
Self-Stabilizing Task Allocation In Spite of Noise
Anna Dornhaus

University of Arizona, Department of

Ecology and Evolutionary Biology

Tucson, AZ, US

Nancy Lynch

MIT, CSAIL

Cambridge, MA, US

Frederik Mallmann-Trenn

King’s College London, Department

of Informatics

London, UK

Dominik Pajak

Wrocław University of Science and

Technology

Wrocław, Poland

Tsvetomira Radeva

MIT, CSAIL

Cambridge, MA, US

ABSTRACT
We study the problem of distributed task allocation byworkers in an

ant colony in a setting of limited capabilities and noisy environment

feedback. We assume that each task has a demand that should

be satisfied but not exceeded, i.e., there is an optimal number of

ants that should be working on this task at a given time. The goal

is to assign a near-optimal number of workers to each task in

a distributed manner without explicit access to the value of the

demand nor to the number of ants working on the task.

We seek to answer the question of how the quality of task alloca-

tion depends on the accuracy of assessing by the ants whether too

many (overload) or not enough (lack) ants are currently working

on a given task. In our model, each ant receives a binary feed-

back that depends on the deficit, defined as the difference between

the demand and the current number of workers in the task. The

feedback is modeled as a random variable that takes values lack
or overload with probability given by a sigmoid function of the

deficit. The higher the overload or lack of workers for a task, the

more likely it is that an ant receives the correct feedback from this

task; the closer the deficit is to zero, the less reliable the feedback

becomes. Each ant receives the feedback independently about one

chosen task. We measure the performance of task allocation algo-

rithms using the notion of inaccuracy, defined as the number of

steps in which the deficit of some task is beyond certain threshold.

We propose a simple, constant-memory, self-stabilizing, dis-

tributed algorithm that converges from any initial assignment to

a near-optimal assignment under noisy feedback and keeps the

deficit small for all tasks in almost every step. We also prove a

lower bound for any constant-memory algorithm, which matches,

up to a constant factor, the accuracy achieved by our algorithm.

The authors were supported in part by NSF Award Numbers CCF-1461559 and CCF-

0939370. D. Pajak was also supported by the National Science Centre, Poland—Grant

Number 2019/33/B/ST6/02988.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SPAA ’20, July 15–17, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6935-0/20/07. . . $15.00

https://doi.org/10.1145/XXXXXX.XXXXXX

CCS CONCEPTS
• Theory of computation → Distributed algorithms; Design
and analysis of algorithms.

KEYWORDS
ants, biologically inspired algorithms, noise, task-allocation

ACM Reference Format:
Anna Dornhaus, Nancy Lynch, Frederik Mallmann-Trenn, Dominik Pajak,

and Tsvetomira Radeva. 2020. Self-Stabilizing Task Allocation In Spite of

Noise. In ACM/IEEE Joint Conference on Digital Libraries in 2020 (SPAA ’20),
July 15–17, 2020, Virtual Event, USA. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/XXXXXX.XXXXXX

1 INTRODUCTION
Task allocation in social insect colonies is a process of assigning

workers to various tasks such as foraging, scouting, nursing, etc. in
a way that maximizes the reproductive success of the colony. Each

ant is capable of working on each of the tasks but at any time it can

only work on at most one of them. Each task has associated demand

which is the number of ants that should work on this task that is

optimal from the perspective of the colony needs. The ants probably

neither know the demand nor can count the current number of ants

working on a given task [17]. Moreover, in the colony there is no

central control to decide about the actions of each individual [15].

Therefore the allocation has to be performed by each ant locally,

based only on feedback from the environment about the tasks and

limited local communication with other individuals. The feedback,

in biology called ‘task stimulus’, corresponds, for example, to sens-

ing a too-high temperature in the nest, seeing light through a hole

in the nest-wall, or smelling a pheromone produced by hungry

brood. Despite using limited communication, local observations,

and noisy sensing, many ant species are known to excel at task

allocation. How do ants perform task allocation and what can we

learn from their behavior?

In [8], the authors proposed a solution to the problem of task

allocation in the case where there is no communication between

the ants and the feedback received by the ants is binary and always

correct. More precisely, in [8] if the load, i.e., the number of ants

working on the task 𝑗 ∈ [𝑘], exceeds the demand 𝑑 (𝑗) , then all

ants receive feedback overload. Conversely, if the load is below or

equals the demand of the task, then all ants receive feedback lack.
Such a feedback function is rather unrealistic in ant colonies due

to its sharp transition between overload and lack— it requires

https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX

SPAA ’20, July 15–17, 2020, Virtual Event, USA Dornhaus et al.

each ant to be able to tell the difference between 𝑑 (𝑗) and 𝑑 (𝑗) + 1

number of workers at a task. The authors in [8] therefore pose

the open problem of considering a weaker, noisy version of the

binary-feedback—the focal point of this paper.

We study the performance of task allocation in a realistic, sto-

chastic noise model, in which the feedback from the environment

for each ant in each step is a random variable with possible values

lack and overload. The probability that it takes value lack equals
to the sigmoid function of the deficit (demand minus load). The

deficit is negative in case when the load is larger than the demand.

We assume that all the ants regularly receive the feedback. How-

ever, there is a delay between the moment when an ant collects the

feedback and when it changes its allocation, during which other

ants may also make some decisions. To model this delay we assume,

similarly to [8], synchronous rounds: at the beginning of each round

each ant receives binary feedback of the load of the chosen task.

The ants then concurrently make a decision of whether to join

some task or to leave their current task. In our model, the ants

make choices synchronously as if each of them had a local clock

ticking at the same rate. However, we do not assume a global clock

which means that the ants do not have access to round number

hence cannot for example discriminate odd and even rounds.

How can the ants make independent decisions and achieve a

‘good’ task allocation in spite of outdated observations, in spite of

noise and in spite of the lack of global information—not knowing the
demands nor the current loads of the tasks nor the current round

number?

In order to define what a ‘good’ task allocation means we use

the notion of inaccuracy. The inaccuracy in our setting in some

time step for some task means that the absolute value of the deficit

(demand minus the load) is larger than the demand times some

constant 𝜀 > 0. The algorithm will be called 𝜀-accurate if in any

(sufficiently long) time interval of length 𝑇 , in only 𝑜 (𝑇) steps,
the algorithm will be inaccurate for any task. Here we penalize

overload and underload equally: An underload corresponds to work

that is not being done, and each ant exceeding the demand of a task

corresponds to work being wasted (or, even worse, sometimes the

excessive number of workers in a task may block each other and

decrease the efficiency [9, 12]). Note, that we do not charge any

cost for switching tasks.

We first provide a simple, constant-memory, self-stabilizing Al-

gorithm Controlled Oscillations that utilizes the oscillations in the

number of workers in each task in order to achieve a stable alloca-

tion in the synchronous model. The size of the oscillation at each

task in our algorithm is proportional to the demand of the task

times the critical value of the deficit (see Section 2 for a formal

definition). Intuitively, the critical value is a value of the deficit

(seen as a fraction of the demand) for which the feedback is correct

for each ant with high probability. This corresponds to the smallest

value of the deficit at which the sigmoid is very close to 1 and the

largest value for which it is very close to 0. We then show that our

algorithm is 𝜀-accurate for 𝜀 being equal to the critical value times

a constant.

As our second result, we prove a lower bound showing that

no distributed, constant-memory algorithm can be 𝜀 ′-accurate for
𝜀 ′ smaller than or equal to the critical value times a constant de-

pending on the number of bits of memory available to the ants. In

light of this lower bound, our Algorithm Controlled Oscillations

achieves a constant-factor approximation of the optimal accuracy

factor. In our lower bound we show that, for any strategy, if the

deficit gets too close to 0 for some number of steps then (due to the

noisy feedback) it drastically increases. It is therefore impossible to

keep the absolute value of the deficit very small for too long. This

means that small oscillations in the number of workers at each task

are unavoidable in any algorithm that ‘tries’ to achieve a good and

stable allocation. Our proposed solution is to avoid getting too close

to 0 with the absolute value of the deficit and use the oscillations

(jumping between positive and negative deficit) to achieve stable

allocation and asymptotically optimal accuracy factor.

1.1 Related Work
The most related previous work on task allocation is [8], in which

the authors also assume synchronous rounds and binary feedback.

The authors present a very simple algorithm that converges to

an almost-optimum allocation (the allocation that differs from the

demand by at most 1 at each task) and analyze its convergence

time. Considering a noisy version of the model was left as an open

question.

Moreover, the authors of [26] provide a model similar to that

of [8] but they also study different versions of the feedback that

ants receive from the environment, which varies in the amount of

information the ants receive about the deficits of the tasks. The

model consists of two feedback components: a success component

that informs each ant in each round whether it is successful, e.g.,

needed for the task it is currently working on, and a choice com-

ponent that provides unsuccessful ants with an alternative task to

work on. The results in [26] analyze the convergence time of task

allocation, and as such are not directly comparable to our work

here. In [26], the noise model is very rudimentary: in each round

the feedback of the binary success component can be noisy for at

most a fixed number of ants. The results do not generalize to our

setting.

The problem of task allocation in social insect colonies has been

well studied in the communities of theoretical and experimental

biology. The observations show that social insect colonies are self-

organized, with no individuals directing the task choices of others,

with interactions between individuals potentially affecting task

selection [15]. Workers in a colony may switch tasks as needed

[14], although this may come at additional cost [22]. The concept

of task switching gives rise to an intriguing question: what is the

algorithm used by the ants to decide whether to switch and which

tasks to choose? Some notable examples of models of task allocation

[3] include (1) the threshold-based model where ants compared the

stimulus of a task to their built-in threshold to determine whether

to work on a given task, and (2) the ’foraging for work’ model [30]

where the ants are believed to actively look for work when they are

idle or redundant in the current task. In some species the ants are

believed to choose the tasks based on physical suitability (physical
polyethism) [21], whereas in other species, the ants are physically

similar and suitable to do any task (temporal polyethism) [4]. In this

paper, we assume that the ants are identical (no thresholds) and

they can work on any task.

Self-Stabilizing Task Allocation In Spite of Noise SPAA ’20, July 15–17, 2020, Virtual Event, USA

Some biological studies have focused on the efficiency of the task

allocation process itself, and how it is determined by the specific

algorithm used by the ants. For example, [24] and [10] model task

allocation determined by social interactions and response thresh-

olds, respectively, and both demonstrate that perfect task allocation

of workers to tasks cannot be achieved, potentially due to the speed

and accuracy of task allocation trading off against each other. In [29],

an algorithm of task allocation is analyzed in a setting where there

are no thresholds, the tasks are arranged in a line and there is no

noise in sensing of the demand. The goal of [29] is to explain the

experimental observations where certain tasks were preferred by

older ants.

Additional factors such as individual experience, interactions

with other workers, spatial and hierarchical position in the colony,

and random encounters with tasks are also known to affect the spe-

cific task allocation mechanism employed [5, 11, 15]. Unfortunately,

most often it is not precisely known what is the actual algorithm

that the ants use to select tasks or how the factors listed above

interact to produce variation in preferences across tasks or across

individuals [25].

A key property that we observe in our results—oscillations in

the task allocation behavior of ants—is also a commonly observed

biological phenomenon more generally known as cyclical activity

patterns [6]. Although the role of cyclical activity patterns is not

completely understood [7], several studies make conjectures that

may be related to the conclusions in our paper. First, our assumption

that ants perform actions in synchronized rounds and phases as

a means of introducing ‘delay’ between one another’s actions is

also observed in biological studies. Ants perform actions in bursts

of activity and inactivity in order to clear stale information from

spreading through the colony [27]. Second, our results suggest

that, assuming that ants have constant memory (i.e., they cannot

even store the total number of ants 𝑛 let alone use it), and noisy

environmental feedback, the oscillations are inevitable as the deficit

becomes small. We conjecture that such cyclic activity patterns

(switching between different tasks and being idle) are necessary

and a product of the limitations of the ants and the noisy feedback

about number of workers at a task.

Another key assumption we make is that the noise follows a

sigmoid function (also known as a logistic sigmoid activation func-
tion). Such functions appear in countless biological contexts (e.g.
[13, 19, 28]), to model the uncertainty with which the ants sense the

need for work at different tasks. We believe that the versatility and

applicability to the real-world problems of the sigmoid noise model

makes it a good choice to model the noise of the environment in

our setting.

Finally, somewhat related load-balancing processes have been

studied under the term user-based migration in which the tasks

move in a network of resources [1, 2, 20] by querying the load of

the current resource andmoving to a neighbor in case of an overload.

However, this line of research assumes that the communication

noise-free and that each resource knows an upper bound on how

many tasks it can accept.

2 MODEL
We have a collection of 𝑛 ants and a constant number of 𝑘 tasks

where each task 𝑗 ∈ [𝑘] (we use notation [𝑘] = {1, 2, . . . , 𝑘}) has a
fixed demand 𝑑 (𝑗) . We assume, that each ant has some number of

bits of memory and that there is no direct communication between

the ants. Time is divided into discrete steps. We assume that at
the beginning of step 𝑡 , each ant 𝑖 receives feedback 𝐹

(𝑗)
𝑡 (𝑖) about

one, chosen task 𝑗 ∈ [𝑘] (the value of the feedback depends on

the number of ants working on task 𝑗 in previous step). Based

on this feedback and the current memory state, the ant decides

whether or not to work and on which task during this round. The

ant also decides about its new memory state and chooses a task

about which it will receive feedback at the beginning of the next

round. We assume that the ant can choose to receive feedback about

any task however in our algorithm it always chooses between the

same task as in the previous step or a new task chosen uniformly

at random.

Let𝑊
(𝑗)
𝑡 , 𝑗 ∈ [𝑘] denote the number of ants performing task 𝑗

during step 𝑡 . In the following we call value 𝑑 (𝑗) −𝑊 (𝑗)
𝑡 a deficit of

task 𝑗 in step 𝑡 . Value𝑊
(𝑗)
𝑡 − 𝑑 (𝑗) will be referred to as overload.

2.1 Noisy Feedback
We seek to model the noise in the sensing of the lack or overload

by the ants such that the following conditions are fulfilled. First, in

case of a very large overload or lack, almost all ants should notice

this (w.h.p. all ants should receive the correct feedback). Second,

whenever exactly the correct number of ants are working on a given

task, then the ‘uncertainty’ in this task should be the largest and

the ants should receive lack and overload with equal probability.

In the following we define the sigmoid feedback model that fulfills

these requirements. At the beginning of round 𝑡 , ant 𝑖 receives for

chosen task 𝑗 noisy feedback:

𝐹
(𝑗)
𝑡 (𝑖) =

{
lack w. p. 𝑠 (𝑑 (𝑗) −𝑊

(𝑗)
𝑡−1),

overload otherwise,

where 𝑠 (𝑥) = 1

1+𝑒−𝜆𝑥 , for fixed 𝜆 ∈ R.
It is not crucial for our results to have a sigmoid function; in fact

all our results apply for any monotone antisymmetric function 𝑠

with exponential decay and lim𝑥→−∞ 𝑠 (𝑥) = 0 and lim𝑥→∞ 𝑠 (𝑥) =
1 and 𝑠 (0) = 1/2.

Reliability of the feedback depends on how the absolute value of

the deficit is far from 0. As the absolute value of the deficit increases,

it is more and more likely for ants to receive the correct feedback.

We would like to define a critical value of the deficit beyond which

the feedback is (almost) completely reliable and an interval which

we call a grey zone, within which we will not rely on the correctness

of the feedback.

Definition 2.1 (critical value and grey zone). Let 𝑦 (𝑥) =
min𝑥 ′∈R{𝑥 ′ : 𝑠 (−𝑥 ′ ·𝑑 (𝑗)) ≤ 𝑥 for all 𝑗 ∈ [𝑘]}. We define the critical
value to be 𝛾∗ = 𝑦 (1/𝑛6). We define for each task 𝑗 ∈ [𝑘] the grey
zone to be interval [−𝛾∗𝑑 (𝑗) , 𝛾∗𝑑 (𝑗)]. We say that a task 𝑗 is in step
𝑡 in grey zone, when its deficit is inside this interval.

SPAA ’20, July 15–17, 2020, Virtual Event, USA Dornhaus et al.

overload (W
(j)
t − d(j))γ∗d−γ∗d 0

grey zone
Prob. of receiving feedback overload

1
2

1
n5

w.h.p all ants
receive feedback

lack

w.h.p all ants
receive feedback

overload

Figure 1: Whenever the overload of a task is in the green (red, respectively) region, all ants will receive w.h.p. the feedback
lack (overload, respectively). Whenever the overload is in the grey region (falling tilling pattern), and the closer the overload
is to 0, the more noisy is the feedback received by the ants.

2.2 Accurate algorithms
For any 𝜀 > 0 and for any 𝑗 ∈ [𝑘] we denote:

Inaq𝜀𝑗 (𝜏) = 1 |𝑊 (𝑗)
𝜏 −𝑑 (𝑗) |>𝜀𝑑 (𝑗)

The function Inaq𝜀
𝑖
(𝜏) indicates whether the algorithm is inaccurate

in step 𝜏 for task 𝑗 . For any time interval [1,𝑇] we define Inaq𝜀
𝑗
(𝑇) =∑

𝜏≤𝑇 Inaq𝜀
𝑗
(𝜏), and Inaq𝜀 (𝜏) = min

{
1,
∑

𝑗 ∈[𝑘] Inaq
𝜀
𝑗
(𝜏)

}
, and Inaq𝜀 (𝑇) =∑

𝜏≤𝑇 Inaq𝜀 (𝜏). Function Inaq𝜀 (𝑇) indicates in how many steps of

the time interval [1,𝑇] the algorithm was inaccurate for at least

one task.

Finally, we will call an algorithm 𝜀-accurate if Inaq𝜀 (𝑇) ∈ 𝑜 (𝑇)
for any 𝑇 ∈ Ω(𝑛) and assuming arbitrary initial state. This means

that when a colony of ants is using such an algorithm, then almost

all the time (i.e., in all steps except a smaller order term) the loads

of all the tasks are close to their demands.

We assume that 𝑘 = 𝑂 (1) motivated by the fact that the number

of tasks is much smaller than the number of ants. Hence the ant

can in constant memory store an identifier of a task.

We use the shorthand w.p. for ‘with probability’. We say an

event happens w.h.p. ‘with high probability’ to mean that the event

happens w.p. at least 1 −𝑂 (1/𝑛). We say an event happens with

overwhelming probability if it happens w.p. at least 1 − 𝑒−Ω (𝑛)
.

3 OUR RESULTS
In this section we present the assumptions and the statements of

our main results.

3.1 Upper Bound
In our upper bound we use the following assumptions on the de-

mand vector. First, we require the demands to be at least logarithmic

in the number of ants. Second we assume that the sum of the de-

mands does not exceed the total number of ants.

Assumption 3.1. Assume that for all 𝑗 ∈ [𝑘] we have 𝑑 (𝑗) ≥
600 ln𝑛/(𝛾∗)2 for each 𝑗 ∈ [𝑘]. Moreover, assume that the sum of the
demands satisfies (1+17𝛾)∑𝑗 ∈[𝑘] 𝑑

(𝑗) ≤ 𝑛 for some 𝛾 ∈ [𝛾∗, 1/100].

We proceed by giving the precise statements of Theorem 3.2

showing that the assignment of Algorithm Controlled Oscillations

is w.h.p. 𝑂 (1)-accurate.

Theorem 3.2. Assuming Assumption 3.1 with parameter 𝛾 holds,
then for any initial allocation at time 0. Algorithm Controlled Oscil-
lations with 𝛾 ∈ [𝛾∗, 1/100], is w.h.p. 15𝛾-accurate.

Note that we allow 𝑡 to take arbitrary values—in particular, values

that are super-polynomial in 𝑛.

Remark 3.3. The guarantees from Theorem 3.2 apply even if the
feedback is arbitrarily correlated as long as the marginal probability
for each ant to receive incorrect feedback outside the grey zone is
1/𝑛6. Moreover, our algorithm also works—due to its self-stabilizing
nature—for changing demands.

3.2 Lower Bound
We show a lower bound for a class of algorithms in which the

states of all the ants are always reachable from each other. We do

not allow for example algorithms where an ant working on some

task can never leave this task. It is well-known (e.g. [16]) that ants
do not stabilize to a fixed allocation but switch between the tasks

whenever it is needed.

Assumption 3.4. We assume that for any pair of states 𝑠1, 𝑠2 (idle
or working on one of the tasks 𝑗 ∈ [𝑘]), there must exists a finite
sequence of feedback values such that an ant being initially in state
𝑠1, after receiving this sequence of feedbacks, transitions with nonzero
probability to state 𝑠2.

Under this assumption we show a lower bound on the accuracy

factor of any constant memory algorithm.

Theorem 3.5. Assume 𝛾∗ ≤ 1. Let 𝜀 ∈ (0, 1/4) and let 𝑛 (num-
ber of ants) be a large enough integer. There exists a demand vector

Self-Stabilizing Task Allocation In Spite of Noise SPAA ’20, July 15–17, 2020, Virtual Event, USA

(𝑑 (1) , 𝑑 (2) , . . . , 𝑑 (𝑘)) such that for any collection of 𝑛 ants execut-
ing (possibly distinct) algorithms 𝐴1, 𝐴2, . . . , 𝐴𝑛 , each using at most
⌊ln(1/(16𝜀))⌋ bits of memory, the resulting taks-allocation algorithm
cannot be 2𝜀𝛾∗-accurate.

4 UPPER BOUND
In this section, we present the definition of the algorithm, an

overview of the execution and the analysis.

4.1 Definition of the Algorithm
Let 𝑎 = 2.5 and 𝑏 = 5.6 and 𝛾 be a parameter of the algorithm

satisfying 𝛾 ∈ [𝛾∗, 1/100]. For each task 𝑗 we have 9 states out of

which𝑤
𝑗

1
, . . . ,𝑤

𝑗

5
are working states and 𝑖

𝑗

1
, 𝑖
𝑗

2
, 𝑖
𝑗

3
, 𝑖
𝑗

4
are idle states.

We also have one idle state 𝑖∗ that is common for all the tasks (see

Figure 2 for an overview of the machine). When an ant is in one of

the states 𝑤
𝑗

1
, . . . ,𝑤

𝑗

5
during step 𝑡 for 𝑗 ∈ [𝑘], then it is working

on task 𝑗 during this step. Otherwise the ant is idle.

The state machine for each task 𝑗 ∈ [𝑘] is divided into two

submachines: the filtering submachine consisting of the states 𝐹 𝑗 =

{𝑖 𝑗
1
, 𝑖
𝑗

2
,𝑤

𝑗

1
} and the oscillating submachine consisting of the states

𝑂 𝑗 = {𝑖 𝑗
3
, 𝑖
𝑗

4
,𝑤

𝑗

2
,𝑤

𝑗

3
,𝑤

𝑗

4
,𝑤

𝑗

5
}. Let 𝑆 𝑗 = 𝐹 𝑗 ∪𝑂 𝑗

denote the set of all

states of task 𝑗 . We say that when an ant is in any of the states from

set 𝑆 𝑗 that it is committed to task 𝑗 in this step. Notice that not all

ants that are committed to a task work on the task (ants in states

𝑖
𝑗

1
, 𝑖
𝑗

2
, 𝑖
𝑗

3
, 𝑖
𝑗

4
are committed to task 𝑗 but are not working on it) and

that the ants may change their commitment.

When an ant transitions to state 𝑖∗, it selects a task 𝑗 ∈ [𝑘]
uniformly at random to collect its feedback. When the observed

feedback is lack for 5 times in a row, then the ant joins the task

(transitions to state𝑤
𝑗

1
). Otherwise, when observing overload the

ant picks another task at random among all 𝑘 tasks. Whenever

the ant is not in 𝑖∗, it is in a state in 𝑆 𝑗 of some task 𝑗 and then it

receives the feedback about task 𝑗 . Based on the feedback from at

most three previous steps and the current state, the ant is making

a probabilistic choice of its next state. The exact list of transitions

and probabilities is in Table 1 and on Figure 2.

4.2 Intuition of the Algorithm
The intuition is presented from the perspective of a fixed task

𝑗 ∈ [𝑘]. For other tasks, the algorithm works analogously. The goal

of the filtering machine is to reduce the number of ants carefully

until a number close to the demand of the task is reached. These ants

then all transition independently to the oscillating machine. The

transition is accomplished by the following mechanism (assume for

a moment that all the ants committed to task 𝑗 are in three states

𝑤
𝑗

1
, 𝑖

𝑗

1
and 𝑖

𝑗

2
): when the number of ants in the filtering machine

is too large, the ants in state 𝑤
𝑗

1
receive feedback overload and

leave with some small probability 𝑎𝛾 . However, before leaving to

the common idle state 𝑖∗, these leaving ants go through a path

of two idle states 𝑖
𝑗

1
and 𝑖

𝑗

2
. If one of such decreases changes the

number of ants working on the task from more than (1 + 𝛾)𝑑 (𝑗)
to less than (1 − 𝛾)𝑑 (𝑗) , then we say that we jump over the grey
zone. In this case, all ants committed to task 𝑗 receive in the next

step feedback lack and move from filtering machine to oscillating

machine. In this case we say that the ants move to the oscillating

State From Feedback State To Prob.

𝑤
𝑗

2
,𝑤

𝑗

3
,𝑤

𝑗

4
,𝑤

𝑗

5
, 𝑖
𝑗

3
, 𝑖
𝑗

4

3 times overload
in a row

𝑤
𝑗

1
1

𝑤
𝑗

1
overload 𝑤

𝑗

1
1 − 𝑎𝛾

𝑤
𝑗

1
overload 𝑖

𝑗

1
𝑎𝛾

𝑤
𝑗

1
lack 𝑤

𝑗

2
1 − 𝑎𝛾

𝑤
𝑗

1
lack 𝑖

𝑗

3
𝑎𝛾

𝑖
𝑗

1
overload 𝑖

𝑗

2
1

𝑖
𝑗

1
lack 𝑖

𝑗

3
1

𝑖
𝑗

2
overload 𝑖∗ 1

𝑖
𝑗

2
lack 𝑖

𝑗

3
1

𝑤
𝑗

2
both 𝑤

𝑗

4
1

𝑖
𝑗

3
both 𝑤

𝑗

4
1

𝑤
𝑗

3
both 𝑤

𝑗

2
1

𝑖
𝑗

4
both 𝑖

𝑗

3
1

𝑤
𝑗

4
both 𝑤

𝑗

5
1

𝑤
𝑗

5
both 𝑤

𝑗

3
1 − 𝑏𝛾

𝑤
𝑗

5
both 𝑖

𝑗

4
𝑏𝛾

𝑖∗
5 times lack
in a row

𝑤
𝑗

1
1

Table 1: The rules are stated in decreasing order of priority;
in case two rules are applicable, the rule with the higher pri-
ority is executed.

machine in one wave. In the opposite case, if we end up in the grey

zone, some number of ants will receive feedback overload and

some lack and we cannot predict how many will receive which

feedback. Our objective in this case is to quickly leave the grey

zone because if the system remains in the grey zone for several

steps, then we will not be able to say anything meaningful about

the number of ants in different states of this task. To avoid this, our

state machine is constructed in such a way, that regardless of the

feedback, each ant from 𝑤
𝑗

1
transitions with probability 𝑎𝛾 to an

idle state (𝑖
𝑗

1
or 𝑖

𝑗

3
). The ants that receive lack in this step move to

the oscillating machine in the first wave. By carefully choosing 𝑎,

after this step, the number of working ants is already small enough

that it is outside of the grey zone (on the other, underload side), and

in the next step, all ants receive feedback lack from task 𝑗 . Then

the ants that are still in the filtering machine move to the oscillating

machine in the second wave.

In both cases, all ants from the filtering machine move in at most

two waves to states 𝑖
𝑗

3
and 𝑤

𝑗

2
of the oscillating machine. Notice

that the number of ants that move to the oscillating machine is

slightly larger than the demand (because also the ants from states

𝑖
𝑗

1
and 𝑖

𝑗

2
are triggered by lack to move to 𝑖

𝑗

3
), but not much larger

(the reason for this is that the number of ants in 𝑖
𝑗

1
and 𝑖

𝑗

2
is much

smaller than the number of ants in𝑤
𝑗

1
).

SPAA ’20, July 15–17, 2020, Virtual Event, USA Dornhaus et al.

i∗

w1
1i11i12

i13 w1
4 w1

2

w1
3w1

5i14

aγ
1−aγ

aγ

1−bγ

1−bγ

bγ

bγ

Task 1

3x

1−aγ

5x

wk
1ik1ik2

ik3 wk
4 wk

2

wk
3wk

5ik4

aγ
1−aγ

aγ

1−bγ

1−bγ

bγ

bγ

Task k

3x

1−aγ

5x

F 1

O1

F k

Ok

Figure 2: Illustration of the statemachine used inAlgorithmControlled Oscillations. Red arrows indicate the transitions taken
by the ants that receive feedback overload and green arrows by the ones that receive lack. Values over the arrows (e.g. 𝑎𝛾 and
1 − 𝑏𝛾) denote probabilities of the transitions. Notation 3x (and 5x) indicates that the feedback associated with this transition
needs to be received 3 (or 5) times in a row. Transition with 3x is from every state in 𝑂 𝑗 and has higher priority (i.e., is taken
with probability 1 from every state in 𝑂 𝑗 by each ant that receives 3 times overload in a row).

Having a correct (but slightly too large) number of ants in the

oscillating machine of our task 𝑗 , now the goal is to maintain it,

which means to make sure that the ants do not leave the task and

that no new ants join the task. This is accomplished by having some

steps in which all ants in the oscillating machine are guaranteed

to be working in which case all ants receive overload from this

task. To achieve this, we use two states 𝑤
𝑗

4
and 𝑤

𝑗

5
in which all

ants committed to 𝑗 work on 𝑗 (we need two states because we

might have two waves). This is followed by rounds in which only

a fraction of the ants are working; this fraction is small enough

so that all ants receive feedback lack and large enough to ensure

that the underload is small. After leaving𝑤
𝑗

5
the ants are split into

two groups out of which only one is working (one group moves

to the working state 𝑤
𝑗

3
and the other one to idle state 𝑖

𝑗

4
). The

fraction that moves to 𝑖
𝑗

4
, transitions in the next step to 𝑖

𝑗

3
. This

is necessary because the ants moved to the oscillating machine in

one or two waves. With such a mechanism a roughly 𝑏𝛾 fraction of

the total number of ants in the oscillating machine will be in idle

states at least once every 4 time steps. Out of every 4 time steps we

have one sure lack and one sure overload separated by one step

of a (possible) grey zone and such a pattern of feedbacks prevents

ants from joining and leaving the task hence guarantees a stable

allocation.

Our machine has few additional features that ensure its ro-

bustness to arbitrary initialization. The oscillating machine gets

“cleaned” after the ants see an overload 3 times in a row. In such a

case all the ants from the oscillating machine transition to𝑤
𝑗

1
. The

idea is that it is easier to argue about the system when the ants are

in every step either in the filtering or in the oscillating machine

and since our system has to work from any initial state, we cannot

exclude the case where the ants are in both machines. Another

reason for this feature is when a small number of ants (i.e., much

smaller than the demand) joins the task, we want these ants stay in

the oscillating machine until a large number joins𝑤
𝑗

1
from 𝑖∗ (note

that these ants cannot wait in the filtering machine because there

is a constant “flow” from filtering machine to 𝑖∗). Using this feature
we can argue that, informally speaking, until the first overload,
the total number of ants committed to the task is nondecreasing.

The second feature is that the ants from 𝑖∗ can join𝑤
𝑗

1
only after

seeing lack for 5 times in a row. The idea is that such a situation

can occur only when the total number of ants committed to task 𝑗

is small. If the number of ants in the oscillating machine is close to

optimal, we also obtain feedback lack (because some ants may in

idle states 𝑖
𝑗

4
and 𝑖

𝑗

5
) but not 5 times in a row because once every 4

steps there is a step when all the ants from oscillating machine are

working on the task.

Self-Stabilizing Task Allocation In Spite of Noise SPAA ’20, July 15–17, 2020, Virtual Event, USA

4.3 Memory
Each ant is equipped with memory in which we want to store

its state, previous feedbacks and id of the task from which the

ant wants to collect feedback in the next round. In our Algorithm

Controlled Oscillations we need ⌈log
2
𝑘⌉ bits to store task id. If the

ant is in 𝑖∗ it is the id of the task from which the ant is collecting

feedback and otherwise it is the id of the task to which the ant is

committed. Note that if the ant is not in 𝑖∗ then it collects feedback

from the environment about the task to which it is committed hence

we do not need to store its identifier again. Also, when the ant joins

a task from 𝑖∗ it always joins the task from which it just collected

feedback thus remembering only one task id is sufficient.

We need few more bits to encode the remaining information. If

the ant is in 𝑖∗ we need the information about howmany (0, 1, 2, 3 or

4) previous feedbacks from currently observed task was lack. If the
ant is not is 𝑖∗ we need to store the state (9 values) and how many

previous observations of the task feedback returned overload (3
values). Thus together we have 5 different values if ant is in 𝑖∗ and 27
different values otherwise. We can enumerate all these values and

store them on 5 bits of memory hence ⌈log
2
𝑘⌉ + 5 bits of memory

per ant are sufficient for Algorithm Controlled Oscillations.

4.4 Analysis
In the following analysis we consider an interval of time steps

I = [1, 2, . . . ,𝑇] of length 𝑇 ≤ 𝑛2 and we will analyze the evo-

lution of the system and the total number of inequalities in this

interval assuming an arbitrary initial configuration in step 1. We

will later show how to combine such intervals and obtain the result

for arbitrarily large 𝑇 .

Our proof idea is as follows. We first define several ’bad’ events

(e.g. ant receiving incorrect feedback outside of the grey zone) and

prove that w.h.p. none of such events happen during interval I.
Conditioning on this, we can analyze the process deterministically

by always assuming the worst case within the bounds on which we

conditioned. We divide the evolution of the load of each task in time

into three phases and bound the number of inaccuracies in each of

these phases separately, we note that the phases of the tasks are not

necessarily aligned across different tasks. Transitions between the

phases happen when for the first time the load (or the total number

of ants committed to a task) crosses certain fixed threshold value.

We will show that the construction of our algorithm guarantees

that for each task each such an event can only happen at most once

in interval I. In the first phase, the task is underloaded and always

returns feedback lack. Therefore, the number of ants committed

to this task monotonically increases. To bound the inaccuracies

caused by the tasks in the first phase we have to first argue about

the availability of idle ants (we prove how fast the ants leave the

overloaded tasks). Then, even though we cannot argue about how

quickly any specific task advances to the second phase, we can show

that in each interval of 12 steps there is some progress across all the

tasks. Using this we can bound the total number of inaccuracies of

all the tasks in the first phase. When the number of ants committed

to some task crosses a certain threshold, then the task enters a

second phase during which the load of the task is close to the

demand. We can guarantee that within this phase the load never

falls below a certain value and this phase ends when the number

of working ants increases above another threshold. This starts the

third phase in which there is a (possibly very) large load at the task.

We prove that after such an event all the ants in the task transition

to the filtering machine. Then, the ants leave the task (the number

of ants in the task decreases geometrically) until an almost correct

number remains. This group then moves to the oscillating machine

where the number of workers oscillates in a controlled way around

the demand ensuring that no ants leave nor join the task.

For each ant 𝑖 we define 𝑎
(𝑖)
𝑡 to be the state in which ant 𝑖 is

during round 𝑡 . We denote by 𝑓
(𝑠)
𝑡 the number of ants that are

in state 𝑠 during round 𝑡 , i.e., 𝑓 (𝑠)𝑡 =
∑
𝑖 1𝑎 (𝑖)

𝑡 =𝑠
. We abuse the

notation slightly and write 𝑓
(𝑗)
𝑡 to denote the total number of

ants committed to task 𝑗 , i.e., 𝑓 (𝑗)𝑡 =
∑
𝑠∈𝑆 𝑗 𝑓

(𝑠)
𝑡 . By, 𝑓

(𝑖∗)
𝑡 we

denote the number of ants that are not committed to any task

at time 𝑡 . The total number of ants working on task 𝑗 in step

𝑡 equals𝑊
(𝑗)
𝑡 =

∑
𝑠∈{𝑤 𝑗

1
,𝑤

𝑗

2
,𝑤

𝑗

3
,𝑤

𝑗

4
,𝑤

𝑗

5
} 𝑓

(𝑠)
𝑡 and we can similarly

define the number of idle ants committed to task 𝑗 in step 𝑡 as:

𝐼
(𝑗)
𝑡 =

∑
𝑠∈{𝑖 𝑗

1
,𝑖
𝑗

2
,𝑖
𝑗

3
,𝑖
𝑗

4
} 𝑓

(𝑠)
𝑡 . Let Δ be the set of transitions of our

(probabilistic) state machine. Let random variable Λ
(𝛿)
𝑡 denote the

number of ants applying transition 𝛿 ∈ Δ in step 𝑡 .

We start by defining several ‘good’ events. We will later prove

that all of these events occur w.h.p. in all steps 𝑡 ∈ I for every ant

𝑖 ∈ [𝑛] and for each task 𝑗 ∈ [𝑘].
(1) E𝒇 𝒆𝒆𝒅𝒃𝒂𝒄𝒌 : If |𝑑 (𝑗) −𝑊

(𝑗)
𝑡−1 | ≥ 𝛾∗𝑑 (𝑗) then at the beginning

of step 𝑡 , the feedback from 𝑗 received by all the ants is

correct, meaning that 𝐹
(𝑗)
𝑡 (𝑖) = lack if 𝑑 (𝑗) −𝑊 (𝑗)

𝑡−1 ≥ 𝛾∗𝑑 (𝑗)

and 𝐹
(𝑗)
𝑡 (𝑖) = overload if 𝑑 (𝑗) −𝑊

(𝑗)
𝑡−1 ≤ −𝛾∗𝑑 (𝑗) for each

ant 𝑖 that receives feedback from task 𝑗 .

(2) E𝒕𝒓𝒂𝒏𝒔𝒊𝒕 𝒊𝒐𝒏: For any transition 𝛿 ∈ Δ, the number of ants

applying this transition is close to its expected value:���Λ(𝛿)
𝑡 − E

[
Λ
(𝛿)
𝑡

] ��� ≤ max

{
E
[
Λ
(𝛿)
𝑡

]
/20, 360 ln𝑛

}
.

(3) E𝒔𝒆𝒍𝒆𝒄𝒕 𝒊𝒐𝒏: If 𝑓
(𝑖∗)
𝑡 > 48𝑘 ln𝑛 then feedback about 𝑗 is col-

lected by at least 𝑓
(𝑖∗)
𝑡 /(2𝑘) ants in state 𝑖∗.

(4) E𝒊𝒅𝒍𝒆 : The number of ants in idle states of any task is bounded

by a fraction of ants in the working states of this task: 𝐼
(𝑗)
𝑡 ≤

max{12𝛾𝑊 (𝑗)
𝑡 , 1296 ln𝑛} and if 𝑓

(𝑗)
𝑡 > 110 ln𝑛/𝛾 , then the

total number of ants committed to any task does not decrease

too quickly: 𝑓
(𝑗)
𝑡+1 ≥ (1 − 12𝛾) 𝑓 (𝑗)𝑡 .

(5) E𝒍𝒆𝒂𝒗𝒆 : If𝑊
(𝑗)
𝑡 ≥ 360 ln𝑛/𝛾 then the number of ants work-

ing on any task does not decrease too quickly: 𝑊
(𝑗)
𝑡+1 ≥

(1 − 1.1𝑏𝛾)𝑊 (𝑗)
𝑡 .

Using Chernoff bound we can prove that event E = E𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 ∩
E𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 ∩ E𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 ∩ E𝑖𝑑𝑙𝑒 ∩ E𝑙𝑒𝑎𝑣𝑒 happens w.h.p.

Lemma 4.1. P [E] ≥ 1 − 1/𝑛2.

Assuming that event E takes place, the remaining analysis of

Algorithm Controlled Oscillations in interval I is deterministic.

Whenever the load of some fixed task is inside the grey zone, we

make no assumption about the feedback received by the ants about

this task. However if it is outside of the grey zone, then conditioning

SPAA ’20, July 15–17, 2020, Virtual Event, USA Dornhaus et al.

on E𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 , the ants receive the same, correct feedback. In this

case, the ants in the same state apply the transitions from this state

with the same probability and using event E𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 we can argue

about the number of ants applying each transition.

In the following we define time steps that mark the transitions

between phases of each task. Let 𝜏
(𝑗)
1

be the smallest step in interval

I such that the total number of ants comitted to 𝑗 is at least 𝑓
(𝑗)
𝜏
(𝑗)
1

≥

(1 − 𝛾)𝑑 (𝑗) and let 𝜏
(𝑗)
2

be the smallest step in interval I such

that the number of ants working on 𝑗 is at least (1 + 15𝛾)𝑑 (𝑗)

(𝑊
(𝑗)
𝜏
(𝑗)
2

≥ (1 + 15𝛾)𝑑 (𝑗)). If 𝑓 (𝑗)𝑡 < (1 − 𝛾)𝑑 (𝑗) for all steps 𝑡 ∈ I we

set 𝜏
(𝑗)
1

= 𝑇 + 1, and similarly if𝑊
(𝑗)
𝑡 < (1 + 15𝛾)𝑑 (𝑗) for all steps

𝑡 ∈ I we set 𝜏
(𝑗)
2

= 𝑇 + 1. We say that until 𝜏
(𝑗)
1

, task 𝑗 is in the

first phase and in 𝜏
(𝑗)
1

it is advanced to the second phase that lasts

until 𝜏
(𝑗)
2

. In step 𝜏
(𝑗)
2

task 𝑗 is advanced to the third phase which

lasts until the end of interval I.
We will bound the total inaccuracy of the algorithm separately

for each phase. We first bound the total inaccuracy caused by the

tasks in the first phases. To show this we need to argue about how

quickly the tasks get advanced to their second phases.We know that

a task in its first phase always returns feedback lack (by E𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘)

hence if ants in 𝑖∗ are available, some fraction of them will join

each such task (we can use E𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 to lowerbound the number

of ants that choose any underloaded task). What is missing is at

what rate the ants from overloaded tasks return to 𝑖∗ to become

available to join the underloaded ones. We bound this rate in the

next lemma.

Lemma 4.2. Assume event E and that 𝛾 ≤ 0.01. For any 𝑡 ∈ I and
𝑗 ∈ [𝑘] such that 𝑓 (𝑗)𝑡 ≥ (1 + 15𝛾)𝑑 (𝑗) we have that in the interval

[𝑡, 𝑡 + 5] at least 𝛾 𝑓 (𝑗)𝑡 /2 ants transition from 𝑖
𝑗

2
to state 𝑖∗.

Now we are ready to bound the inaccuracy of our algorithm. We

fix 𝛾 ∈ [𝛾∗, 1/100] and split the Inaq15·𝛾 (𝑇) into three components

Inaq15·𝛾 (𝑇) = Inaq15·𝛾 (𝑇, 1)+Inaq15·𝛾 (𝑇, 2)+Inaq15·𝛾 (𝑇, 3), where
Inaq15·𝛾 (𝑇, 𝑖) denotes the inaccuracy of the algorithm in interval

[1,𝑇], due to the tasks in 𝑖-th phase for 𝑖 = 1, 2, 3.

Lemma 4.3. [Inaccuracy First Phase] Assume event E and that
𝛾 ≤ 0.01. We have Inaq15𝛾 (𝑇, 1) = 𝑂 (𝑘/𝛾2).

Proof. We define the following pair of potentials. The number

of tasks still in the first phase in step 𝑡 : Φ(𝑡) = ∑
𝑗 ∈[𝑘] 1𝑡<𝜏 (𝑗)

1

, the

number of ants below a certain threshold in each task in step 𝑡 :

Ξ(𝑡) = ∑
𝑗 ∈[𝑘] max{0, (1−𝛾)𝑑 (𝑗) − 𝑓

(𝑗)
𝑡 }. By E𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 , both these

potentials are non-increasing. Moreover by the definition of 𝜏
(𝑗)
1

,

we have Φ(𝑡) = 0 if and only if Ξ(𝑡) = 0. Hence we need only to

show how many steps are needed until both these potentials will

reach 0.

Fix any time step 𝑡 > 11. We want to show that if Ξ(𝑡) > 0 then

in interval [𝑡 − 11, 𝑡] one of two events can happen:

(1) Φ(𝑡 − 11) − Φ(𝑡) ≥ 1

(2) Ξ(𝑡 − 11) − Ξ(𝑡) ≥ 𝛾2𝑛/(24𝑘).
This means that either of the potential decreases in each time

interval of length at least 12.

We define a shorthand notation for the total demand as 𝑛 =∑
𝑗 ∈[𝑘] 𝑑

(𝑗)
. We also denote the number of ants beyond a certain

threshold: Ψ(𝑡) = ∑
𝑗 ∈[𝑘] max{0, 𝑓 (𝑗)𝑡 − (1 + 15𝛾)𝑑 (𝑗) }.

In any time 𝜏 , each ant is either idle or committed to some task:

𝑛 =
∑
𝑗 ∈[𝑘]

𝑓
(𝑗)
𝜏 + 𝑓

(𝑖∗)
𝜏 = 𝑓

(𝑖∗)
𝜏 +

∑
𝑓
(𝑗)
𝜏 ≤(1−𝛾)𝑑 (𝑗)

𝑓
(𝑗)
𝜏

+
∑

(1−𝛾)𝑑 (𝑗)<𝑓
(𝑗)
𝜏 <𝑑 (𝑗)

𝑓
(𝑗)
𝜏 +

∑
𝑑 (𝑗) ≤𝑓 (𝑗)

𝜏 < (1+15𝛾)𝑑 (𝑗)

𝑓
(𝑗)
𝜏

+
∑

𝑓
(𝑗)
𝜏 ≥(1+15𝛾)𝑑 (𝑗)

𝑓
(𝑗)
𝜏 −

∑
𝑗 ∈[𝑘]

𝑑 (𝑗) +
∑
𝑗 ∈[𝑘]

𝑑 (𝑗)

= 𝑓
(𝑖∗)
𝜏 −

∑
𝑓
(𝑗)
𝜏 ≤(1−𝛾)𝑑 (𝑗)

(
(1 − 𝛾)𝑑 (𝑗) − 𝑓

(𝑗)
𝜏

)
+

∑
(1−𝛾)𝑑 (𝑗)<𝑓

(𝑗)
𝜏 <𝑑 (𝑗)

(
𝑓
(𝑗)
𝜏 − (1 − 𝛾)𝑑 (𝑗)

)
−

∑
𝑑 (𝑗) ≤𝑓 (𝑗)

𝜏 < (1+15𝛾)𝑑 (𝑗)

(
(1 + 15𝛾)𝑑 (𝑗)) − 𝑓

(𝑗)
𝜏

)
+

∑
𝑓
(𝑗)
𝜏 ≥(1+15𝛾)𝑑 (𝑗)

(
𝑓
(𝑗)
𝜏 − (1 + 15𝛾)𝑑 (𝑗))

)
+ 𝑛 −

∑
𝑑 (𝑗)>𝑓

(𝑗)
𝜏

𝛾𝑑 (𝑗) + 15

∑
𝑑 (𝑗) ≤𝑓 (𝑗)

𝜏

𝛾𝑑 (𝑗)

≤ 𝑓
(𝑖∗)
𝜏 − Ξ(𝜏) + Ψ(𝜏) + (1 + 15𝛾)𝑛,

where the last inequality is true because, out of six sums after the

second equality, the first and fourth sums equal exactly to Ξ(𝜏)
and Ψ(𝜏) respectively, the second sum gets canceled with the fifth

one (giving the inequality) and the third sum is always negative.

This inequality, knowing that 𝑛 ≥ (1 + 17𝛾)∑𝑗 ∈[𝑘] 𝑑
(𝑗)

gives us

Ψ(𝜏)+𝑓 (𝑖
∗)

𝜏 ≥ 2𝛾𝑛. Thus at least one of the following is true: 𝑓
(𝑖∗)
𝑡−11 ≥

𝛾𝑛 or Ψ(𝑡 − 11) ≥ 𝛾𝑛. If the latter is true then by Lemma 4.2, within

the next 6 time steps at least 𝛾2𝑛/2 ants transition to 𝑖∗. Hence in
both cases there exists a step 𝜏 ∈ {𝑡−5, 𝑡−4, . . . , 𝑡} in which we have
𝑓
(𝑖∗)
𝜏 ≥ 𝛾2𝑛/12. Since 𝛾2𝑛/12 ≥ 48𝑘 ln𝑛 (by Assumption 3.1) we

have, conditioned on E𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 that in step 𝜏 each task is selected by

at least 𝛾2𝑛/(24𝑘) ants. Take any task 𝑗 that in step 𝜏 contributes to

sum in Ξ(𝑡) (i.e., 𝑡 < 𝜏
(𝑗)
1

) – such a task has to exist since Ξ(𝑡) > 0.

This task is selected by at least 𝛾2𝑛/(24𝑘) idle ants. In the following

5 steps, these ants will collect feedback from task 𝑗 . If in all of these

steps we will have 𝑓
(𝑗)
𝜏 < (1 − 𝛾)𝑑 (𝑗) , then by E𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 all ants

will receive lack and join the task, which will result in a decrease

of Ξ by at least 𝛾2𝑛/(24𝑘) (event (2)). Or in any of these steps we

have 𝑓
(𝑗)
𝑡 ≥ (1 − 𝛾)𝑑 (𝑗) , which means that the task advanced to

the second phase – which means that Φ decreases by 1 (event (1)).
Since each task can advance to the second phase at most once,

event (1) can happen at most 𝑘 times. Since Ξ(0) ≤ 𝑛, event (2)
can happen at most 24𝑘/𝛾2 times. After these at most 𝑘 + 24𝑘/𝛾2
intervals hence at most 12(𝑘 +24𝑘/𝛾2) steps we must have Ξ(𝑡) = 0

and Φ(𝑡) = 0. □

To show that the inaccuracy in the second phase is 0, we will

prove that during the whole second phase the load of each task is

Self-Stabilizing Task Allocation In Spite of Noise SPAA ’20, July 15–17, 2020, Virtual Event, USA

always close to the demand. The inaccuracy in second and third

phases will be bounded for each task separately. We denote by

Inaq𝜀
𝑗
(𝑇, 𝑖), the inaccuracy of 𝑗-th task in 𝑖-th phase during interval

[1,𝑇].

Lemma 4.4. [Inaccuracy Second Phase] Assume E and that 𝛾 ≤
0.01, then we have for any task 𝑗 ∈ [𝑘]: Inaq15𝛾

𝑗
(𝑇, 2) = 0.

Proof. We need to first show that 𝑓
(𝑗)
𝑡 ≥ (1 − 𝛾)𝑑 (𝑗) for each

time step 𝑡 in interval [𝜏 (𝑗)
1

,𝑇]. Assume that 𝑓
(𝑗)
𝑡 ≥ (1−𝛾)𝑑 (𝑗) and

we will show it for 𝑡 + 1. If any ants are leaving task 𝑗 (transitioning

to 𝑖∗) in step 𝑡 + 1, this means that these ants received feedback

overload from step 𝑡 , which means by E𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 that 𝑊
(𝑗)
𝑡 >

(1 − 𝛾)𝑑 (𝑗) . Since connection to 𝑖∗ is only from an idle state 𝑖
𝑗

2
, we

have 𝑓
(𝑗)
𝑡+1 ≥ 𝑊

(𝑗)
𝑡 > (1 − 𝛾)𝑑 (𝑗) . We showed that in the whole

interval [𝜏 (𝑗)
1

,𝑇] the total number of ants committed to task 𝑗 is at

least (1 − 𝛾)𝑑 (𝑗) .
If 𝑓

(𝑗)
𝑡 ≥ (1 − 𝛾)𝑑 (𝑗) , we have conditioned on E𝑖𝑑𝑙𝑒 that 𝐼

(𝑗)
𝑡 ≤

12𝛾𝑊
(𝑗)
𝑡 , thus:

(1 − 𝛾)𝑑 (𝑗) ≤𝑊
(𝑗)
𝑡 + 12𝛾𝑊

(𝑗)
𝑡 ,

and since (1 −𝛾)/(1 + 12𝛾) ≥ 1 − 15𝛾 , we get the that in every step

𝜏 ∈ [𝜏 (𝑗)
1

, 𝜏
(𝑗)
2

− 1], |𝑊 (𝜏)
𝑗

− 𝑑 (𝑗) | ≤ 15𝛾𝑑 (𝑗) , thus Inaq15𝛾
𝑗

(𝜏) = 0.

Since the last equation is true in each step of the second phase (of

task 𝑗), the claim holds. □

Finally we bound the inaccuracy in the third phase. The following

lemma shows that shortly after the advancement of the task to the

third phase, all the ants committed to this task will only be in the

filtering machine. Secondly, this shows that the number of ants in

state 𝑤
𝑗

1
will be at least (1 + 𝛾)𝑑 (𝑗) , hence the task will not be in

the grey zone. We will later show that from such a configuration

with at least (1 + 𝛾)𝑑 (𝑗) ants in𝑤
𝑗

1
and no ants in 𝑂 𝑗

, the system

quickly reaches an almost-optimal allocation of ants to this task

and stabilizes.

Lemma 4.5. Assume E holds and that 𝛾 ≤ 0.01. Then, for each

task 𝑗 ∈ [𝑘] if 𝜏 (𝑗)
2

+2 ≤ 𝑇 we have:∀𝑠∈𝑂 𝑗 𝑓
(𝑠)
𝜏
(𝑗)
2

+2
= 0, and 𝑓

(𝑤 𝑗

1
)

𝜏
(𝑗)
2

+2
≥

(1 + 𝛾)𝑑 (𝑗) .

It might happen that a very large number of ants is committed

to task 𝑗 in step 𝜏
(𝑗)
2

. Since having a much too large number of

ants in a task also counts as inaccuracy, we need to show that the

ants will leave task 𝑗 . In the next lemma we have to prove that the

ants slowly leave the filtering machine and transition to 𝑖∗ until a
correct (i.e., close to the demand) number of ants remains. The total

inaccuracy in this interval can be bounded because the decrease in

the number of ants working on the task is geometric. After that,

the ants move in at most two waves to the oscillating machine and

remain there until the end of interval I maintaining an (almost)

optimal number of working ants.

Lemma 4.6. [Inaccuracy Third Phase] Assume E and that𝛾 ≤ 0.01,
then we have for any 𝑗 ∈ [𝑘]: Inaq15𝛾

𝑗
(𝑇, 3) = 𝑂 (log𝑛/𝛾).

Proof. If 𝜏
(𝑗)
2

+ 100 > 𝑇 then the claim holds because 𝛾 < 1/100.
In the opposite case by Lemma 4.5 we know that in step 𝜏

(𝑗)
2

+ 2

all ants committed to task 𝑗 can be only in the filtering machine

and 𝑓
(𝑤 𝑗

1
)

𝜏
(𝑗)
2

+2
≥ (1 + 𝛾)𝑑 (𝑗) . We want to show that starting from step

𝜏
(𝑗)
2

+ 3, the overload of task 𝑗 will decrease geometrically and it

will stabilize to a value at most 5.5𝛾𝑑 (𝑗) and will not increase above
this value within interval I.

Observe that since 𝑓
(𝑤 𝑗

1
)

𝜏
(𝑗)
2

+2
≥ (1 + 𝛾)𝑑 (𝑗) then by E𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 all

ants receive overload from task 𝑗 in step 𝜏
(𝑗)
2

+ 2. This means that

after 𝜏
(𝑗)
2

+ 2, as long as the number of ants in state𝑤
𝑗

1
is at least

(1 + 𝛾)𝑑 (𝑗) then no ant committed to task 𝑗 will be in any of the

states from 𝑂 𝑗
.

Note that ants in state𝑤
𝑗

1
that receive feedback overload transi-

tion to idle state 𝑖
𝑗

1
with probability 𝑎𝛾 . Thus the number of working

ants decreases geometrically until it drops below (1 + 𝛾)𝑑 (𝑗) .
Consider time steps 𝑡 = 𝜏

(𝑗)
2

+ 2, 𝜏
(𝑗)
2

+ 3, We want to show

that if in step 𝑡 , value 𝑓
(𝑤 𝑗

1
)

𝑡 satisfies 𝑓
(𝑤 𝑗

1
)

𝑡 · (1−1.05𝑎𝛾) ≥ (1+𝛾)𝑑 (𝑗)
then in step 𝑡 + 1 we do not enter the grey zone. In this case we

have𝑊
(𝑗)
𝑡 ≥ (1+𝛾)𝑑 (𝑗) and by E𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 all ants receive feedback

overload from task 𝑗 thus ants leave state𝑤
𝑗

1
with probability 𝑎𝛾

and no ant joins task 𝑗 . Thus all ants working on task 𝑗 in step 𝑡 + 1

are in state𝑤
𝑗

1
and by E𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 we have:

𝑊
(𝑗)
𝑡+1 = 𝑓

(𝑤 𝑗

1
)

𝑡+1 ≥ 𝑓
(𝑤 𝑗

1
)

𝑡 − 𝑓
(𝑤 𝑗

1
)

𝑡 · 1.05𝑎𝛾 ≥ (1 + 𝛾)𝑑 (𝑗) .

Consider the smallest time step 𝑡∗ ≥ 𝜏
(𝑗)
2

+ 2 such that 𝑓
(𝑤 𝑗

1
)

𝑡∗ ·
(1 − 1.05𝑎𝛾) ≤ (1 + 𝛾)𝑑 (𝑗) . We know that until this step we had in

task 𝑗 an overload by a factor of at least 1+𝛾 hence all ants received

feedback overload by E𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 . Using this fact we can bound the

rate of decrease of the load for task 𝑗 in steps 𝜏
(𝑗)
2

+2, 𝜏 (𝑗)
2

+3, . . . , 𝑡∗.
By E𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 ,𝑊 (𝑗)

𝜏 ≤ (1 − 0.95𝑎𝛾)𝑊 (𝑗)
𝜏−1 . Thus:

𝑡∗ − 𝜏
(𝑡)
2

≤ log
1/(1−0.95𝑎𝛾) 𝑛 =

log𝑛

log

(
1 − 0.95𝑎𝛾

1−0.95𝑎𝛾

)
≤ 2.5 log𝑛/𝛾 .

In the remaining part of the proof we will show that in steps [𝑡∗,𝑇],
the load of the task will be accurate. We prove that in the next

few steps after 𝑡∗, the ants committed to this task move from the

filtering to the oscillating machine. Denote two sets of ants:

𝐴1 = {𝑖 ∈ [𝑛] : 𝑎 (𝑖)
𝑡∗ = 𝑤

𝑗

1
},

𝐴2 = {𝑖 ∈ [𝑛] : 𝑎 (𝑖)
𝑡∗ = 𝑖

𝑗

1
}.

We know that (1 + 𝛾)𝑑 (𝑗)/(1 − 1.05𝑎𝛾) ≥ |𝐴1 | ≥ (1 + 𝛾)𝑑 (𝑗) .
Moreover by E𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 we have |𝐴1 | ≥ (1 − 1.05𝑎𝛾) 𝑓 (𝑤

𝑗

1
)

𝑡∗−1 . The

only way to be in state 𝑖
𝑗

1
in step 𝑡∗ is to transition from𝑤

𝑗

1
and this

transition happens with probability 𝑎𝛾 thus E [|𝐴2 |] = 𝑎𝛾 𝑓
(𝑤 𝑗

1
)

𝑡∗−1

SPAA ’20, July 15–17, 2020, Virtual Event, USA Dornhaus et al.

and by E𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 :

|𝐴2 | ≤ 1.05𝑎𝛾 𝑓
(𝑤 𝑗

1
)

𝑡∗−1 ≤ 1.05𝑎𝛾 |𝐴1 |
1 − 1.05𝑎𝛾

≤ 1.05𝑎𝛾 (1 + 𝛾)𝑑 (𝑗)

(1 − 1.05𝑎𝛾)2
≤ 2.8𝛾𝑑 (𝑗) ,

where in the last equation we used the fact that𝛾 < 0.01 and 𝑎 = 2.5.

Now we want to show that out of these two groups 𝐴1 and 𝐴2,

all of 𝐴1 and some subset of 𝐴2 will transition to the oscillating

machine in steps 𝑡∗ + 2 and 𝑡∗ + 3 and then remain there for a

polynomial number of steps.

Consider the number of ants working on task 𝑗 in step 𝑡∗ + 2.

Observe that by the definition of the algorithm, since in step 𝑡∗ all
ants received feedback overload from task 𝑗 and all states in 𝑂 𝑗

were empty then the number of working ants in steps 𝑡∗ + 1 and

𝑡∗ + 2 decreases in expectancy by a factor of 1 − 𝑎𝛾 . Moreover no

new ants can join the task in these two steps from 𝑖∗ because all
ants received overload in step 𝑡∗. Hence we have by E𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 :

𝑊
(𝑗)
𝑡∗+1 ≤𝑊

(𝑗)
𝑡∗ (1 − 0.95𝑎𝛾)

Now, in step 𝑡∗ + 1 all ants working on task 𝑗 are still in state 𝑤
𝑗

1

but in this step the load might be in the grey zone. Thus in this step,

from𝑤
𝑗

1
there are two possible transitions to idle states (𝑖

𝑗

1
and 𝑖

𝑗

3
).

And conditioned on E𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 we get:

𝑊
(𝑗)
𝑡∗+2 ≤𝑊

(𝑗)
𝑡∗ (1 − 0.95𝑎𝛾)2 + 720 ln𝑛

≤ (1 + 𝛾) (1 − 0.95𝑎𝛾)2𝑑 (𝑗)
1 − 1.05𝑎𝛾

≤ (1 − 𝛾)𝑑 (𝑗) .

Now, conditioned on E𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 all ants receive feedback lack
from task 𝑗 in step 𝑡∗ + 2. This means that all remaining ants that

are in step 𝑡∗ + 2 in the filtering machine transition in step 𝑡∗ + 3 to

states 𝑖
𝑗

3
and𝑤

𝑗

2
. Observe that all the ants from 𝐴1 join states 𝑖

𝑗

3
or

𝑤
𝑗

2
in steps 𝑡∗ + 2 and 𝑡∗ + 3 because in step 𝑡∗ + 1 these ants are

either in𝑤
𝑗

1
or 𝑖

𝑗

1
hence no ant from this set can transition to 𝑖∗ in

step 𝑡∗ + 1. In step 𝑡∗ + 2 some of these ants transition to𝑤
𝑗

2
or 𝑖

𝑗

3
.

In 𝑡∗ + 3 all remaining of ants from 𝐴1 that are in states from 𝐹 𝑗

transition to𝑤
𝑗

2
or 𝑖

𝑗

3
, because they receive feedback lack. Observe

secondly that some of the ants from 𝐴2 may also join states𝑤
𝑗

2
or

𝑖
𝑗

3
in steps 𝑡∗ + 2 and 𝑡∗ + 3 but no other ant can.

In step 𝑡∗ + 3 we have the following:

(1 + 𝛾)𝑑 (𝑗) ≤ |𝐴1 | ≤ 𝑓
(𝑤 𝑗

2
)

𝑡∗+3 + 𝑓
(𝑤 𝑗

4
)

𝑡∗+3 + 𝑓
(𝑖 𝑗
3
)

𝑡∗+3

≤ |𝐴1 | + |𝐴2 | ≤ (1 + 3.8𝛾)𝑑 (𝑗) ,

and no ant committed to task 𝑗 is in any other state. Thus we have

two “waves” of ants, where the second wave is one step behind the

first one (it may happen that one of the waves is empty). In step

𝑡∗ + 4 all ants from both waves are working (in states𝑤
𝑗

4
and𝑤

𝑗

5
),

which results in overload conditioned on E𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 . Since ants

from 𝑖∗ need at least a sequence of 5 times lack in a row, no new

ants will join this task. In the next two steps, both waves are split

into working and idle states, where each ant transitions into an idle

state with probability 𝑏𝛾 . We have then by E𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 :

𝑊
(𝑗)
𝑡∗+6 ≤ (1 + 3.8𝛾) (1 − 0.9𝑏𝛾)𝑑 (𝑗) + 720 ln𝑛 ≤ (1 − 𝛾)𝑑 (𝑗) ,

𝑊
(𝑗)
𝑡∗+6 ≥ (1 + 𝛾) (1 − 1.1𝑏𝛾)𝑑 (𝑗) − 720 ln𝑛 ≥ (1 − 5.5𝛾)𝑑 (𝑗)

which means that by E𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 all ants receive feedback lack in
step 𝑡∗ + 6. By repeating the same argument inductively we have

that for all 𝑖 = 0, 1, . . . in each step 𝑡∗ + 4 + 4𝑖 ants receive feedback

overload and in each step 𝑡∗+6+4𝑖 each ant receives feedback lack.
This means that no new ant joins task 𝑗 and no ant leaves the states

𝑂 𝑗
at least until the end of intervalI and the difference between the

load of the task 𝑗 and the demand 𝑑 (𝑗) is at most 5.5𝛾𝑑 (𝑗) in every

step between 𝑡∗ and𝑇 . This means that Inaq15𝛾
𝑗

(𝑇, 3) ≤ 𝑡∗ − 𝜏
(𝑗)
2

=

𝑂 (log𝑛/𝛾).
□

Directly from Lemma 4.3, Lemma 4.4 and Lemma 4.6 we get

that Inaq15𝛾 (𝑇) = 𝑂 (log𝑛/𝛾) for any 𝑇 , such that 𝑇 ≤ 𝑛2 with

probability at least 1 − 1/𝑛2. For longer intervals, we simply split

them into subintervals of length 𝑛2. We then bound the number of

intervals in which event E fails. Our main Theorem 3.2 follows.

5 LOWER BOUND
The idea of our lower bound is as follows. From the bound on

the memory size we can easily derive an upper bound 𝑠 on the

number of states of any ant. By Assumption 3.4 we know that from

any state there exists a sequence of at most 𝑠 feedbacks that an

ant transitions from the original state to a working state of any

task 𝑗 with constant probability. We set the demand vector to be

𝑑 (𝑗) =
√
𝑛 for all 𝑗 ∈ [𝑘]. We show that if in 𝑠 consecutive steps an

absolute value of the deficit of some task 𝑗 is smaller than 2𝑠𝜀𝛾∗𝑑 (𝑗) ,
then with high probability Ω(𝑛2/3) ants will join task 𝑗 during this

interval. This shows that the algorithm cannot be 2𝑠𝜀𝛾∗-accurate.

6 CONCLUSIONS
We presented a simple proof-of-concept algorithm which shows

that the problem of distributed task allocation by constant-memory

agents (that cannot even store the number of all agents) can be

solved in the model with binary feedback even if the feedback is

noisy. The algorithm is very resilient to noise, and our preliminary

simulations show that it can also adapt to changes in demands,

changes of the number of ants and even changes of the number of

tasks. It would be interesting to get a concrete result in a dynamic

environment. Our results also suggest that there might exist a

memory-accuracy tradeoff.

The algorithm embraces the seeming obstacle of synchronization

(which we introduced to model the delay of information) to perform

controlled oscillations. It would be interesting to see if variations of

this algorithm also work in settings of less synchronization (what

if some ants collect feedback more frequently than others i.e., what
if local clocks of the ants do not tick at the same rate?).

Moreover, it remains an open problem to understand if and by

how much simple communication among the ants can help. This

leads to the question of which other noise models would make

sense to study and how to design experiments with real ants to

gather more knowledge about the way noise affects the sensing.

Self-Stabilizing Task Allocation In Spite of Noise SPAA ’20, July 15–17, 2020, Virtual Event, USA

REFERENCES
[1] Heiner Ackermann, Simon Fischer, Martin Hoefer, and Marcel Schöngens. 2011.

Distributed algorithms for QoS load balancing. Distributed Computing 23, 5-6

(2011), 321–330.

[2] Petra Berenbrink, Tom Friedetzky, Frederik Mallmann-Trenn, Sepehr Meshkin-

famfard, and Chris Wastell. 2018. Threshold load balancing with weighted tasks.

J. Parallel Distrib. Comput. 113 (2018), 218–226. https://doi.org/10.1016/j.jpdc.

2017.10.012

[3] Samuel N. Beshers and Jennifer H. Fewell. 2001. Models of division of labor in

social insects. Annual review of entomology 46, 1 (2001), 413–440.

[4] Prassede Calabi. 1988. Behavioral flexibility in Hymenoptera: a re-examination

of the concept of caste. Advances in myrmecology (1988), 237–258.

[5] Daniel Charbonneau and Anna Dornhaus. 2015. When doing nothing is some-

thing. How task allocation mechanisms compromise between flexibility, effi-

ciency, and inactive agents. Journal of Bioeconomics 17 (2015), 217–242.
[6] Blaine J Cole. 1991. Short-term activity cycles in ants: generation of periodicity

by worker interaction. The American Naturalist 137, 2 (1991), 244–259.
[7] Blaine J Cole and Franc I Trampus. 1999. Activity cycles in ant colonies: worker

interactions and decentralized control. In Information processing in social insects.
Springer, 289–307.

[8] Alejandro Cornejo, Anna R. Dornhaus, Nancy A. Lynch, and Radhika Nagpal.

2014. Task Allocation in Ant Colonies. In Distributed Computing - 28th Interna-
tional Symposium, DISC 2014, Austin, TX, USA, October 12-15, 2014. Proceedings.
46–60. https://doi.org/10.1007/978-3-662-45174-8_4

[9] Tomer J Czaczkes, Christoph Grüter, and Francis LW Ratnieks. 2013. Negative

feedback in ants: crowding results in less trail pheromone deposition. Journal of
the Royal Society Interface 10, 81 (2013), 20121009.

[10] Ana Duarte, Ido Pen, Laurent Keller, and Franz J. Weissing. 2012. Evolution of

self-organized division of labor in a response threshold model. Behavioral Ecology
and Sociobiology 66, 6 (2012), 947–957.

[11] Ana Duarte, Franz J. Weissing, Ido Pen, and Laurent Keller. 2011. An evolutionary

perspective on self-organized division of labor in social insects. Annual Review
of Ecology, Evolution, and Systematics 42 (2011), 91–110.

[12] Audrey Dussutour, Stamatios C Nicolis, Jean-Louis Deneubourg, and Vincent

Fourcassié. 2006. Collective decisions in ants when foraging under crowded

conditions. Behavioral Ecology and Sociobiology 61, 1 (2006), 17–30.

[13] Clive A Edwards and Patrick J Bohlen. 1996. Biology and ecology of earthworms.
Vol. 3. Springer Science & Business Media.

[14] Deborah M. Gordon. 1989. Dynamics of task switching in harvester ants. Animal
Behaviour 38, 2 (1989), 194–204.

[15] D. M. Gordon. 1996. The organization of work in social insect colonies. Nature
380, 14 March (1996), 121–124.

[16] Deborah M Gordon. 1999. Ants at work: how an insect society is organized. Simon

and Schuster.

[17] Deborah M. Gordon and Natasha J. Mehdiabadi. 1999. Encounter rate and task

allocation in harvester ants. Behavioral Ecology and Sociobiology 45, 5 (01 Apr

1999), 370–377. https://doi.org/10.1007/s002650050573

[18] Torben Hagerup and Christine Rüb. 1990. A Guided Tour of Chernoff Bounds.

Inform. Process. Lett. 33, 6 (1990), 305–308.
[19] MP Hassell and HN Comins. 1978. Sigmoid functional responses and population

stability. Theoretical Population Biology 14, 1 (1978), 62–67.

[20] Martin Hoefer and Thomas Sauerwald. 2013. Brief Announcement: Threshold

Load Balancing in Networks. In 32nd Symposium on Principles of Distributed
Computing PODC. ACM, Montreal, Canada, 54–56. The full version is available

at https://arxiv.org/abs/1306.1402.

[21] Bert Hölldobler and Edward OWilson. 1990. The ants. Harvard University Press.
[22] Gavin M. Leighton, Daniel Charbonneau, and Anna Dornhaus. 2016. Task switch-

ing is associated with temporal delays in Temnothorax rugatulus ants. Behavioral
Ecology 28, 1 (2016), 319–327.

[23] Michael Mitzenmacher and Eli Upfal. 2005. Probability and Computing: Random-
ized Algorithms and Probabilistic Analysis. Cambridge University Press.

[24] Henrique M. Pereira and Deborah M. Gordon. 2001. A trade-off in task allocation

between sensitivity to the environment and response time. Journal of Theoretical
Biology 208, 2 (2001), 165–184.

[25] N. Pinter-Wollman, J. Hubler, J. A. Holley, N. R. Franks, and A. Dornhaus. 2012.

How is activity distributed among and within tasks in Temnothorax ants? Be-
havioral Ecology and Sociobiology 66, 10 (2012), 1407–1420.

[26] Tsvetomira Radeva, Anna Dornhaus, Nancy Lynch, Radhika Nagpal, and Hsin-

Hao Su. 2017. Costs of task allocation with local feedback: Effects of colony

size and extra workers in social insects and other multi-agent systems. PLoS
computational biology 13, 12 (2017), e1005904.

[27] Thomas O Richardson, Jonas I Liechti, Nathalie Stroeymeyt, Sebastian Bonho-

effer, and Laurent Keller. 2017. Short-term activity cycles impede information

transmission in ant colonies. PLoS computational biology 13, 5 (2017), e1005527.

[28] Horst R Thieme. 2003. Mathematics in population biology. Princeton University

Press.

[29] Chris Tofts. 1993. Algorithms for task allocation in ants.(A study of temporal

polyethism: theory). Bulletin of mathematical biology 55, 5 (1993), 891–918.

[30] Chris Tofts and Nigel R Franks. 1992. Doing the right thing: ants, honeybees and

naked mole-rats. Trends in ecology & evolution 7, 10 (1992), 346–349.

https://doi.org/10.1016/j.jpdc.2017.10.012
https://doi.org/10.1016/j.jpdc.2017.10.012
https://doi.org/10.1007/978-3-662-45174-8_4
https://doi.org/10.1007/s002650050573
https://arxiv.org/abs/1306.1402

	Abstract
	1 Introduction
	1.1 Related Work

	2 Model
	2.1 Noisy Feedback
	2.2 Accurate algorithms

	3 Our Results
	3.1 Upper Bound
	3.2 Lower Bound

	4 Upper bound
	4.1 Definition of the Algorithm
	4.2 Intuition of the Algorithm
	4.3 Memory
	4.4 Analysis

	5 Lower bound
	6 Conclusions
	References

