

Assuming that event & takes place, the remaining analysis of
Algorithm Controlled Oscillations in interval I is deterministic.
Whenever the load of some fixed task is inside the grey zone, we
make no assumption about the feedback received by the ants about
this task. However if it is outside of the grey zone, then conditioning

SPAA 20, July 15-17, 2020, Virtual Event, USA

on Efeedback- the ants receive the same, correct feedback. In this
case, the ants in the same state apply the transitions from this state
with the same probability and using event Eyransirion We can argue
about the number of ants applying each transition.

In the following we define time steps that mark the transitions

between phases of each task. Let Tl(j) be the smallest step in interval

7 such that the total number of ants comitted to j is at least f ((Jj‘% >
O

(1- y)d(j) and let Tz(j) be the smallest step in interval 7 such
that the number of ants working on j is at least (1 + 15y)d(j)
(WT(Z(]])) > (1+15y)d)). Ifft(]) < (1-y)dY for all steps t € T we

set Tl(j) =T + 1, and similarly if Wt(j) < (1+15y)dY) for all steps

W) =T+ 1. We say that until rl(j)

first phase and in Tl(J)
until Tz(j) In step Tz(j) task Jj is advanced to the third phase which
lasts until the end of interval 7.

We will bound the total inaccuracy of the algorithm separately
for each phase. We first bound the total inaccuracy caused by the
tasks in the first phases. To show this we need to argue about how
quickly the tasks get advanced to their second phases. We know that
a task in its first phase always returns feedback lack (by Sfeedback)
hence if ants in i* are available, some fraction of them will join
each such task (we can use Egejection to lowerbound the number
of ants that choose any underloaded task). What is missing is at
what rate the ants from overloaded tasks return to i* to become
available to join the underloaded ones. We bound this rate in the
next lemma.

t € I we set 7, , task j is in the

it is advanced to the second phase that lasts

LEMMA 4.2. Assume event & and thaty < 0.01. Foranyt € I and
j € [k] such thatft(J) > (1+ 15y)d(j) we have that in the interval
[t,t +5] at least yft(j)/z ants transition from ié to state i*.

Now we are ready to bound the inaccuracy of our algorithm. We
fix y € [y*, 1/100] and split the Inaq'>Y (T) into three components
Inaq® ¥ (T) = Inaq® ¥ (T, 1)+Inaq!® ¥ (T, 2)+Inaq!® ¥ (T, 3), where
Inaq'>Y (T, i) denotes the inaccuracy of the algorithm in interval
[1, T], due to the tasks in i-th phase for i = 1,2, 3.

LemMmA 4.3. [Inaccuracy First Phase] Assume event & and that
¥ < 0.01. We have Inaq™ (T, 1) = O(k/y?).

Proor. We define the following pair of potentials. The number
of tasks still in the first phase in step t: ®(t) = X je[«] 1,_ 0 the
1

number of ants below a certain threshold in each task in step ¢:
E(1) = 3je k) max{0, (1-y)dY) — £}, By E feapack- both these
potentials are non-increasing. Moreover by the definition of T(])
we have ®(t) = 0 if and only if Z(t) = 0. Hence we need only to
show how many steps are needed until both these potentials will
reach 0.

Fix any time step ¢ > 11. We want to show that if Z(¢) > 0 then
in interval [t — 11,¢] one of two events can happen:

(1) (t-11) - d(t) > 1

(2) E(t - 11) — E(t) = y®n/(24k).

This means that either of the potential decreases in each time
interval of length at least 12.

Dornhaus et al.

We define a shorthand notation for the total demand as 71 =
2jelk1 4 (/). We also denote the number of ants beyond a certain

threshold: V(1) = 3 jeqpy max{o,) - (1+15)dD)}.
In any time 7, each ant is either idle or committed to some task:

n= Z f(]) f;—(l*) :f“[(lx) + Z f:[(])

Jjelk] £9D <(1-p)dD)

N D) D £

(1-p)d D <V <d() dO) <f9 <(1+15y)d D)

+ Z £ Z a9 4+ Z F(8)

,(j)z(1+15y)d(j) jelk] Jjelk]
:fr(i) _ Z ((1 _ Y)d(]) _fr(j))
A <(1-y)d)
+ Z (ff(j) —a- y)d(j))
(1-y)dD <9 <d)
a0 <f9 <(1+15¢)d D

+) (A= arspd)

9 2 (1415y)d0)

+7 - Z ydP +15 Z yd?

dW) > D) AW <9

< £ Z5(0) + ¥(2) + (1 + 15),

((1 +15p)dP)) - ﬁ_(j))

where the last inequality is true because, out of six sums after the
second equality, the first and fourth sums equal exactly to Z(7)
and ¥(7) respectively, the second sum gets canceled with the fifth
one (giving the inequality) and the third sum is always negative.
This inequality, knowing that n > (1+17y) X je[x] d gives us

Y(7)+ f,(l* > 2yn. Thus at least one of the following is true: f 11 >
yaor ¥(t —11) > yn. If the latter is true then by Lemma 4.2, within
the next 6 time steps at least y%7i/2 ants transition to i*. Hence in
both cases there exists a step 7 € {t—5,¢t—4,...,t} in which we have
fT(i*) > y%ii/12. Since y?7/12 > 48kInn (by Assumption 3.1) we
have, conditioned on Egejecrion that in step 7 each task is selected by
at least y27i/(24k) ants. Take any task j that in step r contributes to
sum in Z(t) (i.e, t < 1'1(])) - such a task has to exist since Z(¢) > 0.
This task is selected by at least y?7/(24k) idle ants. In the following
5 steps, these ants will collect feedback from task j. If in all of these
steps we will have f(]) <(1- y)d(j), then by Efeeqpack all ants
will receive lack and join the task, which will result in a decrease
of E by at least y%7i/ (24k) (event (2)). Or in any of these steps we
have ft(J) > (1-ypd (), which means that the task advanced to
the second phase — which means that ® decreases by 1 (event (1)).

Since each task can advance to the second phase at most once,
event (1) can happen at most k times. Since Z(0) < 7, event (2)
can happen at most 24k/y? times. After these at most k + 24k /y?
intervals hence at most 12(k + 24k /y?) steps we must have Z(t) = 0
and ®(t) = 0. o

To show that the inaccuracy in the second phase is 0, we will
prove that during the whole second phase the load of each task is

Self-Stabilizing Task Allocation In Spite of Noise

always close to the demand. The inaccuracy in second and third
phases will be bounded for each task separately. We denote by
Inaq§ (T, i), the inaccuracy of j-th task in i-th phase during interval
[1,T].

LeEMMA 4.4. [Inaccuracy Second Phase] Assume & and thaty <
0.01, then we have for any task j € [k]: Inaq}sY(T, 2) = 0.

Proor. We need to first show that ft(j) > (1- y)d(j) for each
time step ¢ in interval [rl(j), T]. Assume that ft(j) >(1-y)d () and
we will show it for t + 1. If any ants are leaving task j (transitioning
to i*) in step t + 1, this means that these ants received feedback
overload from step ¢, which means by Efeedpack that Wt(j) >
(1- y)d(j). Since connection to i* is only from an idle state ig , we
have ft(+]1) > Wt(j) s (1-y)yd (/). We showed that in the whole
interval [Tl(j), T] the total number of ants committed to task j is at
least (1 - y)d\).

Ifft(j) > (1- y)d(j), we have conditioned on &4, that It(j) <
12th(j), thus:

(1-pd? <w +12yw),

and since (1 —y)/(1+12y) > 1 — 15y, we get the that in every step
TE [Tl(j),rz(j) -1], |Wj(T) - d(j)| < lSyd(j), thus lnaq}sy(f) =0.
Since the last equation is true in each step of the second phase (of
task j), the claim holds. O

Finally we bound the inaccuracy in the third phase. The following
lemma shows that shortly after the advancement of the task to the
third phase, all the ants committed to this task will only be in the
filtering machine. Secondly, this shows that the number of ants in
state w{ will be at least (1 +y)d (), hence the task will not be in
the grey zone. We will later show that from such a configuration
with at least (1 + y)d () ants in w{ and no ants in O/, the system
quickly reaches an almost-optimal allocation of ants to this task
and stabilizes.

LEMMA 4.5. Assume & holds and that y < 0.01. Then, for each

sz(])+2 < T we have: Vseojfm =0, andf(1)

task j € [s

(1+y)dD.

It might happen that a very large number of ants is committed
to task j in step TZ(]). Since having a much too large number of
ants in a task also counts as inaccuracy, we need to show that the
ants will leave task j. In the next lemma we have to prove that the
ants slowly leave the filtering machine and transition to i* until a
correct (i.e., close to the demand) number of ants remains. The total
inaccuracy in this interval can be bounded because the decrease in
the number of ants working on the task is geometric. After that,
the ants move in at most two waves to the oscillating machine and
remain there until the end of interval 7 maintaining an (almost)
optimal number of working ants.

LEMMA 4.6. [Inaccuracy Third Phase] Assume & and thaty < 0.01,
then we have for any j € [k]: lnaq}sy(T, 3) =O0(logn/y).

SPAA 20, July 15-17, 2020, Virtual Event, USA

Proor. If r(j) +100 > T then the claim holds because y < 1/100

In the opposite case by Lemma 4.5 we know that in step ‘[(])
all ants committed to task j can be only in the filtering machme

andf(1)
()
sz

> (1+y)d (/). We want to show that starting from step

+ 3, the overload of task j will decrease geometrically and it

will stabilize to a value at most 5.5yd (/) and will not increase above
this value within interval 7.

Observe that since f(‘)

0, > (1+y)d"Y) then by Efeeqpack all

ants receive overload from task j in step Tz(j)

after rz(j)

+ 2. This means that

+ 2, as long as the number of ants in state w{ is at least
(1+y)d () then no ant committed to task j will be in any of the
states from O/.

Note that ants in state w that receive feedback overload transi-
tion to idle state i1 with probablhty ay. Thus the number of working
ants decreases geometrically until it drops below (1 +y)d/).

() 4o T(})

that if in step t,valueft satlsﬁesft(1)-(1—1.0561}/) > (1+y)d(j)

then in step ¢t + 1 we do not enter the grey zone. In this case we
have Wt(J) > (1+ y)d(j) and by & feedpack all ants receive feedback

Consider time steps t=1, .. We want to show

overload from task j thus ants leave state w{ with probability ay
and no ant joins task j. Thus all ants working on task j in step t + 1
are in state w{ and by E;ransirion We have:

(w)) _ A(wh)

((w))
wh = = 5, 1

— " 105ay = (1+y)dY).
Consider the smallest time step ¢* > r() 42 such that f(1)

(1-1.05ay) < (1+ y)d(f). We know that until this step we had in
task j an overload by a factor of at least 1+y hence all ants received
feedback overload by & fecdpack- Using this fact we can bound the

rate of decrease of the load for task j in steps T(])+ 2, r(Dy 3., 1"

By Etransitions W) < (1-0.95a) W) Thus:

R B logn
t" -1, <logy/(1-0.95ay) " = IW
o (1 - m)

< 25lognfy.

In the remaining part of the proof we will show that in steps [¢*, T,
the load of the task will be accurate. We prove that in the next
few steps after t*, the ants committed to this task move from the
filtering to the oscillating machine. Denote two sets of ants:

Ar={ie[n]:al =wl},
Ay={ieln]:al =i},

We know that (1 +y)d) /(1 - 1.05ay) > |A;] > (1 +'y)d(j).

(1-1. osay)fﬂ_ll) The

only way to be in state 1 in step t* is to transition from w and this

(w))

Moreover by afeedback we have |A;| >

transition happens with probability ay thus E [|Az|] = ayf,.]

SPAA 20, July 15-17, 2020, Virtual Event, USA

and by Sfeedbadd

(w/) _ 1.05ay|Aq]
Az| < 1.05ayf. }) < ——2——1
42| awfpy <12 1.05ay

< 1.05ay(1+ y)d(j)

(@)
1-105a)? ~ 28yd'”,

where in the last equation we used the fact that y < 0.01 and a = 2.5.

Now we want to show that out of these two groups A; and Ay,
all of A; and some subset of Ay will transition to the oscillating
machine in steps t* + 2 and t* + 3 and then remain there for a
polynomial number of steps.

Consider the number of ants working on task j in step t* + 2.
Observe that by the definition of the algorithm, since in step ¢* all
ants received feedback overload from task j and all states in O/
were empty then the number of working ants in steps t* + 1 and
t* + 2 decreases in expectancy by a factor of 1 — ay. Moreover no
new ants can join the task in these two steps from i* because all
ants received overload in step t*. Hence we have by Esransition:

w < w1 -0.95ay)
Now, in step ¢* + 1 all ants working on task j are still in state w{
but in this step the load might be in the grey zone. Thus in this step,
from w{ there are two possible transitions to idle states (i{ and ié).
And conditioned on Efeedpack We get:

A

w < w1 -0.95ay) +720Inn
Q- 0.95ay)%d"/)

1—-1.05ay

<(1-y)dY.

Now, conditioned on & egpack 2ll ants receive feedback lack
from task j in step t* + 2. This means that all remaining ants that
are in step t* + 2 in the filtering machine transition in step t* + 3 to

states ié and wé. Observe that all the ants from A; join states ié or

J
2

either in w

w, in steps t* + 2 and t* + 3 because in step t* + 1 these ants are

J
1

step t* + 1. In step ¢* + 2 some of these ants transition to wé or i

or i{ hence no ant from this set can transition to i* in

J
3
In t* + 3 all remaining of ants from A; that are in states from F/
transition to wé or ié, because they receive feedback lack. Observe

J

secondly that some of the ants from Az may also join states w;

7 in steps t* + 2 and t* + 3 but no other ant can.

3
In step t* + 3 we have the following:

or

)

: W) ey
(147)dD < (A < £ 4 0 4 pl5)

< |A1] +|Az] < (1+3.8y)dD,

and no ant committed to task j is in any other state. Thus we have
two “waves” of ants, where the second wave is one step behind the
first one (it may happen that one of the waves is empty). In step
t* + 4 all ants from both waves are working (in states wi and w;),
which results in overload conditioned on Efeedgpack- Since ants
from i* need at least a sequence of 5 times lack in a row, no new
ants will join this task. In the next two steps, both waves are split
into working and idle states, where each ant transitions into an idle

Dornhaus et al.

state with probability by. We have then by & ecapack:

W < (1+3.8y)(1 - 0.9by)dY) +720Inn < (1 - y)dV,

W > (14+y)(1 - 1.1by)dY) - 720Inn > (1 - 5.57)dV)
which means that by Efeeapack all ants receive feedback lack in
step t* + 6. By repeating the same argument inductively we have
that for all i = 0,1, ... in each step t* + 4 + 4i ants receive feedback
overload and in each step ¢*+6+4i each ant receives feedback lack.
This means that no new ant joins task j and no ant leaves the states
O/ at least until the end of interval 7 and the difference between the
load of the task j and the demand d'/) is at most 5.5yd/) in every
step between t* and T. This means that lnaq;SY(T, 3) < ¥ - Tz(]) =
O(logn/y).

[m]

Directly from Lemma 4.3, Lemma 4.4 and Lemma 4.6 we get
that Inaq™Y(T) = O(logn/y) for any T, such that T < n? with
probability at least 1 — 1/n?. For longer intervals, we simply split
them into subintervals of length n?. We then bound the number of
intervals in which event & fails. Our main Theorem 3.2 follows.

5 LOWER BOUND

The idea of our lower bound is as follows. From the bound on
the memory size we can easily derive an upper bound s on the
number of states of any ant. By Assumption 3.4 we know that from
any state there exists a sequence of at most s feedbacks that an
ant transitions from the original state to a working state of any
task j with constant probability. We set the demand vector to be
dW) = vn for all j € [k]. We show that if in s consecutive steps an
absolute value of the deficit of some task j is smaller than 2sey*d),
then with high probability Q(n?/3) ants will join task j during this
interval. This shows that the algorithm cannot be 2sey*-accurate.

6 CONCLUSIONS

We presented a simple proof-of-concept algorithm which shows
that the problem of distributed task allocation by constant-memory
agents (that cannot even store the number of all agents) can be
solved in the model with binary feedback even if the feedback is
noisy. The algorithm is very resilient to noise, and our preliminary
simulations show that it can also adapt to changes in demands,
changes of the number of ants and even changes of the number of
tasks. It would be interesting to get a concrete result in a dynamic
environment. Our results also suggest that there might exist a
memory-accuracy tradeoff.

The algorithm embraces the seeming obstacle of synchronization
(which we introduced to model the delay of information) to perform
controlled oscillations. It would be interesting to see if variations of
this algorithm also work in settings of less synchronization (what
if some ants collect feedback more frequently than others i.e., what
if local clocks of the ants do not tick at the same rate?).

Moreover, it remains an open problem to understand if and by
how much simple communication among the ants can help. This
leads to the question of which other noise models would make
sense to study and how to design experiments with real ants to
gather more knowledge about the way noise affects the sensing.

Self-Stabilizing Task Allocation In Spite of Noise

REFERENCES

(1]

(2]

[9

=

[10]

(11

[12]

(13

[14]
[15]

[16]

(18]

[19

[20]

[21
[22]

[23

[24]

[25]

[26]

[27]

[28

Heiner Ackermann, Simon Fischer, Martin Hoefer, and Marcel Schéngens. 2011.
Distributed algorithms for QoS load balancing. Distributed Computing 23, 5-6
(2011), 321-330.

Petra Berenbrink, Tom Friedetzky, Frederik Mallmann-Trenn, Sepehr Meshkin-
famfard, and Chris Wastell. 2018. Threshold load balancing with weighted tasks.
J. Parallel Distrib. Comput. 113 (2018), 218-226. https://doi.org/10.1016/j.jpdc.
2017.10.012

Samuel N. Beshers and Jennifer H. Fewell. 2001. Models of division of labor in
social insects. Annual review of entomology 46, 1 (2001), 413-440.

Prassede Calabi. 1988. Behavioral flexibility in Hymenoptera: a re-examination
of the concept of caste. Advances in myrmecology (1988), 237-258.

Daniel Charbonneau and Anna Dornhaus. 2015. When doing nothing is some-
thing. How task allocation mechanisms compromise between flexibility, effi-
ciency, and inactive agents. Journal of Bioeconomics 17 (2015), 217-242.
Blaine J Cole. 1991. Short-term activity cycles in ants: generation of periodicity
by worker interaction. The American Naturalist 137, 2 (1991), 244-259.

Blaine J Cole and Franc I Trampus. 1999. Activity cycles in ant colonies: worker
interactions and decentralized control. In Information processing in social insects.
Springer, 289-307.

Alejandro Cornejo, Anna R. Dornhaus, Nancy A. Lynch, and Radhika Nagpal.
2014. Task Allocation in Ant Colonies. In Distributed Computing - 28th Interna-
tional Symposium, DISC 2014, Austin, TX, USA, October 12-15, 2014. Proceedings.
46-60. https://doi.org/10.1007/978-3-662-45174-8_4

Tomer J Czaczkes, Christoph Griiter, and Francis LW Ratnieks. 2013. Negative
feedback in ants: crowding results in less trail pheromone deposition. Journal of
the Royal Society Interface 10, 81 (2013), 20121009.

Ana Duarte, Ido Pen, Laurent Keller, and Franz J. Weissing. 2012. Evolution of
self-organized division of labor in a response threshold model. Behavioral Ecology
and Sociobiology 66, 6 (2012), 947-957.

Ana Duarte, Franz J. Weissing, Ido Pen, and Laurent Keller. 2011. An evolutionary
perspective on self-organized division of labor in social insects. Annual Review
of Ecology, Evolution, and Systematics 42 (2011), 91-110.

Audrey Dussutour, Stamatios C Nicolis, Jean-Louis Deneubourg, and Vincent
Fourcassié. 2006. Collective decisions in ants when foraging under crowded
conditions. Behavioral Ecology and Sociobiology 61, 1 (2006), 17-30.

Clive A Edwards and Patrick J Bohlen. 1996. Biology and ecology of earthworms.
Vol. 3. Springer Science & Business Media.

Deborah M. Gordon. 1989. Dynamics of task switching in harvester ants. Animal
Behaviour 38, 2 (1989), 194-204.

D. M. Gordon. 1996. The organization of work in social insect colonies. Nature
380, 14 March (1996), 121-124.

Deborah M Gordon. 1999. Ants at work: how an insect society is organized. Simon
and Schuster.

Deborah M. Gordon and Natasha J. Mehdiabadi. 1999. Encounter rate and task
allocation in harvester ants. Behavioral Ecology and Sociobiology 45, 5 (01 Apr
1999), 370-377. https://doi.org/10.1007/s002650050573

Torben Hagerup and Christine Riib. 1990. A Guided Tour of Chernoff Bounds.
Inform. Process. Lett. 33, 6 (1990), 305-308.

MP Hassell and HN Comins. 1978. Sigmoid functional responses and population
stability. Theoretical Population Biology 14, 1 (1978), 62-67.

Martin Hoefer and Thomas Sauerwald. 2013. Brief Announcement: Threshold
Load Balancing in Networks. In 32nd Symposium on Principles of Distributed
Computing PODC. ACM, Montreal, Canada, 54-56. The full version is available
at https://arxiv.org/abs/1306.1402.

Bert Holldobler and Edward O Wilson. 1990. The ants. Harvard University Press.
Gavin M. Leighton, Daniel Charbonneau, and Anna Dornhaus. 2016. Task switch-
ing is associated with temporal delays in Temnothorax rugatulus ants. Behavioral
Ecology 28, 1 (2016), 319-327.

Michael Mitzenmacher and Eli Upfal. 2005. Probability and Computing: Random-
ized Algorithms and Probabilistic Analysis. Cambridge University Press.
Henrique M. Pereira and Deborah M. Gordon. 2001. A trade-off in task allocation
between sensitivity to the environment and response time. Journal of Theoretical
Biology 208, 2 (2001), 165-184.

N. Pinter-Wollman, J. Hubler, J. A. Holley, N. R. Franks, and A. Dornhaus. 2012.
How is activity distributed among and within tasks in Temnothorax ants? Be-
havioral Ecology and Sociobiology 66, 10 (2012), 1407-1420.

Tsvetomira Radeva, Anna Dornhaus, Nancy Lynch, Radhika Nagpal, and Hsin-
Hao Su. 2017. Costs of task allocation with local feedback: Effects of colony
size and extra workers in social insects and other multi-agent systems. PLoS
computational biology 13, 12 (2017), €1005904.

Thomas O Richardson, Jonas I Liechti, Nathalie Stroeymeyt, Sebastian Bonho-
effer, and Laurent Keller. 2017. Short-term activity cycles impede information
transmission in ant colonies. PLoS computational biology 13, 5 (2017), €1005527.
Horst R Thieme. 2003. Mathematics in population biology. Princeton University
Press.

SPAA °20, July 15-17, 2020, Virtual Event, USA

[29] Chris Tofts. 1993. Algorithms for task allocation in ants.(A study of temporal
polyethism: theory). Bulletin of mathematical biology 55, 5 (1993), 891-918.

[30] Chris Tofts and Nigel R Franks. 1992. Doing the right thing: ants, honeybees and
naked mole-rats. Trends in ecology & evolution 7, 10 (1992), 346-349.

https://doi.org/10.1016/j.jpdc.2017.10.012
https://doi.org/10.1016/j.jpdc.2017.10.012
https://doi.org/10.1007/978-3-662-45174-8_4
https://doi.org/10.1007/s002650050573
https://arxiv.org/abs/1306.1402

	Abstract
	1 Introduction
	1.1 Related Work

	2 Model
	2.1 Noisy Feedback
	2.2 Accurate algorithms

	3 Our Results
	3.1 Upper Bound
	3.2 Lower Bound

	4 Upper bound
	4.1 Definition of the Algorithm
	4.2 Intuition of the Algorithm
	4.3 Memory
	4.4 Analysis

	5 Lower bound
	6 Conclusions
	References

