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Geometric estimates for complex
Monge—Ampere equations

By Xin Fu at Piscataway, Bin Guo at New York and Jian Song at Piscataway

Abstract. We prove uniform gradient and diameter estimates for a family of geometric
complex Monge—-Ampere equations. Such estimates can be applied to study geometric regu-
larity of singular solutions of complex Monge—Ampere equations. We also prove a uniform
diameter estimate for collapsing families of twisted Kédhler—Einstein metrics on Kéhler mani-
folds of nonnegative Kodaira dimensions.

1. Introduction

Complex Monge—Ampere equations are a fundamental tool to study Kéhler geometry
and, in particular, canonical Kéhler metrics of Einstein type on smooth and singular Kéhler
varieties. Yau’s solution to the Calabi conjecture establishes the existence of Ricci flat Kéhler
metrics on Kihler manifolds of vanishing first Chern class by a priori estimates for complex
Monge—Ampere equations [40].

Let (X, 0) be a Kdhler manifold of complex dimension n equipped with a Kdhler met-
ric 6. We consider the following complex Monge—Ampére equation:

(1.1) (0 4 i90¢)" = e~/ 0",

where f € C%°(X) satisfies the normalization condition

f}(e—fe":/xe":[e]".

In the deep work of Kolodziej [15], Yau’s C 0_estimate for solutions of equation (1.1) is tremen-
dously improved by applying the pluripotential theory and it has important applications for sin-
gular and degenerate geometric complex Monge—Ampere equations. More precisely, suppose
the right-hand side of equation (1.1) satisfies the following L? bound:

[ e PFo" < K for some p > 1;
X
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2 Fu, Guo and Song, Geometric estimates for complex Monge—Ampere equations

then there exists C = C(X, 6, p, K) > 0 such that any solution ¢ of equation (1.1) satisfies the
following L°°-estimate:

o — S;l(p‘p”LOO(X) <C.

In particular, equation (1.1) admits a unique continuous solution in PSH(X, 8) as long as
e~/ e LP(X, ") without any additional regularity assumption for f. In [7, 16], it is shown
that the bounded solution is also Holder continuous and the Holder exponent only depends
only on n and p. However, in general the solution is not uniformly Lipschitz continuous (see
e.g. [7]).

Complex Monge—Ampere equations are closely related to geometric equations of Einstein
type, and in many geometric settings, one makes assumption on a uniform lower bound of
the Ricci curvature. Therefore it is natural to consider the family of volume measures, whose
curvature is uniformly bounded below. More precisely, we let Q = e~/ 6" be a smooth volume
form on X such that

(1.2) Ric(Q) = —iddlog Q2 > —A6

for some fixed constant 4 > 0. This is equivalent to saying,
i00 f > —Ric(0) — A6,
or
f € PSH(X,Ric(0) + A0).

We will explain one of the motivations for condition (1.2) by some examples. Let { E; }iI=1
and {F;} ]J _, be two families of effective divisors of X. Let og; and oF, be the defining sections
for E; and Fj, respectively, and hg; and hp; smooth hermitian metrics for the line bundles

associated to E; and Fj, respectively. In [40], Yau considers the following degenerate complex
Monge—-Ampere equations:

I 2B;
s Zi:llaEilhEi n
(1.3) 0 +i00p)" = | ———L 6",

J 2
i1 low, Iy,

where «;, B; > 0, and various estimates are derived [40] assuming certain bounds on the degen-
erate right-hand side of equation (1.3).
If we consider the following case:

9”
J 20; °
Zj:l |UF,~ |hFj

the volume measure will blow up along common zeros of {F;} jJ —- If the volume measure on
the right-hand side of equation (1.4) is L?-integrable for some p > 1, i.e.,

J -1
2 .
Q= (Z|0Fj|h°gj) g"
J=1 '

(1.4) (0 + i00p)" =

satisfies

J —1
= e [a=]
= oF. |, - € LP(X,0™) forsome p > 1, Q= 0",
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Fu, Guo and Song, Geometric estimates for complex Monge—Ampere equations 3

then there exists a unique (up to a constant translation) continuous solution of (1.4). Further-
more, §2 can be approximated by smooth volume forms €2; (cf. [6]) satisfying

Q
, / Q; = / %
Lr(x.om)  JX b'¢

Lo(X,0m) H on
for some fixed A’ > 0. Therefore condition (1.2) is a natural generalization of the above case.
In the special case when { F; }]J —1 1s a union of smooth divisors with simple normal crossings
and each o; € (0, 1), the solution of equation (1.4) has conical singularities of cone angle
of 2n(l —aj)along Fj, j =1,...,J.
We now state the first result of the paper.

. Q;
Ric(Q2;) > —(A + A')0, HQ—;

Theorem 1.1. Let (X, 0) be an Kdihler manifold of complex dimension n equipped with
a Kdhler metric 0. We consider the following complex Monge—Ampére equation:

(1.5) (0 + i00p)" = **Q,

where A = 0 or 1, and Q is a smooth volume form satisfying [y, Q = [y 0". If

Q\? _
(1.6) / (—) 0" < K, Ric(Q) = —iddlogQ > —A,
x \ 0"

for some p >1, K >0 and A > 0, then there exists a constant C = C(X,0,p, K, A) >0
such that the solution ¢ of equation (1.5) and the Kihler metric g associated to the Kihler
form w = 0 + 100 satisfy the following estimates:

(1) |l —supy ¢llLeox) + IVg@llLoox,g) < C,
(2) Ric(g) = —Cg,
(3) Diam(X, g) <C.

If we write Q = e~/ 6", assumption (1.6) in Theorem 1.1 on €2 is equivalent to the
following on f":

e~/ e LP(X,0), / e~/ =1[0]", f ePSH(X,Ric(h)+ Ab).
X

The function f is uniformly bounded above by the plurisubharmonicity and the Kihler met-
ric g associated to @ = 6 + 90y is bounded below by a fixed multiple of § (see Lemma 2.2).
However, one cannot expect that g is bounded from above since f is not uniformly bounded
above as in the example of equation (1.4). Fortunately, we can bound the diameter of (X, g)
uniformly by Theorem 1.1.

The gradient estimate in Theorem 1.1 is a generalization of the gradient estimate in [26].
The new insight in our approach is that one should estimate gradient and higher-order estimates
of the potential functions with respect to the new metric instead of a fixed reference metric for
geometric complex Monge—Ampere equations such as those studied in Theorem 1.1. We refer
interested readers to [3,22, 23] for gradient estimates for complex Monge—Ampere equations
with respect to various background metrics.

Let M(X,0, p, K, A) be the space of all solutions of equation (1.5), where Q2 satis-
fies assumption (1.6) in Theorem 1.1. We also identify M (X, 6, p, K, A) with the space of
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4 Fu, Guo and Song, Geometric estimates for complex Monge—Ampere equations

Kihler forms w = 6 + i00¢ for ¢ € M(X, 0, p, K, A). An immediate consequence of Theo-
rem 1.1 is a uniform noncollapsing condition for M (X, 6, p, K, A). More precisely, there
exists a constant C = C(X, 60, p, K, A) > 0 such that for all Kidhler metric g associated to
w € M(X,0,p, K, A) and for any point x € X,0<r < 1,

(1.7) C7 12" < Volg (Bg(x,1)) < Cr?",

where Bg (x,r) is the geodesic ball centered at x with radius 7 in (X, g).

Combining the lower bound of Ricci curvature and the noncollapsing condition (1.7),
we can apply the theory of degeneration of Riemannian manifolds [5] so that any sequence
of Kidhler manifolds (X, g;) € M(X, 0, p, K, A), after passing to a subsequence, converges to
a compact metric space (X0, doo) With well-defined tangent cones of Hausdorff dimension 2n
at each point in X. In the case of equation (1.4), we believe the solution induces a unique
Riemannian metric space homeomorphic to the original manifold X and all tangent cones are
unique. If this is true, one might even be able to establish higher-order expansions for the
solution. The ultimate goal of our approach is to construct canonical domains and equations
on the blow-up of solutions for geometric degenerate complex Monge—Ampere equations, by
degeneration of Riemannian manifolds.

We also remark that if we replace the lower bound for Ric(€2) by an upper bound

Ric(Q) < A6

in assumption (1.6) of Theorem 1.1, we can still obtain a uniform diameter upper bound. This in
fact easily follows from the argument for the second-order estimates of Yau [40] and Aubin [1].

We will also use similar techniques in the proof of Theorem 1.1 to obtain diameter esti-
mates in more geometric settings. Before that, let us introduce a few necessary and well-known
notions in complex geometry.

Definition 1.1. Let X be a Kihler manifold and o € H?(X,R) N H1(X,R). Then
the class « is nef if @ + A is a Kéhler class for any Kéhler class #A.

Definition 1.2. Let X be a Kéhler manifold of complex dimension n and let the class
a € H2(X,R) N H“1(X,R) be nef. The numerical dimension of the class « is given by
v(e) =max{k =0,1,...,n: ok # 0in sz(X,R)};
when v(«) = n, the class « is said to be big.
The numerical dimension v(«) is always no greater than dimc (X).
When the canonical bundle Kx is nef, X is said to be a minimal model. The abundance

conjecture in birational geometry predicts that the canonical line bundle is always semi-ample
(i.e., a sufficiently large power of the canonical line bundle is globally generated) if it is nef.

Definition 1.3. Let ¥ be a smooth real-valued closed (1, 1)-form on a Kdhler mani-
fold X . The extremal function V' associated to the form ¥ is defined by

V(z) = sup{¢(z) : 0 +i00¢p > 0, supp = 0}
X
forall z € X.
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Any ¥ € PSH(X, ¢) is said to have minimal singularities defined by Demailly (cf. [2])
if ¥ — V is bounded.

Let (X, 0) be a Kédhler manifold of complex dimension n equipped with a Kihler met-
ric 6. Suppose y is a real-valued smooth closed (1, 1)-form and its class [y] is nef and of
numerical dimension x. We consider the following family of complex Monge—Ampere equa-
tions:

(1.8) (x + 10 +i00¢,)" ="Kt Q. forr e (0,1],

where A = 0, or 1, and ¢, is a normalizing constant such that

(1.9) /t"_KeC’Q =/(X+z0)".
X X

Straightforward calculations show that ¢; is uniformly bounded for ¢ € (0, 1]. The following
proposition generalizes the result in [4, 10, 15,42] by studying a family of collapsing complex
Monge—Ampere equations. It also generalizes the results in [8,9, 17] for the case when the
limiting reference form is semi-positive.

Proposition 1.1. We consider equation (1.8) with the normalization condition (1.9).
Suppose the volume measure Q2 satisfies

Q p
— ) 0" <K
NS

for some p > 1 and K > 0. Then there exists a unique ¢; € PSH(X, y + t60) up to a con-
stant translation solving equation (1.8) for all t € (0, 1]. Furthermore, there exists a constant
C=C(X,y,0,p,K)> 0suchthat forall t € (0, 1],

) =€
(% S}l{P‘Pt) tLOO(X)_

where V; is the extremal function associated to y + t6 as in Definition 1.3.

Proposition 1.1 can be applied to generalize Theorem 1.1, especially for minimal Kéhler
manifolds in a geometric setting.

Theorem 1.2. Suppose X is a smooth minimal model equipped with a smooth Kihler
form 0. For any t > O, there exists a unique smooth twisted Kdiihler—Einstein metric g on X

satisfying
(1.10) Ric(gr) = —g: +16.
There exists a constant C = C(X, 0) > 0 such that for all t € (0, 1],
Diam(X, g;) < C.

Furthermore, for any t; — 0, after passing to a subsequence, the twisted Kdihler—Einstein
manifolds (X, g;) converge in Gromov-Hausdorff topology to a compact metric length space
(Z,dz). The Kihler forms wy; associated to g;; converge in distribution to a nonnegative
closed current

@ =y +i00¢
for some ¢ € PSH(X, ) of minimal singularities, where y € [Kx] is a fixed smooth closed
(1, 1)-form.
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6 Fu, Guo and Song, Geometric estimates for complex Monge—Ampere equations

Both Theorem 1.1 and Theorem 1.2 are generalization and improvement for the tech-
niques developed in [26] for diameter and distance estimates. With the additional bounds on
the volume measure, we transform Kolodziej’s analytic L°°-estimate to a geometric diameter
estimate. The relation between analytic estimates of Kihler potentials and geometric estimates
for distance functions was also studied in [20]. It is a natural question to ask how the metric
space (Z, dz) is related to the current @ on X. We conjecture @ is smooth on an open dense
set of X and its metric completion coincides with (Z, dz). However, at this moment, we do not
even know the Hausdorff dimension or uniqueness of (Z, dz).

When X is a minimal model of general type, Theorem 1.2 is proved in [26, 27] and
the result in [36] shows that the singular set is closed and of Hausdorff dimension no greater
than 2n — 4.

We can also replace the smooth Kéhler form 6 in Theorem 1.2 by Dirac measures along
effective divisors. For example, if { E; }le is a union of smooth divisors with normal crossings

and
J
>4k
j=1

is an ample Q-divisor with some a; € (0,1) for j = 1,...,J, then Theorem 1.2 also holds if
we let 0 = Z}:l a;[E;]. In this case, the metric g, is a conical Kéihler—Einstein metric with
cone angles of 27r(1 — a;) along each complex hypersurface E;.

A special case of the abundance conjecture is proved by Kawamata [14] for minimal
models of general type. When X is a smooth minimal model of general type, it is recently
proved by the third named author [27] that the limiting metric space (Z, dz) in Theorem 1.2 is
unique and is homeomorphic to the algebraic canonical model X,, of X. This gives an analytic
proof of Kawamata’s result using complex Monge—Ampere equations, Riemannian geometry
and geometric L2-estimates. Theorem 1.2 also provides a Riemannian geometric model for the
non-general type case. This analytic approach will shed light on the abundance conjecture if
such a metric model is unique with reasonably good understanding of its tangle cones.

Theorem 1.2 can also be easily generalized to a Calabi—Yau manifold X equipped with
a nef line bundle L over X of v(L) = k.

Our final result assumes semi-ampleness for the canonical line bundle and aims to con-
nect the algebraic canonical models to geometric canonical models. Let X be a Kihler manifold
of complex dimension 7. If the canonical bundle Ky is semi-ample, the pluricanonical system
induces a holomorphic surjective map

D: X - Xean

from X to its unique canonical model X,,. In particular, dimc Xcan = v(X). Let S be the
set which consists of all singular fibers of ® together with ®~1(Sx_, ), where Sy, is the
singular set of X,,. The general fiber of ® is a smooth Calabi—Yau manifold of complex
dimension n — v(X). It is proved in [26,27] that there exists a unique twisted Kéhler—Einstein

current Weay on Xcap satisfying
Ric(wcan) = —Wcan + WwWpP,

where ®*we,, € —c1(X) and wwp is the Weil-Petersson metric for the variation of the
Calabi—Yau fibers. In particular, wc,, has bounded local potentials and is smooth on X¢an \ Scan-
We let gcan be the smooth Kédhler metric associated to wean on Xean \ Scan-
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Theorem 1.3. Suppose X is a projective manifold of complex dimension n equipped
with a Kdiihler metric 0. If the canonical bundle Ky is semi-ample and v(Kx) = k € N, then
for the twisted Kdhler—Einstein metrics g; satisfying

Ric(g;) = —g: +16. 1€ (0.1],

the following hold:
(1) There exists C > 0 such that for all t € (0, 1],

Diam(X, g;) < C.

(2) Let wy be the Kdhler form associated to g;. For any compact subset K CC X \ S, we
have
lgr — @*geanllcock,9) — 0 ast — 0.

(3) The rescaled metrics t ~w, | x, converge uniformly to a Ricci-flat Kihler metric wcy,y
on the fiber Xy, = ®~1(y) forany y € Xcan \ @(S), ast — 0.

(4) For any sequence t; — 0, after passing to a subsequence, the manifolds (X, g¢;) con-
verge in Gromov—Hausdorff topology to a compact metric space (Z., dz). Furthermore,
Xean \ Scan is embedded as an open subset in the regular part Ro of (Z,dz) and the
manifold (Xcan \ Scan, @Wean) s locally isometric to its open image.

In particular, if k = 1, then (Z, dz) is homeomorphic to X can, with the regular part being open
and dense, and each tangent cone being a metric cone on C with cone angle less than or equal
to 2m.

We remark that a special case of Theorem 1.3 is proved in [41] with a different approach
for dim¢ X = 2. In general, the collapsing theory in Riemannian geometry has not been fully
developed except in lower dimensions. In the Kéhler case, one hopes the rigidity properties
can help us understand the collapsing behavior for Kéhler metrics of Einstein type as well
as long time solutions of the Kihler—Ricci flow on algebraic minimal models. Key analytic
and geometric estimates in the proof of (2) in Theorem 1.3 are established in [29, 30] for
the collapsing long time solutions of the Kihler—Ricci flow and its elliptic analogues. The
proof for (3) and (4) is a technical modification of various local results of [11, 12,37, 38],
where collapsing behavior for families of Ricci-flat Calabi—Yau manifolds is comprehensively
studied. Theorem 1.3 should also hold for Kihler manifolds with some additional arguments.

Finally, we will also apply our method to a continuity scheme proposed in [18] to study
singularities arising from contraction of projective manifolds. This is an alternative approach
for the analytic minimal model program developed in [29-31] to understand birational trans-
formations via analytic and geometric methods [25,28,32-34]. Compared to the Kdhler—Ricci
flow, such a scheme has the advantage of prescribed Ricci lower bounds and so one can apply
the Cheeger—Colding theory for degeneration of Riemannian manifolds, on the other hand, it
loses the canonical soliton structure for the analytic transition of singularities corresponding to
birational surgeries such as flips.

Let X be a projective manifold of complex dimension n. We choose an ample line
bundle L on X and we can assume that L — Ky is ample, otherwise we can replace L by
a sufficiently large power of L. We choose 0 € [ — Kx] to be a smooth Kéhler form and
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8 Fu, Guo and Song, Geometric estimates for complex Monge—Ampere equations

consider the following curvature equation:
(1.11) Ric(g;) = —g: + 10, te]0,1].
Let
tmin = inf{t € [0, 1] : equation (1.11) is solvable at ¢}.

It is straightforward to verify that 7, < 1 by the usual continuity method (cf. [18]). The goal
is to solve equation (1.11) for all ¢ € (0, 1], however, one might have to stop at ¢ = t,;, when
Kx is not nef.

Theorem 1.4. Let g; the solution of equation (1.11) fort € (tyin, 1]. There exists a con-
stant C = C(X, 0) > 0 such that for any t € (tmin, 1],

Diam(X, g;) < C.

Theorem 1.2 is a special case of Theorem 1.4 when t,;, = 0 (cf. [26]). When #;, > O,
Theorem 1.4 is also proved in [19] with the additional assumption that #yin L + (1 — tmin) Kx
is semi-ample and big. The diameter estimate immediately allows one to identify the geomet-
ric limit as a compact metric length space when ¢t — #,;,. In particular, it is shown in [19]
that the limiting metric space is homeomorphic to the projective variety from the contraction
induced by the Q-line bundle fyin L + (1 — fmin) Kx when it is big and semi-ample. One can
also use Theorem 1.4 to obtain a weaker version of Kawamata’s base point free theorem in
the minimal model theory (cf. [13]). If fminL + (1 — tmin) Kx is not big, our diameter esti-
mate still holds and we conjecture the limiting collapsed metric space of (X, g;) as t — tmin
is unique and is homeomorphic a lower dimensional projective variety from the contraction
induced by fminL + (1 — tmin) Kx .

2. Proof of Theorem 1.1
Throughout this section, we let ¢ € PSH(X, 6) be the solution of equation (1.5) satis-
fying condition (1.6) in Theorem 1.1. We let @ = y + i0d¢ and let g be the Kéhler metric
associated to .
Lemma 2.1. There exists a constant C = C(X, 0, p, K) > 0 such that
¢ —supg|Lex) < C.
X
Proof. The L*°-estimate immediately follows from Kolodziej’s theorem [15]. O

The following is a result similar to Schwarz lemma [39].

Lemma 2.2. There exists a constant C = C(X, 0, p, K, A) > 0 such that
w > C6.

Proof. There exists a constant C = C(X, 6, A) > 0 such that
Agplogtry,(0) = —C — C try(0),
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where A, is the Laplace operator associated with w. Then let
H =logtry,(0) — B(¢ —supg)
X

for some B > 2C. Then
ApH > Ctry,(0) — C.

It follows from maximum principle and the L°°-estimate in Lemma 2.1 that

suptr, 0 < C. O
X

Lemma 2.2 immediately gives the uniform Ricci lower bound.

Lemma 2.3. There exists a constant C = (X, 0, p, K, A) > 0 such that
Ric(g) > —Cg.
Proof.  We calculate
Ric(g) = —Ag + Ric(Q) + 10 > —Ag—(A—A1)0 > —Cg

for some fixed constant C > 0 by Lemma 2.2. |
We will now prove the uniform diameter bound.

Lemma 2.4. There exists a constant C = (X, 0, p, K, A) > 0 such that

Diam(X, g) < C.

Proof.  We first fix a sufficiently small € = €(p) > 0 so that p — € > 1. Without loss of
generality we may assume Diam(X, g) = D for some D > 100. Let y : [0, D] — X be a nor-
mal minimal geodesic with respect to the metric g and choose the points {x; = y(6i)}1[2{)6].
The balls { Bg (x;, 3)}52{)6] are disjoint, so

[D/6]

Z (Volgn (Bg(xi,3)) + Volg(Bg(xi,3))) < /X 0" +Q =2V,
=0

hence there exists a geodesic ball Bg (x;, 3) such that
Volgn (Bg (xi,3)) + Volg(Bg (xi,3)) < 12VD™L.
We fix such an x; and construct a cut-off function n(x) = p(r(x)) > 0 with
r(x) = dg (x.x7)

such that
n=1 onBg(x;, 1), n =0 outside Bg(x;,2),

and
pelo.1], p'(p)? <10, [p"| <10,
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10 Fu, Guo and Song, Geometric estimates for complex Monge—Ampere equations

Define a piecewise linear continuous function F : R — R such that F(r) = D775 when
1 €[0,2], F(t) = a when t >3 and F(¢) is linear when ¢ € [2,3], where a > 0 is a con-
stant to be determined. Denote F(x) = F (r(x)); then F = a outside Bg(x;,3), F = D7
on Bg (x;,2). We choose the constant @ > 0 so that [, FQ = [0]" = V. We observe that

|4
VzaVolgz(X\Bg(xi,3))+/ FQ>V(A—-12D"Ya > —a
By (x;,3) 2

so 0 < a < 2. Then it follows that

JCE) (o) (LR 7) =

for some C = C(X, 6, p,K) > 0.
We now consider the equation

(0 + i00p)" = *?FQ.

By similar arguments as before, ||¢ — supy @]z < C = C(X.0, p, K). Let § = 6 + i00¢.
Then on Bg(x;,2),

Ric(g) = —Ag + Ric(Q) + A0, Ric(g) = —Ag + Ric(Q) + A6.

In particular,
N

1) n
Ag logﬁ = —An + Atrg(9),

where Ag = A,,. Let

a’)n
H = n(IOg—n - ((w - sup(ﬂ) - (¢ - suw))).
w X X
On Bg(x;,2), we have
. &\
AgH =—-A+Dn+ A+ 1)trg(g) > —2n —I—n(ﬁ) .
In general, on the support of 1, we have

N AN HIV 2
AgH > 17(—211 +n(w—n) ) + 2 Re(VH - Vi) — 211! 2”' 4+ HAgn
2 n

H|Vn|?

> n_l(ane'ﬁv +2Re(VH -Vn) —2 +HAgn—2nn2).

We may assume supy /4 > 0, otherwise we already have upper bound of H. The maximum
of H must lie at Bg (x;,2) and at this point

AgH <0, |VH]?>=0.
By Laplacian comparison we have

Vo2 (p)?

n o

Agn = p'Ar+p" > —C, <C.
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So at the maximum of H, it holds that
2 H 2
0>Cnern —CH —2n>CH*—CH —2n,

therefore we have supy H < C. In particular, on the ball Bg (xi, 1) where n = 1, it follows
that z—z < C. From the definition of ® and w,
N
C > = pro—ate—9),
=
Combined with the L°°-estimate of ¢ and ¢, we conclude that

D<C=C(n,p,0,A, K). O

Lemma 2.5. There exists a constant C = (X, 0, p, K, A) > 0 such that

sup [Vggle < C.
X

Proof.  Straightforward calculations show that
Agyp =n —trg(0),
Ag|Vol2 = [VVg|> + [VVe[* + ¢ g R 50107 — 2V - V trg (6)
> |VVg|? + |VVg|? — C|Ve|* — 2V - Virg (6),

and

|V trg 0|2
trg 0

for some uniform constant cg, C > 0. We choose constants « and B satisfying

Agtrg 0 =trg 0 - Ag logtrg 0 + > —C +co|Virg 0

oz>4c0_1>4,B>supgo—|—1
X

and define 5
\Y

oy - Vel

B

+atrg 6.

Then we have
[VVeP +VVe?  (IVel?  [VeP(trg 6 —n)
B—y¢ B—y¢ (B—¢)?
—2(1+ a)w —aC + aco|Virg 0] + 2<Bv—ip, VH>.

(2.1) AH >

We may assume at the maximum point zyax of H, |Vo| > o and H > 0, otherwise we are
done. At Zpax,
VH =0, AH <0

and so at Zmax,

1 \% Virg 0 tre OV
V|V(p|=—(—H—¢—a(B—g0) £7 4 a8 ‘p).
2 Vol Vol Vol
By Kato’s inequality ~
[VVg|> + [VVg|?
IVIVel* <

2 ’
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12 Fu, Guo and Song, Geometric estimates for complex Monge—Ampere equations

it follows that

[VVg|* + |VVg|? 1 ( 2, 2 2 2 | 2|Vig 7
(2.2) > He 4+ a“(B—)(trg 0) + 0" ———=——
B—yg 2(B - ¢) ¢ Vo2
|V itrg 6]
—2aH(B —¢)trg 0 —20H ———
¢ Vol
|V trg 0]
—20%(B —@)trg 6——5
7 Vel
H? Vitrg 02
> — H—ﬁ—CWtrgm
4(B —¢) B—¢

for some uniform constant C > 0. After substituting inequality (2.2) to (2.1) and applying
Cauchy—Schwarz inequality, we have at zp,x

H? 2|V trg )2
0> -1 _cn—c-V"%O oy, 011 4V, 01
4(B —¢) B—y¢
HZ
>——+——-CH-C
4B —9)
for some uniform constant C > 0. Therefore maxy H < C forsome C = C(X, 6,2, A, p, K).
The lemma then immediately follows from Lemma 2.1 and Lemma 2.2. O

3. Proof of Proposition 1.1

In this section, we will prove Proposition 1.1 by applying the techniques in [4, 8, 10, 15].

Let X be a Kéhler manifold of dimension n. Suppose « is nef class on X of numerical
dimension x > 0. Let y € o be a smooth closed (1, 1)-form. We define the extremal func-
tion Vy by

Vy = sup{¢ : x +i00¢p >0, ¢ <0}.
Let 6 be a fixed smooth Kdhler metric on X . Then we define the perturbed extremal function V;
fort € (0, 1] by
V; =sup{¢ : x + 10 +i00¢p > 0, ¢ <O0}.

The above extremal functions were introduced in [4] when « is big.

We first rewrite equation (1.8) for A = 0 as follows:

(3.1) (x +10 +i00¢;)" =" Ke™ /9" qupg, =0, te€(0,1],
X

by letting Q = e~/ 6", where ¢; is the normalizing constant satisfying

Zn—/c/ o~ teign =[(X+I9)n.
X X

The function f satisfies the following uniform bound:

/ e Pon <K
X
for some p > 1 and K > 0.
The following definition is an extension of the capacity introduced in [4, 8, 10, 15].
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Fu, Guo and Song, Geometric estimates for complex Monge—Ampere equations 13
Definition 3.1. We define the capacity Cap,,, (K) for a subset K C X by

Cap,, (K) = sup{/ (x: + ioou)" i u e PSH(X, y7), 0 <u—-V; < l},
K

where y; = y + t0 is the reference metric in (3.1). We also define the extremal function V; g

by
Vi3 = supiu € PSH(X, x¢) :u < Oon K}.

If KX is open, then we have
(1) Vi3 € PSH(X, y¢) N L(X),
(2) (x: +i00V; 5)" =0on X \ X.
Lemma 3.1. Let ¢; be the solution to (3.1). Then there exist § = 6(X, x,0) > 0 and
C =C(X,y,0,p, K) > 0such that for any open set X C X andt € (0, 1],
1 ) )%

[x7] /JC(Xt +i00¢;)" < Ce_s(m
t

Proof.  Since [y™] = 0 for k + 1 < m < n, it follows that

[x7] =fXX? =/X]§)(Z)ka”_k9”_k
= / Z (Z)Xk At"TRgnR = 0 ("),

X k=0

It follows that the normalizing constant ¢, in (3.1) is uniform bounded. Let M; x = supy V; x.
Then we have

v [ Goidder =" [
l = e
] S KT e Jx

ket e _Wx .
e Sema 0" (since V.5 < 0on K)
[x7] ’
Xt X
tn—KeCt _8MZ,JC / e—fe—B(VI'K;MZ’K)Qn
X

e q
[x7]
— 1
" (/ e—s(vt.x—Mt.x)gn) ‘
X

neCt e_SMé”K (/ e—Pan)
[x7] X
where % + é = 1. Obviously, there exists y = y(X, y,0) > 0 such that for all ¢ € (0, 1],

IA

IA

N =

IA

SMZ,JC
<Ce a ,

V,.x € PSH(X, y0).

We apply the global Hérmander’s estimate ([35]) so that there exists § = §(X, y,0) > 0 such
that
/ S Wex—swx Vi) gn < ¢y
X
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14 Fu, Guo and Song, Geometric estimates for complex Monge—Ampere equations

To complete the proof, it suffices to show

(X} )
32 M, g +1>(—22 )"
(3-2) LHT D= (Capxt(JC)

First we observe that by definition
SuP((Vt,JC —sup Vi x) — Vt) <0,
X X

since V; g — supy V; x € PSH(X, x;) is nonpositive. On the other hand, V; x > V;. This
immediately implies that

(3.3) O0<Vix—Vi=<supVyx =M x.
X
We break the rest of the proof into two cases.

The case when M, g > 1. We let

Vg = M;}c(Vt,JC Vi) + Vi

Then
Vi<¥rx =Vit1
and by (3.3),
1 1 + i00V; 5 )"
Gy L Syl +109Viz)
Mt,JC Mt,JC [x7]
1 _— . 3 —
= /K(Mt’}()(t +i00(M, 3 Vi 5))"

1 _ s _ s
< (M e 93, Vi) + (1= MG + 130V
t

1 _
= | 00 n
] /K(Xt + 00V )
_ Cap, (%)

[x7
The case when M; g <1. By (3.3),

0=<Vix—Vi=<supV, 5 =M; 5 =<1
X

Now
(3.5) [0 = /xut 1193V, x)" < Cap,, ().
So in this case ;
[Xt] -
Cap,, (K) ~

Combining (3.4) and (3.5), (3.2) holds and we complete the proof of Lemma 3.1. m)
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Fu, Guo and Song, Geometric estimates for complex Monge—Ampere equations 15
The following is an immediate corollary of Lemma 3.1.

Corollary 3.1. There exists C = C(X, x,0, p, K) > 0 such that for all t € (0, 1], we

have
1

[x7]

Capm(«K))2

/ (s +i00¢,)" < c( L
X [x7]

Proof. This follows from Lemma 3.1 and the elementary inequality that

1
x2e 0 < ¢

for some uniform C > 0 and all x € (0, 00). |

Lemma 3.2. Leru € PSH(X, y;) N L°(X). Forany s >0,0<r <landt € (0,1],
we have

(3.6) r" Cap,,(u—Vy < —s—r) < / (¢ + ioou)".
{u—Vy<—s}

Proof. For any ¢ € PSH(X, y;) with0 < ¢ — V; < 1, we have

”n/ (x: + i00¢)"
{u—V;<—s—r}

- / (rxe + i93(rg))"
{u—Vy<—s—r}

< / (x: +i00(r¢) +i00(1 — r)V;)"
{u—Vi<—s—r}

<

f (Xt+iaé(r¢+(1—r)Vt—s—r))”
{u—V;<—s—r+r(p—V,)}

= (x: + i00u)"

/{u<r¢+(1—r)Vt—s—r}

<[ vy
{u<V;—s}

The third inequality follows from the comparison principle and the last inequality follows from
the fact that

rg+(1—-nrVi—s—r=r(¢g—-Vi—1D)+V,—s <V;—s.
Taking supremum of all ¢ € PSH(X, y;) with0 < ¢ — V; < 1, we get (3.6). O
Lemma 3.3. Let ¢; be the solution to equation (3.1). Then there exists a constant
C =C(X,y.0, p,K) > 0such that for all s > 1,
- Capy, (s — Vi < —s)) =
—mlap, (\Wr — Ve < —=85) = ——,
[X’; X (s — 1)%

1 1 _
where;—l—a—l.
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16 Fu, Guo and Song, Geometric estimates for complex Monge—Ampere equations

Proof. Applying Lemma 3.2 to u = ¢; and r = 1, we have

1 1 -
——Cap, ({¢r — Vi < —=s}) < —/ (x: +00¢,)"
[ rrerr e 0 Jeor—vie—sey '

— L/ tn_Ke_f+C’ on
7] Jioi—vi<—(s—1)}

C 1
= —1/ (—or + Vt)‘l"e_fen
(s — 1)a Ho=Vi<—=(s—1)}

1
=< L1(/ e_pfe") ’
(s — 1)a \Heo=Vi<=(s—1)}

q
X (/ (= + Vt)gn)
{o1=Vi<—(s—1)}

C a
= —0)o™ ).
= (s—l)é («/;(( (pt) )

where in the last inequality we use the assumption that e™/ € L?(0"), V; < 0 and ¢; < 0. On
the other hand, since ¢; € PSH(X, x;) C PSH(X, C0) for some large C > 0 and supy ¢; = 0,
it follows from Green’s formula that

| oven <c

X

for some uniform constant C. The lemma follows by combining the inequalities above. O
The following lemma is well known and its proof can be found, e.g., in [10, 15].

Lemma 34. Let F :[0,00) — [0,00) be a non-increasing right-continuous function
satisfying limg_, oo F(s) = 0. If there exist a, A > 0 such that forall s > 0 and 0 < r < 1,

rE(s + 1) < A(F(s))' 9,
then there exists S = S(so, o, A) such that
F(s)=0
forall s > S, where sq is the smallest s satisfying (F(s))* < (24)~L.

Proof of Proposition 1.1.  Define for each fixed ¢ € (0, 1],

Cap,,, ({gr — Vi < _s}));
x:]" '

By Corollary 3.1 and Lemma 3.2 applied to the function ¢;, we have

F(s) = (

rF(s +r) < AF(s)?> forallr € [0,1], s > 0,

for some uniform constant A > 0 independent of ¢ € (0, 1].
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Fu, Guo and Song, Geometric estimates for complex Monge—Ampere equations 17

Lemma 3.3 implies that limg_, o F'(s) = 0 and the s¢ in Lemma 3.4 can be taken as less
than (2AC )4, which is a uniform constant. It follows from Lemma 3.4 that F(s) = 0 for all
s > S, where § < 2 + 5. On the other hand, if Cap,, ({¢; — V; < —s}) = 0, by Lemma 3.1

and equation (3.1), we have
/ e fom =0,
{pr=Vi<—s}

hence the set {¢; — V; < —s} = @. Thus infy (¢; — V;) > —S. Thus we finish the proof of
Proposition 1.1. |

Therefore we have proved Proposition 1.1 when A = 0. We finish this section by prov-
ing the case when A = 1. To this end, we consider the following complex Monge—Ampere
equations for ¢ € (0, 1]:

(X + 19 + laé(pt)n = tn_Ke(pl_f""Ct 011’

where f € C®°(X) and c; is the normalizing constant satisfying

t”_K/ AL :/(X+z9)n.
X X

Corollary 3.2. If ||e_f||Lp(X,9n) < K, for p > 1 and K > 0, Then there exists a con-
stant C = C(X, x.0, p, K) > 0 such that

lor = VillLe < C.
Proof. Since for each ¢ > 0, it is proved in [2] that V; is C 1¥(X, 6), we can always find

W; € C*°(X) such that supy |V; — W;| < 1. Furthermore, V; is uniformly bounded above for
all # € (0, 1]. We let ¥4 be the solution of

(x: +i00y)" = (K= S et Wign supy; = 0.
X
and

Uy = @1 — Y.
Then

(Xl + iaé% j'laéut)n — euz-Hﬁt—Wt_
(Xt + i00y)"
Since supy | — W¢| < supy |¥; — V;| + 1, the maximum principle immediately implies that
luellLoexy = 1V = VillLoo(x) + 1

and so
lor — VillLoo(xy < 2l1¥e — VillLoo(x) + 1. m]

4. Proof of Theorem 1.2
Let X be a Kdhler manifold; X is said to be a minimal model if the canonical bundle Kx
is nef. The numerical dimension of Ky is given by

V(Kyx) =max{m =0,...,n:[Kx]" #0in H™"™(X,C)}.
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18 Fu, Guo and Song, Geometric estimates for complex Monge—Ampere equations

Let 6 be a smooth Kéhler form on a minimal model X of complex dimension n. Let k = v(X),
the numerical dimension of Ky . Let 2 be a smooth volume form on X. We let y be defined by

¥ =1i00logQ € Kx.
We consider the following Monge—Ampere equation for ¢ € (0, 00),
4.1) (x 410 +i00p;)" = 1" “e? Q.

Since Ky is nef, [y + ¢6] is a Kéhler class for any # > 0. By Aubin and Yau’s theorem, there
exists a unique smooth solution ¢; solving (4.1) forallz > 0. Let w; = y + 16 + ia(:3<p. Then
w; satisfies

Ric(a),) = —w; + t6.

In particular, any Ké#hler metric satisfying the above twisted Kédhler—Einstein equation must
coincide with w;.

Lemma 4.1. There exists a constant C > 0 such that for all t € (0, 1],

C U < [y +16]" < Ct"™,

Proof.  First we note that [y]* - [#]" 7% > 0 because [x]“ # 0 and [y] is nef. Then
n
Al U 1V ) Al (D W 0 P P () Gl P
o J=k+1 Y

Lemma 4.2. Let V; = sup{u : u € PSH(X, y + t0), u < 0}. Then there exists a con-
stant C > 0 such that for all t € (0, 1],

lo: — VillLeo(x) < C.
Proof. The lemma immediately follows by applying Proposition 1.1 to (4.1). O

We now prove the main result in this section.

Lemma 4.3. There exists a constant C > 0 such that for all t € (0, 1],

Diam(X, g;) < C.

Proof. In this proof we apply a similar argument to that used in the proof of Theo-
rem 1.1. Suppose Diam(X, g;) = D for some D > 6. Let y : [0, D] = X be a smoothing
minimizing geodesic with respect to the metric g; and choose the points {x; = y(6i )}l[.lz){)ﬁ]. It
is clear that the balls {Bg, (x;, 3)} are disjoint so

(%]

S Volg (Bg, (x1,3)) < / Q="
i=0 X

where Volg(Bg, (xi,3)) = | B, (xi,3)S2. Hence there exists a geodesic ball By, (x;,3) such
St
that
Volg (B, (x;,3)) < 6VD™ L.
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Fu, Guo and Song, Geometric estimates for complex Monge—Ampere equations 19

We fix such an x; and construct a cut-off function n(x) = p(r(x)) > 0 with r(x) = dg, (x, x;)
such that
n=1 on Bg,(x;,1), n =0 outside Bg,(x;,2)

and
pelo.1], p ') =C. |pI=C.

Define a function F; > 0 on X such that
F; =1 outside Bg,(x;,3), F, = D% on Bg,(x;,2)
and
C‘1§/ FQ<C, /F,Zszgc.
X X
We now consider the equation
(x4 10 +y)" =1" eV F,Q forallt € (0,1].
Applying Corollary 3.2, there exists a uniform constant C > 0 such that for all # € (0, 1],
Ve — VillLeo(x) < C,
and so by Lemma 4.2,
4.2) lge = ¥ellLoocx) < C.
Let §; = y + 10, + i90y;. Then on Bg,(xi,2),

Ric(g;) = —g: + 10, Ric(g:) = —g: +10,

and so
o : A
Ag, logw—? = —n+trg,(g:) = —n —i—n(w—?) .
Let “n
Wi
H = nlog o

t
We may suppose supy H = H(zmax) > 0, otherwise we are done. The point zy,x must lie in
the support of 1, and at zy,,x we have

1 H
0>Ag H > —(HAgtr; +2(Vy, VH) —2—|Vy|*> —nn? + nnzeﬁ)
n n

| SN
>—-|\—H"-CH
n\2n

for some uniform constant C > 0 for all ¢ € (0, 1]. The maximum principle implies that

sup H < C(n);
X

in particular on By, (x;, 1) where n = 1, there exists C > 0 such that for all € (0, 1],

% — D2Vt < C
wf
By the uniform L *°-estimate (4.2), there exists C = C(n, y, 2, 6) such that D < C. O
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20 Fu, Guo and Song, Geometric estimates for complex Monge—Ampere equations

Now we can complete the proof of Theorem 1.2. Gromov’s pre-compactness theorem
and the diameter bound in Lemma 4.3 immediately imply that, after passing to a subsequence,
(X, g¢;) converges to a compact metric space. Since ¢; — V; is uniformly bounded and V7 is
uniformly bounded below by Vo, ¢;; always converges weakly to some poo € PSH(X, x), after
passing to a subsequence. In particular, there exists C > 0 such that

P00 — VollLeo(x) = C,

where V) is the extremal function on X with respect to . O

5. Proof of Theorem 1.3

Our proof is based on the arguments of [29,37,38].
We fix some notations first. Recall X ., has dimension « and y is the restriction of the
Fubini—Study metric on X, from the embedding X on — CcPV ™M where

Np 4+ 1 =dim H°(X, mKy).

Hence ®* y is a smooth nonnegative (1, 1)-form on X, and in the following we identify y with
®* y for simplicity. Let 6 be a fixed Kéhler metric on X .
Define a function H € C*°(X) as

FCAOTTK = HO"

which is the modulus squared of the Jacobian of the map @ : (X, ) — (Xcan, y) and vanishes
on S, the indeterminacy set of ®, hence H~Y € L1(X,6") for some small y > 0. We fix
a smooth nonnegative function o on X,, as defined in [37], which satisfies

0<o<l, Ofv—laa/\éo*fCX, —C)(fiBéOSC)(,

for some dimensional constant C = C(k) > 0. From the construction, ¢ vanishes exactly on
S’ = ®(S). There exist A > 0, C > 1 such that forany y € X2 = Xcan \ S’ (see [37]),

can

o(y* = CinfH. here X, = @7'(y).
y

The twisted Kédhler—Einstein metric g; in (1.10) satisfies the following complex Monge—
Ampere equation (with 6 = 6):

(5.1) (x 410 +i00p;)" =t"¥e% Q forallt € (0, 1].
In case Ky is semi-ample, V; = 0 hence Corollary 3.2 implies (see also [8,9, 15]):

Lemma 5.1. There is a uniform constant C > 0 such that || ¢ || x) < C.

We have the following Schwarz lemma whose proof is similar to that of Lemma 2.2, so
we omit it.

Lemma 5.2. There exists a constant C > 0 such that tr,,, y < C forallt € (0,1].
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Fu, Guo and Song, Geometric estimates for complex Monge—Ampére equations 21

We denote 0, = 0|y, for y € X2, , the restriction of 6 on the fiber X, which is a smooth

(n — Kk)-dimensional Calabi—Yau submanifold of X. We will omit the subscript ¢ in ¢; and
simply write ¢ = ¢;, and define
@, = ][ 90"
y v,

to be the average of ¢ over the fiber X,,. Denote the reference metric &; = y + 6. We calculate

(@ +i009)|x, = (16, +i90(p —9,))|x, = wxlx,,

hence _
0y +171i00(p — @) |x,)" ™ =t )
On the other hand,
t—n+/c wZ;K — t—n+/c a);l—lc A XK
9)}}1—/( pn—« A ¥ lx,
Q
< C(t K
= (rwt X) Gn_,{ A XK Xy

<CH™!' < Co™*(y).

Since the Sobolev constant of (X, 6)) is uniformly bounded and the Poincaré constant of
(Xy, 6y) is bounded by C ¢80 for some uniform constants B , C > 0 (see[37]), combined
with the fact that

= Qn—K — 0’
]ﬁ(y(w ®,)0;

Moser iteration implies ([37,40]):

Lemma 5.3. There exist constants By, C1 > 0 such that for any y € X3

can’

supt g — 9y < CieB1o7* ) forallt € (0,1].

Xy

Proposition 5.1. On any compact subset K € X \ S, there exists C = C(K) > 1 such
that for all t € (0, 1],
C_IC(A)I <w; < CC?); on K.

Given the C %-estimate in Lemma 5.3, Proposition 5.1 can be proved by the C2-estimate
([40]) for the Monge—Ampere equation together with a modification as in [29, 37, 38], so we
omit the proof.

Let us recall the construction of the canonical metric e on X, (see [29]). Define
a function F = q’;,cg on X, and F is in L1%t¢ for some small & > 0 ([29]). The metric @ean

is obtained by solving the following complex Monge—Ampere equation on X ,y:

(X + i009o0)* = (Z) Fe¥> x*

for goo € PSH(Xcan, x) N C%(Xean) N C°(X2,). Then wean = y + i00¢eo, and in the fol-
lowing we will write oo = ®can.
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22 Fu, Guo and Song, Geometric estimates for complex Monge—Ampere equations

Any smooth fiber X, with y € X§,, is a Calabi—Yau manifold hence there exists a unique
Ricci flat metric wsg,, € [6y] such that wsp,, = 6y + i100p, for some p, € C°*°(X,) with nor-

malization
n—Kk
][ pywyx , = 0.
X

y
o

We write psp(X) = po(x) if P(x) € X,,. Then pgr is a smooth function on X \ S and may
blow up near the singular set S. Denote wsg = 8 + i00psp which is smooth on X \ S, and by
[29] we know that Q/(wdz ™ A x*) is constant on the smooth fibers X), and is equal to ®* F.
For simplicity we will identify F with ®* F. Our arguments below are motivated by [29,38].
Denote ¥ = ¢~¢"" "~ for suitably large constants A, A > 1. From the proof of Proposi-

tion 5.1, we actually have that on X \ S ([37]),
C'%d, <w, <CF 1, forallr e (0,1].

Next we are going to show ¢; — @0 = ®* o as t — 0. Proposition 5.2 below can proved
by following similar argument as in [38], but we present a slightly different argument in estab-
lishing Claim 2 below.

Proposition 5.2. There exists a positive function h(t) with h(t) — 0 as t — 0 such that

(5.2) sup 7 |¢r — @oo| < h(2).
X\S

Proof. Let D C Xcan be an ample divisor such that Xcan \ X5, C D, where D € |uKx,,, |
for some p € N. Choose a continuous hermitian metric on [D], hp = h#sme_/““"oo and
a smooth defining section sp of [D], where hpg is the Fubini-Study metric induced from

O cpnm (1). Clearly i00loghp = )y + i00¢e0) = I} oo. For small r > 0, let
By(D) ={x € Xcan : dy(x,D) <r}

be the tubular neighborhood of D under the metric dy, and denote B, = ®~1(B, (D)) C X.
Since both ¢; and ¢ are bounded in L.°°-norm, there exists re with lime_. re = 0 such
that for all 7 € (0, 1],
2
sup (¢r — ¢oo + €logsplj ) < -1,
Bre \S

inf — —elog|sp|? ) > 1.
$r€\S(¢t Poo glsolj,)

Let ne be a smooth cut-off function on Xcay such that ne = 1 on Xcan \ B (D) and ne =0
on B, (D). Write pe = (®*n¢)psk, and wsp,e = wsk + i00pe. Define the twisted differ-
ences of ¢; and @oo by

Wei = @1 — Poo — Ipe T 610g|SD|%,D-

By similar arguments as in [29] we have:

Claim 1. There exists an €g > 0 such that for any € € (0, €p), there exists a constant t¢
such that for all t < t., we have

sup Yo (t,-) <3pe, inf ¥l (t,-) > —3pue.
x\S x\S
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Claim 2. We have
/ |or — Poo|0” — 0 ast — 0,
X
where @; is the Kdhler potential of w;y in (5.1).

Proof of Claim 2. For any n > 0, we may take $g, C X small enough so that

/ 9" < i
Br, 10°

Take € < '7 small enough so that re < R;. From Claim 1 when ¢ < ¢,

/wt 9o0l0" f |<ot—gooo|9"+f PRI
X\8Br

Rn n

< C77+/X\ (t1psr| + el log lsp |2, 6"
R

n

<Cn. m]
Given Claim 2, Proposition 5.2 follows similarly as in [38], so we skip it. O
We will apply an argument in [38] with a slight modification to show the lemma below:

Lemma 5.4. We have
lim Fto; = 0.
t—0
Proof. Denote s = logt for t € (0, 1]. We have t¢ = %—f. Taking derivatives on both
sides of equation (5.1) and by maximum principle arguments, we then get (see also [38])

0% . 0%

32 =t9+12p<C, heregpzat—z.

By the uniform convergence (5.2) of F ¢(s) — F ¢oo as s — —o0, for any € > 0, there is an S
such that for all s1, 52 < —Se, we have supy |F ¢(s1) — F¢(s2)] < €. Forany s < —S¢ — 1
and x € X \ S, by the mean value theorem

(5.3)

1 s+a/€
Fosp(sx,x) = ﬁ/ Os(Fo)ds > —/e forsomesy € [s,s + €.
N

By the upper bound (5.3), it follows that # ds¢(s, x) > —C /€ — /€. Similarly
)
«/_ s—yfe

from (5.3) we get F5¢(s, x) < C /€ + /€. Hence we show that for any s < —Se — 1 or
t = e* < eS¢~ it holds that

FOs(Sx.x) = as(5’7<p(-,x)) ds < /e forsome §y € [s — Ve, 5],

sup |Fosp(s,x)| = sup |Frorp(t,x)| < C \/e,
xeX\S xeX\S

so the lemma follows. O
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24 Fu, Guo and Song, Geometric estimates for complex Monge—Ampere equations

Corollary 5.1. There exists a positive decreasing function h(t) with h(t) — Oast — 0
such that
sup F (|¢r — 191 — ¢oo| + l¢1]) = h(1).
X

From Corollary 5.1, by using a straightforward adaption of the arguments of [38], we
have an improvement of the local C2-estimate:

Lemma 5.5. On any compact subset K CC X \ S, we have

lim sup(sup(tra,t Yoo — /c)) <0.
K

t—0

With the local C2-estimate (see Proposition 5.1), we obtain the following standard local
C3-estimates ([21,24,40]):

Lemma 5.6. For any compact K @ X \ S, there exists a constant C = C(K) > 0 such

that

sup | Vg, |> < Ct71L.
K

We have built up all the necessary ingredients to prove Theorem 1.3, whose proof is
almost identical to that of [38, Theorem 1.3]. For completeness, we sketch the proof below.

Proof of Theorem 1.3.  Fix a compact subset K’ C X2, and let K = ®~!(K’). By the
Calabi C3-estimate in Lemma 5.6, it follows that
i welx, lcrx, .0 < Co 1 orlx, = c 6y,

forall y € K" and 6, = 0|y, .

Step 1. Define a function f on X, by

(' wlx, )"

n—kK
Wg

f =
Fsy
n—Kk K

n
K wy

K
< eh(t)(M) <14 h@)
K

for some h (t) > 0ast — O (here h (t) depends on K), where in the first inequality we use the
Newton—Maclaurin inequality. The function f also satisfies that

t—>o0

(5.4) [ =vetes =0, tim [ 17 < ey =0,
Xy ' Xy |

The Calabi estimate implies that supy IV flg, = C forall y € K’, and (X,,0)) have uni-
formly bounded diameter and volume for y € K’. So it follows that f converges to 1 uniformly
on K ast — 0. That is,

)l’l—IC

-1 —
1™ @elx, )" —osp3llcox,.6,) > 0 ast =0
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uniformly on K’. Since ¢~ 'oy| x, converges in C*(Xy, 6y)-topology to some limit metric
Woo,y Which satisfies the Monge—Ampere equation (weakly) on X, 035} = wgp ;, by the
uniqueness of complex Monge—Ampere equations, it follows that wso,y = wsF,y and Loy X,

converge in C* to wsr,y, for any y € K’. Next we show the convergence is uniform in K’.

Step 2. Define anew f on X \ S which takes the form

— —— _ _ 1
t 16();|Xy /\(CI)SF,y)n =1 - ((f 1(1);|xy)n K)H—K

n—kKk
@WsF, y

flx, =

n—kKk
@S,y
and the right-hand side tends to 1 uniformly on K as t — co. Then we have similar equations
as in (5.4) for this new f. This implies

—0 ast — 0.

tr(l)SF_y (Z_la)t)le -1
— K Lo (K)

Sot lw, |x, — wsk,y uniformly for any y € K'.

Step 3. Define
From a result of [38] (see [38, proof of Theorem 1.1]), we have | tr,, (wsg — wsk,y)| < Ct_%;
then -
try, @ < try, (twsk,y + Yoo) + CNt=n+h()
for some / (t) — 0 when ¢ — 0. Moreover, it can be checked that
~n
lim — =1 onK.
t—0 wy
COK)
Hence we see that w; — Yoo ast — 0.
We finish the proof of (1), (2) and (3) of Theorem 1.3.

Remark 5.1. From Steps 1, 2 and 3, we see that for any compact subset K C X \ §,
there exists an () = ex () — 0 as ¢t — 0 such that when ¢ is small,

(5.5) D" foo — £(1)0 <y < P yoo +e(t)0 on K
and
(5.6) D* yoo < (1 +&(t))w; onK.

From the uniform convergence of ¢~ o;| X, to wsg,y for any y € ®(K), we see that there is
a uniform constant Cy = Co(K) > 0 such that

wilx, < Cotwsp,y forall y € ®(K).

Choose a sequence fp — 0. The metric spaces (X, wy ) satisfy Ric(ws ) > —1 and
diam(X, w, ) < D for some constant D < co. By Gromov’s pre-compactness theorem up to
a subsequence we have

d,
(X, 01,) = (Z,dy),
for some compact metric length space Z with diameter bounded by D. The idea of the proof

of (4) in Theorem 1.3 is motivated by [11], and we present below a slightly different argument
from theirs.
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Step 4. We will show:

Claim 3. There exist an open subset Lo C Z and a homeomorphism f : X, — Zo
which is a local isometry.

Proof of Claim 3. By Lemma 5.2, the maps ® = & : (X, ws,) — (Xcan, x) are uni-
formly Lipschitz with respect to the given metrics, and the target space is compact, so up to
asubsequence Oy — Poo : (Z, dz) — (Xcan, x) along the GH convergence (X, wy, ) — (Z, dz)
which is also Lipschitz and the convergence is in the sense that for any x; — (X, @y, ) which
converges to z € Z, then @, (z) = limg_ oo Pr (X ), and there is a constant C > 0 such that
dy(Poo(21), Poo(22)) < Cdz(zy1,22) forall z; € Z.

We denote Zo = ®1(X2,) which is an open subset of Z since @ is continuous. We
will show that O |z, : Zo — X3, is a bijection and a local isometry. Hence

is the desired map.

Doz, is injective. Suppose Poo(21) = Poo(22) for 21,22 € Zo = L (XS,). Denote

Y = DPoo(z1) = Poo(22) € X3 Since (X, Xoo) is an (incomplete) smooth Riemannian
manifold, there exists a small r = ry, > 0 such that (B, (),2r), xoo) is geodesic convex.
Choose sequences zy ; and z; x € (X, wy, ) converging zq and z, respectively, along the GH
convergence. By the definition of ®; = ® — @, it follows that dy(P(z; k), Poo(z1)) — 0
and dy (P(z2,4), Poo(z2)) — 0. Since dy and dy, are equivalent on By __(y,2r), it follows
that dy . (®(z1 %), P(z2,k)) — 0 and hence we can find minimal y.-geodesics yx connecting
®(zy ) and D(z5 1) with yx C By (y.7) and Ly (yx) — 0. By the locally uniform conver-

gence (5.5) on dD_l(BXOO (y,2r)) there exists a lift of y, Y% in dD_l(BXOO (y,2r)) such that

Loy, (Vi) = Lyoo (Vi) + €(ti) Lo (k) = 0 as e — 0.

Note that y; connects zq x and z,  hence

dwtk (Zl,k’ZZ,k) = La)tk ()7/() - Ov

which implies by the convergence of z; x — z; that dz(z1,22) = 0 and z; = z5.

Doz, is a local isometry. Let z € Zg and y = Poo(z) € X, There is a small radius
r =ry > 0suchthat (B, (¥,3r), xoo) is geodesic convex. Take U = (®Poolzo) ™! (Byoo (v, 1))
to be an open neighborhood of z € Z. We will show that @z, : (U, dz) = (Byoo (¥, 7). Xoo)
is an isometry. Fix any two points z1,z € U and y; = ®o(z;) € By (y,r) fori =1,2. As
before we choose z; € (X, wy, ) such that z;  — z; along the GH convergence fori = 1, 2.
It follows then from ®; = ® — P that dy (P(z; ), yi) — 0, and when k is large, ®(z; )

lie in By, (y, 1.1r). Choose w;, -minimal geodesics yx connecting z;  and z, g such that

do;, (216 22,k) = Lo, (V&) = dz(21, 22).

The curve y; = ®(yx) connects ®(zy x) with O(z5 ). If yx C By (v, 3r), from (5.6) it fol-
lows that

Ay (P(z1k), P(22.k)) = Lyoo (Vi) = (1 + €(tk)) Lo, (vk) — dz(21, 22).
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In case yx & By (y,3r), we have

Ayoo (P(z1 ), P(z2k)) <3.8r < Ly (Vk N By (y.3r))
= (I +e()) Lo, (vk) = dz(z1. 22).
Letting k — oo, we conclude that d, __ (y1, y2) < dz(z1, z2). To see the reverse inequality, we
take yoo-minimal geodesics oy connecting ®(zy ) and ®(z5 k). Clearly yx C By (y,3r).
Take a lift of oy, 6x in @~ 1(By_ (1, 3r)); it follows from (5.5) that
do, (Z1k-22.k) < Lo, (k) = Ly (0k) + €(tk) Lo (0k) = dyoo (V1. ¥2).
Letting k — oo, we get
dz(z1,22) < dy.(¥1.)2).

Hence dz(z1,22) = dy.,(¥1,y2) and ®Pslz, : U — By (y,7) is an isometry.

Doz, is surjective. This is almost obvious from the definition. Take any y € X, and
any fixed point x € ®~1(y) C (X, w;, ). Up to a subsequence,

d,
x =5 2 € (Z,dy).

It then follows from ®; — P that dy(y, Poo(2)) = dy(Pr(x), Poo(z)) — 0 as k — oo.
Hence ®oo(z) = y and z € dL(XS,) = Zo. |

Step 5. In this step we will show Zy C Z is dense. Fix a base point X € Zg, upon rescal-
ing if necessary we may assume the metric ball By (f~1(X),2) C (X Xoo) is geodesic
convex. Choose a sequence of points py € (X, wy, ) such that pp — X along the GH conver-
gence (X, wy, ) — (Z, dz). We define a function on X x [0, 0o) as the normalized volume ([5])

Vol (Ba,, (x.1))
VOlwtk (Ba)zk (p_k’ 1)) ’

by standard volume comparison it is shown in [5] that V; (-,-) is equi-continuous and uni-
formly bounded hence they converges (up to a subsequence) to a function

Vilx,r) =

Koo t 4 x [Osoo) — [0,00)
in the sense that for any x; — x along the GH convergence and r > 0,
Vixg,r) =V (x,r) ask — oo.

And V  satisfies similar estimates as in volume comparison, i.e., for r; < r2,

VOO(X,l"l)
P s 0’
Vo) - u(ry, rz) >

where p(-,-) is the quotient of volumes of balls in a space form. The function V . induces
a Radon v on (Z, dz). More precisely, for any K C Z, define

D(K) = lim D5(K) = lim inf » " V. (x;. 7).
§—0 §—0 ;
where the infimum is taken over all metric balls By, (x;, r;) with r; < § whose union covers K.
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Claim 4. Forany x € Zo and r = rx > 0 such that By (f 7 (x),2r) C X2, is geo-
desic convex, we have

Koo(xvr) = UO/ e_%oen
D=1 (Byoo (f 71 (x),7))

-1
Vo = (/ e‘p°°0”) )
S (Byoo (f 71(X),1))

Proof of Claim 4. 'The proof is parallel to that in [11], so we only provide a sketch. For
the given x € Zg, we choose a sequence of points py € (X, wy, ) such that py — x. Asin[11],
due to (5.5) and that the metrics wy, and @ are equivalent in ®~1(B,__(f~1(x),2r)), it can be
shown that

(57) OBy (fTH(X). 7 — 1)) C By, (1) C D7 (Byoo (f 71 (), 7 + 1))

when k >> 1 and here ¢, — 0 as k — oo. It follows then that

for a fixed constant

lim ek 9" = f e¥>=0".
k=00 JB,, (pi.r) P (Byoo (f ~1(x).1))
From the equation ] = t""“e% 0", we have

n—Kk , n
. ek 0

JB0,, . o180 (£ 1170 €7 0"

Vi(p,r) = ];;—lcef/’tk on

JBoy i) Jom1(Brm(r-1 0.1 €#0"

where for the convergence of the denominators we use a similar relation as in (5.7) for pg, X.
From the definition that V (pg.r) — V o (x.r), we finish the proof of Claim 4. m)

Since along the Gromov—Hausdorff convergence the diameters are uniformly bounded
by D < oo, we have
Voly, (Bw, (k. D)) = Vol(X, },).

So

Voly,, (Bw,, (Pk. D))
Vo (x,D)= lim D = Dty 7
k—o00 VOlwtk (Ba)tk (Pk7 1)
e(ptken
= lim fX

_ Pty Qn
k=00 [p,,, () €0

= vO/ e?>p",
X

Therefore from Z = B;,(x, D), we have

V(Z) < v()/ eP 0",
X

Assume Zo C Z were not dense; then there exists a metric ball By, (z, p) C Z \ Zo such
that, by volume comparison estimate for V ,

V(Ba,(z,p)) = Vo(z, D)p(p, D) =: 1o > 0.
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Then for any compact subset K C Zg, V(K) < D(Z) — no. On the other hand, for any open
covering By, (x;,r;) of K with By (f~1(x;),2r;) geodesic convex in (Xeu» Xoo) and r; < 6,

we have
Vo (xiri) = vo/ e¥= "
2 et =2,

TN (Byoo (f 71(xi),ri))

> Uo/ e¥=pm,
S—1(f~I(K))

Taking infimum over all such coverings and letting § — 0, we get

V(K) > vO/ eb> 0",
-1(f~1(K))

If we take K large enough so that f~1(K) C X2, is large, we can achieve that

N Mo Mo _ « Mo
K) > booph — — = / boop — — > H(Z) — —.
VK) Z v L_I(Xcoan)e 10" ¢ 0= "#H "1
Hence we get a contradiction, and Zg C Z is dense since 7(Z \ Zo) = 0. |

6. Proof of Theorem 1.4

The proof of Theorem 1.4 is almost identical with that of Theorem 1.3. We give the sketch
here. The solution g; lies in the Kihler class tL. 4+ (1 — t) Ky for all ¢ € (¢in, 1]. By definition
and straightforward calculations from estimates of Yau [40] and Aubin [1], forany ¢ € (¢min, 1],
the class L + (1 — ¢) Ky is Kéhler and so tin L + (1 — tmin) Kx is nef. We let 2 be a smooth
volume form on X and let y € [tminl + (1 — fmin) Kx] be a smooth closed (1, 1)-form defined
by

x =i00log 2 + 6.

Then the twisted Kéhler—Einstein equation (1.11) is equivalent to the following complex
Monge—Ampere equation for ¢ € (fyin, 1]:

(6.1) (X + (t — tmin)@ + 1009)" = (t — tmin)" “e? Q,

where k¥ = V(tminl + (1 — tmin) Kx ), which is the numerical dimension of the line bundle
tminl + (1 — tmin) Kx. By Proposition 1.1, there exists a constant C = C(X, y,6) > 0 such
that for all ¢ € (in, 1],

lor = VillLox) = C,

where V; is the extremal function associated to y + (¢ — tmin)8. The rest of the proof for
Theorem 1.4 is exactly the same as that of Theorem 1.2 and we leave it as an exercise for
interested readers.
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