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Time- and angle-resolved photoemission spectroscopy (TR-ARPES) accesses the electronic structure of solids
under optical excitation, and is a powerful technique for studying the coupling between electrons and collective
modes. One approach to infer electron-boson coupling is through the relaxation dynamics of optically excited
electrons, and the characteristic timescales of energy redistribution. A common description of electron relaxation
dynamics is through the effective electronic temperature. Such a description requires that thermodynamic quan-
tities are well-defined, an assumption that is generally violated at early delays. Additionally, precise estimation
of the nonthermal window—within which effective temperature models may not be applied—is challenging.
We perform TR-ARPES on graphite and show that Boltzmann rate equations can be used to calculate the
time-dependent electronic occupation function f (ǫ, t ), and reproduce experimental features given by nonthermal
electron occupation. Using this model, we define a quantitative measure of nonthermal electron occupation and
use it to define distinct phases of electron relaxation in the fluence-delay phase space. More generally, this
approach can be used to inform the nonthermal-to-thermal crossover in pump-probe experiments.
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I. INTRODUCTION

In recent years, the development of ultrashort laser pulses
has enabled the study of many-body electron interactions and
their intrinsic timescales in nonequilibrium conditions [1,2].
Upon optical excitation, elementary scattering processes
(electron-electron, electron-phonon, etc.) redistribute the laser
energy absorbed, leading to a plethora of nonequilibrium
phenomena, such as the melting of equilibrium phases [3,4],
the formation of metastable nonequilibrium phases [5,6],
and transient topological phases [7]. The energy redistri-
bution process is modulated by coupling strengths between
all possible degrees of freedom, but predominantly by the
electron-boson coupling, such as coupling to phonons and/or
magnons [8,9].

Commonly, the study of electron-boson coupling in pump-
probe experiments invokes a two-temperature model (TTM),
in that both electronic and bosonic populations may be
described by their own, distinct, temperatures [10–12]. In
pump-probe thermomodulation experiments, the ultrashort,
intense laser pulses create a nonequilibrium condition be-
tween the electrons and the lattice [13–15]. Within the
TTM description, the electron bath is assumed to be ther-
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malized on the femtosecond time scale of the excitation:
subsequent electron-boson scattering mediates the transfer
of energy from the electron to the boson bath. The latter
is also assumed to maintain a thermalized Bose-Einstein
distribution via boson-boson scattering. The rate of energy
transfer between electrons and bosons, and correspondingly
the electrons’ intrinsic relaxation times, are determined by the
electron-boson coupling strength [11]. This model was used
in early pump-probe studies to extract the electron-phonon
coupling in metals and BCS superconductors [16,17]. How-
ever, later experiments have shown that the electronic bath
does not reach thermal equilibrium before electron-phonon
scattering becomes relevant—especially in the low excitation
regime [18]—thereby invalidating one of the key assumptions
of the TTM [19–21]. Despite this, the TTM remains promi-
nent in the analysis of pump-probe experiments [22–26].

In systems where electrons couple to more than one
bosonic mode, electron relaxation dynamics have been treated
by using multitemperature models (MTM), in which a dis-
tribution at finite temperature is used to describe each
degree of freedom at every delay [8,27,28]. Quasithermal-
ized distributions of electrons, phonons, and magnons, have
been successfully used to describe ultrafast demagnetiza-
tion [27,29], nematic fluctuations [28], orbital order [23],
and electron-phonon coupling [16]. In some cases, MTMs
have been used to partition nonthermal distributions into in-
dependently thermalized subdistributions. For example, the
nonthermal phonon bath has been partitioned into strongly
coupled optical phonons (SCOPs) and the weakly coupled lat-
tice, which heats via anharmonic decay of the SCOPs [22,30].
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FIG. 1. TR-ARPES measurements on graphite. (a) ARPES spectra from graphite measured along the Ŵ-K direction before pump arrival
and at zero delay. The equilibrium (before pump-arrival) temperature is 50 K. The pump pulse has a photon energy of 1.2 eV and a duration of
120 fs. (b) Momentum-integrated energy distribution curves (

∫

k
EDC) (linear scale) shows a strong deviation away from the FD function due to

the compounded contribution of the dispersion and matrix element effects (see text). (c) Momentum-integrated differential energy distribution
curves (�

∫

k
EDC) computed from the curves in panel (b), using

∫

k
EDC3 as a reference. The blue (orange) curve is the �

∫

k
EDC at −400 fs

(180 fs), and is labeled �
∫

k
EDC1,3 (�

∫

k
EDC2,3). The shaded region indicates the difference between two FD distributions, which bears

similarity to the blue curve, but cannot describe the orange one. Accumulation of carriers within the phonon window is indicated by black
arrows; dashed lines indicate the phonon window associated with the A′

1 optical phonon, with momentum K and energy h̄�A′
1

= 0.16 eV.

The nonthermal electron bath has also been partitioned into
two distributions with different chemical potentials and tem-
peratures [31,32], which are then fit with Fermi-Dirac (FD)
distributions to extract the effective temperature for each sub-
distribution.

Much effort has been made to describe the photoexcited
electron distribution [33–36]. While is it important to deter-
mine when temperature becomes a good description of the
electronic distribution, electrons in the nonthermal regime
are also rich with information, which we can retrieve via
carefully designed pump-probe experiments. For instance, we
have recently demonstrated how nonthermal features can be
used to extract the mode-projected electron-phonon matrix
element in graphite [37]. Here we take a closer look at the
evolution of the whole electronic distribution. In TR-ARPES,
the effort to distinguish between thermal and nonthermal
electronic distributions is complicated by the following fac-
tors: (i) ARPES intensity is given by the spectral function,
the photoemission matrix element, and the occupation func-
tion; the first two terms complicate the estimation of the
effective electronic temperature via Fermi-edge fitting [38].
(ii) The definition of the (multiple) phonon temperatures are
arbitrary, as TR-ARPES does not access phonon occupation
directly.

In this work, we circumvent the concept of temperature
and explore the evolution of the electronic and bosonic pop-
ulations within the framework of Boltzmann rate equations.
This well-established methodology has been successful in de-
scribing electron dynamics in metals [20,21,39], reproducing
dynamical trends in time-resolved reflectivity [19] and elec-
tron diffraction [34]. We demonstrate that the consideration of
electron-electron (e-e), electron-phonon (e-ph), and phonon-
phonon (ph-ph) scattering can qualitatively reproduce key
nonthermal features in the electron distribution, as measured
by TR-ARPES on graphite. Finally, we simulate the evolution
of the electron distribution as a function of pump fluence.
By defining a quantitative measure of nonthermal electron

occupation, we identify distinct phases in the fluence-delay
phase space in which the electron distribution either does or
does not manifest nonthermal features.

Although we benchmark our methodology against specific
experiments on graphite, the results are applicable to the
broader discussion of electron relaxation and energy redistri-
bution in any optically excited material system. In addition,
this approach is easily adaptable to various pump-probe ex-
periments. For this reason, the code used to simulate our
graphite experiment is made available for the simulation of
other pump-probe experiments, as well as pedagogical pur-
poses [40].

II. TR-ARPES ON GRAPHITE

We performed TR-ARPES measurements on high quality,
single-crystal graphite (details in Appendix A). The pump
pulse is the output of a femtosecond ytterbium-doped fiber
laser, with 1042 nm fundamental wavelength (1.19 eV). The
probe pulse is the 21st harmonic of the pump (25 eV), pro-
duced via high-harmonic generation inside a femtosecond
enhancement cavity. The system time and energy resolution
is 190 fs and 21 meV [41]. We chose a low-fluence regime
(20 μJ/cm2 incident fluence) in order to emphasize the non-
thermal effects [18]. The negative- and zero delay (i.e., t =
tprobe − tpump) ARPES spectra taken along the Ŵ-K direction
are shown in Fig. 1(a). The low-energy dispersion of graphite
consists of cone-like bands centered at the K and K′ points.
Away from the K (K′) point, the bands disperse linearly,
similar to the Dirac cones of graphene; however, the Dirac
fermions are massive, becoming parabolic within ≈100 meV
of the Fermi energy (EF ) at the K (K′) point. As our sample is
undoped, we observe occupation of only the valence band up
to the crossing point. At zero delay, we see a small transfer of
spectral weight from below to above the EF .

The ARPES intensity can be written as [42]

I (k, ǫ) ∝ |Mk
f ,i|

2A(k, ǫ) f (ǫ), (1)
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where |Mk
f ,i| is the matrix element associated with the photoe-

mission process, A(k, ǫ) is the one-electron removal spectral
function, and f (ǫ) describes the electron occupation. We
emphasize that f (ǫ) is only given by the FD distribution
in equilibrium (i.e., no pump, or t < 0). From inspection of
Fig. 1(a), the momentum and band dependence of |Mk

f ,i| is im-
mediately apparent, with the right branch of the cone almost
entirely suppressed. Integrating over momentum, the impor-
tance of |Mk

f ,i| becomes even more pronounced. In the limit of
constant |Mk

f ,i|, the momentum-integrated energy-distribution
curve (

∫

k
EDC) is given by

∫

k EDC =
∫

dkxA(kx, ǫ) f (ǫ). This
1D integral corresponds to an occupied tomographic density
of states (TDOS) [43,44]. As such, the

∫

k
EDCs in Fig. 1(b)

should be constant below −0.1 eV due to the linearity of the
dispersion and the one-dimensional integration. Above this
point, the TDOS increases monotonically towards EF as the
massive Dirac fermion deviates from linearity (Appendix B).
By contrast, the

∫

k
EDCs in Fig. 1(b) are not constant in the

linear-band regime, indicating significant momentum depen-
dence for |Mk

f ,i|.
Upon excitation, the reduction (increase) in intensity be-

low (above) EF observed in Fig. 1(b) could conceivably be
described as a thermal broadening of the FD distribution,
resulting from an increased effective electronic temperature.
However, as discussed above, a correct FD fit must account
for the aforementioned effects of band dispersion [encoded in
A(k, ω)] and photoemission matrix elements. While the com-
putational modeling of these quantities has come impressively
far [45,46], the nonthermal features are often subtle enough
that it remains challenging to discern whether residuals of the
fit should be attributed to model imperfection or a deviation
from the FD distribution. Thus we must show our data to be
nonthermal beyond the use of fits. In particular, we will make
use of differential momentum-integrated energy-distribution
curves (�

∫

k
EDCs) defined as

�

∫

k

EDC(ǫ, t1, t2) =
∫

dkxA(kx, ǫ)
∣

∣M
kx

f ,i

∣

∣

2

× [ f (ǫ, t2) − f (ǫ, t1)]. (2)

In principle, both the spectral function A(k, ω) and the ma-
trix element |Mk

f ,i| could be time-dependent [4,47]; however,
as the dispersion of graphite undergoes minimal band-
renormalization under optical pumping, here we assume the
electronic dispersion and matrix element to be constant in
time. As a result, the time-dependence is isolated to that of the
electronic distribution f (ǫ, t ). Typically, t1 < 0 (before pump
arrival), so the reference is characterized by a FD distribution
at the initial temperature (here 50 K). However, this reference
is not suitable for isolating nonthermal features, which are
subtle and obfuscated by the thermal broadening present at all
positive delays. Instead, by taking the difference between two
different delays with similar electronic temperatures, we can
more effectively isolate nonthermal features. To demonstrate
this, the �

∫

k
EDCs in Fig. 1(c) uses

∫

k
EDC3 at t3 = 630 fs as

a reference, and are defined as �
∫

k
EDC1,3, and �

∫

k
EDC2,3

for delays at t1 = −400 fs and t2 = 180 fs, respectively.
We observe that the blue curve in Fig. 1(c)—representing

�
∫

k
EDC1,3—is positive (negative) below (above) EF , and

crosses zero exactly once at EF , consistent with what one

expects for thermal broadening (shaded blue region). As we
know the unpumped

∫

k
EDC1 is surely thermalized, this tells

us that the distribution at 630 fs could be, but is not necessar-
ily thermalized. In contrast, the orange curve (�

∫

k
EDC2,3)

shows not one, but three sign changes—a feature that cannot
be affected by photoemission matrix elements or the spectral
function, given the definition of Eq. (2). It also cannot be
obtained by taking the difference of FD distributions, which
has only one sign change due to the linear energy dependence
in the FD exponential. Thus the three sign changes constitute
direct evidence that a nonthermal electronic distribution char-
acterizes

∫

k
EDC2 and/or

∫

k
EDC3.

Finally, we note that �
∫

k
EDC2,3 shows an accumulation

of electrons and holes within a region ±0.16 eV around the
Fermi level [see arrows in Fig. 1(c)]. In graphite, strongly cou-
pled optical phonons with momentum K and energy h̄�A′

1
=

0.16 eV constitute a major channel through which electrons
relax [37,48]; however, close to EF , this channel is frozen out,
as the final states (below EF ) are already occupied. The bottle
necking of this relaxation channel creates an accumulation
of electrons and holes exactly between the energies ±h̄�A′

1
,

indicated by dashed lines in Fig. 1(c). This prompts us to label
the region [−h̄�A′

1
, h̄�A′

1
] as the “phonon window,” defined

by a given phonon energy h̄�A′
1

[36,49]. Although robust, the
observed accumulation of carriers is quite subtle. Low exci-
tation fluence, a high combined energy-temporal resolution
(21 meV–190 fs), and a high repetition rate (60 MHz) were
instrumental in the extraction of this nonthermal feature.

III. BOLTZMANN MODEL

To determine when a temperature-based model becomes
appropriate, we simulate the electron occupation function
f (ǫ, t ) using Boltzmann rate equations, and compare it to the
FD distribution. The temporal evolution of f (ǫ, t ) and the
phonon occupation function n(�, t ) is governed by a series
of coupled rate equations [20,35]:

∂ f

∂t
= V

(

∂ f

∂t

)

e−e

+ G

(

∂ f

∂t

)

e−ph

+ �

(

∂ f

∂t

)

inj

,

∂n

∂t
= G

(

∂n

∂t

)

ph−e

+ A

(

∂n

∂t

)

ph−ph

. (3)

The photoexcitation of electrons is described by the injection
term (∂ f /∂t )inj. As each photon creates one electron-hole
pair, the functional form of the injection rate follows the
time-domain pulse shape. The number of photoexcited elec-
trons for each resonant excitation is given by the fluence
and Fermi’s golden rule, which we combine into a single
constant �. Following the photoexcitation, the electronic dis-
tribution is determined chiefly by the interplay between e-e
and e-ph scattering, described by (∂ f /∂t )e−e and (∂ f /∂t )e−ph
respectively. For simplicity, we consider coupling to only the
strongly coupled A′

1 phonon mode in (∂ f /∂t )e−ph. The scat-
tering rate of e-e and e-ph is given by the constants V and
G, respectively. From the phonon perspective, e-ph coupling
increases the phonon occupation, as energy is transferred from
the electron bath to the phonon bath. This is described in the
term (∂n/∂t )ph−e, and mediated by the e-ph coupling G. As
the occupation of the A′

1 mode increases, it anharmonically
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FIG. 2. Boltzmann simulations of electron relaxation in graphite. (a) The occupation function f (ǫ, t ) calculated from the Boltzmann rate
equations (logarithmic scale). The zero delay distribution is given by the red curve in energy; two peaks associated with optical transitions and
a peak created through scattering with the strongly coupled optical phonon (SCOP) are highlighted in blue and red, respectively. The dynamics
of each peak are also highlighted. For visualization, we add a background of 10−5 to f (ǫ, t ) to represent the dynamic range of the experiment.
(b) f (ǫ, t ) at the same delays in Fig. 1(b). (c) Differential occupation using f (ǫ, t3) as a reference. � f1,3 and � f2,3 are shown in blue and
orange, respectively, reproducing the changes in sign observed in the data [Fig. 1(c)]. The phonon window associated with the A′

1 mode is
indicated by black dashed lines. (d) Electron and phonon effective temperatures extracted by fitting the distribution with a FD and inverting the
Bose-Einstein distribution, respectively. Yellow shaded region indicates the 90% confidence interval of the fit. Optical (high energy) phonons
are shaded in red; acoustic phonons are shaded in black. (e) The occupation in a 0.1 eV window centered at 0.6 eV is given by the red markers.
The mean-squared error [MSE = 1/n

∑

n(yfit − y)2] of the fit is given by black markers. MSE is a quantitative measure of the nonthermal
contributions to the electronic distribution, and it is nonzero long after the pump pulse has passed.

decays into lower-energy modes. We capture this in the ph-ph
scattering term (∂n/∂t )ph−ph, the rate of which is given by A.
Details of the calculation and the functional form of each term
are given in Appendixes C and D.

The resultant occupation function in a logarithmic scale is
shown in Fig. 2(a). We highlight f (ǫ, t = 0) in red, the blue
arrows indicate peaks arising from the optical injection, while
the red arrow indicates the phonon-induced replica, created
by electrons scattering with the A′

1 phonon from the state at
0.6 eV to the state at 0.44 eV [37]. The simulated occupation
function at delays corresponding to Fig. 1(b) are displayed in
Fig. 2(b), and the differential curves corresponding to those in
Fig. 1(c) are also shown in Fig. 2(c). From these figures, we
see that our simulations reproduce the changes in sign and the
accumulation of electrons within the phonon window.

We also note that differential curves are not the optimal
way to visualize the nonthermal electron distribution because
the reference (here

∫

k
EDC3) is not necessarily thermal. How-

ever, in the simulation, we can access the occupation function
f (ǫ, t ), unencumbered by details of the dispersion, matrix
elements, and experimental resolution present in ARPES
intensity. Therefore the nonthermal electrons are directly ac-
counted for in the residuals of a FD fit of the simulated f (ǫ, t ).
We study the effective electron temperature Te extracted from
such a fit in Fig. 2(d). The small � used to match the low flu-
ence used in the experiment manifests as a moderate transient
increase of Te followed by slow decay. From n(�, t ), we can
also access the phonon “temperature”, which is obtained by
inverting n(�, t ) using the Bose-Einstein distribution for each

�. Remarkably, although the pump pulse injects energy into
the electron bath, we observe that the occupation temperature
of the SCOP increases faster, and is hotter than the electronic
temperature. To a lesser extent, this is also true for the un-
coupled modes (shaded region), which increase in occupation
via the anharmonic decay of the SCOP. This result is starkly
different from the view presented by TTM—in which the
electronic bath heats to a high temperature before transferring
energy to the phonon bath—further highlighting the inappro-
priate definition of temperature in this transient regime.

We quantify the contribution of nonthermal electrons by
using the mean-squared-error (MSE) of the fit, defined as
MSE = 1/n

∑

n(yfit − y)2, and shown as black markers in
Fig. 2(e). We compare MSE to the intensity at 0.6 eV (where
electrons are optically injected) in Fig. 2(e). The latter closely
follows the excitation pulse shape in time; however, the non-
thermal electron contribution is substantial even at 600 fs. We
remark that MSE can also be extracted from fits of the data
with a phenomenological model—which we discuss in Ap-
pendix F— though contributions by the spectral function and
matrix elements may sometimes complicate its interpretation.
In the following, we use MSE from the simulation to classify
different regimes of nonthermal occupation, for a range of
fluences.

IV. THE NONTHERMAL WINDOW

The motivation for looking at the fluence-dependence
of MSE is twofold. First, nonthermal features related
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FIG. 3. Nonthermal phases in the fluence-delay phase space. (a) Effective electronic temperature (Te) extracted from a FD fit of the
occupation function. The green dashed line is a contour at 1000 K; the different fluence regimes are qualitatively indicated by labels. (b) MSE
obtained from the fit of the effective electronic temperature. Three phases are outlined by red, green, and magenta dashed lines, respectively;
colored markers indicate the delay and fluence at which the occupation function and residuals are shown in panels (c) and (d). (c1−3) Simulated
distribution f (ǫ, t ) in phases 1, 2, and 3, respectively, are given by dotted lines matching the colored markers in panel (b). FD fits of the
occupation function are shown in dashed lines in corresponding colors. The blue and red arrows in phases 1 and 2 highlight the peaks
corresponding to optical excitation and phonon emission, respectively. (d1−3) Residuals of the FD fit at delays corresponding to the markers in
panel (b); despite being taken at different delays, residuals in the same phase have the same qualitative features, supporting the classification
into these separate phases. (e) Cartoons indicating the primary mechanisms in the three identified phases: (phase 1) injection, cascade, and
accumulation within the phonon window; (phase 2) redistribution of accumulated electrons into an energetic quasi-FD distribution; and (phase
3) cooling of the distribution inside the phonon window via phonon emission.

to e-ph scattering are expected to become more
important at low fluences and low initial temperatures [18,50].
While we have seen nonthermal occupation of electrons
in graphite in low-fluence experiments, high-fluence
experiments on graphite and graphene report a thermalized
distribution within the time-resolution of those experiments
(≈10 fs) [24,31,32,38,51]. Thus we want to understand the
evolution of the nonthermal distribution in the fluence-delay
phase space. Secondly, fluence plays a crucial role in
designing pump-probe experiments and in determining the
relevant physics encoded. Given the excellent agreement
between our simulation and data at low fluence, we keep the
scattering strengths V , G, and A unchanged, while varying the
fluence �.

As before, we study the evolution of the electronic temper-
ature extracted by a FD fit [Fig. 3(a)]. Although the fluence �

is in arbitrary units, we can make quantitative comparisons
between simulation and experiment based on the extracted
electronic temperature. Here, we qualitatively characterize the
low-fluence regime as those distributions with a peak elec-
tronic temperature Te < 500 K, and the high-fluence regime
for Te > 1000 K. The MSE as a function of fluence and pump-
probe delay are presented in Fig. 3(b). We reiterate that, as we
fit the electron occupation with a FD distribution, the residuals
of the fit arise purely from nonthermal occupation. Thus MSE
provides a quantitative measure of nonthermal electrons in
the electronic distribution. Three phases are apparent upon

observation of the fluence-delay phase space, enclosed by red,
green, and magenta dashed lines, respectively, in Fig. 3(b).
We compare the simulated f (ǫ, t ) and the FD fit for the three
phases in Figs. 3(c1)–3(c3), respectively, with correspond-
ing residuals shown in Figs. 3(d1)–3(d3). The illustration in
Fig. 3(e) describes the physical processes underlying each
phase. Note these three regions are labeled “phases” to reflect
the distinct nonthermal features unique to each region. How-
ever, they are not true thermodynamic phases, as they are not
characterized by any critical behavior or order parameter.

We begin the discussion of the different phases in the
low-fluence regime, which matches conditions explored in
Figs. 1 and 2. In this regime, phase 1 (red dashed lines)
is long-lasting, extending to hundreds of femtoseconds. The
occupation function in this phase is shown in Fig. 3(c1) at
several fluences indicated by markers in Fig. 3(b). We observe
two distinct slopes, on top of which sits a series of peaks:
electrons are photoexcited into states shown by dashed blue
arrows, and subsequent peaks are created via the emission
of A′

1 optical phonons. The smooth exponential background
below the peaks is given by e-e scattering. The peaks consti-
tute a small part of the nonthermal features; in fact, the most
prominent nonthermal feature here is the accumulation of
electrons within the phonon window, evident in the residuals
[Fig. 3(d1)] and whose phenomenology is illustrated in the
top sketch of Fig. 3(e) (dashed lines indicate the edges of
the phonon window). This accumulation is the same feature
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observed in Figs. 1(c) and 2(c), though here the FD is used
as a reference. As electrons relax, the distribution moves
directly towards phase 3, which is the longest-lasting phase.
In this phase, we no longer observe injected carriers in the
occupation function [Fig. 3(c3)]: electrons accumulated inside
the phonon window cool slowly via emission of A′

1 phonons,
while e-e scattering redistributes the electrons in response to
the reduced energy in the electron system [bottom sketch of
Fig. 3(e)]. The amplitude of the peaks in Fig. 3(d3) diminishes
as energy is lost until the distribution reaches equilibrium.
Note that we have not included dissipation in the Boltzmann
equations; hence energy cannot leave the e-ph system, the
final temperature will be higher than the initial temperature,
and the dynamics will be inaccurate on timescales of energy
dissipation from the area illuminated by the pump pulse (here
nominally 200 μm× 400 μm) [52].

As the fluence increases, phase 1 begins at earlier delays
and ends much quicker, even at the rising edge of the exci-
tation pulse (negative delays). We then reach phase 2, where
the density of hot electrons dramatically increases, limiting
the available phase space for electron relaxation. This phase
boundary can be defined as a crossover between classical and
quantum statistics, which occurs when the electron density
condition f (ǫ, T ) ≪ 1 is no longer satisfied. Applying this
criterion to the middle of the photoexcited electron distri-
bution (approximately 0.4 eV), we find that the crossover
occurs at the effective temperature Te ≃ 1000 K. Thus the
boundary of phase 2 is delimited by a constant temperature
contour at 1000 K in Figs. 3(a) and 3(b). Below this effec-
tive temperature, the phase space is largely empty, allowing
electrons to occupy states unevenly, i.e., in a nonthermal
way. Above this effective temperature, electrons strongly feel
Pauli blocking—induced by increased electron density—and
redistribute according to fermion statistics, giving rise to a
quasi-FD distribution [see Fig. 3(c2)]. The residuals in this
phase also have the highest variance. While we still ob-
serve some identifiable features related to photoexcitation
[Fig. 3(d2)], the intensity of the features is low and easily
lost in the noise of real measurements. Following this, the
system moves into phase 3; this transition is due to the same
crossover, now from quantum to classical statistics. However,
while the increase in electron density above EF is given by
pump excitation, the decrease in electron density is given
by electron-hole recombination, a much slower process that
manifests as a broad transition over the 100 fs timescale.

In comparing the low and high fluence regimes, we note
that the low-fluence phase 1 and high-fluence phase 2 occurs
at approximately the same pump-probe delay. The timescales
of these two phases match both our observation of nonther-
mal features near zero delay (see Fig. 1), as well as the
observations of a (nearly) well-thermalized distribution within
the time resolution for high-fluence studies [24,31,32,38,51].
Lastly, we note that even while a FD can fit the electron
bath in phases 2 and 3, the phonon bath may not be ther-
malized for many more picoseconds [as previously seen in
Fig. 2(d)], violating the assumptions of the TTM. In general,
the nonthermal/thermal boundary is an intrinsic property of
each material system and dependent on experimental condi-
tions, and should be determined with careful analysis. The
different nonthermal regimes will be determined by which

scattering processes are available during relaxation, their
timescales and corresponding bottlenecks, as well as the den-
sity of electrons in different regions of the bandstructure.

V. CONCLUSION

In this work, we have demonstrated nonthermal features
near the Fermi-level in TR-ARPES experiments. In particular,
we have used Boltzmann rate equations to simulate the excita-
tion and relaxation of electrons and phonons in graphite, using
low-fluence TR-ARPES data to benchmark our momentum-
averaged coupling constants. We illustrated the shortcomings
of temperature-based approaches at low fluence by applying
the temperature analysis to a simulated occupation func-
tion. By separating time-dependent residuals from the purely
thermal electron distribution, we identified three different
nonthermal phases, spanning several hundreds of femtosec-
onds in the fluence-delay phase space. The residuals of the
FD fit here directly constitute nonthermal contributions to the
electron distribution function and showcase the distinct pro-
cesses taking place in each phase. We account for the apparent
disparity in the observation of nonthermal features across low
and high-fluence experiments in terms of a crossover between
the classical and quantum regimes of electron density.

Our model also captures some salient aspects of fully
quantum mechanical approaches such as the nonequilibrium
Keldysh formalism, such as the phonon window [36,53,54].
The Keldysh formalism solves the Dyson equation using
time-ordered Green’s functions, taking the self energy of
the electrons and phonons into account self consistently.
The resulting propagators display nontrivial redistributions
of spectral weight beyond population effects [53]. By
treating the electrons as a statistical distribution, much of
the rich information encoded in the Keldysh formalism is
lost. However, the Boltzmann formalism remains capable
of describing the electron and boson relaxation process
phenomenologically. This allows the experimentalist to intuit
the most prominent relaxation processes inside the material,
which can then be singled out for further study. Notably, the
Boltzmann calculations presented here can be performed on
a laptop without the need for parallelization. Thus exploring
parameter space to reproduce phenomenological features
is simple with the Boltzmann formalism but would not be
feasible in the Keldysh formalism. Moreover, as long as the
approximations hold, the Boltzmann equation captures the
dynamics from the full Keldysh calculations faithfully.

We also note that the discussion here has been confined to
relaxation processes in graphite for a specific set of experi-
mental parameters. For these conditions, we reliably observed
the three nonthermal phases in our exploration of the param-
eter space for the Boltzmann model; however, other materials
and experimental parameters might manifest these phases
differently, or host new phases altogether. That said, the rate-
equation model is easily adaptable to other material systems
by changing the density of states and the momentum aver-
aged coupling constants in the rate equations. In conclusion,
the Boltzmann approach offers an instructive and intuitive
way to understand nonequilibrium processes without leaning
on thermodynamic variables. One can also use these models
pedagogically, by simulating electron relaxation in parabolic
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and linear dispersions or—by toggling e-e, e-ph, or ph-ph
scattering on and off—to see the corresponding effects on the
evolution of the electronic distribution. To this end, the code
used for this paper has been made available in Ref. [40].
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APPENDIX A: MATERIALS AND METHODS

We measure naturally occurring high-quality graphite. The
samples were cleaved in-situ at a base pressure of 5 ×
10−11 Torr. The pump-induced average heating was deter-
mined to be 50 K from the Fermi-edge broadening. We use

the Scienta R4000 hemispherical analyzer for photoelectron
detection, with an energy resolution of <2 meV.

The pump pulse is the output of a Yb-fiber laser operat-
ing at 60 MHz, with 1.19-eV photon energy, 120-fs pulse
duration, and 30-meV bandwidth. The probe pulse is pro-
duced via high-harmonic generation (HHG) at the focus of
a femtosecond enhancement cavity (fsEC) using a krypton
gas jet. We out-couple the harmonics with a grating mirror
and the select the 21st harmonic (25 eV) for photoemission.
The pulse duration and bandwidth of the probe are 22 meV
and 150 fs, respectively. For this experiment, the pump and
probe both have s polarization. The spot size on the sample
is 200 μm × 400 μm. Details of the laser are documented
elsewhere [41].

APPENDIX B: SIMULATING THE

MOMENTUM-INTEGRATED ENERGY

DISTRIBUTION CURVE

In this section, we discuss the effect of the spectral func-
tion A(k, ǫ) and the photoemission matrix element on the
momentum-integrated EDC (

∫

k
EDC) presented in Fig. 1(b)

of the main text. The spectral function is calculated from the
following equation [42]:

A(k, ǫ) =
	′′

(ǫ − ǫk − 	′)2 + (	′′)2
. (B1)

For simplicity, we set the real part of the self-energy (	′)
to zero and set the imaginary part of the self energy to a
finite value(	′′ = 30 meV) for visualization purposes. The
dispersion ǫk is calculated using the WIEN2K [55]. In Fig. 4
(a), we show the spectral function along the Ŵ − K direction,
at kz = 0.2 Å−1, similar to our experiment. The integration
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FIG. 4. Simulation of the
∫

k
EDC. (a) The spectral function calculated with 	′ = 0, 	′′ = 30 meV, along the Ŵ-K direction for kz =

0.2 Å−1. The dispersion ǫk is shown in dashed red lines. (b) The spectral function modified by the Fermi-Dirac and convolved with a Gaussian
in energy and momentum to account for system resolution effects. (c) Intensity profiles obtained by integrating the spectral function over
dkx , at ky = 0 (black) and dkxdky (blue). Corresponding density of states in 1D and 2D are given in red and green dashed lines, respectively.
(d) Intensity profiles obtained by integrating the modified spectral function over dkx , at ky = 0 (black) and dkxdky (blue).
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of the spectral function in one and two dimensions (i.e., over
dkx at ky = 0 and dkxdky, respectively) is given by blue and
black solid lines in Fig. 4(c). These intensity profiles exactly
overlap with the density of states (DOS) calculated for the
same regions of momentum space. The one-dimensional DOS
is nearly flat above 0.2 eV, and peaks towards the crossover of
the bands at EF . This results from the one-dimensionality of
the integration and the quasilinear dispersion above 0.2 eV,
which only becomes quadratic as it approaches EF . As well,
in the two-dimensional DOS we see the characteristic ‘V’
shape of linearly dispersing bands in 2D. The two bands have
slightly different effective mass, as can be seen in the DOS2D.
At EF , the DOS2D takes on finite value as the dispersion
becomes quadratic.

Next, we modify the intensity profile into what we would
see in the experiment (neglecting matrix elements). The mod-
ified intensity is given by

I (k, ǫ) = [A(k, ǫ) f (ǫ)] ∗ G(k, ǫ), (B2)

where f (ǫ) is the occupation function (a Fermi-Dirac in equi-
librium), and G(k, ǫ) is a Gaussian in energy and momentum
that accounts for the experimental resolution. The modified
intensity map is shown in Fig. 4(b), and the integrated inten-
sity profile is shown in Fig. 4(d). As the

∫

k
EDC is obtained

from a one-dimensional integration (along kx, at ky = 0), in
the analysis, we use the one-dimensional intensity profile
for comparison. In the data, we see a decrease in intensity
followed by a small peak; in the simulation, we observe a
quasilinear profile peaking at EF . The photoemission matrix
elements are responsible for the difference between these pro-
files.

APPENDIX C: BOLTZMANN RATE-EQUATION MODEL:

DERIVATION

In this section, we discuss the derivation of each term of
Eq. (2) in the main text:

∂ f

∂t
=

(

∂ f

∂t

)

e−e

+
(

∂ f

∂t

)

e−ph

+
(

∂ f

∂t

)

inj

,

∂n

∂t
=

(

∂n

∂t

)

ph−e

+
(

∂n

∂t

)

ph−ph

. (C1)

Photoexcitation. The photoexcitation of electrons consists of
depletion of a state ǫ′

k′ below EF and a population of a state
ǫk above EF , such that hν = ǫ − ǫ′. Since the momentum
contributed by the photon is negligible, k = k′. Each photon
creates an electron-hole pair; the injection rate follows the
shape of the pump pulse:

(

∂ f (ǫ)

∂t

)

inj

= S(ǫ, σǫ )T (t, σt ). (C2)

Here, T (t, σt ) is a generic pulse shape in the time domain
with a characteristic full width at half maximum (FWHM) σt .
S(ǫ, σǫ ) determines the states depleted/populated according
to the bandwidth of the pump pulse and the optical-joint
density of states (OJDOS). As an example, a Gaussian pulse

with FWHM σǫ is given by the following S(ǫ, σǫ ):

S(ǫ, σǫ ) =
∑

i

�
inj
i exp

(

−
(

ǫ − ǫ
pop
i

)2

2σ 2
ǫ

)

−�
dep
i exp

(

−
(

ǫ − ǫ
dep
i

)2

2σ 2
ǫ

)

. (C3)

Here the sum over i includes each optical transition in the
OJDOS. �

pop
i and �

dep
i satisfy the relation �

pop
i N (ǫpop

i ) =
�

dep
i N (ǫdep

i )—where N (ǫ) is the electron density of states—
such that the total number of electrons is conserved.

Electron-electron scattering. The electron-electron (e-e)
scattering term is given by [39]

∂ fk

∂t
=

2π

h̄

∑

p,q

V 2
c (q)δ(ξk − ξk+q + ξp − ξp−q)

× [ fk+q fp−q(1 − fk )(1 − fp)

− fk fp(1 − fk+q)(1 − fp−q)]. (C4)

Here, Vc(q) is the scattering pseudopotential, and ξk is the
electron energy with respect to the equilibrium chemical po-
tential. The first term in the equation describes the scattering
of an electron from the state ξk+q into the state ξk. A second
electron scatters from the state ξp−q into state ξp such that the
energy of the electronic system is conserved. Similarly, the
second term is the probability of scattering out of the state ξk.

Averaging over all momenta k:

∂ f (ξ )

∂t
≡

1

N (ξ )

∑

k

δ(ξk − ξ )
∂ fk

∂t
, (C5)

where N (ξ ) is the density of states (DOS). The momentum
averaged equation is then [39]

∂ f (ξ )

∂t
=

∫

dξ ′
∫

dǫ

∫

ǫ′K (ξ, ξ ′, ǫ, ǫ′)δ(ξ − ξ ′ + ǫ − ǫ′)

× [ f (ξ ′) f (ǫ′)(1 − f (ξ ))(1 − f (ǫ)) − f (ξ ) f (ǫ)

× (1 − f (ξ ′))(1 − f (ǫ′))], (C6)

where

K (ξ, ξ ′, ǫ, ǫ′) =
2π

h̄

1

N (ξ )

∑

k,p,q

V 2
c (q)δ(ξk − ξ )δ(ξk+q − ξ ′)

× δ(ξp − ǫ)δ(ξp−q − ǫ′). (C7)

Here the kernel K includes all of the averaging over momenta,
while δ(ξ − ξ ′ + ǫ − ǫ′) specifies the elastic scattering condi-
tion. It is common to approximate Vc(q) = Vc, since the kernel
changes on the scale of the Fermi energy EF . We know that the
DOS (in units of 1/eV) is defined as:

N (ξ ) =
∑

k

δ(ξk − ξ ), (C8)

So the kernel can be expressed in terms of the DOS:

K (ξ, ξ ′, ǫ, ǫ′) =
2π

h̄

V 2
c

N (ξ )
[N (ξ )N (ξ ′)N (ǫ)N (ǫ′)]. (C9)

We put the constants together and relabel it as V , and define
η = ξ − ξ ′, such that ǫ′ = ǫ + η, and ξ ′ = ξ − η. Lastly, we
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FIG. 5. Photoexcitation and e-e scattering. [(a) and (c)] Occupation function simulated with only the injection term, and the injection plus
e-e scattering, respectively. Delays at [−500, 0, 600] fs are highlighted in blue, red, and yellow, respectively. [(b) and (d)] The excess energy
in the different subsystems as a function of delay. The solid yellow line gives the electron excess energy. The solid blue line gives the energy
of the coupled phonon modes. The whole phonon subsystem is given by the dashed orange line. The dashed purple line gives the total energy
of the system. There is no electron-phonon coupling; thus, excess energy in the phonon system is zero.

use the Dirac-delta to get rid of one of the integrals, so that
Eq. (C6) becomes

∂ f (ξ )

∂t
=

V

N (ξ )

∫

dη

∫

dǫ[N (ξ )N (ξ − η)N (ǫ)N (ǫ + η)]

× [ f (ξ − η) f (ǫ + η)(1 − f (ξ ))(1 − f (ǫ))

− f (ξ ) f (ǫ)(1 − f (ξ − η))(1 − f (ǫ + η))].

(C10)

An example calculation using these two terms are shown
in Fig. 5. In Fig. 5(a), we show the occupation function cal-
culated with only the injection term; delays at −500 fs, 0 fs
and 600 fs are highlighted. We see that the initial condition is
just a Fermi-Dirac (FD) distribution at a temperature of 50 K.
At zero delay (red), the population and depletion of states
are visible as peaks in energy. Since no scattering terms are
included, the electrons stay in those states. The pump pulse is
gone by approximately 600 fs (yellow), and the photoexcita-
tion process is complete.

We check the energy of the system in Fig. 5(b). The energy
of each subsystem is defined as

Ee(t ) =
∫

dǫN (ǫ) f (ǫ, t )ǫ,

Eph(t ) =
∫

d�F (�)n(�, t )�,

ESCP(t ) =
∫

d�′F (�′)n(�′, t )�′,

�′ ⊆ � s.t. G(�′) 
= 0. (C11)

The excess energy is simply Ei(t ) − Ei(0). Since there is no
electron-phonon (e-ph) coupling, there is no energy trans-
ferred to the phonon bath, so Eph(t ) = ESCP(t ) is zero. Here
we define ESCP(t ) as the excess energy of the phonon modes
for which the e-ph coupling strength is nonzero. The excess
energy in the electron bath is then equivalent to the total
excess energy [see Fig. 5(b)]. Next, we add the e-e scatter-
ing term. The occupation function is shown in Fig. 5(c). As
before, the initial condition is a FD at 50 K; however, at zero
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FIG. 6. Electron-phonon coupling and anharmonic phonon decay. [(a) and (c)] Simulation of f (ǫ, t ) using the injection and electron-
phonon (e-ph) terms and simulation using the injection, electron-phonon, and phonon-phonon (ph-ph) terms respectively. Delays at [−500, 0,
600] fs are highlighted in blue, red, and yellow, respectively. [(b) and (d)] The excess energy in the different subsystems as a function of delay.
In (b), e-ph coupling allows the transfer of energy from the electron subsystem to the phonon subsystem, but the absence of ph-ph scattering
means the excess energy of the strongly coupled phonon (SCP) is equivalent to that of the entire phonon subsystem. In (d), turning on ph-ph
scattering allows the SCP to decay into other phonon modes; thus excess energy of the SCP decreases, while the excess energy of the phonon
bath remains equivalent to that in (b).

delay, the injected carriers are no longer visible. We instead
see that the electronic distribution has redistributed to form a
FD at a higher temperature. The excess energy of the system is
shown in Fig. 5(d). Redistribution of the electron occupation
does not change the energy between electron and phonon
subsystems. Again, no energy is transferred to the phonon
system, and the total excessive energy is equivalent to the
electron excess energy.

Electron-phonon coupling. The probability for an electron
scattering with a phonon of energy � out of a state ǫ is written
as [25]

Ŵabs(ǫ,�) =
2π

h̄
|G(ǫ,�)|2n(�)F (�)N (ǫ + �)

× (1 − f (ǫ + �)),

Ŵemi(ǫ,�) =
2π

h̄
|G(ǫ,�)|2(1 + n(�))F (�)N (ǫ − �)

× (1 − f (ǫ − �)). (C12)

Here, |G(ǫ,�)|2 is the coupling strength for an electron with
energy ǫ with a phonon of energy �, n(�) is the phonon

occupation, F (�) is the phonon density of states and f (ǫ) is
the electronic occupation. Coupling to multiple phonons can
be accounted for by an integral over �:

(

∂ f out(ǫ)

∂t

)

e−ph

=
∫

d�
F (�)

N (ǫ)
[Ŵabs(ǫ,�) + Ŵemi(ǫ,�)]N (ǫ) f (ǫ);

(

∂ f in(ǫ)

∂t

)

e−ph

=
∫

d�
F (�)

N (ǫ)
[Ŵabs(ǫ − �,�)N (ǫ − �) f (ǫ − �)

+ Ŵemi(ǫ,+�,�)N (ǫ + �) f (ǫ + �)]. (C13)

The phonon occupation n(�) is vanishingly small at an equi-
librium temperature of 50 K, and initially, the [1 + n(�)]
emission term dominates. After optical excitation, n(�) in-
creases substantially. We consider the time-evolution of n(�)
in our simulation by rearranging Eq. (C13), to obtain the
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phonon occupation rate equation:
(

∂n(�)

∂t

)

ph−e

=
∫

dǫ
N (ǫ)

F (�)
[Ŵemi(ǫ,�) − Ŵabs(ǫ,�)] f (ǫ).

(C14)

Phonon-phonon scattering. In the case that electrons cou-
ple strongly to few specific modes, these strongly coupled
modes increase quickly in occupation and subsequently de-
cays into lower energy modes. The phonon-phonon (ph-ph)
scattering term can be written as [35]:

(

∂n(�)

∂t

)

ph−ph

=
2π

h̄

[

1

2

∫ �

0
dξ |A(�, ξ )|2F (ξ )F (� − ξ )[(1 + n(�))n(ξ )n(� − ξ ) − n(�)(1 + n(� − ξ ))(1 + n(ξ ))]

+
∫ �max

�

dξ |A(�, ξ )|2F (ξ )F (ξ − �)[(1 + n(�))(1 + n(ξ − �))(n(ξ )) − n(�)n(ξ − �)(1 + n(ξ ))]

]

.

(C15)

The combination of injection and e-ph scattering terms are
shown in Fig. 6(a). For simplicity, we show electrons coupling
to just one phonon with energy �, and label this SCP for
“strongly coupled phonon.” Similarly to Fig. 5(c), the injected
electrons rapidly relax from the high energy states towards the
Fermi level. However, rather than a FD distribution, we find
that electrons accumulate near EF . This is a manifestation of
bottle necking of the relaxation channel due to Pauli-blocking,
as discussed in the main text. Since we have not included e-e
scattering or coupling to other phonon modes, this bottleneck
prevents electrons from forming a FD distribution. We show
the energy of the system in Fig. 6(b), and observe that elec-
trons quickly transfer energy to the phonon subsystem through
the coupled mode. Since there is no anharmonic decay of the
SCP, all the excess energy of the phonon bath is contained
within the SCP, and the two quantities are equivalent.

Now, the ph-ph scattering term is added to the simula-
tion along with e-ph scattering. The resultant f (ǫ, t ) is given
in Fig. 6(c). The addition of this term does not affect the

electronic distribution significantly, and so Fig. 6(a) looks
similar to Fig. 6(b). The difference between the two simu-
lations can be seen in the energy plot [Fig. 6(d)]. Now we
see that energy is transferred from the electron subsystem to
the coupled phonon subsystem. The energy then is transferred
from this mode into the rest of the phonon subsystem. Thus
the orange dashed line is no longer equivalent to the solid
blue line. We observe that the excess energy of the SCP
decreases (blue line). The phonon bath, (which includes the
SCP) remains the same as in panel (b), since the transfer of
energy from electron bath to phonon bath through the SCP has
not changed, and energy within the phonon bath is conserved.

APPENDIX D: BOLTZMANN RATE-EQUATION MODEL

FOR GRAPHITE

The equations used to generate Fig. 2 in the main text are
be written as

�

(

∂ f

∂t

)

inj

=
[

1

1.364σt

sech

(

1.76x

σt

)2]
{

1
√

2πσǫ

∑

i

�i

[

exp

(

−
(

ǫ − ǫi
pop

)2

2σ 2
ǫ

)

− exp

(

−
(

ǫ − ǫi
dep

)2

2σ 2
ǫ

)]}

,

×

{

1
√

2πσǫ

∑

i

�i

[

exp

(

−
(

ǫ − ǫi
pop

)2

2σ 2
ǫ

)

− exp

(

−
(

ǫ − ǫi
dep

)2

2σ 2
ǫ

)]}

, (D1a)

V

(

∂ f

∂t

)

e−e

=
2πV

h̄

∫ ηmax

0
dη

∫

dǫ′[N (ǫ − η)N (ǫ′)N (ǫ′ + η)]

×{ f (ǫ − η) f (ǫ′ + η)[1 − f (ǫ)][1 − f (ǫ′)] − f (ǫ) f (ǫ′)[1 − f (ǫ − η)][1 − f (ǫ′ + η)]}, (D1b)

G

(

∂ f

∂t

)

e−ph

=
2πG

h̄

∫

d�F (�){n(�)([(1 − f (ǫ)] f (ǫ − �)N (ǫ − �) − f (ǫ)[1 − f (ǫ + �)]N (ǫ + �))

+ [1 + n(�)]([(1 − f (ǫ)] f (ǫ + �)N (ǫ + �) − f (ǫ)[1 − f (ǫ − �)]N (ǫ − �)])}, (D1c)

G

(

∂n

∂t

)

ph−e

=
2πG

h̄

∫

dǫN (ǫ) f (ǫ){[1 + n(�)][1 − f (ǫ − �)]N (ǫ − �) − n(�)[1 − f (ǫ + �)]N (ǫ + �)}, (D1d)

A

(

∂n

∂t

)

ph−ph

=
2πA

h̄

[

1

2

∫ �

0
dξF (ξ )F (� − ξ ){[1 + n(�)n(ξ )n(� − ξ ) − n(�)[1 + n(� − ξ )[1 + n(ξ )]]}

×
∫ �max

�

dξF (ξ )F (ξ − �){[1 + n(�)][1 + n(ξ − �)](n(ξ )) − n(�)n(ξ − �)[1 + n(ξ )]}
]

. (D1e)
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FIG. 7. Simulation checks. (a) The energy of the electron and phonon subsystems in the simulation as a function of pump-probe delay
are shown in blue and red solid lines. The system’s total energy (magenta solid line) converges to that injected by the pump pulse with no
scattering processes. (b) The left-hand side (LHS) of the Boltzmann rate equations [Eq. (3)]. Carriers are injected/depleted near 0.6 eV. The
dynamics are well contained within the energy range [−1, 1] eV. (c) The occupation function at −400, 180, and 630 fs, calculated with a mesh
of 5 meV (markers) and 2 meV (line). The two overlap, showing a good convergence.

We adopt a quasiphenomenological approach to the Boltz-
mann rate-equation model. As we want to explore the effect of
occupation function on the evolution of TR-ARPES spectra,
we set the e-e, e-ph, and ph-ph scattering potentials to a
constant; V , G, and A respectively. In the model presented
in Fig. 2 of the main text, the values used were: G = 0.07,
V = 1.2 × 104, A = 1 × 10−4, and � = 1 × 10−3.

The injection term is given by a sech function in time
and energy, with pulse duration σt and bandwidth σǫ . Car-
riers are injected at states ǫpopi , and depleted at states ǫdepi .
Following the observed transitions in a previous study, we
populate (deplete) electrons into states [0.26, 0.5, 0.6] eV
([−0.94,−0.7,−0.6]) eV [37]. �i controls number of ex-
cited electrons, or the amount of spectral weight transfer. In
Eq. (D1b), the integral over η accounts for all possible energy
transfers in e-e scattering events, and the integral over ǫ′

accounts for elastic scattering, such that energy within the
electron bath is conserved. The e-ph and ph-e terms allow
for energy transfer from the electron to the phonon bath, and
conserves the energy of the entire system. The ph-ph term
then redistributes energy within the phonon bath, such that
it evolves towards a Bose-Einstein distribution. The electron
density of states have been computed from a tight-binding
model from a previous work [37]. The phonon density of
states is taken from Ref. [56]. although the coarse grid over

phonon energies makes the model fairly insensitive to the
phonon density of states.

The strongest optical transition energies for a 1.2 eV pump
pulse is given by an optical-joint density of states calculation
in a previous work [37]. Characteristic pulse bandwidth (σǫ)
and duration (σt ) are informed by experimental parameters
(190 fs, 30 meV). We limit the e-ph scattering term to the A′

1
SCP, which anharmonically decays into low energy phonon
modes.

APPENDIX E: SIMULATION CHECKS

To ensure the accuracy and correctness of the simulation,
we check that (1) energy is conserved within the system, (2)
the energy domain considered is large enough to include all
relevant scattering processes, and (3) the energy grid is dense
enough to reach convergence.

Energy conservation. We first simulate the occupation
function, including only, the injection term. The energy �E =
E (t ) − E (−∞) injected into the electron system is the solid
black line in Fig. 7(a). Next, we turn on scattering processes,
keeping the same pump fluence.

The total excess energy �E (t ) is then given by �Ee +
�Eph. �Ee and �Eph are red and blue solid lines in Fig. 7(a).
The total energy �E is the solid magenta line. This value is
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FIG. 8. Electron scattering rate calculated from data and experiment (a) ∂ f /∂t calculated from Eq. (3) in the main text. (b) ∂ f /∂t is
calculated from the simulation. The output of the simulation f (ǫ, t ) is integrated into bins 50 meV wide, the tangent for each delay is extracted
from a moving fit of the intensity in a 50 fs window with a first-order polynomial. (c) dI/dt calculated from the data. The intensity is
integrated into bins 50 meV wide, and the tangent for each delay is extracted from a moving fit of the intensity in a 50 fs window with a 1st
order polynomial. The dynamics are contained within the energy range [−1, 1] eV. Arrows indicate nonthermal features, including the direct
transition at 0.6 and 0.5 eV (blue) and the phonon-induced replica at 0.44 eV (red). Green dashed arrows mark the energy domain ±h̄�. In all
panels, the region between 0.4 and 0.7 eV is enhanced by a factor of 20 for visualization purposes.

directly compared with the injected energy (black line). As
we can see, the total energy of the simulation converges to
the injected energy, so our scattering terms maintain energy
conservation.

Scattering rate. To ensure we include all relevant scattering
processes, we look directly at the scattering rate. The energy
range should encompass all states affected by the OJDOS, but
electrons can scatter into states above/below those states. The
balance is to include all necessary states without incurring
unnecessary computation cost. The left-hand side (LHS) of
Eq. (3), ∂ f (ǫ, t )/∂t is shown in Fig. 7(b). By visual inspec-
tion, the terms contributing to ∂ f /∂t are contained in the
energy domain [−1, 1] eV. Note: as fluence increases, the
electron distribution spreads over a larger energy domain.
Thus the energy domain needs also increase to conserve the
energy of the system and include the relevant scattering pro-
cesses.

Lastly, we check the convergence of the simulation. In
Fig. 7(c), we compare f (ǫ, t ) at t = [−400, 180, 630] fs for
a simulation with 5 meV mesh size (circles) and 2 meV
mesh size (line). We see the two overlap quite well; the
error between these two simulations is less that one percent
of f (ǫ, t ).

APPENDIX F: SIMULATION AND

ANALYSIS COMPARISON

To match the simulation to the data, we vary four parame-
ters: The fluence �, and scattering strengths G, V , and A. We
also define the pulse shape, pulse bandwidth (informed by the
experiment), OJDOS (informed by experiment and calcula-
tions), the electron and phonon DOS (given by calculations).

To avoid over parametrization, we set G, V , and A to
constants. The DOS is calculated from a tight-binding model
consistent with previous work, and the OJDOS is given by
experimental observations in that same data set [37]. The
time-domain pulse shape is simply a sech function with an
FWHM equal to the measured system time resolution.

The data set shown in the main text spans the delays
[−400, 680] fs. In this time domain, the electronic distribu-
tion is determined by the interplay between e-e scattering V ,
e-ph scattering G, and the fluence �. The phonon density
of states and the anharmonic scattering strength A affect the
distribution over much longer timescales and does not play
a prominent role here. We compare high-fluence simulations
with high-fluence experiments measured over the picosecond
timescale to qualitatively determine A [24,32,38,57]. In this
next section, we discuss comparisons with data used to pin
the parameters of the simulation that were not shown in the
main text.

Firstly, we directly compare the total rate-of-change of
the occupation function ∂ f /∂t between simulation and data.
In the experimental data, the rate of change of the ARPES
intensity dI/dt takes the place of ∂ f /∂t , given the assump-
tions discussed in the main text [Eq. (2)]. We can obtain
this quantity by integrating I in a small energy domain, such
that I (t ) is reasonably smooth, then taking the tangent of the
curve at each delay. In Figs. 8(a) and 8(b), we shows (∂ f /∂t )
calculated directly from Eq. (3) of the main text and (∂ f /∂t )
produced by calculating the tangent of f (ǫ, t ) at each delay.
We see the two are exactly equal, except that the resolution
in panel (b) is reduced as a result of integration over a finite
energy domain.

We now apply this analysis to the data, shown in Fig. 8(c).
For the majority of delays, we observe a good agreement
between the data and the simulation, including (1) the obser-
vation of the direct-transitions at 0.6 and 0.5 eV (blue arrow),
(2) the phonon-induced replica at 0.44 eV (red arrow), (3) the
accumulation of electrons outside the phonon window (dashed
green arrows), and (4) the sign reversal both above and below
the Fermi-energy (black dashed lines).

The main difference lies in the dynamics before −300 fs,
indicated by dashed red lines. We assumed a sech pulse shape
with an FWHM of 190 fs, determined from high-statistics
measurements of the intensity of the direct-transition peak
at 0.6 eV [41]. For this pulse duration, we do not expect
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FIG. 9. Differential maps (a, b) �
∫

k
EDC maps computed using the Ref1 (Ref3), at delays -400 fs (630 fs) respectively. Blue (red) represent

negative (positive) values. (c, d) � f maps using the output of the simulation in Fig. 2 in the main text. Panel (c) and (d) are computed using
f (ǫ, −400 fs) and f (ǫ, 630 fs), as reference.

significant pump excitation (and by extension, electron
dynamics) before −300 fs. Dynamics before −300 fs can only
be explained by a low amplitude tail in the pump pulse. In
the following figures, the effects of this tail consistently show
up. However, as we are primarily interested in the physics
post-pump excitation, we do not expend effort in modeling
this tail.

In the main text, we showed unconventional differ-
ential momentum-integrated energy distribution curves

(�
∫

k
EDC)s, which use the delay at t = 630 fs as a reference,

rather than the typical unpumped distribution as a reference.
Here we show the differential maps at all delays, comparing
side by side the use of both references in the ARPES data
and the simulated f (ǫ, t ). �

∫

k
EDC maps calculated from

the ARPES ata using Ref1 (−400 fs) and Ref2 (630 fs) are
shown in Figs. 9(a) and 9(b) respectively. In panel (a), we see
the depletion (population) below (above) the Fermi energy
that is commonly associated with thermal broadening. The
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FIG. 10. Temperature fits of the data and simulation (a) EDCs at delays [−400, 180, 630] fs (markers) and the phenomenological fit model
(lines). (b) Temperature extracted from the fit of the data in (a) (blue markers) and from Fermi-Dirac fits of the simulation (red line). Delays
shown in (a) are indicated by dashed lines in the corresponding color. (c) The mean-squared error (MSE) from the effective temperature fit of
data (blue markers) and the simulation (red line).
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single sign change that arises from by taking the difference
of two FD distributions at different temperatures manifests
here as the white color transition between blue and red. In
panel (b), the multiple sign changes that signify a nonthermal
distribution manifests as multiple color changes. At 180 fs
(indicated by the red dashed line), starting from negative
energies, we see the color change from blue to red, to blue,
and back to red again.

Simulated � f (ǫ, t ) maps are similarly shown in Figs. 9(c)
and 9(d). The � f map using Ref1 highlights electron dynam-
ics at early delays. The discrepancy here is again due to the
tail of the pump pulse, as we saw earlier. The � f map using
Ref3 instead highlights nonthermal electron dynamics near
zero delay. In this region, we see a good agreement between
the data and the simulation.

Lastly, we discuss the temperature fit of the data. The fit
model and the data are shown in Fig. 10 at three different
delays. As discussed in the main text, we cannot determine
whether the residuals of the fit are due to model imperfection.
The effective temperature and mean-squared error (MSE)
are shown in the blue markers of Figs. 10(b) and 10(c),
respectively. The temperature fit of the simulation by using
a FD is shown in red lines. We see that in comparison to
the simulation, the electronic temperature increases much
faster at negative delays, and has a higher MSE value. Both
of these are signatures of the tail of the pump pulse, which is
not present in the simulation. Past 180 fs, both quantities are
well reproduced. Therefore, although MSE obtained from the
data captures both model imperfections as well as nonthermal
features, it can be used as a diagnostic for whether electronic
distributions are thermal.
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