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Abstract

Learning non-linear systems from noisy, limited, and/or dependent data is an important task across
arious scientific fields including statistics, engineering, computer science, mathematics, and many more.
n general, this learning task is ill-posed; however, additional information about the data’s structure or on
he behavior of the unknown function can make the task well-posed. In this work, we study the problem
f learning nonlinear functions from corrupted and weakly dependent data. The learning problem is
ecast as a sparse robust linear regression problem where we incorporate both the unknown coefficients
nd the corruptions in a basis pursuit framework. The main contribution of our paper is to provide
reconstruction guarantee for the associated ℓ1-optimization problem where the sampling matrix is

ormed from weakly dependent data. Specifically, we prove that the sampling matrix satisfies the null
pace property and the stable null space property, provided that the data is compact and satisfies a
uitable concentration inequality. We show that our recovery results are applicable to various types of
eakly dependent data such as exponentially strongly α-mixing data, geometrically C-mixing data, and

uniformly ergodic Markov chain. Our theoretical results are verified via several numerical simulations.
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1. Introduction

In the past few decades, there has been a rapid growth of interest in automated learning
rom data across various scientific fields including statistics [52], engineering [30], computer
cience [23,39], mathematics, and many more. An overview of machine learning problems in
wide range of contexts (statistical learning theory, pattern recognition, system identification,

eep learning, and so on) can be found in [1,6,19,20]. One of the main paradigms is to
earn an unknown target function from a given collection of input–output pairs (supervised
earning), which can be rephrased as the problem of finding an approximation of a multi-
imensional function. For example, in [34,35], the authors demonstrated a connection between
pproximation theory and regularization with feedforward multilayer networks. In general,
earning a smooth function from data is ill-posed unless a priori information about either the
ata structure or the generating function is provided [15,33,50].

One of the well-known methods to make the learning problem well-posed is to exploit
dditional properties of the target function [18]. For example, if the target function depends
nly on a few active coordinates associated with a suitable random matrix, the function can
e recovered from a small number of samples [15]. On the other hand, many well-known
earning methods consider the target function in a particular function class (such as radial
asis functions, multivariate polynomials, projection pursuit, feed-forward neural networks,
nd tensor product methods) and add a penalty (such as Tikhonov regularization or sparse
onstraints) to the associated parameter estimation problem. For example, an adaptive high-
imensional polynomial interpolation technique is presented in [7] and an optimal least square
ethod is proposed in [9].
Recently, sparse models combined with data-driven methods have been investigated inten-

ively for learning nonlinear partial differential equations, nonlinear dynamical systems, and
raph-based networks. The model selection problem for dynamical systems from time series
ates back to [11] where the authors investigate the concepts from dynamical system theory
o recover the underlying structure from data. In [55], the authors construct a sampling matrix
rom the data matrix and its power to recover the ordinary differential equations and find an
ptimal Kronecker product representation for the governing equations. Furthermore, based on
he observation that many governing equations have a sparse representation with respect to
igh-dimensional polynomial spaces, the authors in [4] developed the SINDy algorithm which
ses that sampling matrix and a sequential least-square thresholding algorithm to recover the
overning equations of some unknown dynamical systems. The convergence of the SINDy
lgorithm is provided in [57]. A group-sparse model was proposed in [44] to learn governing
quations from a family of dynamical systems with bifurcation parameters. By exploiting
he cyclic structure of many nonlinear differential equations, the authors in [46] proposed an
pproach to identify the active basis terms using fewer random samples (in some cases on the
rder of a few snapshots). For the noisy case, in [43] the authors use the integral formulation of
he differential equation to reduce the effect of noise and identify the model from a smoother
asis set. To learn a nonlinear partial differential equation from spatio-temporal dataset, the
uthors in [42] proposed a LASSO-based approach using a dictionary of partial derivatives.
n [40], the authors developed an adaptive ridge-regression version of [4] for learning nonlinear
DE, while in [36] a hidden physics model based on Gaussian processes was presented. On

he other hand, the data are often contaminated by noise, contain outliers, have missing values,
r have a limited amount of samples. When the given data are limited, there are several works

ddressing learning problems ranging from sampling strategies in high-dimensional dynamics
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sing random initial conditions [45], to a weighted ℓ1-minimization on the lower set [8,37],
odel predictive control using SINDy [24], and sample complexity reduction to linear time-

nvariant systems [14]. In [47], the authors proposed a method to approximate an unknown
unction from noise measurements via sequential approximation. Geometric methods, such
s [28], can be used to approximate functions in high-dimensions when the data concentrate
n lower-dimensional sets.

Regarding supervised learning analysis, the input data are assumed to be independent and
dentically distributed (i.i.d.). However, this assumption does not hold in many applications
uch as speech recognition, medical diagnosis, signal processing, computational biology, and
nancial prediction. Alternatively, for non-i.i.d. processes satisfying certain mixing conditions,
arious reconstruction results have been addressed in different contexts. The convergence rates
f several machine learning algorithms have been studied for non-i.i.d. data. Examples include
eighted average algorithm [12], least squares support vector machines (LS-SVMs) [21], and
ne-vs-all multiclass plug-in classifiers [13]. In [53], the authors discussed several mixing
onditions for weakly dependent observations which guarantee the consistency and asymptotic
ormality for the nonlinear least squares estimator. Minimum complexity regression estimators
or m-dependent observations and strongly mixing observations were proposed in [32] using
ertain Bernstein-type inequalities for weakly dependent observations. In [41], a conditionally
.i.d. model for pattern recognition was proposed, where the inputs are conditionally indepen-
ent given the output labels. In [49], the authors proved that if the data-generating process
atisfies a certain law of large number, the support vector machines are consistent. In [22], a
ernstein-type inequality for geometrically C-mixing processes is established and applied to
educe an oracle inequality for generic regularized empirical risk minimization algorithms.
sing a strong central limit theorem for chaotic data and compressed sensing results, the

uthors in [51] proved a reconstruction guarantee for sparse reconstruction of governing
quations for three-dimensional chaotic systems with outliers. The common technique in the
entioned works is the application of either a central limit theorem or a suitable concentration

nequality for the given data.
In this work, we study the problem of learning nonlinear functions from identically

istributed (but not necessarily independent) data that are corrupted by outliers and/or con-
aminated by noise. By expressing the target function in the multivariate polynomial space, the
earning problem is recast as a sparse robust linear regression problem where we incorporate
oth the unknown coefficients and the corruptions in a basis pursuit framework. The main
ontribution of our paper is to provide a reconstruction guarantee for the associated ℓ1-
ptimization problem where the (augmented) sampling matrix is formed from the data matrix,
ts powers, and the identity matrix. Although the data may not be i.i.d., we prove that the
ampling matrix satisfies the null space property, provided that the data are compact and
atisfies a suitable concentration inequality. Consequently, the basis pursuit problem will be
uaranteed to have a unique solution and be stable with respect to noise. Numerically, we use
he well-known Douglas–Rachford algorithm to solve the corresponding optimization problem.
n general, the algorithm using monomial bases may be numerically unstable when the degree
f the polynomial is large. However, our simulations indicate that the proposed method works
ell in various situations.
The paper is organized as follows: In Section 2, we explain the problem setting. In Section 3,

e first recall the theory from compressive sensing, then present the theoretical reconstruction
uarantees. In Section 4, we state the recovery results for various types of data including

.i.d. data, exponentially strongly α-mixing data, geometrically C-mixing data, and uniformly
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ergodic Markov chain. The numerical implementations and results are described in Section 5.
We discuss the conclusion and future works in Section 6.

2. Problem statement

We would like to learn a function f : Rd
→ R, from m data points

(
u(i)

= x(i)
+θθθ (i), y(i)

=

f (x(i))+ε(i)
)m

i=1
, where {u(i)

} is corrupted data, {x(i)
} is the uncorrupted part, {θθθ (i)

} represents

the corruption, and {ε(i)
} denotes noise. We say that u(i) is an outlier if the corruption θθθ (i) is

non-zero. Assume that the function of interest f is a multivariate polynomial of degree at most
p:

f (x1, . . . , xd ) =

∑
|α|=α1+···+αd≤p

cαxα1
1 . . . xαd

d .

et y = [y(1), . . . , y(m)]T , εεε = [ε(1), . . . , ε(m)]T , θθθ be the matrix where the rows are θθθ (i), and
be the data matrix,

U =

⎡⎢⎢⎣
− u(1)

−

− u(2)
−

· · ·

− u(m)
−

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
u(1)

1 . . . u(1)
d

u(2)
1 . . . u(2)

d
...

...
...

u(m)
1 . . . u(m)

d

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎣ | |

U1 · · · Ud

| |

⎤⎥⎥⎦
m×d

.

Then we form the dictionary matrix Φ = ΦU from data,

ΦU =

⎡⎣ | | | | | | |

1 U1 U2 . . . Ud U 2
1 U1U2 · · · U 2

d · · ·

| | | | | | |

⎤⎦
m×r

, (2.1)

here r =
(p+d

d

)
is the maximal number of d-multivariate monomials of degree at most p.

Denote c = (cα)|α|≤p the coefficient vector and e = y−Φc, we can reformulate our problem
s follows:

Find (c, e) ∈ Rr
× Rm such that y = Φc + e

Without corruptions and with arbitrary noise vector εεε, the problem is classically solvable by
east squares regression once m ≥ r . With corruptions, whose locations can be arbitrary but are
nknown beforehand, if m ≥ r and at least n = r of the m measurements are uncorrupted, then
ne could in theory do a regression on each of the

(m
n

)
subsets of n measurements and retain

he set with the smallest error; however, this is an infeasible combinatorial algorithm. Thus,
he convex relaxation of this combinatorial algorithm is a natural choice for reconstruction
lgorithm:

min
c′,e′

∥e′
∥1 subject to y = Φ c′

+ e′. (2.2)

On the other hand, if the polynomial coefficients are sparse or the polynomial function can
e approximated by a sparse polynomial, the learning problem can be recast as follows:

min
c′,e′

∥c′
∥1 + ∥e′

∥1 subject to y = Φ c′
+ e′, (2.3)

r, more generally, as the corrupted sensing problem [17,25,27],

min ∥c′
∥1 + λ∥e′

∥1 subject to y = Φ c′
+ e′. (2.4)
c′,e′
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Table 1
Probability of exact recovery versus the maximum degree of polynomial in the unknown
function (see Eq. (5.6)). The ambient dimension is d = 3, the maximum degree of the
candidate polynomials is p = 10 for all runs (thus r = 286 monomial terms). The sparsity
of the polynomial coefficients is equal to 2 and the sparsity of the vector e is 5. We measure
the rate of recovery over 100 trials for various p.

Degree p: 2 3 5 8 10
Recovery, 15% sampling: 83 95 85 82 79
Recovery, 35% sampling: 98 98 99 99 99

Table 2
Probability of exact recovery versus the sparsity of the vector e (see Eq. (5.7)). The ambient
dimension is d = 10, the maximum degree of the candidate polynomials is p = 3 (thus
r = 286 monomial terms), and the sparsity of the polynomial coefficients is 5. The non-zero
values in the vector e have uniformly random values in [−H, H ]. In each test, the sampling
rate is 50% and the parameter is set to λ = 2. Note that tuning λ may change the recovery
rate.

Sparsity of the vector e 3 10 15
Recovery, H = 0.5 91 60 23
Recovery, H = 2 98 65 28
Recovery, H = 10 100 72 34

For the remainder of the paper, we denote the sparsity level of c by sc, and the row-sparsity
level of θθθ by sθ . In the noiseless case (εεε = 0), we have:

∥e∥0 = #{i : θθθ (i)
̸= 0} ≤ sθ .

Remark 2.1. In this paper, the distribution of input data is unknown. Therefore, it is difficult
to construct an explicit and accurate formula for orthogonal polynomials with respect to this
unknown distribution. Theoretically, we have shown that using the standard monomial basis
leads to recovery guarantees under suitable conditions (see Theorem 3.4 for more details). In
general, the algorithm using monomial bases may be numerically unstable when the degree
of the polynomial is large. Numerically, we have demonstrated that the algorithm can recover
polynomial coefficients well with the monomial basis of different degrees p = 2, 3, 5, 8, 10
(see Tables 1 and 2, for example).

3. Reconstruction guarantee analysis

Before presenting the properties of the matrix [I dm,Φ] and theoretical guarantees for
the corresponding ℓ1-optimization problems, we first recall some results from compressive
sensing including the null space property and the stable null space property (see [16] for a
comprehensive overview).

3.1. Theory from compressive sensing

Definition 3.1. A matrix A ∈ Rm×N is said to satisfy

• the null space property of order s if

∥vS∥1 <
1
2
∥v∥1 for all v ∈ ker A\{0},

for any set S ⊂ [N ] := {1, 2, . . . , N } with card(S) ≤ s.
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• the stable null space property of order s with constant 0 < ρ < 1 if

∥vS∥1 ≤
ρ

ρ + 1
∥v∥1 for all v ∈ ker A,

for any set S ⊂ [N ] with card(S) ≤ s.

roposition 3.2 (Recovery Guarantee Given Null Space Property). Given a matrix A ∈ Rm×N ,
every s-sparse vector z∗

∈ RN with y = Az∗ is the unique solution of

min ∥z∥1, subject to y = Az, (3.1)

if and only if A satisfies the null space property of order s.

Proposition 3.3 (Recovery Guarantee Given Stable Null Space Property). Suppose a matrix
A ∈ Rm×N satisfies the stable null space property of order s with constant 0 < ρ < 1. Then,
or any x ∈ RN with y = Ax, a solution z# of the optimization problem (3.1) approximates
he vector x with ℓ1-error

∥x − z#
∥1 ≤

2(1 + ρ)
1 − ρ

inf
∥w∥0≤s

∥x − w∥1.

The null space property for the matrix A, along with the existence of an s-sparse solution
to the underdetermined system of equations, is a sufficient and necessary condition for sparse
solutions of the NP hard minimization problem,

min ∥z∥0, subject to y = Az,

o be exactly recovered via the ℓ1-minimization (3.1). On the other hand, the stable null space
roperty of the matrix A guarantees that any solution, sparse or not, can be recovered up to
he error governed by its distance to s-sparse vectors.

.2. Theoretical guarantees

We will show that if the uncorrupted data {x(i)
} satisfy an appropriate concentration

nequality and their common distribution µ is non-degenerate (that is, if for any µ-measurable
set B, µ(B) = 1 implies B contains infinitely many elements), then the polynomial coefficients
of the unknown function as well as the location of the outliers can be exactly recovered with
high probability from the unique solution of the ℓ1-minimization problem (2.3), provided that
the output values y are exact. When the output values y contain dense noise, we show that every
solution of the associated optimization problem can be approximated by a sparse solution under
suitable assumptions.

To begin with, we will show that the matrix [I dm,Φm×r ], where Φm×r = ΦU is constructed
from all monomials up to degree p, satisfies the null space property.

Theorem 3.4. Fix p ∈ N. Consider {u(i)
= x(i)

+ θθθ (i)
}

m
i=1 ⊂ Rd where the uncorrupted

data {x(i)
} are L∞-bounded by a constant BX and identically distributed according to a non-

degenerate probability distribution µ, and the corruption {θθθ (i)
} is L∞-bounded by a constant

BΘ and sθ -row sparse. Assume that {x(i)
} satisfies the following concentration inequality:

Pr

(⏐⏐⏐⏐⏐ 1
m

m∑
ϕ(x(i)) − E[ϕ(x)]

⏐⏐⏐⏐⏐ ≥ ζ

)
≤ e−κ(ζ,m), (3.2)
i=1
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or any ζ > 0, any bounded Borel function ϕ, and some function κ(ζ, m). In addition, suppose
here exists a constant Mκ,δ,r depending on κ, δ, r such that when m > Mκ,δ,r , we have:

κ(m−δ, m) ≥ 3δr log m, (3.3)

where e = exp(1), r =
(p+d

d

)
, and δ > 0 is some chosen constant.

Then, when m > Mκ,δ,r and m satisfies

m ≥
(
max{3 + 3B p

X , 4D−1
}
)1/δ

,

m >
4 + 8s (1 + (BX + BΘ )p)

D
,

(3.4)

the matrix A = [I dm,Φm×r ], where Φ = ΦU is the dictionary matrix (2.1), satisfies the null
space property of order s ≥ sθ with probability at least (1 − m−δr ). Here D > 0 is a constant
depending only on p, d, and µ.

Proof. For each c ∈ B = {v ∈ Rr
: ∥v∥1 = 1}, define ϕc

: Rd
→ R as follows:

ϕc(x) =

⏐⏐⏐⏐⏐⏐
∑

α:|α|≤p

cαxα1
1 . . . xαd

d

⏐⏐⏐⏐⏐⏐ .
We first evaluate the lower bound for the summation

∑m
i=1 ϕc(x(i)). For any non-zero c ∈ Rr ,

we have E[ϕc(x)] > 0. Indeed, if E[ϕc(x)] = 0, then ϕc(x) = 0 µ-almost surely. Since µ is
non-degenerate, there are infinitely many x such that ϕc(x) = 0. This implies c = 0 which is
a contradiction. Therefore, E[ϕc(x)] > 0 for any c ∈ B.

On the other hand, since the set B is compact and nonempty, we can apply the extreme
value theorem for the continuous function E[ϕc(x)] to get the following bound:

inf
c∈B

E[ϕc(x)] ≥ D > 0,

for some constant D > 0. Note that D depends on µ, d , and p.
According to a well-known result on the covering number (for example, see Appendix

C.2, [16]), there exists a finite set of points Q in B of cardinality

|Q| ≤
(
3 mδ(1 + B p

X )
)r

such that

max
c∈B

min
q∈Q

∥c − q∥1 ≤
1

mδ(1 + B p
X )

.

Applying the union bound on Q and using the assumption κ(m−δ, m) ≥ 3δr log m, we
derive:

Pr
(⋃

q∈Q

{⏐⏐⏐ 1
m

m∑
i=1

ϕq (x(i)) − E[ϕq (x)]
⏐⏐⏐ ≥ m−δ

})
≤ mδr (3 + 3B p

X )r e−κ(m−δ ,m)
≤ m−δr ,

provided that

m ≥
(
3 + 3B p

X
)1/δ

. (3.5)

Hence,

Pr

({
max
q∈Q

⏐⏐⏐⏐⏐ 1
m

m∑
ϕq (x(i)) − E[ϕq (x)]

⏐⏐⏐⏐⏐ ≤ m−δ

})
≥ 1 − m−δr .
i=1
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Therefore, for any q ∈ Q, we have:
m∑

i=1

ϕq (x(i))
≥ mE(ϕq (x)) −

⏐⏐⏐⏐⏐
m∑

i=1

ϕq (x(i)) − mE[ϕq (x)]

⏐⏐⏐⏐⏐ ≥ m D − m1−δ, (3.6)

ith probability at least (1 − m−δr ).

For each c ∈ B there exists qc ∈ Q so that ∥c − qc∥1 ≤
1

mδ(1 + B p
X )

. Applying the

Hölder’s inequality for x = (x j ) ∈ Rd with ∥x∥∞ ≤ BX , we obtain:⏐⏐⏐⏐⏐⏐
∑

α:|α|≤p

(cα
− qα

c )
d∏

j=1

x
α j
j

⏐⏐⏐⏐⏐⏐ ≤ ∥c − qc∥1 max
α:|α|≤p

d∏
j=1

⏐⏐⏐xα j
j

⏐⏐⏐ ≤ m−δ.

ombining with the inequality (3.6), we obtain

m∑
i=1

ϕc (x(i))
≥

m∑
i=1

ϕqc
(
x(i))

−

m∑
i=1

⏐⏐⏐⏐⏐⏐
∑

α:|α|≤p

(cα
− qα

c )
d∏

j=1

(
x (i)

j

)α j

⏐⏐⏐⏐⏐⏐
≥ m(D − 2m−δ)

≥
1
2

m D,

ith probability at least (1 − m−δr ), provided that

m ≥

(
4
D

)1/δ

. (3.7)

By linearity, we have in the same event,
m∑

i=1

ϕc(x(i)) ≥
1
2

m D ∥c∥1, ∀c ∈ Rr
\ {0}. (3.8)

Next, we will estimate the lower bound for ∥Φc∥1, where c ∈ Rr
\ {0}. Denote R =

(R1, . . . , Rm)T
∈ Rm , where Ri is defined as follows:

Ri = (Φc)i −

∑
α:|α|≤p

cα
(

x (i)
1

)α1
. . .
(

x (i)
d

)αd
, i = 1, . . . , m.

Applying the Hölder’s inequality, we have

|(Φc)i | =

⏐⏐⏐ ∑
α:|α|≤p

cα
(

u(i)
1

)α1
. . .
(

u(i)
d

)αd
⏐⏐⏐ ≤

∑
α:|α|≤p

⏐⏐⏐cα
(

u(i)
1

)α1
. . .
(

u(i)
d

)αd
⏐⏐⏐

≤ ∥c∥1 max
α:|α|≤p

d∏
j=1

⏐⏐⏐(u(i)
j

)α j
⏐⏐⏐ ≤ ∥c∥1

(
1 + (BX + BΘ )p) . (3.9)

Similarly, we have

ϕc(x(i)) ≤ ∥c∥1
(
1 + B p

X
)
.

Therefore,

|R | ≤ |(Φc) | + ϕc(x(i))
≤ 2∥c∥ (1 + (B + B )p).
i i 1 X Θ
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ince ∥Θ∥2,0 ≤ sθ , we deduce ∥R∥0 ≤ sθ and

∥R∥1 =

m∑
i=1

|Ri | ≤ 2sθ∥c∥1(1 + (BX + BΘ )p). (3.10)

Thus, in the event that (3.8) holds, we have combined with (3.10) that

∥Φc∥1 ≥

m∑
i=1

ϕc (x(i))
− ∥R∥1

≥ ∥c∥1

(
1
2

m D − 2sθ (1 + (BX + BΘ )p)
)

≥
1
4

m D∥c∥1,

(3.11)

provided moreover that

m ≥
8sθ (1 + (BX + BΘ )p)

D
= C̃ .

ow, we are ready to verify the null space property condition for A = [I dm,Φm×r ] in the event
hat (3.8) holds. Let S ⊂ [m + r ] be an arbitrary set of size s and w ∈ ker A \ {0⃗}. Denote
ˆ ∈ Rr to be the last r entries of w, and

S1 = S ∩ [m], S2 = (S ∩ {m + 1, . . . , m + r}) − m ⊂ [r ].

ince w ∈ ker A \ {0⃗}, ĉ ̸= 0⃗r and w = [−Φĉ, ĉ]. Using the inequality (3.9), we have

∥wS∥1 = ∥ĉS2∥1 + ∥(Φĉ)S1∥1 ≤ ∥ĉ∥1 + ∥(Φĉ)S1∥1 ≤ ∥ĉ∥1
(
1 + s

(
1 + (BX + BΘ )p)) .

On the other hand, using the inequality (3.11), we obtain

∥w∥1 = ∥ĉ∥1 + ∥Φĉ∥1 ≥ ∥ĉ∥1

(
1 +

1
4

m D
)

.

hen when m satisfies (3.5), (3.7), and

m >
4 + 8s(1 + (BX + BΘ )p)

D
> C̃, (3.12)

e have ∥wS∥1 <
1
2
∥w∥1, for any w ∈ ker A \ {0⃗}. That completes our proof. □

emark 3.5.

• Since ∥Φc∥1 ≥
1
4 m D∥c∥1 for any c ∈ Rr

\ {0} with probability 1 − m−δr , we conclude
that the matrix Φ is of full column rank.

• From the proof, we also derive that if s ≥ r , the matrix [I dm,Φm×r ] satisfies the partial
null space property of order s − r (see [3], Definition 3.1).

• If we keep the conditions (3.5) and (3.7), and change the condition (3.12) to

m >
4 + 4s(ρ + 1)(1 + (BX + BΘ )p)

ρD
, (3.13)

then ∥wS∥1 ≤
ρ

ρ + 1
∥w∥1, for any w ∈ ker A and any set S ⊂ [m +r ] with card(S) ≤ s.

It means A satisfies the stable null space property of order s.
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Combining with the reconstruction results from compressed sensing (see Propositions 3.2
nd 3.3), we immediately obtain the following reconstruction guarantees.

heorem 3.6. Fix p ∈ N. Suppose we observe corrupted measurements(
u(i)

= x(i)
+ θθθ (i), y(i)

= f (x(i)) + ε(i)
)m

i=1
⊂ Rd

× R,

where {x(i)
} and {θθθ (i)

} satisfy the assumptions in Theorem 3.4, and f is a sparse multivariate
polynomial with at most sc monomial terms of degree at most p. Denote y = (y(i)), s = sc +sθ ,
ΦU to be the dictionary matrix (2.1), and c to be the unknown polynomial coefficients of f .
The problem can be recast as

y = Φc + e,

for some e ∈ Rm .

(a) When εεε = 0, then supp e = {i : θθθ (i)
̸= 0}. Suppose ∥c∥0 + ∥e∥0 ≤ s, then there is

a constant D > 0 depending only on p, d, and µ, so that when m satisfies (3.4), the
polynomial coefficients c of f as well as the vector e can be exactly recovered with
probability (1 − m−δr ) from the unique solution to the ℓ1-minimization problem:

min
c′,e′

∥e′
∥1 + ∥c′

∥1 subject to Φc′
+ e′

= y.

(b) When εεε ̸= 0 and is not necessarily sparse, if m satisfies (3.13), (3.5), and (3.7), a solution
(c#, e#) to the ℓ1-minimization (2.3) approximates the true solution (c, e) with ℓ1-error:

∥c − c#
∥1 + ∥e − e#

∥1 ≤
2(1 + ρ)

1 − ρ

(
∥c − c∗

∥1 + ∥e − e∗
∥1
)
,

where [c∗, e∗] is the best s-term approximation (vector of s largest-magnitude entries) of
[c, e] and ρ ∈ (0, 1) is the stable null space constant of the matrix [I dm,ΦU ].

emark 3.7.

• The partial ℓ1-minimization problem in [51]

min
c′,e′

∥e′
∥1 subject to y = Φc′

+ e′,

is a special case of problem (2.3) with s = sθ ≥ r . In other words, given corrupted
input–output data where the corruption measurements are sθ -sparse, we can recover the
polynomial function that fits the given data and detects the outliers correctly.

• The same result in Theorem 3.6 can be extended immediately to learn a system of high-
dimensional polynomial functions f = ( f1, . . . , fn) ∈ Rn with the same coefficient matrix,
where each f j is a multivariate polynomial of degree at most p:

min
c′

j ,e
′
j

∥c′

j∥1 + ∥e′

j∥1 subject to y j = Φc′

j + e′

j , 1 ≤ j ≤ n.

• By considering a slight modification of the matrix A, Ã =

[
1
λ

I dm,Φ

]
, we can verify

that Ã also satisfies the null space property, provided that m is sufficiently large. Indeed,
every w ∈ ker Ã \ {0} can be written as w = [−λΦĉ, ĉ]. Then with the lower bound on
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∥Φc∥1, we can immediately show ∥wS∥1 <
1
2
∥w∥1, provided that

m ≥
(
max{3 + 3B p

X , 4D−1
}
)1/δ

,

m >
8s (1 + (BX + BΘ )p)

D
,

λ >
4

m D − 8s (1 + (BX + BΘ )p)
.

(3.14)

Hence, the corrupted compressed sensing problem

min
c′,e′

∥c′
∥1 + λ∥e′

∥1, subject to y = Φc′
+ e′,

will have a unique solution.

. Recovery results for various types of data

In this section, we apply our results to several popular types of weakly dependent data.
ndeed, we only need to verify that these types of data satisfy the required concentration
nequality in Theorem 3.4. For the sake of simplicity, we state the recovery results for the
oiseless case of y (i.e., when ε(i)

= 0).

.1. Independent and identically distributed (i.i.d.) data

In [48], the authors provide the following Bernstein inequality for i.i.d. random variables:

emma 4.1. If {x(i)
} are i.i.d. random variables with |ϕ(x(1)) − E(ϕ(x(1)))| ≤ C1 a.s., then the

ollowing probability inequality holds for all m ≥ 1:

Pr

(⏐⏐⏐⏐ 1
m

m∑
i=1

ϕ(x(i)) − E[ϕ(X )]
⏐⏐⏐⏐ ≥ ζ

)
≤ 2 exp

(
−

ζ 2m
C2 + C3ζ

)
, (4.1)

here

C2 = 2E[ϕ2(x(1))] − 2(E[ϕ(x(1))])2, C3 =
2
3

C1,

nd ϕ is any bounded Borel function.

In this case, the function κ in the concentration inequality (3.2) is

κ(ζ, m) =
ζ 2m

C2 + C3ζ
− log 2,

nd satisfies the condition (3.3) for any constant δ ∈

(
0,

1
2

)
, when m is large enough. Indeed,

he condition on κ can be re-written as

r ≤
1

3δ log m

(
m

C2m2δ + C3mδ
− log 2

)
. (4.2)

If the maximal polynomial degree p is fixed, the smaller δ is, the smaller m is needed to satisfy
the inequality (4.2).

As a result, we have the following recovery result for i.i.d data.
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Theorem 4.2. Fix p ∈ N. Suppose we observe corrupted measurements(
u(i)

= x(i)
+ θθθ (i), y(i)

= f
(
x(i)))m

i=1
⊂ Rd

× R,

where the uncorrupted data {x(i)
} are i.i.d. according to a non-degenerate distribution µ and

L∞-bounded by BX ; the corruption {θθθ (i)
} is L∞-bounded by BΘ and sθ -row sparse; and f

is a sparse multivariate polynomial with at most sc monomials of degree at most p. Then,
when m satisfies (3.4) and (4.2), the polynomial coefficients of the function f can be exactly
recovered and the outliers can be successfully detected from the unique solution of (2.3) with
high probability.

4.2. Exponentially strongly α-mixing data

We first recall the definition of α-mixing coefficients and a concentration inequality for
α-mixing. For a stationary stochastic process {xt }, define (see [32,38])

α(s) = sup
−∞<t<∞

A∈σ (x−
t ),B∈σ (x+

t+s )

| Pr(A ∩ B) − Pr(A) Pr(B)|,

where

σ (x−

t ) = σ (xk | k ∈ Z, k ≤ t), σ (x+

t+s) = σ (xk | k ∈ Z, k ≥ t + s).

he stochastic process is said to be exponentially strongly α-mixing if

α(s) ≤ α exp(−cαsβ), s ≥ 1,

for some α > 0, β > 0, and cα > 0, where the constants β and cα are assumed to be known.
ote that strong mixing implies asymptotic independence over sufficiently large time.
In [32], the authors proved the following concentration inequality for exponentially strongly

-mixing:

emma 4.3. If {x(i)
} are stationary exponentially strongly α-mixing with

|ϕ(x(1)) − E(ϕ(x(1)))| ≤ C0 a.s., then the following probability inequality holds for all
α ≥ 2 and for all ζ > 0:

Pr

(⏐⏐⏐⏐ 1
m

m∑
i=1

ϕ(x(i)) − E[ϕ(x(1))]
⏐⏐⏐⏐ ≥ ζ

)
≤ C1 exp

(
−

ζ 2mα

C2 + C3ζ

)
, (4.3)

where

mα :=

⌊
m

⌈(8m/cα)1/(β+1)⌉

⌋
= Cα mβ/(β+1),

C1 = 2(1 + 4e−2α), C2 = 2E(ϕ2(x(1))) − 2(E(ϕ(x(1))))2, C3 =
2
3

C0,

nd ϕ is any bounded Borel function.

Hence the concentration inequality (3.2) is satisfied with

κ(ζ, m) =
ζ 2mα

− log C1.
C2 + C3ζ
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Since

κ(m−δ, m) =
mα

C2m2δ + C3mδ
− log C1 ≥ 3δr log m, (4.4)

for any δ ∈

(
0,

β

2(β + 1)

)
when m is large enough, we have the recovery result for

xponentially strongly α-mixing data.

Theorem 4.4. Fix p ∈ N. Suppose we observe corrupted measurements(
u(i)

= x(i)
+ θθθ (i), y(i)

= f (x(i))
)m

i=1
⊂ Rd

× R,

here the uncorrupted data {x(i)
} are stationary exponentially strongly α-mixing and L∞-

bounded by BX ; the corruption {θθθ (i)
} is L∞-bounded by BΘ and sθ -row sparse; and f is a

sparse multivariate polynomial with at most sc monomials of degree at most p. If the stationary
distribution µ of {x(i)

} is non-degenerate, then when m satisfies Eqs. (3.4) and (4.4), the
polynomial coefficients of the function f can be exactly recovered and the outliers can be
successfully detected from the unique solution of (2.3) with high probability.

4.3. Geometrically (time-reversed) C-mixing data

The C-mixing processes were introduced in [31] to exhibit many common dynamical sys-
tems that are not necessary α-mixing such as Lasota–Yorke maps, uni-modal maps, piecewise
expanding maps in higher dimension. Moreover, the geometrically C-mixing processes are
strongly related to some well-known results on the decay of correlations for dynamical systems
(see [22]).

Let {x(i)
} be an X -valued stationary process on (Ω ,A, µ). For a semi-norm ∥ ·∥ on a vector

space of bounded measurable functions that satisfies ∥ exp(h)∥ ≤ ∥ exp(h)∥∞∥h∥, for every
bounded measurable function h : X → R, we define the C-norm by ∥h∥C = ∥h∥∞ + ∥h∥.

Let Ai
1 and A∞

i+m be the σ -algebras generated by (x(1), . . . , x(i)) and (x(i+m), x(i+m+1), . . .)
espectively. Then, the C-mixing coefficient is

φC(m) = sup
{⏐⏐⏐E[Zh(x(i+m))] − E(Z )E[h(x(i+m))]

⏐⏐⏐ : i ≥ 1,

Z is Ai
1-measurable and ∥Z∥1 ≤ 1, ∥h∥C ≤ 1

}
,

nd the time-reversed C-mixing coefficient is

φC,rev(m) = sup
{⏐⏐⏐E[Zh(X (i))] − E(Z )E[h(X (i))]

⏐⏐⏐ : i ≥ 1,

Z is A∞

i+m-measurable and ∥Z∥1 ≤ 1, ∥h∥C ≤ 1
}
.

A sequence of random variables {x(i)
} is called geometrically (time-reversed) C-mixing if

φC,(rev)(m) ≤ c exp(−bmβ), m ≥ 1,

or some constants b > 0, c ≥ 0, and β > 0. The following concentration inequality
or stationary geometrically (time-reversed) C-mixing process is a direct consequence of the
ernstein inequality presented in [22].
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Lemma 4.5. Let {x(i)
}i≥1 be a stationary geometrically (time reversed) C-mixing process.

onsider a function ϕ : X → R such that ∥ϕ∥ ≤ A, ∥ϕ∥∞ ≤ B, and Var(ϕ(x(1))) ≤ σ 2. Then,
or sufficient large m (see Equation 3.1 in [22]) we have

Pr

(⏐⏐⏐⏐ 1
m

m∑
i=1

ϕ(x(i)) − E[ϕ(x(1))]
⏐⏐⏐⏐ ≥ ζ

)
≤ 4 exp

(
−

mζ 2

8(log m)2/β
(
σ 2 + ζ B/3

)) . (4.5)

In this case, the concentration inequality (3.2) holds for

κ(ζ, m) =
mζ 2

8(log m)2/β
(
σ 2 + ζ B/3

) − log 4, (4.6)

and satisfies the condition (3.3) for any δ ∈

(
0,

1
2

)
when m is large enough. Hence, we have

he recovery result for geometrically (time-reversed) C-mixing data.

heorem 4.6. Fix p ∈ N. Suppose we observe corrupted measurements(
u(i)

= x(i)
+ θθθ (i), y(i)

= f (x(i))
)m

i=1
⊂ Rd

× R,

here the uncorrupted data {x(i)
} are stationary geometrically (time-reversed) C-mixing with

espect to the semi-norm ∥h∥ = supX∈X ∥∇h(X )∥1 and L∞-bounded by BX ; the corruption
θθθ (i)

} is L∞-bounded by BΘ and sθ -row sparse; and f is a sparse multivariate polynomial
ith at most sc monomials of degree at most p. If the stationary distribution µ of {x(i)

} is
on-degenerate, then when m satisfies Eqs. (3.4) and (4.6), the polynomial coefficients of the
unction f can be exactly recovered and the outliers can be successfully detected from the
nique solution of (2.3) with high probability.

.4. Uniformly ergodic Markov chain

Let {x(i)
} be a Markov chain on (Ω ,A) with a unique stationary distribution µ. We define:

Pk(x, A) = Pr(xk+i ∈ A | xi = x).

The chain {x(i)
} is called uniformly ergodic if

sup
x

∥Pk(x, .) − µ(.)∥T V → 0 as k → ∞.

n this case, there exist a positive integer k0, λ > 0, and a probability distribution ρ such that

Pk0 (x, A) ≥ λρ(A), for all x ∈ X , A ∈ A.

We have the following concentration inequality for uniformly ergodic Markov chain [26]:

emma 4.7. Let {x(i)
} be a stationary uniformly ergodic Markov chain. Then for any ϕ : X →

such that ∥ϕ∥∞ ≤ B, any ζ > 0, and m ≥ 1 + 3k0 B/(λζ ), we have

Pr

(⏐⏐⏐⏐ 1
m

m∑
i=1

ϕ(x(i)) − E[ϕ(x(1))]
⏐⏐⏐⏐ ≥ ζ

)
≤ 2 exp

[
−

m − 1
2

(
λ

k0 B
ζ −

3
m − 1

)2
]

. (4.7)

In this case, the concentration inequality (3.2) holds for

κ(ζ, m) =
m − 1

(
λ

ζ −
3

)2

− log 2.

2 k0 B m − 1



L.S.T. Ho, H. Schaeffer, G. Tran et al. / Journal of Approximation Theory 259 (2020) 105472 15

f

u

T

Observe that

κ(m−δ, m) =
m − 1

2

(
λ

k0 B
m−δ

−
3

m − 1

)2

− log 2

=
λ2(m − 1)m−2δ

2k2
0 B2

−
3λm−δ

k0 B
+

9
2(m − 1)

− log 2

≥ 3δr log m,

(4.8)

or any δ ∈

(
0,

1
2

)
when m is large enough. Therefore, we have the recovery result for

niformly ergodic Markov chain data.

heorem 4.8. Fix p ∈ N. Suppose we observe corrupted measurements(
u(i)

= x(i)
+ θθθ (i), y(i)

= f (x(i))
)m

i=1
⊂ Rd

× R,

where the uncorrupted data {x(i)
} form a stationary uniformly ergodic Markov chain and L∞-

bounded by BX ; the corruption {θθθ (i)
} is L∞-bounded by BΘ and sθ -row sparse; and f is a

sparse multivariate polynomial with at most sc monomials of degree at most p. If the stationary
distribution µ of {x(i)

} is non-degenerate, then when m satisfies Eqs. (3.4) and (4.8), the
polynomial coefficients of the function f can be exactly recovered and the outliers can be
successfully detected from the unique solution of (2.3) with high probability.

5. Numerics and computational results

In this section, we verify the exact recovery of polynomial coefficients from data sampled
from a stationary process with sparse random corruptions. For each of the examples, we use
exponentially strong α-mixing data, although the other related processes would produce similar
results. Our computational tests verify the recovery results from Theorem 3.6 as well as the
method’s dependence on parameters such as the sampling rate, polynomial degree, the sampling
distribution of the corruption vector, and the sparsity of the corruption vector.

5.1. Algorithm

To solve the constrained optimization problem (2.4), we use the well-known Douglas–
Rachford algorithm [10,29]. Eq. (2.4) can be written as:

min
w

∥w∥1 subject to y = Aw, (5.1)

with the new variable w = [e, c] and the augmented matrix A = [λ−1 I dm, Φm×r ]. This can
be relaxed to:

min
w

∥w∥1 subject to ∥y − Aw∥2 ≤ σ, (5.2)

for some (non-negative) parameter σ . Using Eq. (5.2) gives the experiments more flexibility,
while also coinciding with Eq. (5.1) when σ is sent to zero. Following the derivation from [46],
let v be an auxiliary variable relaxing the constraints:

(w, v) ∈ D := {(w, v)| v = Aw} and v ∈ B (y) := {v | ∥y − v∥ ≤ σ }.
σ 2
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Using the indicator function for a set S:

IS (w) :=

{
0, if w ∈ S

∞, if w /∈ S,

Eq. (5.2) can be written as:

min
(w,v)

g1(w, v) + g2(w, v), (5.3)

where g1(w, v) := ∥w∥1+IBσ (y)(v) and g2(w, v) := ID(w, v). The Douglas–Rachford algorithm
uses the proximal operator within its iterations. The proximal operator of a function g is defined
as:

proxγ g(z) := argmin
x

{
1
2
∥z − x∥

2
+ γ g(x)

}
,

here γ > 0 is a free parameter. As shown in [46], the proximal operators for g1 and g2 are
s follows:

proxγ g1
(w, v) =

(
Sγ (w), projBσ (y)(w)

)
,

here projBσ
is the Euclidean projection onto the ball:

projBσ (y)(v) :=

⎧⎨⎩ v, if ∥v − y∥2 ≤ σ

y + σ
v − y

∥v − y∥2
, if ∥v − y∥2 > σ,

and the soft-thresholding function S (also known as shrink) is defined component-wise as:

Sγ (w j ) = sign(w j ) max
(
|w j | − γ, 0

)
.

The proximal operator for g2 is defined by:

proxγ g2
(w, v) =

(
(I dm+r + AT A)−1(w + AT v), A(I dm+r + AT A)−1(w + AT v)

)
.

efine rproxγ g(v) := 2proxγ g(v)−v, then the iterations for the Douglas–Rachford method are:

(w̃k+1, ṽk+1) =
1
2

(
(w̃k, ṽk) + rproxγ g2

(
rproxγ g1

(
w̃k, ṽk)) ) ,

(wk+1, vk+1) = proxγ g1
(w̃k+1, ṽk+1),

(5.4)

nd will converge to a minimizer of Eq. (5.2) for any γ > 0 [10]. Unless otherwise stated, in
ll of the computational examples we set γ = 1 and σ = 10−10.

It is worth noticing that although the condition number κ(I+AT A) may be bad for monomial
ictionaries, the effective condition number to solve (I + AT A)x = b may be manageable by

looking at the space b is in (see Theorem 1 in [5]). Since we are looking for sparse solutions,
b can be written over a subset of columns of (I + AT A), thus lowering the sensitivities.
Nevertheless, the verification of the effective well-conditioning of the Douglas–Rachford
algorithm is out of scope of this paper and we leave it for future work.

5.2. Computational results

Throughout the following examples, the uncorrupted data x(i)
∈ Rd are simulated as follows:

First, we simulate a sequence of bounded i.i.d. random variables z(i), i = 1, 2, . . . , m+3. Then,
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Fig. 1. Probability of exact recovery versus the sampling rate m
r for the 5th order Eq. (5.5) with d = 3 (r = 56

onomial terms) and the sparsity of the polynomial coefficient vector equal to 3. We measure the rate of exact
ecovery over 100 trials, varying the sparsity of the vector e: 5 (blue solid line with dots), 10 (red solid line),
nd 12 (yellow dotted line). The horizontal line is the threshold to achieve 90% probability of success, which are
ll achieved with under-sampled data i.e. m < r . For large enough sampling rate (for example 150 samples), the
robability of recovery approaches one.

e set

x(i)
=

z(i)

16
+

z(i+1)

8
+

z(i+2)

4
+

z(i+3)

2
, i = 1, 2, . . . , m.

his leads to a sequence (x(i)) which is a stationary exponentially strongly α-mixing process.

Example 1. For the first example, we consider learning the function:

f (x) = 1 − 2x1x2x3 + 5x5
1 , (5.5)

here x ∈ R3. In Fig. 1, we display the probability of exact recovery of the polynomial
oefficients in Eq. (5.5) versus the sampling rate m

r , i.e. the number of rows versus columns in
. For this example, the matrix Φ contains all monomials up to fifth order in R3 for a total of

6 columns. We measure the probability of exact recovery by comparing the computed support
et to the exact support set. We compute the success rate over 100 trials with random sparse
utliers, varying the sparsity of the vector e between 5 (blue solid line with dots), 10 (red
olid line), and 12 (yellow dotted line). In all examples, the sparsity of the vector e refers to
he number of non-zero elements, i.e. sθ . The vector e is drawn randomly for each trial from
he normal distribution with standard deviation equal to 10. This value is chosen to roughly

atch the amplitude of the coefficients with respect to Φ, thus leading to a more challenging
utlier-removal problem. The threshold to achieve 90% probability of success is marked by
he horizontal dotted line. Note that the method is able to recovery the polynomial coefficients
ith 90% probability even when the matrix Φ is under-sampled (m < r .) As the sparsity of the

vector e increases, the probability of exact recovery decreases, as expected. For large enough
sampling rates, in particular after 150 samples, the calculated probability of recovery is nearly
one.
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Example 2. The second example investigates the recovery of the function:

f (x) = −1 − 2 x p
1 , (5.6)

for various p > 1 where x ∈ R3. In Table 1, the probability of exact recovery versus the
maximum degree of the polynomial is shown for two sampling rates: 15% and 35%. The
maximum degree of the monomials used in the dictionary is set to 10 for all runs (for a total
of 286 monomial terms). The sparsity of the polynomial coefficient vector is 2 and the sparsity
of the vector e is set to 5 in this example. The vector e is drawn randomly for each trial from
the normal distribution with standard deviation equal to 10. For this example, the matrix Φ is
normalized column-wise before applying the algorithm in order to prevent potential bias due
to the column-scaling as p increases. It was observed that normalization also helps with the

umerical stability of the problem when using higher-order monomials.

For 15% sampling (the second row of Table 1), the computed probability of exact recovery
s fairly stable (outside of the p = 3 case). One can observe a small decrease in the recovery
ate between p = 5, p = 8, and p = 10. To test the stability in the high-recovery limit, we
et the sampling rate to 35% (third row of Table 1). For 35% sampling, as p increases from 2

to 10 the recovery rate stays nearly the same (98% to 99%).

Example 3. In this example, we investigate the recovery of the function:

f (x) = −8.5 + 9.6 x1 x4 + 0.3 x2 x5 + 5.7 x3
1 + 1.9x3 x2

9 , (5.7)

under various conditions on the vector e. The non-zero values of the vector e are sampled
uniformly from [−H, H ]. We compute the probability of exact recovery versus the values of
H and changes in the sparsity sθ . The values of H are chosen to match the range of the
magnitudes of the coefficients in Eq. (5.7). For this example, we use all monomials up to
degree three in R10 for a total of 286 monomial terms. The sampling rate is fixed at 17.5% in
order to highlight the variability between the recovery rates. In Table 2, we vary H between
0.5, 2, and 10 and the sparsity of the vector e between 3, 10, and 15. The scaling parameter
λ is set to 2 for all experiments in Table 2. In all cases, as H increases, the recovery rate also
increases. As the sparsity of the vector e increases, the recovery rate decreases, as expected.
It was observed that the failures tended to occur on the vector e, while the recovery of the
polynomial coefficients was fairly stable to changes in H and to changes in the sparsity sθ . In
fact, it is possible, for certain cases, to recover the polynomial coefficients for relatively dense
outlier vectors.

Example 4. This example details the recovery of the function:

f (x) = −1 + 2 x2
1 + 0.5 x5 x20, (5.8)

when it is perturbed by the function g(x) = ϵ sin(2πx1) (which is noise and is not part of
the dictionary). We compute the probability of exact recovery of the polynomial coefficients
in Eq. (5.8) versus various values of ϵ. We use all monomials up to degree two in R20 for a
total of 231 monomial terms. The sampling rate is fixed at 21.7% and the sparsity of the vector
e is set to 3. In Table 3, we can see that as ϵ increases, the recovery rate decreases. The average
ℓ1 error (over the successful trials) is stable over the various tests. For larger values of ϵ, it
may be possible to recover the sparse coefficients by adjusting λ. For example, by lowering λ

to 0.9, the recovery rate for ϵ = 10−3 becomes 94 and the average ℓ1 error becomes 0.0141.
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Table 3
Probability of exact recovery (of the polynomial coefficients) versus the sparsity of the
vector e (see Eq. (5.8)). The ambient dimension is d = 20, the maximum degree of the
candidate polynomials is 2 (thus r = 231 monomial terms), and the sparsity of the polynomial
coefficients is equal to 3. In each test, the sampling rate is 21.7% and the parameter is set
to λ = 1.

ϵ 0 10−5 10−4 10−3

Recovery 99 98 98 85
ℓ1 error 0.0144 0.0120 0.0104 0.0156

Table 4
Probability of exact recovery (of the polynomial coefficients in Eq. (5.9)) versus the sparsity
ratio ρθ . The ambient dimension is d = 3, the maximum degree of the candidate polynomials
is 5 (thus r = 56 monomial terms), and the sparsity of the polynomial coefficients is equal
to 3. In each test, the parameter is set to λ = 1.

ρθ 0.25 0.5 0.75
m = 200 93 82 7
m = 400 97 94 44
m = 600 99 96 91

Example 5. The last example details the effect the sparsity of the vector e has on the recovery,
in particular, when the sparsity is a fixed percentage of the total number of samples. Using the
following function:

f (x) = 1 − 2x1x2x3 + 5x5
1 , (5.9)

we compute the probability of exact recovery of the polynomial coefficients in Eq. (5.9)
versus various sparsity ratios and various sampling sizes. We denote the sparsity ratio by ρθ .
The vector e is drawn randomly for each trial from the normal distribution with standard
deviation equal to 15. In Table 4, we see that as ρθ increase, the recovery rate decreases.
This also shows a limitation in the method’s ability to recovery the polynomial from very
few uncorrupted samples. For example, when m = 200 and ρθ = 0.75, then there are only

0 non-corrupt samples to fit a polynomial with 56 free parameters. Since the 50 samples are
eakly dependent, this may not be sufficient to determine the coefficients accurately. Also, this

xperiment shows that in the over-sampling regime, i.e. m = 600 and ρθ ≤ 0.5, the method
ives the correct result fairly consistently (with probability larger than 0.9).

emark 5.1. One approach for removing outliers from linear regression estimates is by
hresholding the Cook’s distance Di , for data point i . Applying this approach to Example 5,
ith a threshold of 3 mean(Di ) leads to zero probability of being able to located the corrupt

amples. This leads to regression results with large errors. Alternatively, one may wish to vary
he threshold for each problem; however, this will not lead to successful outlier removal for the
ata used in our experiments. For example, in the middle entry of Table 4 (i.e. ρθ = 0.5 and
= 400) the minimum and maximum Di for i in the corrupt set are (4.3×10−10, 5.5×10−2),

hile the minimum and maximum Di for i in the uncorrupted set are (4.1×10−10, 9.4×10−4).
his indicates that there is no value that would exactly separate the corrupt and uncorrupted
ata samples by thresholding Cook’s distance.



20 L.S.T. Ho, H. Schaeffer, G. Tran et al. / Journal of Approximation Theory 259 (2020) 105472

t
u
t
p
o
s
s
n

c

,
C
e
e

A

R
e
#
t

R

6. Conclusion

Function approximation via ℓ1-optimization is a useful technique for automated learning.
There are many results on the behavior of the ℓ1-solution when applied to i.i.d. data; however,
heoretical results for dependent data is limited. The overall goal of this work is to show that
nder weaker conditions, exact and stable recovery is guaranteed. Specifically, we have shown
hat if the data is not independent but satisfies a suitable concentration inequality, one can
rovide a recovery guarantee for the learning function problem with corrupted data. Moreover,
ur proofs also show that the associated dictionary matrix generated from this type of data
atisfies the null space property. It may be possible to weaken the requirements further while
till preserving the core results. From numerical experiments, we observe that we need fewer
umber of measurements m (compared to the theoretical bounds) to recover the underlying

function. It is likely that new theories are needed to incorporate the sparsity level of the target
function to relax the conditions on m. Specifically, it would be interesting to investigate the
ompressed sensing setting for dependent data where the number of measurements m is less

than r . In that direction, existing literature on the sparse linear regression problem in the
compressive sensing setting considers only the ideal cases where the sampling matrix has i.i.d.
Gaussian entries — see for example [17,25,27,54], or is formed from bounded orthonormal
systems [2], randomly modulated unit-norm frames, or randomly subsampled orthonormal
matrices [56]. However, it is often the case that sparsity (or sparsity with respect to some
nice bounded orthonormal basis) may not hold. One of the benefits of our results is that they
hold when the target function is indeed sparse with respect to monomials, approximately sparse
(where sparsity helps with overfitting), or even dense.
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