
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. MATH. DATA SCI. © 2020 Society for Industrial and Applied Mathematics
Vol. 2, No. 4, pp. 1181–1197

Extending the Step-Size Restriction for Gradient Descent to Avoid Strict Saddle
Points∗
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Abstract. We provide larger step-size restrictions for which gradient descent-based algorithms (almost surely)
avoid strict saddle points. In particular, consider a twice differentiable (nonconvex) objective function
whose gradient has Lipschitz constant L and that the set of points that obtain the maximum value
of the spectral norm of the Hessian is measure zero. We prove that given one uniformly random
initialization, the probability that gradient descent with a step-size up to 2/L will converge to a
strict saddle point is zero. This extends previous results up to the sharp limit imposed by the convex
quadratic case (provably converging to local minimizers). In addition, the arguments hold in the
case when a learning rate schedule is given, with either a continuous decaying rate or a piecewise
constant schedule. We show that the assumptions are robust in the sense that functions which do
not satisfy the assumptions are meager with respect to analytic functions.
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1. Introduction. Gradient descent-based methods are among the main algorithms for
optimizing models throughout machine learning. As many learning models are nonconvex,
their energy landscapes may consist of spurious local minima and saddles; this may lead
algorithms to learn models that do not generalize well to new data [12]. In [22], it was
argued that in high-dimensional optimization, saddle points are more problematic than local
minima. It is easy to construct examples for which gradient descent converges to saddle points
given certain initializations [18, 14]. However, when the step-size is sufficiently small and the
saddles are strict, i.e., the Hessian has at least one negative eigenvalue, the gradient descent
method is unlikely to converge to a saddle [14]. On the other hand, it is still possible that
gradient descent will take exponential time to escape [7]. The strict saddle condition appears in
many applications, for example, orthogonal tensor decomposition [8], low-rank matrix recovery
[3, 9, 10], dictionary learning [28, 29], generalized phase retrieval [30], and neural networks [27].

First-order gradient descent-based methods can avoid or escape saddles when unbiased
noise is added to the system. In [23], the authors prove that the Robbins–Monro stochastic
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1182 HAYDEN SCHAEFFER AND SCOTT G. MCCALLA

approximation converges to local minima in the presence of strict saddles. For objective
functions with strict saddles, [8] provided quantitative convergence rates to local minima for
the noisy gradient descent method. Convergence of the normalized gradient descent with noise
injection was shown in [15].

Alternatively, deterministic methods which use second-order information or trust regions
[5] have a rich history and can be used to avoid strict saddles. Some examples of such methods
include the modified Newton’s method using negative curvature [17], the cubic-regularized
Newton’s method [19], the saddle-free Newton’s method for deep learning [6, 22], algorithms
for higher-order saddles [2], and trust-region approaches in [28, 29, 30].

One issue with “second-order” approaches is the need for higher-order information that
leads to polynomial (in dimension) complexity per iteration. For machine learning problems,
which are typically of very high dimension, this complexity can be prohibitive. Some recent
approaches [24, 25, 4] were proposed to lower the per-iteration complexity of second-order
methods while converging to second-order stationary points (see [4]). In [11], the authors
propose a perturbed gradient descent method which converges to the second-order condition
with a poly-logarithmic cost.

Contributions of this work. The recent work of [14, 21, 13] showed that, under various
conditions, the gradient descent algorithm will avoid strict saddle points (without the need
for additional hyper-parameters or higher-order information). The main technique is to show
that the attracting set of a strict saddle has zero measure by invoking the stable manifold
theorem applied to the discrete dynamical system generated by the gradient descent method
for a C2 nonconvex objective function f with time-step α > 0. In [14], it was proved that
gradient descent avoids strict saddles if the gradient of the objective function has Lipschitz
constant L (globally), isolated saddle points, and α < 1/L. In [13], it was shown that many
first-order methods will avoid strict saddles under these conditions. Accelerated methods,
such as the heavy-ball method, also avoid strict saddles, as shown in [20].

The results still hold with weaker conditions. In particular, [21] showed that a nonglobal
Lipschitz constant L (in a convex forward invariant set) and α < 1/L were enough. If the
objective function is coercive, then the sublevel sets are compact and L does not have to be
global; however, the results of [21] hold more generally. They also showed that over the set of
all local minimizers C, if

0 < γ < inf
x∈C
||∇2f(x)||2 <∞,

then α < 2/γ is a necessary condition for gradient descent to converge to a local minimizer.
There are still several open questions, in particular, if the time-step restriction α < 1/L is

necessary for avoiding strict saddles and if varying time-steps affects these results [14, 13]. In
this work, we show that if the set of points that obtain the maximum value of the spectral norm
of the Hessian is measure zero, then the bound can be extended to α = 1/L. Furthermore, a
time-step of α < 2/L is possible if α−1 is not equal to an eigenvalue of the Hessian outside of
a null set. Examples highlight the need for such conditions. In addition, we show that these
arguments can apply to gradient descent with a varying time-steps.

2. Overview and examples. To solve the nonconvex optimization problem

min
x∈Rd

f(x),D
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STEP-SIZE RESTRICTIONS TO AVOID STRICT SADDLES 1183

consider the gradient descent method with fixed step-size α > 0, i.e.,

xn+1 = xn − α∇f(xn).

The sequence xn is generated by the iterative map xn+1 = g(xn) = gn(x0), where gn = g◦gn−1

and
g(x) := x− α∇f(x).

Given conditions on f and α, the method will converge to a critical point of f (or equivalently
a fixed point of the map g) [1]. Let λj(·) denote the jth eigenvalue of a matrix (in descending
order).

Definition 2.1. Consider a function f : Rd → R, and assume f ∈ C2(Rd). We define the
following:

• A point x∗ ∈ Rd is a critical point of f if ∇f(x∗) = 0.
• A critical point x∗ ∈ Rd is a strict saddle point if there is a negative eigenvalue, i.e.,

λj
(
∇2f(x∗)

)
< 0

for some 1 ≤ j ≤ d.

Based on this definition, some local maxima are technically strict saddle points. Saddle
points like (0, 0) of the objective function x2−y3 are avoided by the definition of strict saddles.

Define L as the smallest Lipschitz constant of the gradient over a domain Ω. If f ∈ C2(Ω),
then it is easy to see that

L := sup
x∈Ω
‖∇2f(x)‖2.

It was shown in [14, 21, 13] that for α < L−1, gradient descent avoids strict saddle points.
Extending this result to α ≤ L−1 introduces issues even for smooth objective functions. It is
possible for gradient descent to converge to strict saddles if there are nontrivial regions where
g degenerates (i.e., the Jacobian Dg is noninvertible). In effect, the gradient flow funnels
iterates toward the stable manifold of a strict saddle. To illustrate various issues, we present
the following examples.

Example 2.2 (from [18, 14]). Consider the objective function

f(x, y) =
1

2
x2 +

1

4
y4 − 1

2
y2

over Ω = R × (−
√

11
3 ,
√

11
3 ), which has three critical points (0, 0) (strict saddle) and (0,±1)

(minima). The Hessian is given by

∇2f(x, y) =

[
1 0
0 3y2 − 1

]
,

and the value of the spectral norm is maximized over Ω when y = ±
√

11
3 , i.e.,

L = sup
Ω
‖∇2f(x, y)‖ = 10.D
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1184 HAYDEN SCHAEFFER AND SCOTT G. MCCALLA

The gradient descent method with step-size α = L−1 = 1
10 is given by[

xn+1

yn+1

]
=

[
9
10x

n

11
10y

n − 1
10(yn)3

]
.

The system is forward invariant over Ω, with xn converging to 0 and yn converging to sign(y0)
(minima). The sequence will only converge to the strict saddle point (0, 0) on the line (x, 0)
and thus has probability zero if the initial data are sampled uniformly from Ω.

Example 2.3. Consider the objective function

f(x, y) :=
1

4
y2 − q(y)x2

for some region of R2 containing the origin, and let q ∈ C2. The gradient is given by

∇f(x, y) =

[
−2q(y)x

1
2y − q

′(y)x2

]
,

and the Hessian is given by

∇2f(x, y) =

[
−2q(y) −2q′(y)x
−2q′(y)x 1

2 − q
′′(y)x2

]
.

If we define q as a smooth interpolant between 1 and −1 for y ∈ (10, 30), then we can show
that even though the critical point at (0, 0) is a strict saddle and the flow is invertible near
the strict saddle, regions of degeneracy away from the strict saddle can converge to the stable
manifold and thus with some nonzero probability converge to a strict saddle.

For an explicit example, define q by

q(y) :=


1 if y ≤ 10,

1− 2

1+exp
(

40(y−20)

(y−20)2−100

) if y ∈ (10, 30),

−1 if y ≥ 30.

It is easy to check that the function q ∈ C2. In the region y < 10, we have

∇2f(x, y) =

[
−2 0
0 1

2

]
and in the region y > 30: ∇2f(x, y) =

[
2 0
0 1

2

]
.

The only critical point is at (x, y) = (0, 0), and it is a strict saddle. Note that the Lipschitz
constant of ∇f in some bounded region around the strict saddle that contains y ≥ 30, re-
stricted to x near the origin, is given by L = 2 and is obtained for all y ≥ 30 (a set of positive
measure). Using gradient descent with α = L−1 = 1/2 yields[

xn+1

yn+1

]
=

[
xn + q(yn)xn

yn − 1
4y

n + 1
2q
′(yn)(xn)2

]
.D
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STEP-SIZE RESTRICTIONS TO AVOID STRICT SADDLES 1185

(a) Surface Plot

(b) Random Gradient Descent Trajectories

Figure 2.1. The plots correspond to the surface (a) of the objective function from Example 2.4 and the
associated gradient descent trajectories (b) from a set of randomly sampled initial conditions. The red dot at
(0, 0) is the strict saddle point. The trajectories whose initial y values are large enough will converge to the
saddle point.

For any initialization in y ≥ 30, we have[
xn+1

yn+1

]
=

[
0

3
4y

n

]
,

which is within the stable manifold for (0, 0) (the iterates are pushed onto the stable manifold
after one step). Therefore, given this choice of step-size, with nonzero probability (after
restricting onto an appropriate bounded set), gradient descent will converge to a strict saddle.

In Figure 2.1, we set α = L−1 and plot the gradient descent trajectories, sampled from a
set of random initial states. The figure shows that the trajectories whose initial y value are
large enough are all funneled to the stable manifold of the saddle at (0, 0).
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1186 HAYDEN SCHAEFFER AND SCOTT G. MCCALLA

Example 2.3 shows that large regions of space can be attracted to the local stable manifold
of a strict saddle. These domains act as focusing regions, in particular, subsets where the
Hessian is degenerate (i.e., at least one zero eigenvalue) can cause the flow to focus a nonzero
measure set onto a measure zero stable manifold. This behavior will be taken into account in
Theorem 3.2.

In the next section, we provide qualitative and quantitative results on the convergence of
gradient descent, in particular, the divergence from strict saddles when the time-step does not
degenerate the Jacobian of g on nonnull sets.

3. Conditions for avoiding strict saddles. For convex optimization problems with Lip-
schitz gradients, convergence of the gradient descent method is guaranteed for step-sizes satis-
fying αL ≤ 1. It is possible to take larger step-sizes. For example, if A is a symmetric positive
definite matrix, then gradient descent with fixed step-size will converge to a minimizer of

f(x) =
1

2
xTAx− bTx

if and only if αL < 2. Taking αL < 2 as a reasonable upper limit for the step-size, our goal is
to show that with the time-step restriction and a condition on the size of the degenerate set,
gradient descent will not converge to a strict saddle. Note that this does not imply convergence
to a minimizer since nonstrict saddles are possible.

The behavior near a critical point can be characterized by the well-known center manifold
theorem.

Theorem 3.1 (center manifold theorem [26]). Let x∗ be a fixed point of a C1 local diffeomor-
phism g : U → Rd, where U is a neighborhood of x∗ in Rd equipped with the Euclidean metric
d(·, ·). Let Es

⊕
Ec
⊕
Eu be an invariant splitting of Rd into the generalized eigenspace of

the Jacobian Dg(x∗) corresponding to the eigenvalues of absolute value less than one, equal
to one, and greater than one. Then for each of the invariant subspaces Es, Es

⊕
Ec, Ec,

Ec
⊕
Eu, and Eu, there is an associated local g invariant C1 embedded disc W s

loc, W
cs
loc, W

c
loc,

W cu
loc, and W u

loc tangent to the linear subspace at x∗ and a ball B around x∗ such that there is
a norm with the following:

(1) W s
loc = {x ∈ B : gn(x) ∈ B for all n ≥ 0 and d(gn(x), 0) → 0 exponentially}. Also,

g : W s
loc →W s

loc is a contraction map.
(2) g(W cs

loc) ∩B ⊂W cs
loc. If gn(x) ∈ B for all n ≥ 0, then x ∈W cs

loc.
(3) g(W c

loc) ∩B ⊂W c
loc. If gn(x) ∈ B for all n ∈ Z, then x ∈W c

loc.
(4) g(W cu

loc) ∩B ⊂W cu
loc. If gn(x) ∈ B for all n ≤ 0, then x ∈W cu

loc.
(5) W u

loc = {x ∈ B : gn(x) ∈ B for all n ≤ 0 and d(gn(x), 0) → 0 exponentially}. Also,
g−1 : W u

loc →W u
loc is a contraction map.

If the gradient descent method remains close to a critical point for all time, then it is on
the center-stable manifold. Note that W s

loc ⊂W cs
loc.

Theorem 3.2. Let f be a C2(Ω) function where Ω is a forward invariant convex subset of
Rd whose gradient has Lipschitz constant L, and let σ(·) denote the spectrum of a matrix.
Consider the gradient descent method g(x) = x− α∇f(x) with αL ∈ (0, 2), and assume that
the set {

x ∈ Ω
∣∣ α−1 ∈ σ(∇2f(x))

}D
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STEP-SIZE RESTRICTIONS TO AVOID STRICT SADDLES 1187

has measure zero and does not contain saddle points. Then the probability of gradient descent
converging to a strict saddle, given one uniformly random initialization in Ω, is zero.

Proof. For simplicity of exposition, all sets are assumed to be in Ω; otherwise, one can
either shrink the set or replace the set with the intersection with Ω (depending on the context).

First, we will show that g−1 maps null sets to null sets (in Ω), which follows from the
assumption that g is C1 and the set{

x ∈ Ω
∣∣ α−1 ∈ σ(∇2f(x))

}
has measure zero. The map g is noninvertible only on the set

A :=
{
x ∈ Ω

∣∣ det(Dg(x)) = 0
}
,

which is equivalent to

A =
{
x ∈ Ω

∣∣ 0 ∈ σ(Dg(x))
}

(3.1)

=
{
x ∈ Ω

∣∣ 0 ∈ σ(I − α∇2f(x))
}

=
{
x ∈ Ω

∣∣α−1 ∈ σ(∇2f(x))
}
.

Note that if αL < 1, then this set is measure zero by definition. For a point x ∈ Ω \ A, we
can find a neighborhood of x such that det(Dg(x)) 6= 0 by continuity. By the inverse function
theorem, g−1 is continuous differentiable. This implies that g maps sets of measure zero to
sets of measure zero in Ω \ A. To extend it to all of Ω, consider the following. Let {Vj}j
be a collection of open neighborhoods that form a (countable) covering of Ω \ A such that
Vj ∩ A = ∅. Construct such a covering by first finding a neighborhood for each x ∈ Ω \ A
that avoids A and then applying Lindelöf’s lemma to find a countable subcovering. Given an
arbitrary null set U ⊂ Ω, we have

g−1(U) ⊂ A ∪
(
∪j
(
Vj ∩ g−1(U)

) )
.

The inverse function theorem can then be applied to each set Vj ∩ g−1(U); therefore, since
each set has measure zero, the countable union has zero measure. This implies that the set
g−1(U) also has measure zero. Since U is arbitrary, this shows that g−1 sends null sets to null
sets (within Ω).

Next, we want to show that all initializations that are mapped to degenerate points in A
form a measure zero set. The set of all points in Ω which are iteratively mapped into A by g
is equivalent to

∞⋃
j=1

g−j(A)

and has zero measure since it is the countable union of measure zero sets. By assumption,
Ω is forward invariant; thus, initializations in Ω cannot lead to degenerate points outside of
Ω. This implies that the probability of a random initialization in Ω mapping to a degenerate
point is zero.
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1188 HAYDEN SCHAEFFER AND SCOTT G. MCCALLA

Finally, we want to show that the set of initializations that converge to a strict saddle
point has zero measure. Let

x0 ∈ Ω \
∞⋃
j=1

g−j(A)

such that lim gn(x0) converges to a strict saddle xk. Note that along this trajectory, gn(x0) is
not in A and thus is nondegenerate. Then, by the inverse function theorem and the assump-
tion, it is a local C1 diffeomorphism. Since g is continuously differentiable and nondegenerate
at the strict saddle point xk, there exists an open neighborhood U(xk) around xk such that
the spectrum of Dg(xk) is nonzero, and thus A ∩ U(xk) = ∅. For each strict saddle point,
there exists a ball B(xk) ⊂ U(xk) that satisfies the conditions in Theorem 3.1. The collection
of such balls (over all strict saddle points)⋃

k

B(xk)

are an open cover of the strict saddle points, so there exists a countable subcover, i.e.,

⋃
k

xk ∈
∞⋃
`=1

B(x`).

Thus, there exists an N such that

gn(x0) ∈
∞⋃
`=1

B(x`)

for all n ≥ N . This implies that there exists an ` such that gn(x0) ∈ B(x`) for all n ≥ N , and
by Theorem 3.1, gn(x0) ∈W cs

loc(x`) for any n ≥ N .
We will show that the set W cs

loc(x`) has measure zero. By the strict saddle condition, we
have that Dg(x) = I − α∇2f (x) has at least one eigenvalue with magnitude greater than
1; thus, the dimension of Eu is at least one, and therefore dim (W cs

loc(x`)) ≤ d − 1, and the
Lebesgue measure of W cs

loc(x`) is zero. Since gn(x0) ∈ B(x`) for any n ≥ N , we have that

gN (x0) ∈
∞⋂
j=0

g−j(B(x`));

i.e., gN (x0) is contained in the intersection of all domains which are mapped into the ball
B(x`). The set

∞⋂
j=0

g−j(B(x`))

is contained in W cs
loc(x`), so it has measure zero. Since

gN (x0) ∈
∞⋂
j=0

g−j(B(x`)),D
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STEP-SIZE RESTRICTIONS TO AVOID STRICT SADDLES 1189

we have that

x0 ∈ g−N
 ∞⋂
j=0

g−j(B(x`))

 .

The integer N depends on the initialization x0 and the fixed point x`; thus, we must consider
an arbitrary N . In particular, the backward map g−1 is in C1; thus, the measure of

g−n

 ∞⋂
j=0

g−j(B(x`))


is zero for all n ≥ 0. Note that a countable union of measure zero sets are measure zero, so
the set

S =
∞⋃
`=0

∞⋃
n=0

g−n

 ∞⋂
j=0

g−j(B(x`))


has measure zero as well. The set S contains all points in

Ω \
∞⋃
j=1

g−j(A)

which converge to strict saddles; thus, the measure of all points in Ω that converge to a strict
saddle is zero.

As was shown in the proof, the condition that the set
{
x ∈ Ω

∣∣ α−1 ∈ σ(∇2f(x))
}

has
measure zero implies that g−1 has the Luzin N property over sets in Ω. The following is a
direct result of Theorem 3.2 for the step-size αL = 1.

Corollary 3.3. Let f be a C2(Ω) function where Ω is a forward invariant convex subset of
Rd whose gradient has Lipschitz constant L. Consider the gradient descent method g(x) =
x−L−1∇f(x), and assume that the set where σ(∇2f(x)) achieves its maximum has measure
zero and does not contain saddles. Then the probability of gradient descent converging to a
strict saddle, given one uniformly random initialization in Ω, is zero.

Example 2.3 shows that the measure zero assumption on the degenerate set is necessary.
In addition, note that the results above do not assume that the strict saddles are isolated.

3.1. Weaker condition: Positive Lipschitz restriction. Define

`(x) := max
1≤j≤d

max(λj(x), 0),

where λj is an eigenvalue of the Hessian, and let L+ be the Lipschitz constant of the positive
part:

L+ = sup
x∈Ω

`(x).

Then we can show that control of L+ is sufficient for avoiding strict saddles, although it may
not imply convergence to minima.
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Example 3.4. Consider the objective function f(x, y) := Q(x) + 1
by

2, where Q is defined
as the even function with

Q(x) =

{
a cos(x) if x ≤ x̃,
1
b

(
x− x̃− ab

2 sin(x̃)
)2 − 2

b −
a2b
4 sin2(x̃) if x > x̃

and where x̃ = arccos(− 2
ab) with ab ≥ 2 and a and b positive (thus, x̃ ∈ [π/2, π]). The function

has three critical points: (0, 0) a strict saddle and two minima defined at ±(x̃+ ab
2 sin(x̃), 0).

The Hessian is diagonal with eigenvalues given by Q′′(x) and 2
b . A Lipschitz constant is L = a

and is obtained at x = 0, and the positive Lipschitz constant is L+ = 2
b .

Consider the gradient descent method with α = L−1
+ = b

2 ; then yn = 0 for all n > 1. The
iterative map for xn is defined by

xn+1 =


xn + ab

2 sin(xn) if |x| ≤ x̃,
x̃+ ab

2 sin(x̃) if x > x̃,

−x̃− ab
2 sin(x̃) if x < −x̃.

For points in 0 < |x| < x̃, the map expands away from zero (since in |x| < π, sin(x) and x
share the same sign). Therefore, points in 0 < |x| < x̃ will flow to |x| ≥ x̃. For any point
|x| ≥ x̃, the map will converge (in one step) to ±(x̃+ ab

2 sin(x̃)). This shows that even if L/L+

is arbitrary large, control of L+ will be sufficient to avoid the strict saddle point.
To visualize this, in Figure 3.1, we set α = L−1

+ and plot the gradient descent trajectories,
sampled from a set of random initial states. As expected, the gradient descent path moves
away from the stable manifold of the saddle (i.e., x = 0) and will not converge to the strict
saddle.

Recall that Dg(x) = I − α∇2f(x), and if we assume αL+ < 1, then all eigenvalues of
Dg(x) are strictly positive. Since the spectrum of Dg(x) is strictly positive and g ∈ C1, by
the inverse function theorem, g is a diffeomorphism under the positive Lipschitz condition.
Proposition 3.5 and Corollary 3.6 are extensions of theorems from [14, 21] using the techniques
from this section and from Theorem 3.2. In particular, we have the following refinement.

Proposition 3.5. Let f ∈ C2(Ω), where Ω is a forward invariant convex subset of Rd whose
gradient has positive Lipschitz constant L+. Consider the gradient descent method g(x) =
x−α∇f(x) with αL+ ∈ (0, 1). Then the probability of gradient descent converging to a strict
saddle, given one uniformly random initialization in Ω, is zero.

To extend this result beyond αL+ < 1, we add the assumption from Theorem 3.2.

Corollary 3.6. Let f ∈ C2(Ω), where Ω is a forward invariant convex subset of Rd whose
gradient has Lipschitz constant L+. Consider the gradient descent method g(x) = x−α∇f(x)
with αL+ ∈ (0, 2), and assume that the set

{
x ∈ Ω

∣∣ α−1 ∈ σ(∇2f(x))
}

has measure zero
and does not contain saddles. Then the probability of gradient descent converging to a strict
saddle, given one uniformly random initialization in Ω, is zero.

3.2. Varying steps-size. In some applications, the step-size of gradient descent changes
between iterations. We consider a variable step-size gradient descent method,

xn+1 = xn − αn∇f(xn),
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(a) Surface Plot

(b) Random Gradient Descent Trajectories

Figure 3.1. The plots correspond to the surface (a) of the objective function from Example 3.4 and the
associated gradient descent trajectories (b) from a set of randomly sampled initial conditions. The red dot is
the strict saddle point, and the green dots are the local minimizers. Only trajectories whose initial x value is
zero will converge to the saddle point. Note that points near the line x = 0 but not on it will move away from
the stable manifold of the strict saddle.

where αn > 0. By augmenting the iterative system with the step-size as an additional variable,
we can apply the results of Theorem 3.2 to show that the iterations avoid strict saddles.

Corollary 3.7. Let f be a C2(Ω) function where Ω is a forward invariant convex subset of Rd
whose gradient has Lipschitz constant L. Consider the gradient descent method with varying
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step-size satisfying that αn+1 = h(αn), where h ∈ C1 is a strictly decreasing contractive map
over the interval I containing the unique fixed point α∗ > 0 and the initial step-size α0. If
α0L ∈ (0, 2), α0 ≥ α∗, and the set⋃

L−1≤α≤α0

{
x ∈ Ω | α−1 ∈ σ(∇2f(x))

}
has measure zero and does not contain saddle points, then the probability of gradient descent
converging to a strict saddle, given one uniformly random initialization in Ω, is zero.

Proof. By augmenting the iterations with the time-step variable, the gradient descent
method becomes {

xn+1 = xn − αn∇f(xn),

αn+1 = h(αn)

and can be analyzed via Theorem 3.2. The updated function g(x, α) is defined by g(x, α) =
[x− α∇ f(x), h(α)]T , and its Jacobian is given by

Dg(x, α) =

[
I − α∇2 f(x) −∇f(x)

01×n h′(α)

]
.

Since the Jacobian is “block-upper-triangular,” its eigenvalues are the eigenvalues I−α∇2f(x)
and h′(α). Since h′ is negative, the degeneracy in g must come from x. In addition, by the
assumptions on h, αn converges to α∗ for any initialization of α0 ≥ α∗.

Define the set Ω1 = Ω×I, and let A ⊂ Ω1 denote the set of points where g is noninvertible,
i.e.,

A =
{

(x, α) ∈ Ω1

∣∣ 0 ∈ σ(Dg(x))
}

(3.2)

=
{
x ∈ Ω, α ∈ I

∣∣ 0 ∈
{
σ(I − α∇2 f(x)), h′(α)

}}
=
{
x ∈ Ω, α ∈ I

∣∣ α−1 ∈ σ(∇2f(x))
}

(3.3)

=
⋃

L−1≤α≤α0

{
x ∈ Ω | α−1 ∈ σ(∇2f(x))

}
.

By assumption, A has measure zero.
The set Ω1 is a convex subset of Rd+1. By assumption, the function g1(x, α) = x−α∇f(x)

is forward invariant on Ω1. In addition, g2(x, α) = h(α) is a contractive map (|h′(α)| < 1);
thus, h(I1) ⊂ I. Therefore, g is forward invariant on Ω1.

Let

(x0, α0) ∈ Ω1 \
∞⋃
j=1

g−j(A)

such that lim gn(x0, α0) converges to a strict saddle (x, α∗) (the fixed point for α is unique).
The map g is continuously differentiable and nondegenerate at (x, α∗); thus, there exists an
open neighborhood around (x, α∗) characterized by the product space of an open neighborhood
U(x) around x and an open interval S(α∗) (which holds by the odd extension of h), where the
spectrum of Dg(x) is nonzero; thus, A ∩ U(x) = ∅. The rest follows from Theorem 3.2.

D
ow

nl
oa

de
d 

05
/1

7/
21

 to
 1

73
.7

5.
1.

24
8.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STEP-SIZE RESTRICTIONS TO AVOID STRICT SADDLES 1193

The theorem above holds (trivially) if α0 < L. If the set of step-sizes is discrete, we can
simplify the results.

Corollary 3.8. Let f be a C2(Ω) function where Ω is a forward invariant convex subset
of Rd whose gradient has Lipschitz constant L. Consider the gradient descent method with
a finite staircase of decreasing step-sizes; i.e., αn is a piecewise constant function of n with
finitely many jumps. If αnL ∈ (0, 2) for all n and the set

{
x ∈ Ω

∣∣α−1 ∈ σ(∇2f(x))
}

has
measure zero for each αn and does not contain saddle points, then the probability of gradient
descent converging to a strict saddle, given one uniformly random initialization in Ω, is zero.

Proof. Consider the case αn = α1 for n ≤ N1 and αn = α2 for n > N1. Let gi be the
gradient descent method with step-size αi, i = 1, 2.

The maps gi are C1 and are noninvertible only on the set Ai :=
{
x ∈ Ω

∣∣ det(Dgi(x)) = 0
}

(respectively), which is equivalent to

Ai =
{
x ∈ Ω

∣∣ α−1
i ∈ σ(∇2f(x))

}
.

Following the proof of Theorem 3.2, g−1
i maps null sets to null sets (within Ω). Consider the

set A = ∪iAi, which is a null set since it is a finite union of null sets. All points in Ω that are
mapped to A by gi (for any i) is equivalent to the set

Q =
⋃
i

∞⋃
j=1

g−ji (A).

Each Ai is a null set, so g−ji (A) are null sets. The set Q is a countable union of null sets; thus,
Q has measure zero.

Let x0 ∈ Ω \ Q such that the two-step staircase gradient descent method converges to a
strict saddle x. This can occur by two distinct scenarios: (i) gn1 (x0) converges to x within
N1 steps, or (ii) gn−N1

2 (gN1 (x0)) converges to x with n > N1. For case (i), using the proof of
Theorem 3.2, the set of points in Ω \Q which converge to a strict saddle under g1 is measure
zero.

For case (ii), by assumption, x0 6∈ Q, so xN1 := gN1
1 (x0) 6∈ Q; i.e., along the trajectory

gn−N1
2 (xN1) for n > N1, g2 is nondegenerate and a local C1 diffeomorphism.

As before, we can show that there exists a (sufficiently large) N such that

gn2 (xN1) =

∞⋃
`=1

B(x`)

for all n ≥ N , and thus there is an ` such that gn2 (xN1) ∈ B(x`) for all n ≥ N and gn2 (xN1) ∈
W cs
loc(x`) for any n ≥ N . This also implies that

gN2 (xN1) ∈
∞⋂
j=0

g−j2 (B(x`)),D
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which is measure zero since it is contained in W cs
loc(x`). Since gN2 (xN1) ∈

⋂∞
j=0 g−j(B(x`)),

we can show that

xN1 ∈ g−N2

 ∞⋂
j=0

g−j2 (B(x`))

 ,

x0 ∈ g−N1
1

g−N2

 ∞⋂
j=0

g−j2 (B(x`))

 .

The set

S =
∞⋃
`=0

∞⋃
n=0

g−N1
1

g−n2

 ∞⋂
j=0

g−j2 (B(x`))


contains all points in Ω\Q which converge to strict saddles after N1 iterations. The set S has
zero measure since g−1

i map null sets to null sets and S is the countable union of null sets.
Therefore, the probability of case (ii) occurring is zero.

This can be generalized to finitely many discrete step-sizes since the arguments related to
the invertibility of all gi continue to hold for countable unions of null sets.

4. Robustness of assumptions. If we consider the space of real analytic functions Cω(Ω)
equipped with the sup-norm, then we can show that a generic function will satisfy the condi-
tions in the previous results. Since we consider a generic function f ∈ Cω(Ω), the Lipschitz
constant should directly depend on the function, which is denoted by Lf . Let µ denote the
Lebesgue measure.

Theorem 4.1. Let Ω be a (bounded) forward invariant convex subset of Rd. Let Lf denote
the Lipschitz constant of the gradient of f . For a given c ∈ (0, 2), the set of functions in
Cω(Ω) with

µ
({
x ∈ Ω

∣∣ cL−1
f ∈ σ(∇2f(x))

})
> 0

is meager.

Proof. If c ∈ (0, 1), the condition is satisfied, so we only need to consider c ∈ [1, 2). Let
α = cL−1

f , and define the set U by

U :=
{
f ∈ Cω(Ω)

∣∣ µ ({x ∈ Ω
∣∣ α−1 ∈ σ(∇2f(x))

})
> 0
}
.

To find an equivalent formulation of this set, define S :=
{
x ∈ Ω

∣∣α−1 ∈ σ(∇2f(x))
}

, and
note that the function g : Rd → R, defined by g(x) := det(∇2f(x)−α−1I), is zero on S. Since
g is analytic and zero on a set of positive measure, g(x) = 0 on all of Ω [16]. Therefore,

U =
{
f ∈ Cω(Ω)

∣∣ det(∇2f(x)− α−1I) = 0 on some measure positive set
}

=
{
f ∈ Cω(Ω)

∣∣ det(∇2f(x)− α−1I) = 0 ∀ x ∈ Ω
}
.

To show that U is meager, we will show that U is closed and has empty interior. The
complement set (based on analyticity) can be written as

U c =
{
f ∈ Cω(Ω)

∣∣ det(∇2f(x)− α−1I) 6= 0 a.e. in Ω
}
.
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The function G : Cω(Ω)→ [0,∞), defined by

G(f) = ‖det(∇2f(x)− α−1I)‖L1(Ω,µ) =

∫
Ω

∣∣det(∇2f(x)− α−1I)
∣∣ dµ(x),

is positive on U c; i.e., G(f) > 0 for all f ∈ U c since the integrand is nonzero almost everywhere.
For all f ∈ U , the function is zero, G(f) = 0; therefore, U c can be characterized as

U c =
{
f ∈ Cω(Ω)

∣∣ G(f) ∈ (0,∞)
}

= G−1 ((0,∞)) ;

i.e., U c is the preimage of the open set (0,∞) under the continuous function G, so U c is open.
Next, we will show that U has empty interior. If f ∈ U , then det(∇2f(x) − α−1I) = 0

on Ω. By picking any point x0 ∈ Ω, we will perturb the eigenspace globally as follows. The
spectrum of the Hessian contains α−1, i.e., α−1 ∈ σ(∇2f(x0)); thus there exists a collection
of m-orthogonal eigenvectors, denoted by the matrix V ∈ Rd×m, that correspond to the
eigenvalue α−1. The perturbed function is defined as

f̃(x) := f(x) +
ε

2
(x− x0)T (V V T )(x− x0),

and thus ∇2f̃(x) = ∇2f(x)+ ε V V T . The function f̃ perturbs the eigenspace of f at x0 in the
direction of the eigenspace corresponding to the eigenvalue α−1. Thus, we have that α−1 6∈
σ(∇2f̃(x0)) for small enough ε > 0. Since the Hessian is Hermitian, the (ordered) eigenvalues
are Lipschitz continuous with respect to the Hessian (by Weyl’s inequality). The eigenvalues
are sufficiently continuous to show that there is a neighborhood Sδ = {‖x− x0‖ ≤ δ} with
positive measure δ (sufficiently small) such that det(∇2f̃(x)− α−1I) 6= 0 on Sδ, and thus the
measure of the set such that det(∇2f̃(x)−α−1I) = 0 must be zero. Therefore, the perturbed
function is not in U , i.e., f̃ ∈ Cω(Ω) \ U ; however, it can be made arbitrary close:

||f − f̃ ||sup ≤ C(diam(Ω)) ε.

Hence, U has empty interior.

This shows that, in some sense, the assumptions from Theorem 3.2 and the related results
are generic and indeed describe a large class of objective functions.

5. Discussion. We present several theoretical results on the conditions which guarantee
that the gradient descent method will avoid a strict saddle. The results utilize the center
manifold theorem to establish the size of the attracting sets and measure theoretic arguments
to show that the iterative maps satisfy the Luzin N condition. Our results answer an open
question about the step-size posed in [14, 13], namely, that previous claims hold for α < 2L−1

with the additional assumption that the iterative map does not degenerate on nonnull sets.
We show that without the additional assumption, one can construct counterexamples. These
results also hold for the gradient descent method with (fixed) learning rate schedules.

Extensions and applications. The theoretical results here extend readily to other first-
order methods, for example, the proximal gradient descent, block coordinate descent, etc. [13].
Although the results are for uniformly random initial data, they can be easily extended to
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other random sampling measures. Additionally, using the  Lojasiewicz gradient inequality [1],
one may be able to prove that if the set of critical points only contains local minima and
strict saddles, then the gradient descent method converges to local minima with the extended
step-sizes [14].

Limitations. This paper does not directly address the convergence of gradient descent to
global minimizers or the behavior near local minimizers. In particular, the step-size bounds
presented here may be too large for convergence when applied to a particular model. Addi-
tionally, it was shown in [7] that the gradient descent method can take exponential time to
escape a saddle, but the likelihood or predictability of such phenomena for a particular model
or application is an open question. Finally, our results on varying step-sizes utilized a fixed
learning rate schedule. A line search or adaptive time-stepping method may be able to avoid
saddles with weaker restrictions on α.

6. Acknowledgment. The authors would like to thank Stephen Wright for his helpful
comments.
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