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EXTRACTING STRUCTURED DYNAMICAL SYSTEMS USING
SPARSE OPTIMIZATION WITH VERY FEW SAMPLES\ast 
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Abstract. Learning governing equations allows for deeper understanding of the structure and
dynamics of data. We present a random sampling method for learning structured dynamical systems
from undersampled and possibly noisy state-space measurements. The learning problem takes the
form of a sparse least-squares fitting over a large set of candidate functions. Based on a Bernstein-like
inequality for partly dependent random variables, we provide theoretical guarantees on the recovery
rate of the sparse coefficients and the identification of the candidate functions for the corresponding
problem. Computational results are demonstrated on datasets generated by the Lorenz 96 equation,
the viscous Burgers' equation, and the two-component reaction-diffusion equations. Our formulation
includes theoretical guarantees of success and is shown to be efficient with respect to the ambient
dimension and the number of candidate functions.
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1. Introduction. Automated model selection is an important task for extract-
ing useful information from observed data. One focus is to create methods and algo-
rithms which allow for the data-based identification of governing equations that can
then be used for more detailed analysis of the underlying structure and dynamics.
The overall goal is to develop computational tools for reverse engineering equations
from data. Automated model selection has several advantages over manual processing,
since algorithmic approaches allow for the inclusion of a richer set of potential candi-
date functions, which thus allow for complex models and can be used to process and
fit larger data sets. However, several factors restrict the computational efficiency; for
example, as the dimension of the variables grows, the size of the set of possible candi-
date functions grows rapidly. In this work, we present some computational strategies
for extracting the governing equation when additional structural information of the
data is known.

Data-driven methods for model selection have several recent advances. The au-
thors of [3, 41] developed an approach for extracting physical laws (i.e., equations of
motion, energy, etc.) from experimental data. The method uses a symbolic regression
algorithm to fit the derivatives of the time-series data to the derivatives of candidate
functions while taking into account accuracy versus simplicity. In [5], the authors pro-
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1436 H. SCHAEFFER, G. TRAN, R. WARD, AND L. ZHANG

posed a sparse approximation approach for selecting governing equations from data.
One of the key ideas in [5] is to use a fixed (but large and possibly redundant) set of
candidate functions in order to write the model selection problem as a linear system.
The sparse solutions of this system are those that are likely to balance simplicity of the
model while preserving accuracy. To find a sparse approximation, [5] uses a sequential
least-squares thresholding algorithm which includes a thresholding substep (sparsifi-
cation) and a least-squares subproblem (fitting). Several sparsity-based methods were
developed in order to solve the model selection problem. The authors of [45] proposed
an optimization problem for extracting the governing equation from chaotic data with
highly corrupted segments (of unknown location and length). Their approach uses
the \ell 2,1-norm (often referred to as the group sparse or joint sparse penalty), in order
to detect the location of the corruption, coupling each of the state variables. In [45], it
was proven that, for chaotic systems, the solution to the optimization problem will lo-
cate the noise-free regions and thus extract the correct governing system. In [35], the
authors used a dictionary of partial derivatives along with a LASSO-based approach
[43] to extract the partial differential equation (PDE) that governs some (possibly
noisy) spatiotemporal dataset. An adaptive ridge-regression version of the method
from [5] was proposed in [34] and applied to fit the PDE to spatiotemporal data. One
computational issue that arrises in these approaches is that noise on the state vari-
ables are amplified by numerical differentiation. To lessen the effects of noise, sparse
learning can be applied to the integral formulation of the differential equation along
with an integrated candidate set as done in [38]. The exact recovery of the governing
equation can be guaranteed when there is sufficient randomness in the data, even
in the undersampling limit. In [39], using random initial conditions, an \ell 1-penalized
optimization problem was shown to recover the underlying differential equation with
high probability, and several sampling strategies were discussed. In order to allow
for variations in the coefficients, a group-sparse recovery model was proposed in [40].
Using information criteria, [26] proposed a method to choose the ``optimal"" model
learned from the algorithm in [5] as one varies the thresholding parameter.

There have been several recent methods using general sparse approximation tech-
niques for learning governing dynamical systems, including SINDy with control [6],
the SINO method [42], an extension of SINDy to stochastic dynamics [4], sparse iden-
tification of a predator-prey system [12], SINDy with rational candidate functions [25],
rapid-SINDy [29], the unified sparse dynamics learning algorithm which uses a weak
formulation with the orthogonal matching pursuit algorithm [27]. Sparsity induc-
ing and/or data-driven algorithms have been applied to other problems in scientific
computing, including sparse spectral methods for evolution equations [36, 24], sparse
penalties for obstacle problems [44], sparse low energy decomposition for conversation
laws [17], sparse spatial approximations for PDE [7], sparse weighted interpolation
of functions [33], leveraging optimization algorithms in nonlinear PDE [37], sparse
approximation for polynomial chaos [28], high-dimensional function approximation
using sparsity in lower sets [1], learning PDE through convolutional neural nets [22],
modeling dynamics through Gaussian processes [31, 30], and constrained Galerkin
methods [21].

1.1. Contributions of this work. We present an approach for recovering gov-
erning equations from undersampled measurements using the burst sampling method-
ology in [39]. One challenge in learning sparse governing equations is in the high-
dimensional regime. In this work, we show that if the components of the governing
equations are similar, i.e., if each of the equations contains the same active terms
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STRUCTURED DYNAMICS AND SPARSE OPTIMIZATION 1437

(after permutation of the indices), then one can recover the coefficients and identify
the active basis terms using fewer random samples than required in [39]. A sample
refers to a subset of the state-space vector at a given time-stamp (not including the
initial time). The size of the subset of the state-space vector defines the dimension
of the system and thus the cost of the approach. The problem statement and con-
struction of the permuted data and dictionaries are detailed in section 2. In essence,
after permutation, the dictionary matrix is still sufficiently independent and maintains
the necessary properties for exact and stable sparse recovery. Theoretical guarantees
on the recovery rate of the coefficients and identification of the candidate functions
(the support set of the coefficients) are provided in section 3. The proofs rely on a
Bernstein-like inequality for partially dependent measurements. The algorithm uses
the Douglas--Rachford iteration to solve the \ell 1 penalized least-squares problem. In
section 4, the algorithm and the data processing are explained.1 In section 5, sev-
eral numerical results are presented, including learning the Lorenz 96 system, the
viscous Burgers' equation, and a two-component reaction-diffusion system. These
examples include third-order monomials, which extend the computational results of
[39]. In addition, these problems are challenging due to their multiscale nature and
their sensitivities to parameters, i.e., shock locations or the structure of patterns.
Our approach is able to recover the dynamics with high and probability and, in some
cases, we can recover the governing dynamical system from one-sample. Theoretically,
the randomness needed to recover the evolution equation is introduced in the initial
condition. Experimentally, multiscale dynamics and mixing processes seem to help in
the sparse recovery of the governing equation.

2. Problem statement. Consider an evolution equation \.u = f(u), where u(t) \in 
\BbbR n and the initial datum is u(t0) = u0. Assume that f is a polynomial vector-valued
equation in u. The evolution equation can be written componentwise as

\.u1 = f1(u1, . . . , un), \.u2 = f2(u1, . . . , un), . . . , \.un = fn(u1, . . . , un).

From limited measurements on the state space u, the objective is to extract the
underlying model f . In [39], this problem was investigated for general (sparse)
polynomials f using several random sampling strategies, including a burst construc-
tion. The data are assumed to be a collection of K-bursts, i.e., a short-time tra-
jectory: \{ u(t1; k), u(t2; k), . . . , u(tm - 1; k)\} , associated with some initial data u(t0; k),
where u(\cdot ; k) denotes the kth burst, 1 \leq k \leq K. In addition, we assume that the
time derivative associated with each of the measurements in a burst, denoted by
\{ \.u(t0; k), \.u(t1; k), \.u(t2; k), . . . , \.u(tm - 1; k)\} , can be accurately approximated. Define
the matrix M as the collection of all monomials (stored columnwise),

M(k) =
\bigl[ 

M (0)(k) | M (1)(k) | M (2)(k) | \cdot \cdot \cdot 
\bigr] 
,

where the submatrices are the collections of the constant, linear, and quadratic terms,

and so on, M (0)(k) =
\bigl( 
1, 1, . . . , 1

\bigr) T \in \BbbR m,

M (1)(k) =

\left(     
u1(t0; k) u2(t0; k) \cdot \cdot \cdot un(t0; k)
u1(t1; k) u2(t1; k) \cdot \cdot \cdot un(t1; k)

...
...

. . .
...

u1(tm - 1; k) u2(tm - 1; k) \cdot \cdot \cdot un(tm - 1; k)

\right)     
1The code is available on https://github.com/linanzhang/SparseCyclicRecovery.
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1438 H. SCHAEFFER, G. TRAN, R. WARD, AND L. ZHANG

and

M (2)(k) =

\left(     
u2
1(t0; k) u1(t0; k)u2(t0; k) \cdot \cdot \cdot u2

n(t0; k)
u2
1(t1; k) u1(t1; k)u2(t1; k) \cdot \cdot \cdot u2

n(t1; k)
...

...
. . .

...
u2
1(tm - 1; k) u1(tm - 1; k)u2(tm - 1; k) \cdot \cdot \cdot u2

n(tm - 1; k)

\right)     .

Define the velocity matrix at each of the corresponding measurements:

v(k) =

\left(     
\.u1(t0; k) \.u2(t0; k) \cdot \cdot \cdot \.un(t0; k)
\.u1(t1; k) \.u2(t1; k) \cdot \cdot \cdot \.un(t1; k)

...
...

. . .
...

\.u1(tm - 1; k) \.u2(tm - 1; k) \cdot \cdot \cdot \.un(tm - 1; k)

\right)     .

Using these data, one would like to extract the coefficients for each of the components
of f , i.e., fj , which is denoted by a column vector cj . The collection of coefficients
can be defined as

(2.1) C =
\bigl( 
c1, c2, . . . , cn

\bigr) 
.

Therefore, the problem of identifying the sparse polynomial coefficients associated
with the model f is equivalent to finding a sparse matrix C such that v(k) = M(k)C
for all bursts k.

In [39], it was shown that finding a sparse matrix C from v(k) = M(k)C with
randomly sampled initial data was achievable using an \ell 1 optimization model. In
particular, with probability 1  - \epsilon , C can be recovered exactly from limited samples
as long as the number of samples K satisfies K \sim s log(N) log(\epsilon  - 1), where s is the
maximum sparsity level among the n columns of C and N is the number of basis
functions. In this work, using a coherence bound, we get a sampling rate that scales
like s2 n - 1 log(n) when the governing equation has a structural condition relating
each of the components of the model f .

2.1. A cyclic condition. When structural conditions on f and u can be as-
sumed a priori, one expects the number of initial samples needed for exact recovery
to decrease. One common assumption is that the components of the model, fj , are
cyclic (or index invariant), i.e., for all 1 \leq i, j \leq n, we have

fj(u1, u2, . . . , un) = fi(uj - i+1, uj - i+2, . . . , un, u1, . . . , uj - i+n),

where un+q = uq and u - q = un - q for all 0 \leq q \leq (n - 1). In particular, all components
fj can be obtained by determining just one component, say f1, since

fj(u1, u2, . . . , un) = f1(uj , uj+1, . . . , un, u1, . . . , uj - 1+n).

The goal is to determine f (by learning f1), given observations of u and an (accurate)
approximation of \.u.

The physical meaning behind the cyclic condition relates to the invariance of a
model to location/position. For example, the Lorenz 96 system in n > 3 dimensions
is given by [23]: \.uj =  - uj - 2 uj - 1 + uj - 1 uj+1  - uj + F, j = 1, 2, . . . , n, for some
constant F (independent of j) and with periodic conditions, u - 1 = un - 1, u0 = un,
and un+1 = u1. Each component of f follows the same structure, and is invariant
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to the index j. This is also the case with spatiotemporal dynamics which are not
directly dependent on the space variable. For a simple example, consider the standard
discretization of the heat equation in one spatial dimensional periodic domain: \.uj =
h - 2 (uj - 1  - 2uj + uj+1) with grid size h > 0 and periodic conditions, u0 = un and
un+1 = u1. The system is invariant to spatial translation, and thus satisfies the cyclic
condition.

Extending the results from [39], we show that recovering the governing equations
from only one undersampled measurement is tractable when the model f has this
cyclic structure. This is possible since one measurement of u(t) will provide us with
n-pieces of information for f1 (and thus the entire model f). Under this assumption,
the problem of determining the coefficient matrix C, defined by (2.1), reduces to the
problem of determining the first column of C, i.e., c1. For simplicity, we can drop
the subscript and look for a coefficient vector c \in \BbbR N (N is the number of candidate
functions) that fits the dynamic data.

The construction of the optimization problem and computational method are de-
tailed in the subsequent sections. To summarize, we detail the permutation structure
and explain how to build the associated dictionary matrix. This construction is de-
tailed for the one spatial dimensional case, since general spatial dimensions follow
from a vectorization of the n-dimensional problem. Following the second strategy
in [39], a subset of the domain is considered (via localization and restriction of the
dictionary terms), which leads to a smaller, but still underdetermined, problem. The
dictionary is transformed into the tensorized Legendre basis in order to guarantee an
incoherence principle on the system. Last, the coefficients of the governing equations
are learned via an \ell 1 penalized basis pursuit problem with an inexact (noise-robust)
constraint.

2.2. Cyclic permutations. The data matrix is computed using a set of cyclic
permutations from very few samples. The set of cyclic permutations, \scrC n, is a subset
of all permutations of [n] := \{ 0, 1, . . . , n  - 1\} , whose elements are shifted by a fixed
amount. There are n cyclic permutations out of the n! possible permutations of [n].
In addition, the corresponding n \times n permutation matrices of a cyclic permutation
are all circulant. For example, \scrC 3 contains three permutations of the set \{ 0, 1, 2\} (out
of a total of six possible permutations), i.e., \{ 0, 1, 2\} , \{ 1, 2, 0\} , and \{ 2, 0, 1\} whose
permutation matrices are

P1 =

\left(  1 0 0
0 1 0
0 0 1

\right)  , P2 =

\left(  0 1 0
0 0 1
1 0 0

\right)  , P3 =

\left(  0 0 1
1 0 0
0 1 0

\right)  .

The importance of the cyclic permutations is that they preserve the natural ordering
between elements, since the left and right neighbors of any element are fixed (with
periodic conditions at the first and last elements).

2.3. Dictionary for one spatial dimension. Consider the sequence (indexed
by k) of discrete measurements \{ u(t1; k), u(t2; k), . . . , u(tm - 1; k)\} , obtained through
either k-simulations or k-observations. Assume that the data are a discretization of
a system with one spatial variable u(t; k) \in \BbbR n for t \in \BbbR and k \in \BbbN . For general
spatial dimensions, the variables are multidimensional arrays. In particular, after
discretization and vectorization, the spatially dependent function u(t, x) is converted
to a one-dimensional array (vector), u(t, x, y) is converted to a two-dimensional (2D)
array (matrix), and u(t, x, y, z) is converted to a three-dimensional (3D) array, etc.
As in [39], the total number of temporal samples, denoted by m, is small, and thus
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we refer to the short-time trajectory as a burst. Each of the bursts is initialized by
data sampled from a random distribution.

Given one measurement u(t0; k) \in \BbbR n, we obtain ``multiple"" measurements by
considering the collection of all cyclic permutations of the data vector u(t0; k). In
particular, we can construct the n-measurement matrix,

(2.2) U(t0; k) =

\left(     
u1(t0; k) u2(t0; k) \cdot \cdot \cdot un(t0; k)
u2(t0; k) u3(t0; k) \cdot \cdot \cdot u1(t0; k)

...
...

. . .
...

un(t0; k) u1(t0; k) \cdot \cdot \cdot un - 1(t0; k)

\right)     .

To build the dictionary matrix, we collect all monomials of U . The quadratic matrix,
denoted by U2, is defined as

(2.3) U2(t0; k) =

\left(     
u2
1(t0; k) u1(t0; k)u2(t0; k) \cdot \cdot \cdot u2

n(t0; k)
u2
2(t0; k) u2(t0; k)u3(t0; k) \cdot \cdot \cdot u2

1(t0; k)
...

...
. . .

...
u2
n(t0; k) un(t0; k)u1(t0; k) \cdot \cdot \cdot u2

n - 1(t0; k)

\right)     ,

and the cubic matrix, denoted by U3, is defined as
(2.4)

U3(t0; k) =

\left(     
u3
1(t0; k) u2

1(t0; k)u2(t0; k) \cdot \cdot \cdot u1(t0; k)u2(t0; k)u3(t0; k) \cdot \cdot \cdot 
u3
2(t0; k) u2

2(t0; k)u3(t0; k) \cdot \cdot \cdot u2(t0; k)u3(t0; k)u4(t0; k) \cdot \cdot \cdot 
...

...
...

u3
n(t0; k) u2

n(t0; k)u1(t0; k) \cdot \cdot \cdot un(t0; k)u1(t0; k)u2(t0; k) \cdot \cdot \cdot 

\right)     .

The process continues this way for any higher-order monomial term. The n \times N
dictionary matrix (where N =

\bigl( 
n+p
p

\bigr) 
is the number of monomials of degree at most

p) is given by M(k) = (M (0)(k),M (1)(k), . . .), where one augments the matrix from
the right by the additional monomial terms. For simplicity, we will consider the cubic
case for all examples and results. Note that when n = 150, the number of candidate
functions N exceeds half a million for the cubic case and over 22 million for the quartic
case.

The velocity for the kth burst is given by V (t0; k) =
\bigl( 
\.u1(t0; k), . . . , \.un(t0; k)

\bigr) T
.

Let c be the vector of coefficients, c =
\bigl( 
c1, c2, . . . , cN

\bigr) T
. If we use multiple bursts,

say k from 1, . . . ,K and/or multiple snapshots (i.e., m > 1), then we concatenate the
matrices and vectors rowwise as follows:

V =
\bigl( 
V (t0; 1), . . . , V (tm - 1; 1), V (t0; 2), . . . , V (tm - 1;K)

\bigr) T
A =

\bigl( 
A(t0; 1), . . . , A(tm - 1; 1), A(t0; 2), . . . , A(tm - 1;K)

\bigr) T
.(2.5)

Thus, the linear inverse problem is to find c such that V = Ac. The size of the
dictionary matrix A is mnK \times N . Therefore, for small K and m, this problem will
be underdetermined.

We assume that the number of time stamps is very small, i.e., m = \scrO (1). Thus,
the short-time data provide a large portion of the information in A. Theoretically,
the burst is used to obtain an approximation to the velocity, so that V is relatively
accurate; see Theorem 3.4. In experiments, the additional terms along the trajectory
can provide more information to improve the recovery.
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2.4. Dictionary for higher spatial dimensions. To generalize to higher spa-
tial dimensions, the cyclic permutations must be defined for multi-indices. Given
the vectorization of a two-dimensional array, w = vec(W ), where W = [Wi,j ] for
1 \leq i, j \leq n, we must permute w with respect to cyclic permutations of the two-
dimensional array W . A permutation of an array preserves the cyclic structural
condition if it is a cyclic permutation of both the rows and the columns. In par-
ticular, a cyclic permutation of W \in \BbbR n\times n is equivalent to sending each element
Wi,j to W\gamma (i),\tau (j) for \gamma , \tau \in \scrC n. In order to combine the n2-permuted arrays, each
permutation is vectorized and stored rowwise:

(2.6) U(t0; k) = [vec(u\gamma (i),\tau (j))(t0; k)].

As an example, consider u(t0; k) \in \BbbR 3\times 3, where

u(t0; k) =

\left(  u1,1(t0; k) u1,2(t0; k) u1,3(t0; k)
u2,1(t0; k) u2,2(t0; k) u2,3(t0; k)
u3,1(t0; k) u3,2(t0; k) u3,3(t0; k)

\right)  .

One cyclic permutation of u(t0; k) is to take rows \{ 1, 2, 3\} to \{ 2, 3, 1\} and columns
\{ 1, 2, 3\} to \{ 3, 1, 2\} ,

\widetilde u(t0; k) =
\left(  u2,3(t0; k) u2,1(t0; k) u2,2(t0; k)
u3,3(t0; k) u3,1(t0; k) u3,2(t0; k)
u1,3(t0; k) u1,1(t0; k) u1,2(t0; k)

\right)  .

This construction has the additional benefit of not repeating elements in each
row or column. The higher-order monomials and the corresponding dictionary and
velocity matrices (A and V , respectively, defined by (2.5)) are built as before using
(2.6) as the input data. As we increase the spatial dimension, the number of candidate
functions grows; for example for n = 15, the number of cubic candidate functions in
two spatial dimensions is nearly two million.

For a general spatial dimension n, the process above is repeated, where one con-
structs all permutations of the n-dimensional array u(t0; k) by applying cyclic per-
mutations to each of the coordinates separately. Each of the permuted n-dimensional
arrays are vectorized and collected (rowwise) as is done in (2.6). The dictionary and
velocity matrices are constructed as above.

2.5. Restriction of the data and localization of the dictionary matrix.
The dictionary matrix construction in the previous sections relies on the cyclic per-
mutation of the input. One may restrict the learning algorithm to a subset of the
data and also localize the basis to a patch in the domain. This is advantageous, for
example, when only a subset of the data is known to be accurate enough to approxi-
mate the velocity or when the initial data are only sufficiently random in a subset of
the domain.

The process of restricting the data and localizing the basis are technically distinct.
The restriction to a subdomain will always be slightly larger than the localization of
the basis terms. To illustrate, consider the one-dimensional system with n > 9 points.
We localize the basis by assuming that the equation for the jth component, say uj ,
only depends on monomial terms ui for i \in [j  - 2, j + 2]. Therefore, the data matrix
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1442 H. SCHAEFFER, G. TRAN, R. WARD, AND L. ZHANG

U(t0; k) defined by (2.2) becomes a five point approximation

U(t0; k)| 5-pnts =

\left(     
u1(t0; k) u2(t0; k) u3(t0; k) un - 1(t0; k) un(t0; k)
u2(t0; k) u3(t0; k) u4(t0; k) un(t0; k) u1(t0; k)

...
un(t0; k) u1(t0; k) u2(t0; k) un - 2(t0; k) un - 1(t0; k)

\right)     .

Note that U(t0; k)| 5-pnts is of size n\times 5. The first two and last two rows assume that
the data are periodic, since information crosses the boundary between indices n and
1. Next, the restriction of the data onto a subdomain is done by removing all rows
that include points outside of the subdomain. For example, the restriction onto the
subdomain indexed by \{ 3, 4, 5, 6, 7\} yields
(2.7)

U(t0; k)| 5-pnts,restricted =

\left(      
u3(t0; k) u4(t0; k) u5(t0; k) u1(t0; k) u2(t0; k)
u4(t0; k) u5(t0; k) u6(t0; k) u2(t0; k) u3(t0; k)
u5(t0; k) u6(t0; k) u7(t0; k) u3(t0; k) u4(t0; k)
u6(t0; k) u7(t0; k) u8(t0; k) u4(t0; k) u5(t0; k)
u7(t0; k) u8(t0; k) u9(t0; k) u5(t0; k) u6(t0; k)

\right)      ,

which reduces the matrix to size 5\times 5---the loss of additional rows are required so that
all cyclic permutations remain within the domain. It is important to note that the
localized and restricted data matrix no longer requires periodic data as long we are
sufficiently away from the boundary. The localized and restricted dictionary matrix
is built by repeating the process in (2.3)--(2.4), but using the localized and restricted
data matrix described above (see (2.7)).

Localizing the dictionary elements provide additional benefits. For many dynam-
ical systems, information at a particular spatial point (or index) only interacts with
information at its neighboring points (for example, all neighbors within a prescribed
distance). Thus, localization may remove unnecessary complexities in the dictionary.
The second is that the number of unknowns is severely reduced when considering a
subset of the candidate functions. This was observed in [39] where localization re-
duced the inverse problem to a smaller (but still undersampled) system and makes
the sampling rate nearly independent of the ambient dimension n. Last, the accuracy
of the approximation to the time derivative controls the error bound in our recovery
problem. Thus, one could restrict ourselves to regions of the domain where the data
are less noisy (which could be known a priori by the user or could be estimated using
local statistics [10, 20] or a regularized method such as [9]). More data are usually
beneficial; however, adding noisy and inaccurate measurements does not increase the
likelihood of recovering the correct governing model.

2.6. Bounded orthogonal dictionary. The recovery of the coefficient vector
c from data V is better conditioned with respect to a dictionary built from bounded
orthogonal terms. For simplicity, we will detail this construction for data u \in \BbbR n,
i.e., one spatial dimension with n-nodes. Consider a subset of the domain, \scrD \subset \BbbR n,
endowed with a probability measure \mu . Suppose that \{ \phi 1, \phi 2, . . . , \phi N\} is a (possibly
complex-valued) orthonormal system on \scrD ,\int 

\scrD 
\phi j(u)\phi k(u)d\mu (u) = \delta j,k =

\biggl\{ 
0 if j \not = k
1 if j = k

\biggr\} 
.
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The collection \{ \phi 1, \phi 2, . . . , \phi N\} is called a bounded orthonormal system with constant
Kb \geq 1 if

(2.8) \| \phi j\| \infty := sup
u\in \scrD 

| \phi j(u)| \leq Kb for all j \in [N ].

Suppose that u(1), u(2), . . . , u(m) \in \scrD are sampling points which are drawn indepen-
dent and identically distributed (i.i.d.) with respect to the orthogonalization measure
\mu , and consider the sampling matrix A\ell ,k = \phi k(u

(\ell )), \ell \in [m], k \in [N ]. An im-
portant example of a bounded orthonormal system is the Legendre polynomial. In
high-dimensional systems, we will use the tensorized Legendre basis in place of their
corresponding monomials. We denote by AL the dictionary matrix corresponding to
the tensorized Legendre basis. For example, if we consider the initial data samples
u(t0) drawn i.i.d. from the uniform distribution [ - 1, 1]n, then the Legendre polyno-
mials (orthogonalization with respect to d\mu = 1

2dx) up to degree three are

1,
\surd 
3ui,

\surd 
5

2
(3u2

i  - 1), 3uiuj ,

\surd 
7

2
(5u3

i  - 3ui),

\surd 
15

2
(3u2

i  - 1)uj ,
\surd 
27uiujuk.

If a function is s-sparse with respect to the standard quadratic basis, it will be
(s+1)-sparse with respect to the Legendre basis, since the quadratic Legendre term,\surd 

5
2 (3u2

i  - 1), can add at most a constant to the representation. If a function is s-
sparse with respect to the standard cubic basis, it will be (2s)-sparse with respect to

the Legendre basis, since the term
\surd 
7
2 (5u3

i  - 3ui) and
\surd 
15
2 (3u2

i  - 1)uj each add an
additional s term (in the worst-case scenario). We assume that s is sufficiently small,
in particular, so that a (2s)-sparse system is still relatively sparse (2s \ll n).

For the examples presented here, we focus on dynamical systems with (at most)
cubic nonlinearity. The procedure above is not limited to this case. In fact, gen-
eralizing this construction to systems which are sparse with respect to alternative
bounded orthogonal system is fairly direct. With high probability, a random matrix
formed from bounded orthogonal terms will lead to a well-conditioned inverse problem
V = ALc if c is sufficiently sparse (see [8, 14]).

3. Sparse optimization and recovery guarantee. Let AL be the dictionary
in the Legendre basis up to third order. The size of AL is mnK \times N , where N is the
number of basis terms. The linear system V = ALc is underdetermined if we assume
that m and K are small and fixed. To ``invert"" this system, we impose that the vector
of coefficients c is sparse, i.e., c has only a few nonzero elements. This can be written
formally as a nonconvex optimization problem:

min
c

| | c| | 0 subject to ALc = V,

where | | c| | 0 = card(supp(c)) is the \ell 0 penalty which measures the number of nonzero
elements of c. In practice, the constraint is not exact since V is computed and contains
some errors. The noise-robust problem is

min
c

| | c| | 0 subject to | | ALc - V | | 2 \leq \sigma ,

where \sigma > 0 is a noise parameter determined by the user or approximated from the
data. The general noise-robust \ell 0 problem is known to be NP hard [14], and is thus
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1444 H. SCHAEFFER, G. TRAN, R. WARD, AND L. ZHANG

relaxed to the \ell 1 regularized, noise-robust problem:

(L-BP) min
c\prime 

| | c\prime | | 1 subject to \| ALc
\prime  - V \| 2 \leq \sigma 

which we refer to as the Legendre basis pursuit (L-BP) (for a general matrix A this is
known as the \ell 1 basis pursuit). Note that c\prime is the coefficient vector in the Legendre
basis and c is the coefficient vector in the standard monomial basis. If the system is
sufficiently sparse with respect to the standard monomial basis representation, then
it will be sparse with respect to the Legendre basis representation, and thus the
formulation is consistent. The parameter \sigma is independent of the basis we use in the
dictionary matrix. In the ideal case, \sigma is the \ell 2 error between the computed velocity
and true velocity. In practice, it must be estimated from the trajectories.

3.1. Recovery guarantee and error bounds. To guarantee the recovery of
the sparse solution to the underdetermined linear inverse problem, we use several
results from random matrix theory. In general, it is difficult to recover c \in \BbbR N from
Ac = V , when V \in \BbbR \widetilde m, A \in \BbbR \widetilde m\times N , and \widetilde m \ll N . In our setting, we know that
the system is well-approximated by an s-term polynomial (for small s), and thus the
size of the support set of c is relatively small. However, the locations of the nonzero
elements (the indices of the support set) are unknown. If the matrix A is incoherent
and \widetilde m \sim s log(N), then the recovery of the sparse vector c from the \ell 1 basis pursuit
problem is possible. In particular, by leveraging the sparsity of the solution c and the
structure of A, compressive sensing is able to overcome the curse of dimensionality
by requiring far fewer samples than the ambient dimension of the problem. This
approach also yields tractable methods for high-dimensional problems.

We provide a theoretical result on the exact and stable recovery of high-dimensional
orthogonal polynomial systems with the cyclic condition via a probabilistic bound on
the coherence of the dictionary matrix.

Theorem 3.1. If Aj1 and Aj2 are two columns from the cyclic Legendre sampling
matrix of order p generated by a vector u \in \BbbR n with i.i.d. uniformly distributed entries
in [ - 1, 1] and 2p2 \leq n, then with probability exceeding 1  - ( ep + e

2p2 )
2p n - 2p/11, the

following hold:
1. | \langle Aj1 , Aj2\rangle | \leq 12 p3 3p

\surd 
n log n for all j1 \not = j2 \in \{ 1, 2, . . . , n\} ,

2. | \| Aj1\| 2  - n| \leq 12 p3 3p
\surd 
n log n for all j1 \in \{ 1, 2, . . . , n\} .

Proof. Given a vector u = (u1, . . . , un) \in \BbbR n with i.i.d. uniformly distributed
entries in [ - 1, 1], let A \in \BbbR n\times N with N =

\bigl( 
n+p
p

\bigr) 
be the associated Legendre sampling

matrix of order p, that is, the matrix formed by transforming the matrix with k = 1 to
the Legendre system. In particular, the matrix is defined as A :=

\bigl( 
U0
L, U

1
L, . . . , U

p
L

\bigr) 
,

where Uq
L is a matrix generated from the tensorized Legendre basis of order q for

0 \leq q \leq p. Consider the random variable Yj1,j2 = \langle A\cdot ,j1 , A\cdot ,j2\rangle which is the inner
product between the columns j1 and j2 of A, where A = [Ai,j ] for 1 \leq i \leq n and
1 \leq j \leq N . Denote the components of the sum by Yi := Ai,j1 Ai,j2 , so that we can
write the inner product as

(3.1) Yj1,j2 = \langle A\cdot ,j1 , A\cdot ,j2\rangle =
n\sum 

i=1

Ai,j1 Ai,j2 =

n\sum 
i=1

Yi.

The components Yi have several useful properties. The components of Yj1,j2 are
uncorrelated, in particular, they satisfy \BbbE [Yi] = 0 if j1 \not = j2 and \BbbE [Yi] = 1 if j1 = j2,
when one normalizes the columns. For fixed j1 and j2, the elements Yi = Ai,j1 Ai,j2
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follow the same distribution for all 1 \leq i \leq n. This is a consequence of the cyclic
structure of A, since each product Ai,j1 Ai,j2 has the same functional form applied to
different permutations of the data u.

Note that the L2(d\mu )-normalized Legendre system of order p (i.e., the tensor
product of univariate Legendre polynomials up to order p) is a bounded orthonormal
system with respect to d\mu = 1

2dx. In particular, each basis term is bounded in

L\infty ([ - 1, 1]n) by Kb = 3p/2 (which can be achieved by 3p/2ui1 \cdot \cdot \cdot uip at the boundary
of the domain). Therefore, | Yi| \leq K2

b = 3p, | Yi  - \BbbE [Yi]| = | Yi| \leq 3p, and Var(Yi) \leq 
\BbbE (Y 2

i ) \leq 9p.
For each A\cdot ,j , a particular component ui can appear in at most 2p elements, so

the maximal degree of the dependency graph \bigtriangleup 0, i.e., the dependency between two
columns, is (2p)2  - 1. Applying Theorem 2.5 from [18], with \bigtriangleup = \bigtriangleup 0 + 1 = 4p2,
M = 3p, and Var(Yi) \leq 9p, yields the following bound:

P (| Yj1,j2  - \BbbE Yj1,j2 | \geq \tau ) \leq 2 exp

\biggl( 
 - \tau 2(1 - p2/n)

8p2(9p n+ 3p - 1 \tau )

\biggr) 
.(3.2)

By assumption we have p2

n \leq 1
2 , which happens, for example, when the maximal

degree p is small and the ambient dimension n is much larger than p. By setting

\tau = 12 p3 3p
\surd 
n log n and using (1 - p2

n ) \geq 1
2 and log n \leq n, we have

P
\Bigl( 
| Yj1,j2  - \BbbE Yj1,j2 | \geq 12 p3 3p

\sqrt{} 
n log n

\Bigr) 
\leq 2 exp

\biggl( 
 - \tau 2

16p2(9p n+ 3p - 1 \tau )

\biggr) 
\leq 2 exp

\biggl( 
 - 9p4 n log n

n+ 4 p3
\surd 
n log n

\biggr) 
\leq 2 exp

\biggl( 
 - 9p4n log n

n+ 4 p3n

\biggr) 
\leq 2 exp

\biggl( 
 - 9p4

1 + 4 p3
log n

\biggr) 
.(3.3)

Equation (3.3) holds for all pairs (j1, j2), therefore taking a union bound over all
N(N  - 1)/2 pairs and using the inequality

N =

\biggl( 
n+ p

p

\biggr) 
\leq 

\biggl( 
e(n+ p)

p

\biggr) p

\leq 
\biggl( 
n

\biggl( 
e

p
+

e

2p2

\biggr) \biggr) p

= np

\biggl( 
e

p
+

e

2p2

\biggr) p

for p \geq 1 where e = exp(1), we have

P
\Bigl( 
\exists (j1, j2) : | Yj1,j2  - \BbbE Yj1,j2 | \geq 12 p3 3p

\sqrt{} 
n log n

\Bigr) 
\leq N2 exp

\biggl( 
 - 9p4

1 + 4 p3
log n

\biggr) 
\leq n2p

\biggl( 
e

p
+

e

2p2

\biggr) 2p

exp

\biggl( 
 - 9p4

1 + 4 p3
log n

\biggr) 
\leq 

\biggl( 
e

p
+

e

2p2

\biggr) 2p

exp

\biggl( \biggl( 
2p - 9p4

1 + 4 p3

\biggr) 
log n

\biggr) 
\leq 

\biggl( 
e

p
+

e

2p2

\biggr) 2p

exp

\biggl( 
 - p4  - 2p

4p3 + 1
log n

\biggr) 
\leq 

\biggl( 
e

p
+

e

2p2

\biggr) 2p

n - 2p/11 forp \geq 2.
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Theorem 3.1 provides an estimate on the coherence of the sampling matrix. We
recall the coherence-based sparse recovery result from [15, 13, 14] below.

Theorem 3.2 (related to Theorem 5.15 from [14]). Let A be an m\times N matrix
with \ell 2-normalized columns. If

(3.4) max
j \not =k

| \langle Aj , Ak\rangle | <
1

2s - 1
,

then for any s-sparse vector c \in \BbbC N satisfying v = Ac+e with | | e| | 2 \leq \sigma , a minimizer
c\# of L-BP\sigma approximates the vector c with the error bound: \| c - c\#\| 1 \leq d s \sigma , where
d > 0 is a universal constant.

Using Theorem 3.2, we can show the exact recovery for the case where A is a
cyclic Legendre sampling matrix of order p.

Theorem 3.3. Let A \in \BbbR n\times N be the Legendre sampling matrix of order p gener-
ated by a vector u \in \BbbR n with i.i.d. uniformly distributed entries in [ - 1, 1], then with
probability exceeding 1  - ( ep + e

2p2 )
2p n - 2p/11, an s-sparse vector c \in \BbbC N satisfying

v = Ac + e with | | e| | 2 \leq \sigma can be recovered by c\#, the solution of L-BP\sigma , with the
error bound

\| c - c\#\| 1 \leq d s \sigma 

for some universal constant d > 0 as long as

n

log n
\geq 144 p6 9p s2.

In addition, if A is generated from K samples u(k) \in \BbbR n with i.i.d. uniformly distrib-
uted entries in [ - 1, 1] for 1 \leq k \leq K and

K \geq 144 p6 9p s2 n - 1 log n,

then with probability exceeding 1  - ( ep + e
2p2 )

2p n - 2p/11, an s-sparse vector c \in \BbbC N

satisfying v = Ac + e with | | e| | 2 \leq \sigma can be recovered by c\#, the solution of L-BP\sigma ,
with the error bound: \| c - c\#\| 1 \leq d s \sigma .

Proof. The normalized matrix can be written as \=A = AD, where D is a diagonal
matrix with Dj = \| A\cdot ,j\| 22, i.e., the diagonal contains the squared norm of the columns
of A. Then \=A has \ell 2-normalized columns, and (3.4) is satisfied with probability
exceeding 1 - ( ep +

e
2p2 )

2p n - 2p/11 as long as n
logn \geq 144 p6 9p s2. Thus by Theorem 3.2,

we have the corresponding \ell 1 error bound. The extension of this result to multiple
samples u(k) = (u(k)1, . . . , u(k)n) for 1 \leq k \leq K, follows directly as long as K \geq 
144 p6 9p s2 n - 1 log n.

The results in Theorem 3.3 are important on their own. In particular, the theorem
shows that for large enough dimension, one can recover cyclic polynomial systems
from only a few samples. Theorems 3.3 and 3.4 both rely on random sampling, whose
distribution will affect the constants in the theorems. However, the recovery of sparse
``cyclic"" polynomial systems does not require a particular region in space.

Returning to the problem of model selection for structured dynamical systems,
we can apply Theorem 3.3 to obtain the following recovery guarantee.

Theorem 3.4. Let \{ u(t0; k), . . . , u(tm - 1; k)\} and \{ \.u(t0; k), . . . , \.u(tm - 1; k)\} be the
state-space and velocity measurements, respectively, for 1 \leq k \leq K bursts of the n-
dimensional evolution equation \.u = f(u). Assume that the components, fj, satisfy
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the cyclic structural condition and that they have at most s nonzero coefficients with
respect to the Legendre basis. Assume that for each k, the initial data u(t0; k) are
randomly sampled from the uniform distribution in [ - 1, 1]n (thus each component of
the initial vector is i.i.d.). Also, assume that the total number of bursts, K, satisfies

K \geq 144 p6 9p s2 log n

n
.(3.5)

Then with probability exceeding 1 - ( ep + e
2p2 )

2p n - 2p/11, the vector c can be recovered

exactly by the unique solution to problem (L-BP). In addition, under the same as-
sumptions as above, if the time derivative is approximated within \eta -accuracy in the
scaled \ell 2 norm, i.e., if \widetilde \.u(t0; k) is the approximation to the time derivative using some
subset of the time stamps up to tm - 1 and\sqrt{}    1

K

K\sum 
k=1

\bigm| \bigm| \bigm| \widetilde \.u(t0; k) - \.u(t0; k)
\bigm| \bigm| \bigm| 2 \leq \eta ,

then by setting \sigma =
\surd 
K\eta and using the submatrix of AL consisting of only the initial

data, any particular vector c is approximated by a minimizer c\# of problem (L-BP)
with the following error bound:

\| c - c\#\| 1 \leq d s \sigma ,(3.6)

where d is a universal constant.

Theorem 3.4 provides an \ell 1 error bound between the learned coefficients and
the true sparse coefficients. If the nonzero elements of c\# are sufficiently large with
respect to the error bound, then the support set containing the s-largest coefficients
coincides with the true support set.

Proposition 3.5. Assume that the conditions of Theorem 3.4 hold. Let S be the
support set of the true coefficients c, i.e., S := supp(c), and let S\# be the support set
of the s-largest (in magnitude) of c\#, a minimizer of problem (L-BP). If

\sigma <

min
j\in S

| cj | 

2 d s
,(3.7)

where d is the same universal constant as in (3.6), then S\# = S.

Proof. This proposition is a consequence of the recovery bound in (3.6): \| c\#  - 
c\| 1 \leq d s \sigma . By assumption, \sigma satisfies (3.7), then the maximum difference between
the true and approximate coefficients is

max
j

| cj  - c\#j | \leq \| c - c\#\| 1 \leq d s \sigma <
1

2
min
j\in S

| cj | .

Thus, for any j \in S, we have | c\#j | > 1
2 minj\in S | cj | , and for any j \in Sc, we have | c\#j | \leq 

1
2 minj\in S | cj | . Therefore, S\# corresponds to the support set of | c\#j | > 1

2 minj\in S | cj | ,
which is identically S.

Proposition 3.5 provides validation for postprocessing the coefficients of problem
(L-BP), in particular, if the noise satisfies (3.7), we could remove all but the s largest
(in magnitude) coefficients in c\#.
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1448 H. SCHAEFFER, G. TRAN, R. WARD, AND L. ZHANG

It is worth noting that it is possible to recover the system from one sample. This
is more probable as the dimension n of the problem grows. The sampling bound
improves as n grows, since for large n, we have n \gg s2 log n. Thus, for large enough
n, one random sample is sufficient. Furthermore, if s2 \ll n, we can recover the
system from only one time step and from only a subset \widetilde n < n of the coordinate
equation, where \widetilde n \sim s2. Therefore, one just needs to have \widetilde n accurate estimations of
velocities; however, this can be challenging in practice if the acquisition process limits
the collection of refined spatial information.

Theorem 3.4 also highlights an important aspect of the scaling. Without any
additional assumptions, one is limited to lower-order polynomials, since the numbers
of samples required may be too large (since Kb grows rapidly). However, with addi-
tional assumptions, for example, the cyclic structural condition, the recovery becomes
nearly dimension free, which as a side effect, allows for higher-order polynomials more
easily.

Note that if the initial data follow another random distribution, then one can
construct the corresponding orthogonal polynomial basis. For example, we could
assume that the initial data have i.i.d. components sampled from the Chebyshev
measure on [ - 1, 1]n or an interpolating measure between the uniform measure and
the Chebyshev measure [32].

4. Numerical method. The constrained optimization problem (L-BP) can be
solved using the Douglas--Rachford algorithm [19, 11]. To do so, we first define the
auxiliary variable w with the constraints

(w, c) \in \scrK := \{ (w, c)| w = Ac\} and w \in B\sigma (V ) := \{ w | \| w  - V \| 2 \leq \sigma \} .

Equation (L-BP) can be rewritten as an unconstrained minimization problem:

min
(w,c)

F1(w, c) + F2(w, c),(4.1)

where the auxiliary functions F1 and F2 are defined as

F1(w, c) := \| c\| 1 + \BbbI B\sigma (V )(w) and F2(w, c) := \BbbI \scrK (w, c).

Here \BbbI \scrS denotes the indicator function over a set \scrS , i.e.,

\BbbI \scrS (w) :=

\Biggl\{ 
0 if w \in \scrS ,

\infty if w /\in \scrS .

The utility of writing the optimization problem in this form is that both auxiliary
functions have a simple and explicit proximal operator, which will be used in the
iterative method. The proximal operator for a function F (x) is defined as

prox\gamma F (x) := argmin
y

\biggl\{ 
1

2
\| x - y\| 2 + \gamma F (y)

\biggr\} 
,

where \gamma > 0 (to be specified later). The proximal operator of F1(w, c) is

prox\gamma F1
(w, c) = argmin

(y,d)

\biggl\{ 
1

2
\| w  - y\| 2 + 1

2
\| c - d\| 2 + \gamma \| d\| 1 + \gamma \BbbI B\sigma (V )(w)

\biggr\} 
=

\biggl( 
argmin

y

\biggl\{ 
1

2
\| w  - y\| 2 + \BbbI B\sigma (V )(w)

\biggr\} 
, argmin

d

\biggl\{ 
1

2
\| c - d\| 2 + \gamma \| d\| 1

\biggr\} \biggr) 
=

\Bigl( 
projB\sigma (V )(w), S\gamma (c)

\Bigr) 
,
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STRUCTURED DYNAMICS AND SPARSE OPTIMIZATION 1449

where the projection onto the ball can be computed by

projB\sigma (V )(w) :=

\left\{   w if w \in B\sigma (V ),

V + \sigma 
w  - V

\| w  - V \| 2
if w /\in B\sigma (V ),

and the soft-thresholding function S with parameter \gamma is defined (componentwise) as

[S\gamma (c)]j =

\left\{   cj  - \gamma 
cj
| cj | 

if | cj | > \gamma ,

0 if | cj | \leq \gamma .

Similarly, the proximal operator for F2 is

prox\gamma F2
(w, c) = argmin

(y,d)

\biggl\{ 
1

2
\| w  - y\| 2 + 1

2
\| c - d\| 2 + \BbbI \scrK (w, c)

\biggr\} 
=

\bigl( 
A(I +ATA) - 1(c+ATw), (I +ATA) - 1(c+ATw)

\bigr) 
.

To implement the proximal operator for F2, we precompute the Cholesky factorization
(I + ATA) = LLT and use forward and back substitution to compute the inverse at
each iteration. This lowers the computational cost of each of the iterations. The
iteration step for the Douglas--Rachford method is

(4.2)
( \widetilde wk+1,\widetilde ck+1) =

\Bigl( 
1 - \mu 

2

\Bigr) 
( \widetilde wk,\widetilde ck) + \mu 

2
rprox\gamma F2

\bigl( 
rprox\gamma F1

\bigl( \widetilde wk,\widetilde ck\bigr) \bigr) ,
(wk+1, ck+1) = prox\gamma F1

( \widetilde wk+1,\widetilde ck+1),

where rprox\gamma Fi
(x) := 2prox\gamma Fi

(x)  - x for i = 1, 2. The second step of (4.2) can
be computed at the last iteration and does not need to be included within the main
iterative loop. The approximation (wk, ck) converges to the minimizer of problem (4.1)
for any \gamma > 0 and \mu \in [0, 2].

An outline of the numerical method is provided in Algorithm 4.1. The data,
u(t; k) \in \BbbR n, is given at two consecutive time steps t = t0 and t = t1, and each
component of u(t0; k) is i.i.d. uniform. The number of samples must satisfy (3.5).
First, the data must be arranged into the data matrix U using the cyclic permuta-
tion construction, as detailed in sections 2.3, 2.4, and 2.5. Then, the data matrix is
transformed so that each element is ranged in the interval [ - 1, 1]. Using the trans-
formed data matrix, the Legendre dictionary matrix AL is computed using the basis
described in section 2.6 and is normalized so that each column has unit \ell 2-norm. The
coefficients with respect to the normalized Legendre dictionary is computed by solv-
ing problem (L-BP) via the Douglas--Rachford method. The last step is to map the
coefficients with respect to the normalized Legendre dictionary to the standard mono-
mial basis. As an optional step, the problem Ac = V with respect to the monomial
dictionary can be resolved by restricting it to the support set computed from the main
algorithm. In particular, let c be the output from Algorithm 4.1 and S = supp(c),
then the solution can be refined by solving the reduced system A| S\widetilde c = V (see also
Proposition 3.5).
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1450 H. SCHAEFFER, G. TRAN, R. WARD, AND L. ZHANG

Algorithm 4.1 Learning Sparse Dynamics.

Data, Inputs: Given: u(t; k) \in \BbbR n for t = t0, t1, . . . . The number of bursts k is set
to a small number. The number of nodes n does not need to be large.
Results, Outputs: Coefficients of the governing equation c \in \BbbR N .
Step 1: Construct data matrix U as in sections 2.3, 2.4, and 2.5.
Step 2 (optional): Add Gaussian noise to U , i.e., U \mapsto \rightarrow U + \eta , where \eta \sim \scrN (0, var).
Step 3: Construct the velocity vector V from using U from the previous step.
Step 4: Transform U \mapsto \rightarrow aU + b so that each elements is valued in [ - 1, 1].
Step 5: Construct the dictionary matrix AL using U from Step 4; see section 2.6.
Step 6: Normalize each column of AL to have unit \ell 2-norm.
Step 7: Apply the Douglas--Rachford algorithm to solve problem (L-BP).
Input: Set \sigma > 0. Compute the Cholesky decomposition of (I +AT

LAL). Initialize \widetilde w0

and \widetilde c0.
While the sequence \{ \widetilde ck\} does not converge, update \widetilde wk+1 and \widetilde ck+1 based on (4.2).
Output: cL := ck.
Step 8: Map the coefficients cL obtained from Step 5 to the coefficients with respect
to the standard monomial basis on the original U as constructed in Step 1.
Step 9 (optional): The coefficients can be ``debiased"" by solving the system A| S\widetilde c =
V , where A| S is the submatrix of A consisting of columns of A indexed by S := supp(c)
(from Step 6; see also Proposition 3.5).

5. Computational results. The method and algorithm are validated on a high-
dimensional ODE as well as two finite-dimensional evolution equations that arise as
the discretization of nonlinear PDEs with synthetic data. In each case, the initial
data are perturbed by a small amount of uniform noise. For the 2D examples, it is
assumed that there exists a block of size n\times n of the data which is nearly uniformly
distributed in [ - 1, 1]n\times n (possibly up to translation and rescaling). Similarly for the
high-dimensional ODE case, one can restrict oneself to a subset of the components.
Therefore, the input data to problem (L-BP) is restricted to the block (see Figure
1; the restriction is described in section 2.5). It is important to note that the data
restricted onto the blocks are not necessarily uniformly random; they may contain
some slope. However, we assume that the dominant statistics are close to the uniform
measure. In each of the examples, we apply the Douglas--Rachford algorithm described
in section 4 with the parameter \sigma > 0 determined beforehand. Note that the figures
highlight the qualitative results and the tables detail the quantitive results. The error
plots are scaled for visualization purposes.

5.1. The Lorenz 96 equation. For the first example, we consider the Lorenz 96
equation \.uj =  - uj - 2 uj - 1+uj - 1 uj+1 - uj+F for j = 1, . . . , n with periodic conditions
u - 1 = un - 1, u0 = un, and un+1 = u1. We simulate the data using the forward Euler
method with n = 128 and F = 8. The simulation is performed with a finer time step
dt = 5\times 10 - 5, but we only record the solution at the two time stamps, the initial time

t0 = 0 and the final time t1 = 10 - 2. Let u(t) =
\bigl( 
u1(t), u2(t), . . . , un(t)

\bigr) T \in \BbbR n, and
set the initial data to be u(0) = \nu , where \nu is sampled from the uniform distribution
in [ - 1, 1]n. Assume that the input data are corrupted by additive Gaussian noise,
and the resulting measurements are denoted by \widetilde u, i.e., \widetilde u = u+ \eta , \eta \sim \scrN (0, var). To
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STRUCTURED DYNAMICS AND SPARSE OPTIMIZATION 1451

(a) u at t0 (b) Sub-block 1 at t0 (c) Sub-block 2 at t0

(d) u at t1 (e) Sub-block 1 at t1 (f) Sub-block 2 at t1

Fig. 1. This figure includes a visual description of what the algorithm sees as its input. The
first column corresponds to the system at t0 and the second column corresponds to the system at t1.
The first row is the full state, which is not known to the user; the two highlighted blocks are what is
actually given. In the second row, the first block and its evolution are shown and in the third row
the second block and its evolution are shown.

construct the velocity vector V , we use the following approximation of \.u:

\.ui(t0) :=
\widetilde ui(t0 + dt) - \widetilde ui(t0)

dt
, i = 1, 2, . . . , n.

In this example, we vary the variance of the additive noise and the size of the dic-
tionary, and compare the accuracy of the recovery under different noise levels and
dictionary sizes. The results are provided in section 5.4.

5.2. Viscous Burgers' equation. Consider a 2D variant of the viscous Burg-
ers' equation ut = \alpha \Delta u+uux+uuy, where \Delta is the Laplacian operator and is defined
by \Delta u = uxx + uyy, and \alpha > 0 is the viscosity. The equation is spatially invariant
and well-posed, and thus there exists a discretization that yields a finite-dimensional
system that satisfies the cyclic structural condition. In particular, we simulate the
data using the finite-dimensional semidiscrete system

\.ui,j = \alpha 
ui+1,j + ui - 1,j + ui,j+1 + ui,j - 1  - 4ui,j

h2
+

(ui+1,j)
2  - (ui - 1,j)

2

4h

+
(ui,j+1)

2  - (ui,j - 1)
2

4h

for i, j = 1, 2, . . . , n, where h is the grid spacing of the spacial domain, and n = 1/h.
For \alpha large enough (relative to h), this semidiscrete system is convergent. Note that
this nonlinear evolution equation is 9-sparse with respect to the standard monomial
basis in terms of ui,j . We simulate the data using the discrete system above with
a 128 \times 128 grid, i.e., h = 1/128, and \alpha = 10 - 2. This choice of \alpha allows for both
nonlinear and diffusive phenomena over the time scale that we are sampling. The
simulation is performed with a finer time step dt = 5\times 10 - 8, but the solution is only
recorded at two time stamps: the initial time t0 = 0 and the final time t1 = 10 - 5.
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1452 H. SCHAEFFER, G. TRAN, R. WARD, AND L. ZHANG

(a) Initial data u0 (b) Initial data u0 (c) True u(T ) (d) Learned u(T )

Fig. 2. The Burgers's equation: (a) The initial data u0 in a planar view; the subblock in the
boxed region is used as the input to the algorithm. (b) The initial data u0 in a 3D view. (c) The
true evolution at T = 10 - 3 using (5.3). (d) The learned evolution at T = 10 - 3 using (5.2).

The results appear in Figure 2. The initial data are plotted in Figures 2(a)--2(b),
and are given by

u0(x, y) = 50 sin(8\pi (x - 0.5)) exp
\bigl( 
 - 20

\bigl( 
(x - 0.5)2 + (y  - 0.5)2

\bigr) \bigr) 
+ \nu ,

where \nu is sampled from the uniform distribution in [ - 1, 1]128\times 128. To construct the
velocity vector V , we use the following approximation of \.u:

\.ui,j(t0) :=
ui,j(t0 + dt) - ui,j(t0)

dt
, i, j = 1, 2, . . . , n.(5.1)

The input to the algorithm is a block of size 7\times 7. For display purpose, we mark in
Figure 2(a) the location of the block which is used as the input. The learned equation
is given by

\.ui,j =  - 655.9404ui,j + 163.3892ui+1,j + 163.5089ui - 1,j + 163.4859ui,j+1

+ 163.5551ui,j - 1 + 31.9211 (ui+1,j)
2  - 31.7654 (ui - 1,j)

2

+ 31.7716 (ui,j+1)
2  - 31.8849 (ui,j - 1)

2
,

(5.2)

compared to the exact equation

\.ui,j =  - 655.36ui,j + 163.84ui+1,j + 163.84ui - 1,j + 163.84ui,j+1 + 163.84ui,j - 1

+ 32 (ui+1,j)
2  - 32 (ui - 1,j)

2
+ 32 (ui,j+1)

2  - 32 (ui,j - 1)
2
.(5.3)

The correct 9-terms are selected from the 351 possible candidate functions. To com-
pare the learned and true evolutions, we simulate the two systems up to the time
of the shock formation, which is well beyond the interval of learning. Note that the
qualitative difference the two shocks is small.

5.3. Two component cubic reaction-diffusion systems. Consider the 2D
Gray--Scott equation, which models a reaction-diffusion system:

ut = ru\Delta u - uv2 + f(1 - u), vt = rv\Delta v + uv2  - (f + k)v,

where ru and rv are the diffusion rates of u and v, respectively, f is the processing
rate of u, and k represents the rate of conversion of v. We simulate the data using
the finite-dimensional semidiscrete system:

\.ui,j = ru\Delta h,9ui,j  - ui,j (vi,j)
2
+ f (1 - ui,j) ,

\.vi,j = rv\Delta h,9vi,j + ui,j (vi,j)
2  - (f + k)vi,j
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STRUCTURED DYNAMICS AND SPARSE OPTIMIZATION 1453

for i, j = 1, 2, . . . , n, where h is the grid spacing of the spatial domain, n = 1/h, and
\Delta h,9 denotes the nine-point discrete Laplacian operator which is defined by

\Delta h,9ui,j =
2

3h2
(ui+1,j + ui - 1,j + ui,j+1 + ui,j - 1  - 5ui,j)

+
1

6h2
(ui+1,j+1 + ui - 1,j+1 + ui - 1,j+1 + ui - 1,j - 1) .

Note that this nonlinear evolution equation is 12-sparse with respect to the standard
monomial basis in terms of ui,j and is 11-sparse in terms of vi,j .

We first present the implementation details for constructing problem (L-BP) in
this setting (a system of PDEs). Given the initial data u(t0; k), v(t0; k) \in \BbbR n\times n,
construct the data matrix W (t0; k) as follows:

W (t0; k) =

\left(     
u1,1(t0; k) \cdot \cdot \cdot un,n(t0; k) v1,1(t0; k) \cdot \cdot \cdot vn,n(t0; k)
u1,2(t0; k) \cdot \cdot \cdot un,1(t0; k) v1,2(t0; k) \cdot \cdot \cdot vn,1(t0; k)

...
...

...
...

un,n(t0; k) \cdot \cdot \cdot un - 1,n - 1(t0; k) vn,n(t0; k) \cdot \cdot \cdot vn - 1,n - 1(t0; k)

\right)     .

Localization and restriction of W (t0; k) are performed with respect to both u and
v independently. For example, with n > 7, the restriction onto the indices (i, j) \in 
\{ 3, 4, 5\} 2 is given by

W (t0; k)| 9-pnts,restricted =
\bigl[ 
U(t0; k)| 9-pnts,restricted | V (t0; k)| 9-pnts,restricted

\bigr] 
,

(5.4)

where U(t0; k)| 9-pnts,restricted and V (t0; k)| 9-pnts,restricted are defined using u(t0; k) and
v(t0; k), respectively. Thus, we have reduced the size of the data matrix from n\times (2n)
to 9\times 18. The localized and restricted dictionary matrix is then built by repeating the
process in (2.3)--(2.4), but using the localized and restricted data matrix described
above (see (5.4)). The velocity vectors, Vu for \.ui,j and Vv for \.vi,j , are constructed as
in (2.5), and \.ui,j and \.vi,j are approximated using (5.1). Let AL be the (localized and
restricted) dictionary in the Legendre basis. With the given system of PDEs, we then
need to solve two basis pursuit problems

min
c\prime u

| | c\prime u| | 1 subject to \| ALc
\prime 
u  - Vu\| 2 \leq \sigma 

and

min
c\prime v

| | c\prime v| | 1 subject to \| ALc
\prime 
v  - Vv\| 2 \leq \sigma ,

where c\prime u and c\prime v are the coefficients for the governing equations for \.ui,j and \.vi,j ,
respectively, in the Legendre basis. Note that AL is the same between each of the
basis pursuit problems above since each equation depends on both u and v, but the
outputs (c\prime u and c\prime v) are cyclical independently. It is worth noting that this example
extends beyond the theoretical results, since the entire governing equation is not
cyclic, but it is cyclic in the components (u, v).

We simulate the data using the discrete system above with a 128\times 128 grid, i.e.,
h = 1/128, and parameters ru = 0.3, rv = 0.15. We consider three different parameter
sets for the Gray--Scott model by varying the values of f and k. The simulation is
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(a) Initial data u0 (b) Sub-block u at t0 (c) Sub-block of u at t1

(d) Initial data v0 (e) Sub-block of v at t0 (f) Sub-block of v at t1

Fig. 3. Initial data for the Gray--Scott equation: (a)(d) The initial data u0 and v0; the subblocks
in the boxed regions are used as the input to the algorithm. (b)(c) The subblock of u at time stamps
t0 and t1, whose measurements are used to compute \.ui,j . (e)(f) The subblock of v at time stamps
t0 and t1, whose measurements are used to compute \.vi,j .

performed with a finer time step dt = 10 - 6, but the solution is only recorded at two
time stamps: the initial time t0 = 0 and the final time t1 = 10 - 5.

The initial data are shown in Figure 3, and are given by:

u0(x, y) = 1 + 0.2\nu , v0(x, y) = \BbbI H(x, y) + 0.02\nu ,

where \nu is sampled from the uniform distribution in [ - 1, 1]128\times 128, and H \subset [0, 1]2

represents the H-shaped region in Figure 3(d). The input to the algorithm is a block
of u and the corresponding block of v, each of size 7 \times 7. For display purposes, we
mark the block's location in each of Figures 3(a) and 3(d).

For the first example, we use the parameters f = 0.055 and k = 0.063, which
creates a ``coral"" pattern. The visual results are given in Figure 4. The learned
equations are

ut = 0.30000\Delta u - 1.00000uv2  - 1.05500u+ 0.05501,

vt = 0.15000\Delta v + 1.00000uv2  - 0.61801v  - 0.00001,
(5.5)

compared to the exact equations

ut = 0.3\Delta u - uv2  - 1.055u+ 0.055,

vt = 0.15\Delta v + uv2  - 0.618v.
(5.6)

To compare the learned and true evolutions, we simulate the two systems up to time
stamp T = 5000, well past the interval of learning. It is worth noting that two
evolutions are close (see section 5.4 for errors).

In the second example, we use the parameters f = 0.026 and k = 0.053, which
yield an hexagonal pattern. The visual results are given in Figure 5. The learned
equations are

ut = 0.30000\Delta u - 1.00000uv2  - 1.02600u+ 0.02601,

vt = 0.15000\Delta v + 1.00001uv2  - 0.57901v  - 0.00001,
(5.7)
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(a) True u (b) Learned u (c) Difference in u

(d) True v (e) Learned v (f) Difference in v

Fig. 4. The Gray--Scott equation, example 1: (a)(d) The true evolution at T = 5000 using
(5.6). (b)(e) The learned evolution at T = 5000 using (5.5). (c)(f) The difference between the true
evolution and the learned evolution. Note that the patterns are very similar except for a small region
near the center.

compared to the exact equations

ut = 0.3\Delta u - uv2  - 1.026u+ 0.026,

vt = 0.15\Delta v + uv2  - 0.579v.
(5.8)

As before, to compare between the learned and true evolutions, we simulate the two
systems up to time stamp T = 2500, beyond the learning interval. Small errors in
the coefficient lead to some error in the pattern formulation; however, visually, the
simulations are similar.

The last example uses the parameters f = 0.018 and k = 0.051, which leads to
``U"" shaped patterns. The visual results are given in Figure 6. The learned equations
are

ut = 0.30000\Delta u - 1.00000uv2  - 1.01800u+ 0.01801,

vt = 0.15000\Delta v + 1.00001uv2  - 0.56902v,
(5.9)

compared to the exact equations

ut = 0.3\Delta u - uv2  - 1.018u+ 0.018,

vt = 0.15\Delta v + uv2  - 0.569v.
(5.10)

As before, we compare the learned and true evolutions, by simulating the two systems
up to time stamp T = 1000, well beyond the learning interval. The location of the U
shaped regions are correct; however, there is some error in their magnitude.

5.4. Discussion. In all of the examples found in sections 5.1--5.3, the linear sys-
tems are underdetermined. Nevertheless, the model selected and parameters learned
via problem (L-BP) yield relatively accurate results. The parameters used in the
computational experiments in sections 5.1--5.3 are summarized in Tables 1 and 2, and
the corresponding errors are displayed in Tables 3 and 4.
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(a) True u (b) Learned u (c) Difference in u

(d) True v (e) Learned v (f) Difference in v

Fig. 5. The Gray--Scott equation, example 2: (a)(d) The true evolution at T = 2500 using
(5.8). (b)(e) The learned evolution at T = 2500 using (5.7). (c)(f) The difference between the true
evolution and the learned evolution. The overall qualitative structures are similar.

(a) True u (b) Learned u (c) Difference in u

(d) True v (e) Learned v (f) Difference in v

Fig. 6. The Gray--Scott equation, example 3: (a)(d) The true evolution at T = 1000 using
(5.10). (b)(e) The learned evolution at T = 1000 using (5.9). (c)(f) The difference between the true
evolution and the learned evolution. The location of the regions are nearly identical. The errors are
due to a difference in magnitude.

In Tables 3 and 5(a), we measure the relative error in the learned model by
comparing the coefficients:

Ec, LBP =
\| cexact  - c\prime \| \ell 2
\| cexact\| \ell 2

,

where cexact is the exact coefficient vector corresponding to the underlying system and
c\prime is the solution of problem (L-BP). The relative errors in the coefficients are within
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Table 1
Parameters used in the computational qualitative experiments in section 5.1. The basis degree

is set to 3.

The Lorenz 96 equation
Example 1 Example 2 Example 3

Block size 25 25 45
Number of bursts 2 4 4

Localization of dictionary 10 10 10
n\times N dictionary 50\times 2040 100\times 2024 204\times 2024

(a) Parameters in matrix constructions.

The Lorenz 96 equation
Example 1 Example 2 Example 3

\sigma 
var=0.2\% 0.3515 0.53575 0.4075
var=0.1\% 0.3607 0.5074 0.7143
var=0.05\% 0.3380 0.5002 0.6888

(b) Parameters in problem (L-BP).

Table 2
Parameters used in the computational qualitative experiments in sections 5.2--5.3.

The Burgers' equation The Gray--Scott equation
Block size 7\times 7 7\times 7

Number of bursts 4 3
Localization of dictionary 5\times 5 3\times 3

Basis degree 2 3
n\times N dictionary 196\times 351 147\times 1330

(a) Parameters in matrix constructions.

The Burgers' equation
The Gray--Scott equation

Example 1 Example 2 Example 3

\sigma 26.3609
5.5707\times 10 - 5 6.3055\times 10 - 5 6.3321\times 10 - 5

5.2655\times 10 - 5 6.0194\times 10 - 5 6.0579\times 10 - 5

(b) Parameters in problem (L-BP). For the Gray--Scott examples, the top value is
the u-component and the bottom value is the v-component.

the theoretical bounds. Thus from limited measurements, we are able to extract the
governing equations with high accuracy.

In Table 5(b), we display the relative error between the learned solution and the
exact solution:

Eu =
| | uexact(T ) - u(T )| | \ell 2

| | uexact(T )| | \ell 2
,

where uexact(T ) is the true evolution at the final time T , and u(T ) is the evolution
at the final time T with the governing equation determined by c. The final time T is
outside of the interval used to learn the coefficients. In both the Burgers' and Gray--
Scott's equations, the relative error is within expectation. Note that small errors in
the coefficients accumulate rapidly in these evolution equations, since the locations of
sharp transitions in the solution are sensitive to the changes in the coefficients.

In Table 3, we display the relative errors Ec, LBP for the Lorenz 96 equation with
different noise levels and dictionary sizes. In all the examples, a large noise level and
a small sampling rate lead to a higher relative error. As the sampling rate increases,
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Table 3
Errors associated with the computational experiments in section 5.1.

The Lorenz 96 equation
Example 1 Example 2 Example 3

Size of the dictionary n\times N 50\times 2040 100\times 2024 204\times 2024
Sampling rate n/N \times 100\% 2.47\% 4.94\% 10.08\%

Ec, LBP

var=0.2\% 0.0276 0.0201 0.0185
var=0.1\% 0.0265 0.0197 0.0175
var=0.05\% 0.0254 0.0170 0.0165

Table 4
Errors associated with the computational experiments in sections 5.2--5.3. For the Gray--Scott

examples, the top value is the u-component and the bottom value is the v-component.

Burgers' equation
Gray--Scott equation

Example 1 Example 2 Example 3

0.0102
1.3775\times 10 - 5 1.6550\times 10 - 5 1.6382\times 10 - 5

1.6284\times 10 - 5 1.5525\times 10 - 5 1.5362\times 10 - 5

(a) Relative error, Ec, LBP.

Burgers' equation
Gray--Scott equation

Example 1 Example 2 Example 3

0.0038
0.0353 0.0856 0.0132
0.1416 0.1221 0.0453

(b) Relative error, Eu.

Table 5
Relative error Ec, LBP with one burst and varying block sizes.

Block size Size of the dictionary Ec, LBP

7\times 7 49\times 351 0.3285
9\times 9 81\times 351 0.0212

11\times 11 121\times 351 0.0187
15\times 15 225\times 351 0.0100

(a) Burgers' equation.

Block size Size of the dictionary
Ec, LBP

u-component v-component
15\times 15 225\times 1330 7.1278\times 10 - 1 2.6170\times 10 - 1

21\times 21 441\times 1330 2.0613\times 10 - 4 2.4336\times 10 - 4

27\times 27 729\times 1330 1.4427\times 10 - 5 2.4541\times 10 - 5

(b) The Gray--Scott equation.

the noise level decreases as well as the relative error. However, the support sets are
correctly identified.

Based on Theorem 3.4, for sufficiently large block sizes, it is possible to learn the
correct coefficients with only one burst and one time step. In Table 5, we display the
relative errors Ec, LBP for the Burgers' equation and the Gray--Scott equation using
one burst and varying the block sizes. The block sizes are chosen so that the linear
systems remain underdetermined (see second columns in Table 5). In both examples,
starting with a small block size leads to a high relative error, but as the block size
increases the relative error decreases.
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Table 6
Relative error Ec, LS with one burst and varying block sizes.

Block size Size of the dictionary Ec, LS

7\times 7 49\times 351 1.3633
9\times 9 81\times 351 1.7804

11\times 11 121\times 351 2.8562

(a) Burgers' equation.

Block size Size of the dictionary
Ec, LS

u-component v-component
15\times 15 225\times 1330 5.8483 7.7621
21\times 21 441\times 1330 6.7622 7.5338
27\times 27 729\times 1330 5.9542 2.9482

(b) The Gray--Scott equation.

For comparison, we calculate the least-square solution cls = argminc | | Ac  - V | | 2,
where A is the dictionary in the monomial basis and V is the velocity matrix. The rel-
ative error associated with the least-squares solution is denoted by Ec,LS. In Table 6,
we display Ec, LS for the Burgers' equation and the Gray--Scott equation correspond-
ing to the same examples found in Table 5. The least-squares solution produces large
errors since the resulting coefficient vector is dense (because of overfitting), leading
to meaningless results.

6. Conclusion and future directions. In this work, we presented an approach
for extracting the governing equation from undersampled measurements when the
system has structured dynamics. We showed that permuting i.i.d randomly sampled
bursts and restructuring the associated dictionary yields an i.i.d. random sampling
of a bounded orthogonal system. Using a Bernstein-like inequality with a coherence
condition, we show that the recovery is exact and stable. In addition, when the noise is
sufficiently low, the support of the coefficients can be recovered exactly, i.e., the terms
in the governing equation can be exactly identified. The computational examples also
highlight ways to extend the learning approach to larger systems and multicomponent
systems (where the cyclic structural condition must be carefully applied).

The structural assumption is valid for many dynamic processes, for example, when
the data come from a spatially invariant dynamic system. In the algorithm and results,
we made the assumption that one can sample a subblock of the data to reasonable
accuracy, in order to calculate derivatives and to make the dictionary a bounded
orthogonal system with respect to the sampling measure. This is a weak assumption
since the size of the subblock is small. Thus, given noisy data, the subblock could be
the result of a preprocessing routine that has denoised and down-sampled the data
(with the removal of outliers). The details on the preprocessing requirements is left
for future investigations.

An open question in the burst framework is how to quantify the trade-off be-
tween the burst size and the number of trajectories. This was not discussed in the
numerical results but is of intrinsic importance to learning governing equations. In
particular, we would like to establish sampling bounds which incorporate the length
of the trajectories. Since the data along a trajectory are dependent, this will require
statistical assumptions on the dynamics, which can be challenging; see, for example,
[45, 16]. Based on the numerical experiments, multiscale behavior seems to help with
the sparse recovery algorithm. One possible application could be approximating slow
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variables from fast dynamics [2, 38]. Last, the parameter \sigma > 0 used in the constraint
must be estimated from the data. It may be possible to learn \sigma for a given dataset.

REFERENCES

[1] B. Adcock, S. Brugiapaglia, and C. G. Webster, Polynomial Approximation of High-
Dimensional Functions via Compressed Sensing, preprint, arXiv:1703.06987, 2017.

[2] G. Ariel, B. Engquist, and R. Tsai, A multiscale method for highly oscillatory ordinary
differential equations with resonance, Math. Comp., 78 (2009), pp. 929--956.

[3] J. Bongard and H. Lipson, Automated reverse engineering of nonlinear dynamical systems,
Proc. Natl. Acad. Sci. USA, 104 (2007), pp. 9943--9948.

[4] L. Boninsegna, F. N\"uske, and C. Clementi, Sparse learning of stochastic dynamical equa-
tions, J. Chem. Phys., 148 (2018), 241723.

[5] S. L. Brunton, J. L. Proctor, and J. N. Kutz, Discovering governing equations from data
by sparse identification of nonlinear dynamical systems, Proc. Natl. Acad. Sci. USA, 113
(2016), pp. 3932--3937.

[6] S. L. Brunton, J. L. Proctor, and J. N. Kutz, Sparse identification of nonlinear dynamics
with control (SINDYc), IFAC-PapersOnLine, 49 (2016), pp. 710--715.

[7] R. E. Caflisch, S. J. Osher, H. Schaeffer, and G. Tran, PDEs with compressed solutions,
Commun. Math. Sci., 13 (2015), pp. 2155--2176.

[8] E. J. Candes and Y. Plan, A probabilistic and RIPless theory of compressed sensing, IEEE
Trans. Inform. Theory, 57 (2011), pp. 7235--7254.

[9] R. Chartrand, Numerical differentiation of noisy, nonsmooth data, Int. Scholarly Res. Not.
Applied Mathematics, 2011 (2011), 164564.

[10] G. Chen, F. Zhu, and P. Ann Heng, An efficient statistical method for image noise level
estimation, in Proceedings of the IEEE International Conference on Computer Vision,
IEEE, Piscataway, NJ, 2015, pp. 477--485.

[11] P. L. Combettes and J.-C. Pesquet, Proximal splitting methods in signal processing, in
Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer, New
York, 2011, pp. 185--212.

[12] M. Dam, M. Br{\e}ns, J. Juul Rasmussen, V. Naulin, and J. S. Hesthaven, Sparse identifica-
tion of a predator-prey system from simulation data of a convection model, Phys. Plasmas,
24 (2017), 022310.

[13] D. L. Donoho and M. Elad, Optimally sparse representation in general (nonorthogonal)
dictionaries via \ell 1 minimization, Proc. Natl. Acad. Sci. USA, 100 (2003), pp. 2197--2202.

[14] S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing, Vol. 1(3),
Birkh\"auser, Basel, 2013.

[15] R. Gribonval and M. Nielsen, Sparse representations in unions of bases, IEEE Trans. Inform.
Theory, 49 (2003), pp. 3320--3325.

[16] L. S. T. Ho, H. Schaeffer, G. Tran, and R. Ward, Recovery guarantees for polynomial co-
efficients from weakly dependent data with outliers, J. Approx. Theory, 259 (2020), 105472.

[17] T. Y. Hou, Q. Li, and H. Schaeffer, Sparse+ low-energy decomposition for viscous conser-
vation laws, J. Comput. Phys., 288 (2015), pp. 150--166.

[18] S. Janson, Large deviations for sums of partly dependent random variables, Random Structures
Algorithms, 24 (2004), pp. 234--248.

[19] P.-L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators,
SIAM J. Numer. Anal., 16 (1979), pp. 964--979.

[20] C. Liu, W. T. Freeman, R. Szeliski, and S. B. Kang, Noise estimation from a single image,
in 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR'06), Vol. 1, IEEE Computer Society, Los Alamitos, CA, 2006, pp. 901--908.

[21] J.-C. Loiseau and S. L. Brunton, Constrained sparse Galerkin regression, J. Fluid Mech.,
838 (2018), pp. 42--67.

[22] Z. Long, Y. Lu, X. Ma, and B. Dong, PDE-Net: Learning PDEs from data, in International
Conference on Machine Learning, ACM, New York, 2018, pp. 3208--3216.

[23] E. N. Lorenz, Predictability: A problem partly solved, in Proceedings of Seminar on Pre-
dictability, vol. 1, European Centre for Medium-Range Weather Forecasts, Reading, Eng-
land, 1996.

[24] A. Mackey, H. Schaeffer, and S. Osher, On the compressive spectral method, Multiscale
Model. Simul., 12 (2014), pp. 1800--1827.

[25] N. M. Mangan, S. L. Brunton, J. L. Proctor, and J. N. Kutz, Inferring biological networks
by sparse identification of nonlinear dynamics, IEEE Trans. Mol. Biol. Multi-Scale Comm.,
2 (2016), pp. 52--63.

D
ow

nl
oa

de
d 

05
/1

7/
21

 to
 1

73
.7

5.
1.

24
8.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STRUCTURED DYNAMICS AND SPARSE OPTIMIZATION 1461

[26] N. M. Mangan, J. N. Kutz, S. L. Brunton, and J. L. Proctor, Model selection for dynam-
ical systems via sparse regression and information criteria, Proc. A, 473 (2017), 20170009.

[27] Y. Pantazis and I. Tsamardinos, A unified approach for sparse dynamical system inference
from temporal measurements, Bioinformatics, 35 (2019), pp. 3387--3396.

[28] J. Peng, J. Hampton, and A. Doostan, On polynomial chaos expansion via gradient-enhanced
\ell 1-minimization, J. Comput. Phys., 310 (2016), pp. 440--458.

[29] M. Quade, M. Abel, J. N. Kutz, and S. L. Brunton, Sparse identification of nonlinear
dynamics for rapid model recovery, Chaos, 28 (2018), 063116.

[30] M. Raissi and G. E. Karniadakis, Hidden physics models: Machine learning of nonlinear
partial differential equations, J. Comput. Phys., 357 (2018), pp. 125--141.

[31] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Numerical Gaussian processes for time-
dependent and nonlinear partial differential equations, SIAM J. Sci. Comput., 40 (2017),
pp. A172--A198.

[32] H. Rauhut and R. Ward, Sparse Legendre expansions via \ell 1-minimization, J. Approx. Theory,
164 (2012), pp. 517--533.

[33] H. Rauhut and R. Ward, Interpolation via weighted \ell 1 minimization, Appl. Comput. Harmon.
Anal., 40 (2016), pp. 321--351.

[34] S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz, Data-driven discovery of partial
differential equations, Sci. Adv., 3 (2017), e1602614.

[35] H. Schaeffer, Learning partial differential equations via data discovery and sparse optimiza-
tion, Proc. A, 473 (2017), 20160446.

[36] H. Schaeffer, R. Caflisch, C. D. Hauck, and S. Osher, Sparse dynamics for partial dif-
ferential equations, Proc. Natl. Acad. Sci. USA, 110 (2013), pp. 6634--6639.

[37] H. Schaeffer and T. Y. Hou, An accelerated method for nonlinear elliptic PDE, J. Sci.
Comput., 69 (2016), pp. 556--580.

[38] H. Schaeffer and S. G. McCalla, Sparse model selection via integral terms, Phys. Rev. E
(3), 96 (2017), 023302.

[39] H. Schaeffer, G. Tran, and R. Ward, Extracting sparse high-dimensional dynamics from
limited data, SIAM J. Appl. Math., 78 (2018), pp. 3279--3295.

[40] H. Schaeffer, G. Tran, and R. Ward, Learning Dynamical Systems and Bifurcation via
Group Sparsity, preprint, arXiv:1709.01558, 2017.

[41] M. Schmidt and H. Lipson, Distilling free-form natural laws from experimental data, Science,
324 (2009), pp. 81--85.

[42] M. Sorokina, S. Sygletos, and S. Turitsyn, Sparse identification for nonlinear optical
communication systems: Sino method, Opt. Express, 24 (2016), pp. 30433--30443.

[43] R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B.
Methodol., 58 (1996), pp. 267--288.

[44] G. Tran, H. Schaeffer, W. M. Feldman, and S. J. Osher, An l1 penalty method for general
obstacle problems, SIAM J. Appl. Math., 75 (2015), pp. 1424--1444.

[45] G. Tran and R. Ward, Exact recovery of chaotic systems from highly corrupted data, Multi-
scale Model. Simul., 15 (2017), pp. 1108--1129.

D
ow

nl
oa

de
d 

05
/1

7/
21

 to
 1

73
.7

5.
1.

24
8.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s


	Introduction
	Contributions of this work

	Problem statement
	A cyclic condition
	Cyclic permutations
	Dictionary for one spatial dimension
	Dictionary for higher spatial dimensions
	Restriction of the data and localization of the dictionary matrix
	Bounded orthogonal dictionary

	Sparse optimization and recovery guarantee
	Recovery guarantee and error bounds

	Numerical method
	Computational results
	The Lorenz 96 equation
	Viscous Burgers' equation
	Two component cubic reaction-diffusion systems
	Discussion

	Conclusion and future directions
	References

