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Geometric estimates for complex
Monge–Ampère equations

By Xin Fu at Piscataway, Bin Guo at New York and Jian Song at Piscataway

Abstract. We prove uniform gradient and diameter estimates for a family of geometric
complex Monge–Ampère equations. Such estimates can be applied to study geometric regu-
larity of singular solutions of complex Monge–Ampère equations. We also prove a uniform
diameter estimate for collapsing families of twisted Kähler–Einstein metrics on Kähler mani-
folds of nonnegative Kodaira dimensions.

1. Introduction

Complex Monge–Ampère equations are a fundamental tool to study Kähler geometry
and, in particular, canonical Kähler metrics of Einstein type on smooth and singular Kähler
varieties. Yau’s solution to the Calabi conjecture establishes the existence of Ricci flat Kähler
metrics on Kähler manifolds of vanishing first Chern class by a priori estimates for complex
Monge–Ampère equations [40].

Let .X; ✓/ be a Kähler manifold of complex dimension n equipped with a Kähler met-
ric ✓ . We consider the following complex Monge–Ampère equation:

(1.1) .✓ C i�N�'/n D e�f ✓n;

where f 2 C1.X/ satisfies the normalization condition
Z

X

e�f ✓n D
Z

X

✓n D Œ✓çn:

In the deep work of Kolodziej [15], Yau’s C 0-estimate for solutions of equation (1.1) is tremen-
dously improved by applying the pluripotential theory and it has important applications for sin-
gular and degenerate geometric complex Monge–Ampère equations. More precisely, suppose
the right-hand side of equation (1.1) satisfies the following Lp bound:

Z

X

e�pf ✓n  K for some p > 1I
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2 Fu, Guo and Song, Geometric estimates for complex Monge–Ampère equations

then there exists C D C.X; ✓; p;K/ > 0 such that any solution ' of equation (1.1) satisfies the
following L1-estimate:

k' � sup
X

'k
L

1
.X/

 C:

In particular, equation (1.1) admits a unique continuous solution in PSH.X; ✓/ as long as
e�f 2 Lp.X; ✓n/ without any additional regularity assumption for f . In [7, 16], it is shown
that the bounded solution is also Hölder continuous and the Hölder exponent only depends
only on n and p. However, in general the solution is not uniformly Lipschitz continuous (see
e.g. [7]).

Complex Monge–Ampère equations are closely related to geometric equations of Einstein
type, and in many geometric settings, one makes assumption on a uniform lower bound of
the Ricci curvature. Therefore it is natural to consider the family of volume measures, whose
curvature is uniformly bounded below. More precisely, we let� D e�f ✓n be a smooth volume
form on X such that

(1.2) Ric.�/ D �i�N� log� � �A✓
for some fixed constant A � 0. This is equivalent to saying,

i�N�f � � Ric.✓/ � A✓;
or

f 2 PSH.X;Ric.✓/C A✓/:

We will explain one of the motivations for condition (1.2) by some examples. Let πE
i

ºI
iD1

and πF
j

ºJ
jD1 be two families of effective divisors ofX . Let �

Ei
and �

Fj
be the defining sections

for E
i

and F
j

, respectively, and h
Ei

and h
Fj

smooth hermitian metrics for the line bundles
associated to E

i

and F
j

, respectively. In [40], Yau considers the following degenerate complex
Monge–Ampère equations:

(1.3) .✓ C i�N�'/n D
 P

I

iD1 j�
Ei

j2ˇi

hEiP
J

jD1 j�
Fj

j2˛j

hFj

!
✓n;

where
j̨

; ˇ
i

> 0, and various estimates are derived [40] assuming certain bounds on the degen-
erate right-hand side of equation (1.3).

If we consider the following case:

(1.4) .✓ C i�N�'/n D ✓n

P
J

jD1 j�
Fj

j2˛j

hFj

;

the volume measure will blow up along common zeros of πF
j

ºJ
jD1. If the volume measure on

the right-hand side of equation (1.4) is Lp-integrable for some p > 1, i.e.,

� D
 

JX

jD1
j�
Fj

j2˛j

hFj

!�1
✓n

satisfies

�

✓n
D
 

JX

jD1
j�
Fj

j2˛j

hFj

!�1
2 Lp.X; ✓n/ for some p > 1;

Z

X

� D
Z

X

✓n;
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Fu, Guo and Song, Geometric estimates for complex Monge–Ampère equations 3

then there exists a unique (up to a constant translation) continuous solution of (1.4). Further-
more, � can be approximated by smooth volume forms �

j

(cf. [6]) satisfying

Ric.�
j

/ � �.AC A0/✓;
����
�
j

✓n

����
L

p
.X;✓

n
/


����
�

✓n

����
L

p
.X;✓

n
/

;

Z

X

�
j

D
Z

X

✓n

for some fixed A0 � 0. Therefore condition (1.2) is a natural generalization of the above case.
In the special case when πF

j

ºJ
jD1 is a union of smooth divisors with simple normal crossings

and each
j̨

2 .0; 1/, the solution of equation (1.4) has conical singularities of cone angle
of 2⇡.1 �

j̨

/ along F
j

, j D 1; : : : ; J .
We now state the first result of the paper.

Theorem 1.1. Let .X; ✓/ be an Kähler manifold of complex dimension n equipped with
a Kähler metric ✓ . We consider the following complex Monge–Ampère equation:

(1.5) .✓ C i�N�'/n D e�'�;

where � D 0 or 1, and � is a smooth volume form satisfying
R
X

� D R
X

✓n. If

(1.6)
Z

X

✓
�

✓n

◆
p

✓n  K; Ric.�/ D �i�N� log� � �A✓;

for some p > 1, K > 0 and A � 0, then there exists a constant C D C.X; ✓; p;K;A/ > 0

such that the solution ' of equation (1.5) and the Kähler metric g associated to the Kähler
form ! D ✓ C i�N�' satisfy the following estimates:

(1) k' � sup
X

'k
L

1
.X/

C kr
g

'k
L

1
.X;g/

 C ,

(2) Ric.g/ � �Cg,

(3) Diam.X; g/  C .

If we write � D e�f ✓n, assumption (1.6) in Theorem 1.1 on � is equivalent to the
following on f :

e�f 2 Lp.X; ✓/;
Z

X

e�f ✓ D Œ✓çn; f 2 PSH.X;Ric.✓/C A✓/:

The function f is uniformly bounded above by the plurisubharmonicity and the Kähler met-
ric g associated to ! D ✓ C i�N�' is bounded below by a fixed multiple of ✓ (see Lemma 2.2).
However, one cannot expect that g is bounded from above since f is not uniformly bounded
above as in the example of equation (1.4). Fortunately, we can bound the diameter of .X; g/
uniformly by Theorem 1.1.

The gradient estimate in Theorem 1.1 is a generalization of the gradient estimate in [26].
The new insight in our approach is that one should estimate gradient and higher-order estimates
of the potential functions with respect to the new metric instead of a fixed reference metric for
geometric complex Monge–Ampère equations such as those studied in Theorem 1.1. We refer
interested readers to [3, 22, 23] for gradient estimates for complex Monge–Ampère equations
with respect to various background metrics.

Let M.X; ✓; p;K;A/ be the space of all solutions of equation (1.5), where � satis-
fies assumption (1.6) in Theorem 1.1. We also identify M.X; ✓; p;K;A/ with the space of
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4 Fu, Guo and Song, Geometric estimates for complex Monge–Ampère equations

Kähler forms ! D ✓ C i�N�' for ' 2 M.X; ✓; p;K;A/. An immediate consequence of Theo-
rem 1.1 is a uniform noncollapsing condition for M.X; ✓; p;K;A/. More precisely, there
exists a constant C D C.X; ✓; p;K;A/ > 0 such that for all Kähler metric g associated to
! 2 M.X; ✓; p;K;A/ and for any point x 2 X , 0 < r < 1,

(1.7) C�1r2n  Vol
g

.B
g

.x; r//  Cr2n;

where B
g

.x; r/ is the geodesic ball centered at x with radius r in .X; g/.
Combining the lower bound of Ricci curvature and the noncollapsing condition (1.7),

we can apply the theory of degeneration of Riemannian manifolds [5] so that any sequence
of Kähler manifolds .X; g

j

/ 2 M.X; ✓; p;K;A/, after passing to a subsequence, converges to
a compact metric space .X1; d1/ with well-defined tangent cones of Hausdorff dimension 2n
at each point in X1. In the case of equation (1.4), we believe the solution induces a unique
Riemannian metric space homeomorphic to the original manifold X and all tangent cones are
unique. If this is true, one might even be able to establish higher-order expansions for the
solution. The ultimate goal of our approach is to construct canonical domains and equations
on the blow-up of solutions for geometric degenerate complex Monge–Ampère equations, by
degeneration of Riemannian manifolds.

We also remark that if we replace the lower bound for Ric.�/ by an upper bound

Ric.�/  A✓

in assumption (1.6) of Theorem 1.1, we can still obtain a uniform diameter upper bound. This in
fact easily follows from the argument for the second-order estimates of Yau [40] and Aubin [1].

We will also use similar techniques in the proof of Theorem 1.1 to obtain diameter esti-
mates in more geometric settings. Before that, let us introduce a few necessary and well-known
notions in complex geometry.

Definition 1.1. Let X be a Kähler manifold and ˛ 2 H 2.X;R/ \H 1;1.X;R/. Then
the class ˛ is nef if ˛ C A is a Kähler class for any Kähler class A.

Definition 1.2. Let X be a Kähler manifold of complex dimension n and let the class
˛ 2 H 2.X;R/ \H 1;1.X;R/ be nef. The numerical dimension of the class ˛ is given by

⌫.˛/ D maxπk D 0; 1; : : : ; n W ˛k ¤ 0 in H 2k.X;R/ºI
when ⌫.˛/ D n, the class ˛ is said to be big.

The numerical dimension ⌫.˛/ is always no greater than dimC.X/.
When the canonical bundle K

X

is nef, X is said to be a minimal model. The abundance
conjecture in birational geometry predicts that the canonical line bundle is always semi-ample
(i.e., a sufficiently large power of the canonical line bundle is globally generated) if it is nef.

Definition 1.3. Let # be a smooth real-valued closed .1; 1/-form on a Kähler mani-
fold X . The extremal function V associated to the form # is defined by

V.z/ D sup
°
�.z/ W # C i�N�� � 0; sup

X

� D 0
±

for all z 2 X .
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Any  2 PSH.X; #/ is said to have minimal singularities defined by Demailly (cf. [2])
if  � V is bounded.

Let .X; ✓/ be a Kähler manifold of complex dimension n equipped with a Kähler met-
ric ✓ . Suppose � is a real-valued smooth closed .1; 1/-form and its class Œ�ç is nef and of
numerical dimension . We consider the following family of complex Monge–Ampère equa-
tions:

(1.8) .�C t✓ C i�N�'
t

/n D tn�e�'t Cct� for t 2 .0; 1ç;
where � D 0, or 1, and c

t

is a normalizing constant such that

(1.9)
Z

X

tn�ect� D
Z

X

.�C t✓/n:

Straightforward calculations show that c
t

is uniformly bounded for t 2 .0; 1ç. The following
proposition generalizes the result in [4, 10, 15, 42] by studying a family of collapsing complex
Monge–Ampère equations. It also generalizes the results in [8, 9, 17] for the case when the
limiting reference form is semi-positive.

Proposition 1.1. We consider equation (1.8) with the normalization condition (1.9).
Suppose the volume measure � satisfies

Z

X

✓
�

✓n

◆
p

✓n  K

for some p > 1 and K > 0. Then there exists a unique '
t

2 PSH.X;�C t✓/ up to a con-
stant translation solving equation (1.8) for all t 2 .0; 1ç. Furthermore, there exists a constant
C D C.X;�; ✓; p;K/ > 0 such that for all t 2 .0; 1ç,

���
⇣
'
t

� sup
X

'
t

⌘
� V

t

���
L

1
.X/

 C;

where V
t

is the extremal function associated to �C t✓ as in Definition 1.3.

Proposition 1.1 can be applied to generalize Theorem 1.1, especially for minimal Kähler
manifolds in a geometric setting.

Theorem 1.2. Suppose X is a smooth minimal model equipped with a smooth Kähler
form ✓ . For any t > 0, there exists a unique smooth twisted Kähler–Einstein metric g

t

on X
satisfying

(1.10) Ric.g
t

/ D �g
t

C t✓:

There exists a constant C D C.X; ✓/ > 0 such that for all t 2 .0; 1ç,
Diam.X; g

t

/  C:

Furthermore, for any t
j

! 0, after passing to a subsequence, the twisted Kähler–Einstein
manifolds .X; g

tj
/ converge in Gromov–Hausdorff topology to a compact metric length space

.Z; d
Z

/. The Kähler forms !
tj

associated to g
tj

converge in distribution to a nonnegative
closed current

e! D �C i�N�e'
for some e' 2 PSH.X;�/ of minimal singularities, where � 2 ŒK

X

ç is a fixed smooth closed
.1; 1/-form.
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6 Fu, Guo and Song, Geometric estimates for complex Monge–Ampère equations

Both Theorem 1.1 and Theorem 1.2 are generalization and improvement for the tech-
niques developed in [26] for diameter and distance estimates. With the additional bounds on
the volume measure, we transform Kolodziej’s analytic L1-estimate to a geometric diameter
estimate. The relation between analytic estimates of Kähler potentials and geometric estimates
for distance functions was also studied in [20]. It is a natural question to ask how the metric
space .Z; d

Z

/ is related to the current e! on X . We conjecture e! is smooth on an open dense
set of X and its metric completion coincides with .Z; d

Z

/. However, at this moment, we do not
even know the Hausdorff dimension or uniqueness of .Z; d

Z

/.
When X is a minimal model of general type, Theorem 1.2 is proved in [26, 27] and

the result in [36] shows that the singular set is closed and of Hausdorff dimension no greater
than 2n � 4.

We can also replace the smooth Kähler form ✓ in Theorem 1.2 by Dirac measures along
effective divisors. For example, if πE

j

ºJ
jD1 is a union of smooth divisors with normal crossings

and
JX

jD1
a
j

E
j

is an ample Q-divisor with some a
j

2 .0; 1/ for j D 1; : : : ; J , then Theorem 1.2 also holds if
we let ✓ D P

J

jD1 aj ŒEj ç: In this case, the metric g
t

is a conical Kähler–Einstein metric with
cone angles of 2⇡.1 � a

j

/ along each complex hypersurface E
j

.
A special case of the abundance conjecture is proved by Kawamata [14] for minimal

models of general type. When X is a smooth minimal model of general type, it is recently
proved by the third named author [27] that the limiting metric space .Z; d

Z

/ in Theorem 1.2 is
unique and is homeomorphic to the algebraic canonical modelXcan ofX . This gives an analytic
proof of Kawamata’s result using complex Monge–Ampère equations, Riemannian geometry
and geometric L2-estimates. Theorem 1.2 also provides a Riemannian geometric model for the
non-general type case. This analytic approach will shed light on the abundance conjecture if
such a metric model is unique with reasonably good understanding of its tangle cones.

Theorem 1.2 can also be easily generalized to a Calabi–Yau manifold X equipped with
a nef line bundle L over X of ⌫.L/ D .

Our final result assumes semi-ampleness for the canonical line bundle and aims to con-
nect the algebraic canonical models to geometric canonical models. LetX be a Kähler manifold
of complex dimension n. If the canonical bundle K

X

is semi-ample, the pluricanonical system
induces a holomorphic surjective map

ˆ W X ! Xcan

from X to its unique canonical model Xcan. In particular, dimC Xcan D ⌫.X/. Let S be the
set which consists of all singular fibers of ˆ together with ˆ�1.S

Xcan/, where S
Xcan is the

singular set of Xcan. The general fiber of ˆ is a smooth Calabi–Yau manifold of complex
dimension n � ⌫.X/. It is proved in [26, 27] that there exists a unique twisted Kähler–Einstein
current !can on Xcan satisfying

Ric.!can/ D �!can C !WP;

where ˆ⇤!can 2 �c
1

.X/ and !WP is the Weil–Petersson metric for the variation of the
Calabi–Yau fibers. In particular, !can has bounded local potentials and is smooth onXcan n Scan.
We let gcan be the smooth Kähler metric associated to !can on Xcan n Scan.
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Theorem 1.3. Suppose X is a projective manifold of complex dimension n equipped
with a Kähler metric ✓ . If the canonical bundle K

X

is semi-ample and ⌫.K
X

/ D  2 N, then
for the twisted Kähler–Einstein metrics g

t

satisfying

Ric.g
t

/ D �g
t

C t✓; t 2 .0; 1ç;
the following hold:

(1) There exists C > 0 such that for all t 2 .0; 1ç,
Diam.X; g

t

/  C:

(2) Let !
t

be the Kähler form associated to g
t

. For any compact subset K ⇢⇢ X n S, we
have

kg
t

�ˆ⇤gcank
C

0
.K;✓/

! 0 as t ! 0:

(3) The rescaled metrics t�1!
t

j
Xy

converge uniformly to a Ricci-flat Kähler metric !
CY;y

on the fiber X
y

D ˆ�1.y/ for any y 2 Xcan nˆ.S/, as t ! 0.

(4) For any sequence t
j

! 0, after passing to a subsequence, the manifolds .X; g
tj
/ con-

verge in Gromov–Hausdorff topology to a compact metric space .Z; d
Z

/. Furthermore,
Xcan n Scan is embedded as an open subset in the regular part R

2

of .Z; d
Z

/ and the
manifold .Xcan n Scan; !can/ is locally isometric to its open image.

In particular, if  D 1, then .Z; d
Z

/ is homeomorphic to Xcan, with the regular part being open
and dense, and each tangent cone being a metric cone on C with cone angle less than or equal
to 2⇡ .

We remark that a special case of Theorem 1.3 is proved in [41] with a different approach
for dimC X D 2. In general, the collapsing theory in Riemannian geometry has not been fully
developed except in lower dimensions. In the Kähler case, one hopes the rigidity properties
can help us understand the collapsing behavior for Kähler metrics of Einstein type as well
as long time solutions of the Kähler–Ricci flow on algebraic minimal models. Key analytic
and geometric estimates in the proof of (2) in Theorem 1.3 are established in [29, 30] for
the collapsing long time solutions of the Kähler–Ricci flow and its elliptic analogues. The
proof for (3) and (4) is a technical modification of various local results of [11, 12, 37, 38],
where collapsing behavior for families of Ricci-flat Calabi–Yau manifolds is comprehensively
studied. Theorem 1.3 should also hold for Kähler manifolds with some additional arguments.

Finally, we will also apply our method to a continuity scheme proposed in [18] to study
singularities arising from contraction of projective manifolds. This is an alternative approach
for the analytic minimal model program developed in [29–31] to understand birational trans-
formations via analytic and geometric methods [25, 28, 32–34]. Compared to the Kähler–Ricci
flow, such a scheme has the advantage of prescribed Ricci lower bounds and so one can apply
the Cheeger–Colding theory for degeneration of Riemannian manifolds, on the other hand, it
loses the canonical soliton structure for the analytic transition of singularities corresponding to
birational surgeries such as flips.

Let X be a projective manifold of complex dimension n. We choose an ample line
bundle L on X and we can assume that L �K

X

is ample, otherwise we can replace L by
a sufficiently large power of L. We choose ✓ 2 ŒL �K

X

ç to be a smooth Kähler form and
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8 Fu, Guo and Song, Geometric estimates for complex Monge–Ampère equations

consider the following curvature equation:

(1.11) Ric.g
t

/ D �g
t

C t✓; t 2 Œ0; 1ç:
Let

tmin D infπt 2 Œ0; 1ç W equation (1.11) is solvable at tº:
It is straightforward to verify that tmin < 1 by the usual continuity method (cf. [18]). The goal
is to solve equation (1.11) for all t 2 .0; 1ç, however, one might have to stop at t D tmin when
K
X

is not nef.

Theorem 1.4. Let g
t

the solution of equation (1.11) for t 2 .tmin; 1ç. There exists a con-
stant C D C.X; ✓/ > 0 such that for any t 2 .tmin; 1ç,

Diam.X; g
t

/  C:

Theorem 1.2 is a special case of Theorem 1.4 when tmin D 0 (cf. [26]). When tmin > 0,
Theorem 1.4 is also proved in [19] with the additional assumption that tminLC .1 � tmin/K

X

is semi-ample and big. The diameter estimate immediately allows one to identify the geomet-
ric limit as a compact metric length space when t ! tmin. In particular, it is shown in [19]
that the limiting metric space is homeomorphic to the projective variety from the contraction
induced by the Q-line bundle tminLC .1 � tmin/K

X

when it is big and semi-ample. One can
also use Theorem 1.4 to obtain a weaker version of Kawamata’s base point free theorem in
the minimal model theory (cf. [13]). If tminLC .1 � tmin/K

X

is not big, our diameter esti-
mate still holds and we conjecture the limiting collapsed metric space of .X; g

t

/ as t ! tmin
is unique and is homeomorphic a lower dimensional projective variety from the contraction
induced by tminLC .1 � tmin/K

X

.

2. Proof of Theorem 1.1

Throughout this section, we let ' 2 PSH.X; ✓/ be the solution of equation (1.5) satis-
fying condition (1.6) in Theorem 1.1. We let ! D �C i�N�' and let g be the Kähler metric
associated to !.

Lemma 2.1. There exists a constant C D C.X; ✓; p;K/ > 0 such that

k' � sup
X

'k
L

1
.X/

 C:

Proof. The L1-estimate immediately follows from Kolodziej’s theorem [15].

The following is a result similar to Schwarz lemma [39].

Lemma 2.2. There exists a constant C D C.X; ✓; p;K;A/ > 0 such that

! � C✓:

Proof. There exists a constant C D C.X; ✓; A/ > 0 such that

Å
!

log tr
!

.✓/ � �C � C tr
!

.✓/;
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Fu, Guo and Song, Geometric estimates for complex Monge–Ampère equations 9

where Å
!

is the Laplace operator associated with !. Then let

H D log tr
!

.✓/ � B.' � sup
X

'/

for some B > 2C . Then
Å
!

H � C tr
!

.✓/ � C:
It follows from maximum principle and the L1-estimate in Lemma 2.1 that

sup
X

tr
!

✓  C :

Lemma 2.2 immediately gives the uniform Ricci lower bound.

Lemma 2.3. There exists a constant C D .X; ✓; p;K;A/ > 0 such that

Ric.g/ � �Cg:

Proof. We calculate

Ric.g/ D ��g C Ric.�/C �✓ � ��g � .A � �/✓ � �Cg
for some fixed constant C > 0 by Lemma 2.2.

We will now prove the uniform diameter bound.

Lemma 2.4. There exists a constant C D .X; ✓; p;K;A/ > 0 such that

Diam.X; g/  C:

Proof. We first fix a sufficiently small ✏ D ✏.p/ > 0 so that p � ✏ > 1. Without loss of
generality we may assume Diam.X; g/ D D for some D � 100. Let � W Œ0;Dç ! X be a nor-
mal minimal geodesic with respect to the metric g and choose the points πx

i

D �.6i/ºŒD=6ç
iD0 .

The balls πB
g

.x
i

; 3/ºŒD=6ç
iD0 are disjoint, so

ŒD=6çX

iD0

�
Vol

✓

n.B
g

.x
i

; 3//C Vol
�

.B
g

.x
i

; 3//
� 

Z

X

✓n C� D 2V;

hence there exists a geodesic ball B
g

.x
i

; 3/ such that

Vol
✓

n.B
g

.x
i

; 3//C Vol
�

.B
g

.x
i

; 3//  12VD�1:

We fix such an x
i

and construct a cut-off function ⌘.x/ D ⇢.r.x// � 0 with

r.x/ D d
g

.x; x
i

/

such that
⌘ D 1 on B

g

.x
i

; 1/; ⌘ D 0 outside B
g

.x
i

; 2/;

and
⇢ 2 Œ0; 1ç; ⇢�1.⇢0/2  10; j⇢00j  10:
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10 Fu, Guo and Song, Geometric estimates for complex Monge–Ampère equations

Define a piecewise linear continuous function QF W R ! R such that F.t/ D D
✏

p.p�✏/ when
t 2 Œ0; 2ç, QF .t/ ⌘ a when t � 3 and QF .t/ is linear when t 2 Œ2; 3ç, where a > 0 is a con-
stant to be determined. Denote F.x/ D QF .r.x//; then F ⌘ a outsideB

g

.x
i

; 3/, F D D
✏

p.p�✏/

on B
g

.x
i

; 2/. We choose the constant a > 0 so that
R
X

F� D Œ✓çn D V . We observe that

V D aVol
�

.X n B
g

.x
i

; 3//C
Z

Bg.xi ;3/

F� � V.1 � 12D�1/a � V

2
a

so 0 < a  2. Then it follows that
Z

X

✓
F�

✓n

◆
p�✏

✓n 
✓ Z

X

F
p.p�✏/

✏ ✓n
◆ ✏

p
✓ Z

X

✓
�

✓n

◆
p

✓n
◆p�✏

p  C

for some C D C.X; ✓; p;K/ > 0.
We now consider the equation

.✓ C i�N��/n D e��F�:

By similar arguments as before, k� � sup
X

�k
L

1  C D C.X; ✓; p;K/. Let Og D ✓ C i�N��.
Then on B

g

.x
i

; 2/,

Ric. Og/ D �� Og C Ric.�/C �✓; Ric.g/ D ��g C Ric.�/C �✓:

In particular,

Å
g

log
O!n
!n

D ��nC � tr
g

. Og/;
where Å

g

D Å
!

. Let

H D ⌘

✓
log

O!n
!n

�
⇣⇣
' � sup

X

'
⌘

�
⇣
� � sup

X

�
⌘⌘◆

:

On B
g

.x
i

; 2/; we have

Å
g

H D �.�C 1/nC .�C 1/ tr
g

. Og/ � �2nC n

✓ O!n
!n

◆ 1
n

:

In general, on the support of ⌘, we have

Å
g

H � ⌘

✓
� 2nC n

✓ O!n
!n

◆ 1
n
◆

C 2⌘�1 Re.rH � r⌘/ � 2H jr⌘j2
⌘2

C ⌘�1HÅ
g

⌘

� ⌘�1
✓
C⌘2e

H
n⌘ C 2Re.rH � r⌘/ � 2H jr⌘j2

⌘
CHÅ

g

⌘ � 2n⌘2
◆
:

We may assume sup
X

H > 0, otherwise we already have upper bound of H . The maximum
of H must lie at B

g

.x
i

; 2/ and at this point

Å
g

H  0; jrH j2 D 0:

By Laplacian comparison we have

Å
g

⌘ D ⇢0År C ⇢00 � �C; jr⌘j2
⌘

D .⇢0/2
⇢

 C:
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Fu, Guo and Song, Geometric estimates for complex Monge–Ampère equations 11

So at the maximum of H , it holds that

0 � C⌘2e
H
n⌘ � CH � 2n � CH 2 � CH � 2n;

therefore we have sup
X

H  C . In particular, on the ball B
g

.x
i

; 1/ where ⌘ ⌘ 1, it follows
that O!n

!

n  C . From the definition of O! and !,

C � O!n
!n

D D
✏

p.p�✏/ e�.��'/:

Combined with the L1-estimate of � and ', we conclude that

D  C D C.n; p; ✓; A;K/:

Lemma 2.5. There exists a constant C D .X; ✓; p;K;A/ > 0 such that

sup
X

jr
g

'j
g

 C:

Proof. Straightforward calculations show that

Å
g

' D n � tr
g

.✓/;

Å
g

jr'j2
g

D jrr'j2 C jr Nr'j2 C gi
N
lgk

N
jR

i

N
j

'
k

' N
l

� 2r' � r tr
g

.✓/

� jrr'j2 C jr Nr'j2 � C jr'j2 � 2r' � r tr
g

.✓/;

and

Å
g

tr
g

✓ D tr
g

✓ �Å
g

log tr
g

✓ C jr tr
g

✓ j2
tr
g

✓
� �C C c

0

jr tr
g

✓ j2

for some uniform constant c
0

; C > 0. We choose constants ˛ and B satisfying

˛ > 4c�1
0

> 4; B > sup
X

' C 1

and define

H D jr'j2
B � ' C ˛ tr

g

✓:

Then we have

ÅH � jrr'j2 C jr Nr'j2
B � ' � C jr'j2

B � ' � jr'j2.tr
g

✓ � n/
.B � '/2(2.1)

� 2.1C ˛/
hr';r tr

g

✓i
B � ' � ˛C C ˛c

0

jr tr
g

✓ j2 C 2

⌧ r'
B � ' ;rH

�
:

We may assume at the maximum point zmax of H , jr'j > ˛ and H > 0, otherwise we are
done. At zmax,

rH D 0; ÅH  0

and so at zmax,

rjr'j D 1

2

✓
�H r'

jr'j � ˛.B � '/r tr
g

✓

jr'j C ˛
tr
g

✓r'
jr'j

◆
:

By Kato’s inequality

jrjr'jj2  jrr'j2 C jr Nr'j2
2

;
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12 Fu, Guo and Song, Geometric estimates for complex Monge–Ampère equations

it follows that

jrr'j2 C jr Nr'j2
B � ' � 1

2.B � '/
✓
H 2 C ˛2.B � '/2.tr

g

✓/2 C ˛2
jr tr

g

✓ j2
jr'j2(2.2)

� 2˛H.B � '/ tr
g

✓ � 2˛H jr tr
g

✓ j
jr'j

� 2˛2.B � '/ tr
g

✓
jr tr

g

✓ j
jr'j

◆

� H 2

4.B � '/ � CH � jr tr
g

✓ j2
B � ' � C jr tr

g

✓ j

for some uniform constant C > 0. After substituting inequality (2.2) to (2.1) and applying
Cauchy–Schwarz inequality, we have at zmax

0 � H 2

4.B � '/ � CH � C � 2jr tr
g

✓ j2
B � ' � C jr tr

g

✓ j C 4jr tr
g

✓ j2

� H 2

4.B � '/ � CH � C

for some uniform constant C > 0. Therefore max
X

H C for some C DC.X; ✓;�; A; p;K/.
The lemma then immediately follows from Lemma 2.1 and Lemma 2.2.

3. Proof of Proposition 1.1

In this section, we will prove Proposition 1.1 by applying the techniques in [4, 8, 10, 15].
Let X be a Kähler manifold of dimension n. Suppose ˛ is nef class on X of numerical

dimension  � 0. Let � 2 ˛ be a smooth closed .1; 1/-form. We define the extremal func-
tion V

�

by
V
�

D supπ� W �C i�N�� � 0; �  0º:
Let ✓ be a fixed smooth Kähler metric onX . Then we define the perturbed extremal function V

t

for t 2 .0; 1ç by
V
t

D supπ� W �C t✓ C i�N�� � 0; �  0º:
The above extremal functions were introduced in [4] when ˛ is big.

We first rewrite equation (1.8) for � D 0 as follows:

(3.1) .�C t✓ C i�N�'
t

/n D tn�e�fCct ✓n; sup
X

'
t

D 0; t 2 .0; 1ç;

by letting � D e�f ✓n, where c
t

is the normalizing constant satisfying

tn�
Z

X

e�fCct ✓n D
Z

X

.�C t✓/n:

The function f satisfies the following uniform bound:
Z

X

e�pf ✓n  K

for some p > 1 and K > 0.
The following definition is an extension of the capacity introduced in [4, 8, 10, 15].
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Fu, Guo and Song, Geometric estimates for complex Monge–Ampère equations 13

Definition 3.1. We define the capacity Cap
�t
.K/ for a subset K ⇢ X by

Cap
�t
.K/ D sup

≤Z

K
.�
t

C i�N�u/n W u 2 PSH.X;�
t

/; 0  u � V
t

 1

≥
;

where �
t

D �C t✓ is the reference metric in (3.1). We also define the extremal function V
t;K

by
V
t;K D supπu 2 PSH.X;�

t

/ W u  0 on Kº:

If K is open, then we have

(1) V
t;K 2 PSH.X;�

t

/ \ L1.X/,
(2) .�

t

C i�N�V
t;K/

n D 0 on X n K .

Lemma 3.1. Let '
t

be the solution to (3.1). Then there exist ı D ı.X;�; ✓/ > 0 and
C D C.X;�; ✓; p;K/ > 0 such that for any open set K ⇢ X and t 2 .0; 1ç,

1

Œ�n
t

ç

Z

K
.�
t

C i�N�'
t

/n  Ce
�ı
�

Œ�n
t ç

Cap�t
.K/

� 1
n

:

Proof. Since Œ�mç D 0 for  C 1  m  n, it follows that

Œ�n
t

ç D
Z

X

�n
t

D
Z

X

nX

kD0

 
n

k

!
�k ^ tn�k✓n�k

D
Z

X

X

kD0

 
n

k

!
�k ^ tn�k✓n�k D O.tn�/:

It follows that the normalizing constant c
t

in (3.1) is uniform bounded. LetM
t;K D sup

X

V
t;K .

Then we have

1

Œ�n
t

ç

Z

K
.�
t

C i�N�'
t

/n D tn�ect

Œ�n
t

ç

Z

K
e�f ✓n

 tn�ect

Œ�n
t

ç

Z

K
e�f e� ıVt;K

q ✓n (since V
t;K  0 on K)

 tn�ect

Œ�n
t

ç
e� ıMt;K

q

Z

X

e�f e� ı.Vt;K �Mt;K /

q ✓n

 tn�ect

Œ�n
t

ç
e� ıMt;K

q

✓Z

X

e�pf ✓n
◆ 1

p
✓Z

X

e�ı.Vt;K �Mt;K/✓n
◆ 1

q

 Ce� ıMt;K
q ;

where 1

p

C 1

q

D 1. Obviously, there exists � D �.X;�; ✓/ > 0 such that for all t 2 .0; 1ç,
V
t;K 2 PSH.X; �✓/:

We apply the global Hörmander’s estimate ([35]) so that there exists ı D ı.X;�; ✓/ > 0 such
that Z

X

e�ı.Vt;K �supX Vt;K/✓n  C
ı

:
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14 Fu, Guo and Song, Geometric estimates for complex Monge–Ampère equations

To complete the proof, it suffices to show

(3.2) M
t;K C 1 �

✓
Œ�n
t

ç

Cap
�t
.K/

◆ 1
n

:

First we observe that by definition

sup
X

✓
.V
t;K � sup

X

V
t;K/ � V

t

◆
 0;

since V
t;K � sup

X

V
t;K 2 PSH.X;�

t

/ is nonpositive. On the other hand, V
t;K � V

t

. This
immediately implies that

(3.3) 0  V
t;K � V

t

 sup
X

V
t;K D M

t;K :

We break the rest of the proof into two cases.

The case when Mt;K > 1. We let

 
t;K D M�1

t;K.Vt;K � V
t

/C V
t

:

Then
V
t

  
t;K  V

t

C 1

and by (3.3),

1

M n

t;K

D 1

M n

t;K

R
X

.�
t

C i�N�V
t;K/

n

Œ�n
t

ç
(3.4)

D 1

Œ�n
t

ç

Z

K

�
M�1
t;K�t C i�N�.M�1

t;KVt;K/
�
n

 1

Œ�n
t

ç

Z

K

�
M�1
t;K�t C i�N�.M�1

t;KVt;K/C .1 �M�1
t;K/.�t C i�N�V

t

//
�
n

D 1

Œ�n
t

ç

Z

K
.�
t

C i�N� 
t;K/

n

 Cap
�t
.K/

Œ�n
t

ç
:

The case when Mt;K  1. By (3.3),

0  V
t;K � V

t

 sup
X

V
t;K D M

t;K  1:

Now

(3.5) Œ�n
t

ç D
Z

K
.�
t

C i�N�V
t;K/

n  Cap
�t
.K/:

So in this case
Œ�n
t

ç

Cap
�t
.K/

 1:

Combining (3.4) and (3.5), (3.2) holds and we complete the proof of Lemma 3.1.
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Fu, Guo and Song, Geometric estimates for complex Monge–Ampère equations 15

The following is an immediate corollary of Lemma 3.1.

Corollary 3.1. There exists C D C.X;�; ✓; p;K/ > 0 such that for all t 2 .0; 1ç, we
have

1

Œ�n
t

ç

Z

K
.�
t

C i�N�'
t

/n  C

✓Cap
�t
.K/

Œ�n
t

ç

◆
2

:

Proof. This follows from Lemma 3.1 and the elementary inequality that

x2e�ıx 1
n  C

for some uniform C > 0 and all x 2 .0;1/.

Lemma 3.2. Let u 2 PSH.X;�
t

/ \ L1.X/. For any s > 0, 0  r  1 and t 2 .0; 1ç,
we have

(3.6) rn Cap
�t
.u � V

t

< �s � r/ 
Z

πu�Vt<�sº
.�
t

C i�N�u/n:
Proof. For any � 2 PSH.X;�

t

/ with 0  � � V
t

 1, we have

rn
Z

πu�Vt<�s�rº
.�
t

C i�N��/n
D
Z

πu�Vt<�s�rº
.r�

t

C i�N�.r�//n

Z

πu�Vt<�s�rº
.�
t

C i�N�.r�/C i�N�.1 � r/V
t

/n


Z

πu�Vt<�s�rCr.��Vt /º
.�
t

C i�N�.r� C .1 � r/V
t

� s � r//n


Z

πu<r�C.1�r/Vt �s�rº
.�
t

C i�N�u/n

Z

πu<Vt �sº
.�
t

C i�N�u/n:
The third inequality follows from the comparison principle and the last inequality follows from
the fact that

r� C .1 � r/V
t

� s � r D r.� � V
t

� 1/C V
t

� s < V
t

� s:
Taking supremum of all � 2 PSH.X;�

t

/ with 0  � � V
t

 1, we get (3.6).

Lemma 3.3. Let '
t

be the solution to equation (3.1). Then there exists a constant
C D C.X;�; ✓; p;K/ > 0 such that for all s > 1,

1

Œ�n
t

ç
Cap

�t
.π'

t

� V
t

< �sº/  C

.s � 1/ 1
q

;

where 1

p

C 1

q

D 1.
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16 Fu, Guo and Song, Geometric estimates for complex Monge–Ampère equations

Proof. Applying Lemma 3.2 to u D '
t

and r D 1, we have

1

Œ�n
t

ç
Cap

�t
.π'

t

� V
t

< �sº/  1

Œ�n
t

ç

Z

π't �Vt<�.s�1/º
.�
t

C i�N�'
t

/n

D 1

Œ�n
t

ç

Z

π't �Vt<�.s�1/º
tn�e�fCct ✓n

 C

.s � 1/ 1
q

Z

π't �Vt<�.s�1/º
.�'

t

C V
t

/
1
q e�f ✓n

 C

.s � 1/ 1
q

✓Z

π't �Vt<�.s�1/º
e�pf ✓n

◆ 1
p

⇥
✓Z

π't �Vt<�.s�1/º
.�'

t

C V
t

/✓n
◆ 1

q

 C

.s � 1/ 1
q

✓Z

X

.�'
t

/✓n
◆ 1

q

;

where in the last inequality we use the assumption that e�f 2 Lp.✓n/, V
t

 0 and '
t

 0. On
the other hand, since '

t

2 PSH.X;�
t

/ ⇢ PSH.X; C✓/ for some largeC > 0 and sup
X

'
t

D 0,
it follows from Green’s formula that

Z

X

.�'
t

/✓n  C

for some uniform constant C . The lemma follows by combining the inequalities above.

The following lemma is well known and its proof can be found, e.g., in [10, 15].

Lemma 3.4. Let F W Œ0;1/ ! Œ0;1/ be a non-increasing right-continuous function
satisfying lim

s!1 F.s/ D 0. If there exist ˛;A > 0 such that for all s > 0 and 0  r  1,

rF.s C r/  A.F.s//1C˛;

then there exists S D S.s
0

; ˛; A/ such that

F.s/ D 0

for all s � S , where s
0

is the smallest s satisfying .F.s//˛  .2A/�1.

Proof of Proposition 1.1. Define for each fixed t 2 .0; 1ç,

F.s/ D
✓Cap

�t
.π'

t

� V
t

< �sº/
Œ�
t

çn

◆ 1
n

:

By Corollary 3.1 and Lemma 3.2 applied to the function '
t

, we have

rF.s C r/  AF.s/2 for all r 2 Œ0; 1ç; s > 0;
for some uniform constant A > 0 independent of t 2 .0; 1ç.
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Fu, Guo and Song, Geometric estimates for complex Monge–Ampère equations 17

Lemma 3.3 implies that lim
s!1 F.s/ D 0 and the s

0

in Lemma 3.4 can be taken as less
than .2AC/q , which is a uniform constant. It follows from Lemma 3.4 that F.s/ D 0 for all
s > S , where S  2C s

0

. On the other hand, if Cap
�t
.π'

t

� V
t

< �sº/ D 0, by Lemma 3.1
and equation (3.1), we have Z

π't �Vt<�sº
e�f ✓n D 0;

hence the set π'
t

� V
t

< �sº D ;. Thus inf
X

.'
t

� V
t

/ � �S . Thus we finish the proof of
Proposition 1.1.

Therefore we have proved Proposition 1.1 when � D 0. We finish this section by prov-
ing the case when � D 1. To this end, we consider the following complex Monge–Ampère
equations for t 2 .0; 1ç:

.�C t✓ C i�N�'
t

/n D tn�e't �fCct ✓n;

where f 2 C1.X/ and c
t

is the normalizing constant satisfying

tn�
Z

X

e�fCct ✓n D
Z

X

.�C t✓/n:

Corollary 3.2. If ke�f k
L

p
.X;✓

n
/

 K, for p > 1 and K > 0, Then there exists a con-
stant C D C.X;�; ✓; p;K/ > 0 such that

k'
t

� V
t

k
L

1  C:

Proof. Since for each t > 0, it is proved in [2] that V
t

is C 1;˛.X; ✓/, we can always find
W
t

2 C1.X/ such that sup
X

jV
t

�W
t

j  1: Furthermore, V
t

is uniformly bounded above for
all t 2 .0; 1ç. We let  

t

be the solution of

.�
t

C i�N� 
t

/n D tn�e�fCct CWt ✓n; sup
X

 
t

D 0:

and
u
t

D '
t

�  
t

:

Then
.�
t

C i�N� 
t

C i�N�u
t

/n

.�
t

C i�N� 
t

/n
D eut C t �Wt :

Since sup
X

j 
t

�W
t

j  sup
X

j 
t

� V
t

j C 1, the maximum principle immediately implies that

ku
t

k
L

1
.X/

 k 
t

� V
t

k
L

1
.X/

C 1

and so
k'
t

� V
t

k
L

1
.X/

 2k 
t

� V
t

k
L

1
.X/

C 1:

4. Proof of Theorem 1.2

Let X be a Kähler manifold; X is said to be a minimal model if the canonical bundleK
X

is nef. The numerical dimension of K
X

is given by

⌫.K
X

/ D maxπm D 0; : : : ; n W ŒK
X

çm ¤ 0 in Hm;m.X;C/º:
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18 Fu, Guo and Song, Geometric estimates for complex Monge–Ampère equations

Let ✓ be a smooth Kähler form on a minimal modelX of complex dimension n. Let  D ⌫.X/,
the numerical dimension ofK

X

. Let� be a smooth volume form on X . We let � be defined by

� D i�N� log� 2 K
X

:

We consider the following Monge–Ampère equation for t 2 .0;1/,

(4.1) .�C t✓ C i�N�'
t

/n D tn�e't�:

Since K
X

is nef, Œ�C t✓ç is a Kähler class for any t > 0. By Aubin and Yau’s theorem, there
exists a unique smooth solution '

t

solving (4.1) for all t > 0. Let !
t

D �C t✓ C i�N�'. Then
!
t

satisfies
Ric.!

t

/ D �!
t

C t✓:

In particular, any Kähler metric satisfying the above twisted Kähler–Einstein equation must
coincide with !

t

.

Lemma 4.1. There exists a constant C > 0 such that for all t 2 .0; 1ç,
C�1tn�  Œ�C t✓çn  Ctn� :

Proof. First we note that Œ�ç � Œ✓çn� > 0 because Œ�ç ¤ 0 and Œ�ç is nef. Then

Œ�C t✓çn D tn�
 
n



!
Œ�ç � Œ✓çn� C tn�C1

 
nX

jDC1

 
n

j

!
tj��1Œ�çj � Œ✓çn�j

!
:

Lemma 4.2. Let V
t

D supπu W u 2 PSH.X;�C t✓/; u  0º. Then there exists a con-
stant C > 0 such that for all t 2 .0; 1ç,

k'
t

� V
t

k
L

1
.X/

 C:

Proof. The lemma immediately follows by applying Proposition 1.1 to (4.1).

We now prove the main result in this section.

Lemma 4.3. There exists a constant C > 0 such that for all t 2 .0; 1ç,
Diam.X; g

t

/  C:

Proof. In this proof we apply a similar argument to that used in the proof of Theo-
rem 1.1. Suppose Diam.X; g

t

/ D D for some D � 6. Let � W Œ0;Dç ! X be a smoothing
minimizing geodesic with respect to the metric g

t

and choose the points πx
i

D �.6i/ºŒD=6ç
iD0 . It

is clear that the balls πB
gt
.x
i

; 3/º are disjoint so

Œ

D
6
çX

iD0
Vol

�

.B
gt
.x
i

; 3// 
Z

X

� D V;

where Vol
�

.B
gt
.x
i

; 3// D R
Bgt

.x
i

; 3/�. Hence there exists a geodesic ball B
gt
.x
i

; 3/ such
that

Vol
�

.B
gt
.x
i

; 3//  6VD�1:
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Fu, Guo and Song, Geometric estimates for complex Monge–Ampère equations 19

We fix such an x
i

and construct a cut-off function ⌘.x/ D ⇢.r.x// � 0 with r.x/ D d
gt
.x; x

i

/

such that
⌘ D 1 on B

gt
.x
i

; 1/; ⌘ D 0 outside B
gt
.x
i

; 2/

and
⇢ 2 Œ0; 1ç; ⇢�1.⇢0/2  C; j⇢00j  C:

Define a function F
t

> 0 on X such that

F
t

D 1 outside B
gt
.x
i

; 3/; F
t

D D
1
2 on B

gt
.x
i

; 2/

and
C�1 

Z

X

F
t

�  C;

Z

X

F 2
t

�  C:

We now consider the equation

.�C t✓ C  
t

/n D tn�e tF
t

� for all t 2 .0; 1ç:
Applying Corollary 3.2, there exists a uniform constant C > 0 such that for all t 2 .0; 1ç,

k 
t

� V
t

k
L

1
.X/

 C;

and so by Lemma 4.2,

(4.2) k'
t

�  
t

k
L

1
.X/

 C:

Let Og
t

D �C t✓
t

C i�N� 
t

. Then on B
gt
.x
i

; 2/,

Ric. Og
t

/ D � Og
t

C t✓; Ric.g
t

/ D �g
t

C t✓;

and so

Å
gt

log
O!n
t

!n
t

D �nC tr
gt
. Og
t

/ � �nC n

✓ O!n
t

!n
t

◆ 1
n

:

Let
H D ⌘ log

O!n
t

!n
t

:

We may suppose sup
X

H D H.zmax/ > 0, otherwise we are done. The point zmax must lie in
the support of ⌘, and at zmax we have

0 � Å
gt
H � 1

⌘

✓
HÅ

gt
⌘C 2hr⌘;rH i � 2H

⌘
jr⌘j2 � n⌘2 C n⌘2e

H
n⌘

◆

� 1

⌘

✓
1

2n
H 2 � CH

◆

for some uniform constant C > 0 for all t 2 .0; 1ç. The maximum principle implies that

sup
X

H  C.n/I

in particular on B
gt
.x
i

; 1/ where ⌘ ⌘ 1, there exists C > 0 such that for all t 2 .0; 1ç,
O!n
t

!n
t

D D
1
2 e t �'t  C:

By the uniform L1-estimate (4.2), there exists C D C.n;�;�; ✓/ such that D  C .
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20 Fu, Guo and Song, Geometric estimates for complex Monge–Ampère equations

Now we can complete the proof of Theorem 1.2. Gromov’s pre-compactness theorem
and the diameter bound in Lemma 4.3 immediately imply that, after passing to a subsequence,
.X; g

tj
/ converges to a compact metric space. Since '

t

� V
t

is uniformly bounded and V
t

is
uniformly bounded below by V

0

, '
tj

always converges weakly to some '1 2 PSH.X;�/, after
passing to a subsequence. In particular, there exists C > 0 such that

k'1 � V
0

k
L

1
.X/

 C;

where V
0

is the extremal function on X with respect to �.

5. Proof of Theorem 1.3

Our proof is based on the arguments of [29, 37, 38].
We fix some notations first. Recall Xcan has dimension  and � is the restriction of the

Fubini–Study metric on Xcan from the embedding Xcan ,! CPNm , where

N
m

C 1 D dimH 0.X;mK
X

/:

Hence ˆ⇤� is a smooth nonnegative .1; 1/-form on X , and in the following we identify � with
ˆ⇤� for simplicity. Let ✓ be a fixed Kähler metric on X .

Define a function H 2 C1.X/ as

� ^ ✓n� D H✓n

which is the modulus squared of the Jacobian of the map ˆ W .X; ✓/ ! .Xcan;�/ and vanishes
on S , the indeterminacy set of ˆ, hence H�� 2 L1.X; ✓n/ for some small � > 0. We fix
a smooth nonnegative function � on Xcan as defined in [37], which satisfies

0  �  1; 0  p�1�� ^ N��  C�; �C�  i�N��  C�;

for some dimensional constant C D C./ > 0. From the construction, � vanishes exactly on
S 0 D ˆ.S/. There exist � > 0, C > 1 such that for any y 2 Xı

can D Xcan n S 0 (see [37]),

�.y/�  C inf
Xy

H; here X
y

D ˆ�1.y/:

The twisted Kähler–Einstein metric g
t

in (1.10) satisfies the following complex Monge–
Ampère equation (with ✓ D ✓ ):

(5.1) .�C t✓ C i�N�'
t

/n D tn�e't� for all t 2 .0; 1ç:
In case K

X

is semi-ample, V
t

D 0 hence Corollary 3.2 implies (see also [8, 9, 15]):

Lemma 5.1. There is a uniform constant C > 0 such that k'
t

k
L

1
.X/

 C:

We have the following Schwarz lemma whose proof is similar to that of Lemma 2.2, so
we omit it.

Lemma 5.2. There exists a constant C > 0 such that tr
!t
�  C for all t 2 .0; 1ç.
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Fu, Guo and Song, Geometric estimates for complex Monge–Ampère equations 21

We denote ✓
y

D ✓ j
Xy

for y 2 Xı
can, the restriction of ✓ on the fiberX

y

which is a smooth
.n � /-dimensional Calabi–Yau submanifold of X . We will omit the subscript t in '

t

and
simply write ' D '

t

, and define

'
y

D
«

Xy

'✓n�
y

to be the average of ' over the fiberX
y

. Denote the reference metric O!
t

D �C t✓ . We calculate

. O!
t

C i�N�'/j
Xy

D .t✓
y

C i�N�.' � '
y

//j
Xy

D !
t

j
Xy
;

hence
.✓
y

C t�1i�N�.' � '
y

/j
Xy
/n� D t�nC!n�

t;y

:

On the other hand,

t�nC !
n�
t;y

✓n�
y

D t�nC !n�
t

^ �
✓n� ^ �

ˇ̌
ˇ
Xy

 C.tr
!t
�/

�

✓n� ^ �
ˇ̌
ˇ
Xy

 CH�1  C���.y/:

Since the Sobolev constant of .X
y

; ✓
y

/ is uniformly bounded and the Poincaré constant of
.X
y

; ✓
y

/ is bounded by CeB���
.y/ for some uniform constantsB; C > 0 (see [37]), combined

with the fact that «

Xy

.' � '
y

/✓n�
y

D 0;

Moser iteration implies ([37, 40]):

Lemma 5.3. There exist constants B
1

; C
1

> 0 such that for any y 2 Xı
can,

sup
Xy

t�1j' � '
y

j  C
1

eB1�
��
.y/ for all t 2 .0; 1ç:

Proposition 5.1. On any compact subsetK b X n S , there exists C D C.K/ > 1 such
that for all t 2 .0; 1ç,

C�1 O!
t

 !
t

 C O!
t

on K:

Given the C 0-estimate in Lemma 5.3, Proposition 5.1 can be proved by the C 2-estimate
([40]) for the Monge–Ampère equation together with a modification as in [29, 37, 38], so we
omit the proof.

Let us recall the construction of the canonical metric !can on Xı
can (see [29]). Define

a function F D ˆ⇤�
�

 on Xı
can, and F is in L1C" for some small " > 0 ([29]). The metric !can

is obtained by solving the following complex Monge–Ampère equation on Xcan:

.�C i�N�'1/ D
 
n



!
Fe'1�

for '1 2 PSH.Xcan;�/ \ C 0.Xcan/ \ C1.Xı
can/. Then !can D �C i�N�'1, and in the fol-

lowing we will write �1 D !can.
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22 Fu, Guo and Song, Geometric estimates for complex Monge–Ampère equations

Any smooth fiberX
y

with y 2 Xı
can is a Calabi–Yau manifold hence there exists a unique

Ricci flat metric !SF;y 2 Œ✓
y

ç such that !SF;y D ✓
y

C i�N�⇢
y

for some ⇢
y

2 C1.X
y

/ with nor-
malization «

Xy

⇢
y

!n�
X;y

D 0:

We write ⇢SF.x/ D ⇢
ˆ.x/

if ˆ.x/ 2 Xı
can. Then ⇢SF is a smooth function on X n S and may

blow up near the singular set S . Denote !SF D ✓ C i�N�⇢SF which is smooth on X n S , and by
[29] we know that �=.!n�

SF ^ �/ is constant on the smooth fibers X
y

and is equal to ˆ⇤F .
For simplicity we will identify F with ˆ⇤F . Our arguments below are motivated by [29, 38].

Denote F D e�eA���

for suitably large constants A; � > 1. From the proof of Proposi-
tion 5.1, we actually have that on X n S ([37]),

C�1F O!
t

 !
t

 CF �1 O!
t

for all t 2 .0; 1ç:
Next we are going to show '

t

! '1 D ˆ⇤'1 as t ! 0. Proposition 5.2 below can proved
by following similar argument as in [38], but we present a slightly different argument in estab-
lishing Claim 2 below.

Proposition 5.2. There exists a positive function h.t/ with h.t/ ! 0 as t ! 0 such that

(5.2) sup
XnS

F j'
t

� '1j  h.t/:

Proof. LetD⇢Xcan be an ample divisor such thatXcan nXı
can ⇢D, whereD 2 j�K

Xcan j
for some � 2 N. Choose a continuous hermitian metric on ŒDç, h

D

D h
�=m

FS e��'1 and
a smooth defining section s

D

of ŒDç, where hFS is the Fubini–Study metric induced from
OCPNm .1/. Clearly i�N� log h

D

D �.�C i�N�'1/ D ��1. For small r > 0, let

B
r

.D/ D πx 2 Xcan W d
�

.x;D/  rº
be the tubular neighborhood of D under the metric d

�

, and denote B
r

D ˆ�1.B
r

.D// ⇢ X .
Since both '

t

and '1 are bounded in L1-norm, there exists r
✏

with lim
✏!0

r
✏

D 0 such
that for all t 2 .0; 1ç,

sup
Br✏ nS

.'
t

� '1 C ✏ log js
D

j2
hD
/ < �1;

inf
Br✏ nS

.'
t

� '1 � ✏ log js
D

j2
hD
/ > 1:

Let ⌘
✏

be a smooth cut-off function on Xcan such that ⌘
✏

D 1 on Xcan n B
r✏
.D/ and ⌘

✏

D 0

on B
r✏=2

.D/. Write ⇢
✏

D .ˆ⇤⌘
✏

/⇢SF, and !SF;✏ D !SF C i�N�⇢
✏

. Define the twisted differ-
ences of '

t

and '1 by
 
✏̇

D '
t

� '1 � t⇢
✏

⌥ ✏ log js
D

j2
hD
:

By similar arguments as in [29] we have:

Claim 1. There exists an ✏
0

> 0 such that for any ✏ 2 .0; ✏
0

/, there exists a constant ⌧
✏

such that for all t  ⌧
✏

, we have

sup
XnS

 �
✏

.t; � /  3�✏; inf
XnS

 C
✏

.t; � / � �3�✏:
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Claim 2. We have
Z

X

j'
t

� '1j✓n ! 0 as t ! 0;

where '
t

is the Kähler potential of !
t

in (5.1).

Proof of Claim 2. For any ⌘ > 0, we may take B
R⌘

⇢ X small enough so that
Z

BR⌘

✓n <
⌘

10
:

Take ✏ < ⌘

10�

small enough so that r
✏

< R
⌘

. From Claim 1 when t < ⌧
✏

,
Z

X

j'
t

� '1j✓n D
Z

BR⌘

j'
t

� '1j✓n C
Z

XnBR⌘

j'
t

� '1j✓n

 C⌘C
Z

XnBR⌘

.t j⇢SFj C ✏j log js
D

j2
hD

j/✓n

 C⌘:

Given Claim 2, Proposition 5.2 follows similarly as in [38], so we skip it.

We will apply an argument in [38] with a slight modification to show the lemma below:

Lemma 5.4. We have
lim
t!0

F t P'
t

D 0:

Proof. Denote s D log t for t 2 .0; 1ç. We have t P' D �'�s . Taking derivatives on both
sides of equation (5.1) and by maximum principle arguments, we then get (see also [38])

(5.3)
�2'�s2 D t P' C t2 R'  C; here R' D �2'�t2 :

By the uniform convergence (5.2) of F '.s/ ! F '1 as s ! �1, for any ✏ > 0, there is an S
✏

such that for all s
1

; s
2

 �S
✏

, we have sup
X

jF '.s
1

/ � F '.s
2

/j  ✏. For any s < �S
✏

� 1
and x 2 X n S , by the mean value theorem

F �
s

'.s
x

; x/ D 1p
✏

Z
sCp

✏

s

�
s

.F '/ ds � �p
✏ for some s

x

2 Œs; s C p
✏ç:

By the upper bound (5.3), it follows that F �
s

'.s; x/ � �Cp
✏ � p

✏: Similarly

F �
s

'.Os
x

; x/ D 1p
✏

Z
s

s�p
✏

�
s

.F '. � ; x// ds  p
✏ for some Os

x

2 Œs � p
✏; sç;

from (5.3) we get F �
s

'.s; x/  C
p
✏ C p

✏: Hence we show that for any s  �S
✏

� 1 or
t D es  e�S✏�1, it holds that

sup
x2XnS

jF �
s

'.s; x/j D sup
x2XnS

jF t�
t

'.t; x/j  C
p
✏;

so the lemma follows.
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24 Fu, Guo and Song, Geometric estimates for complex Monge–Ampère equations

Corollary 5.1. There exists a positive decreasing function h.t/ with h.t/ ! 0 as t ! 0

such that
sup
X

F .j'
t

� t P'
t

� '1j C t j P'
t

j/  h.t/:

From Corollary 5.1, by using a straightforward adaption of the arguments of [38], we
have an improvement of the local C 2-estimate:

Lemma 5.5. On any compact subset K ⇢⇢ X n S , we have

lim sup
t!0

⇣
sup
K

.tr
!t
�1 � /

⌘
 0:

With the local C 2-estimate (see Proposition 5.1), we obtain the following standard local
C 3-estimates ([21, 24, 40]):

Lemma 5.6. For any compactK b X n S , there exists a constant C D C.K/ > 0 such
that

sup
K

jr
✓

!
t

j2  Ct�1:

We have built up all the necessary ingredients to prove Theorem 1.3, whose proof is
almost identical to that of [38, Theorem 1.3]. For completeness, we sketch the proof below.

Proof of Theorem 1.3. Fix a compact subset K 0 ⇢ Xı
can and let K D ˆ�1.K 0/. By the

Calabi C 3-estimate in Lemma 5.6, it follows that

kt�1!
t

j
Xy

k
C

1
.Xy ;✓y/

 C; t�1!
t

j
Xy

� c ✓
y

;

for all y 2 K 0 and ✓
y

D ✓ j
Xy

.

Step 1. Define a function f on X
y

by

f D .t�1!
t

j
Xy
/n�

!n�
SF;y

D
 
n



!
.!
t

j
Xy
/n� ^ �1
!n
t

e't �'1

 eh.t/
✓

tr
!t
�1


◆


 1C Qh.t/

for some Qh.t/ ! 0 as t ! 0 (here Qh.t/ depends on K), where in the first inequality we use the
Newton–Maclaurin inequality. The function f also satisfies that

(5.4)
Z

Xy

.f � 1/!n�
SF;y D 0; lim

t!1

Z

Xy

jf � 1j!n�
SF;y D 0:

The Calabi estimate implies that sup
Xy

jrf j
✓y

 C for all y 2 K 0, and .X
y

; ✓
y

/ have uni-
formly bounded diameter and volume for y 2 K 0. So it follows that f converges to 1 uniformly
on K as t ! 0. That is,

k.t�1!
t

j
Xy
/n� � !n�

SF;yk
C

0
.Xy ;✓y/

! 0 as t ! 0
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uniformly on K 0. Since t�1!
t

j
Xy

converges in C ˛.X
y

; ✓
y

/-topology to some limit metric
!1;y

which satisfies the Monge–Ampère equation (weakly) on X
y

, !n�1;y

D !n�
SF;y , by the

uniqueness of complex Monge–Ampère equations, it follows that !1;y

D !SF;y and t�1!
t

j
Xy

converge in C ˛ to !SF;y , for any y 2 K 0. Next we show the convergence is uniform in K 0.

Step 2. Define a new f on X n S which takes the form

f j
Xy

D t�1!
t

j
Xy

^ .!SF;y/
n��1

!n�
SF;y

�
✓
.t�1!

t

j
Xy
/n�

!n�
SF;y

◆ 1
n�

;

and the right-hand side tends to 1 uniformly on K as t ! 1. Then we have similar equations
as in (5.4) for this new f . This implies

����
1

n �  tr
!SF;y

.t�1!
t

/j
Xy

� 1
����
L

1
.K/

! 0 as t ! 0:

So t�1!
t

j
Xy

! !SF;y uniformly for any y 2 K 0.

Step 3. Define
Q! D t!SF C �1:

From a result of [38] (see [38, proof of Theorem 1.1]), we have j tr
!t
.!SF � !SF;y/j  Ct� 1

2 ;
then

tr
!t

Q!  tr
!t
.t!SF;y C �1/C C

p
t D nC Qh.t/

for some Qh.t/ ! 0 when t ! 0. Moreover, it can be checked that

lim
t!0

Q!n
!n
t

D 1 on K:

Hence we see that !
t

C

0
.K/����! �1 as t ! 0.

We finish the proof of (1), (2) and (3) of Theorem 1.3.

Remark 5.1. From Steps 1, 2 and 3, we see that for any compact subset K ⇢ X n S ,
there exists an ".t/ D "

K

.t/ ! 0 as t ! 0 such that when t is small,

(5.5) ˆ⇤�1 � ".t/✓  !
t

 ˆ⇤�1 C ".t/✓ on K

and

(5.6) ˆ⇤�1  .1C ".t//!
t

on K:

From the uniform convergence of t�1!
t

j
Xy

to !SF;y for any y 2 ˆ.K/, we see that there is
a uniform constant C

0

D C
0

.K/ > 0 such that

!
t

j
Xy

 C
0

t!SF;y for all y 2 ˆ.K/:

Choose a sequence t
k

! 0. The metric spaces .X; !
tk
/ satisfy Ric.!

tk
/ � �1 and

diam.X; !
tk
/  D for some constant D < 1. By Gromov’s pre-compactness theorem up to

a subsequence we have

.X; !
tk
/
dGH��! .Z; d

Z

/;

for some compact metric length space Z with diameter bounded by D. The idea of the proof
of (4) in Theorem 1.3 is motivated by [11], and we present below a slightly different argument
from theirs.

Brought to you by | University of Medicine and Dentistry of New Jersey
Authenticated

Download Date | 9/9/19 6:56 AM



26 Fu, Guo and Song, Geometric estimates for complex Monge–Ampère equations

Step 4. We will show:

Claim 3. There exist an open subset Z

0

⇢ Z and a homeomorphism f W Xı
can ! Z

0

which is a local isometry.

Proof of Claim 3. By Lemma 5.2, the maps ˆ D ˆ
k

W .X; !
tk
/ ! .Xcan;�/ are uni-

formly Lipschitz with respect to the given metrics, and the target space is compact, so up to
a subsequenceˆ

k

!ˆ1 W .Z; d
Z

/! .Xcan;�/ along the GH convergence .X; !
tk
/! .Z; d

Z

/

which is also Lipschitz and the convergence is in the sense that for any x
k

! .X; !
tk
/ which

converges to z 2 Z, then ˆ1.z/ D lim
k!1ˆ

k

.x
k

/, and there is a constant C > 0 such that
d
�

.ˆ1.z1/; ˆ1.z2//  Cd
Z

.z
1

; z
2

/ for all z
i

2 Z.
We denote Z

0

D ˆ�11 .Xı
can/ which is an open subset of Z since ˆ1 is continuous. We

will show that ˆ1j
Z0

W Z

0

! Xı
can is a bijection and a local isometry. Hence

f D .ˆ1j
Z0
/�1 W Xı

can ! Z

0

is the desired map.

ˆ1j
Z0

is injective. Suppose ˆ1.z1/ D ˆ1.z2/ for z
1

; z
2

2 Z

0

D ˆ�11 .Xı
can/. Denote

y D ˆ1.z1/ D ˆ1.z2/ 2 Xı
can. Since .Xı

can;�1/ is an (incomplete) smooth Riemannian
manifold, there exists a small r D r

y

> 0 such that .B
�1.y; 2r/;�1/ is geodesic convex.

Choose sequences z
1;k

and z
2;k

2 .X; !
tk
/ converging z

1

and z
2

, respectively, along the GH
convergence. By the definition of ˆ

k

Dˆ!ˆ1 it follows that d
�

.ˆ.z
1;k

/; ˆ1.z1//! 0

and d
�

.ˆ.z
2;k

/; ˆ1.z2//! 0. Since d
�

and d
�1 are equivalent on B

�1.y; 2r/, it follows
that d

�1.ˆ.z1;k/; ˆ.z2;k// ! 0 and hence we can find minimal �1-geodesics �
k

connecting
ˆ.z

1;k

/ andˆ.z
2;k

/ with �
k

⇢ B
�1.y; r/ and L

�1.�k/ ! 0. By the locally uniform conver-
gence (5.5) on ˆ�1.B

�1.y; 2r// there exists a lift of �
k

, Q�
k

in ˆ�1.B
�1.y; 2r// such that

L
!tk
. Q�
k

/  L
�1.�k/C ✏.t

k

/L
!

. Q�
k

/ ! 0 as t
k

! 0.

Note that Q�
k

connects z
1;k

and z
2;k

hence

d
!tk
.z
1;k

; z
2;k

/  L
!tk
. Q�
k

/ ! 0;

which implies by the convergence of z
i;k

! z
i

that d
Z

.z
1

; z
2

/ D 0 and z
1

D z
2

.

ˆ1j
Z0

is a local isometry. Let z 2 Z

0

and y D ˆ1.z/ 2 Xı
can. There is a small radius

r D r
y

>0 such that .B
�1.y; 3r/;�1/ is geodesic convex. Take U D .ˆ1j

Z0
/�1.B

�1.y; r//

to be an open neighborhood of z 2 Z. We will show thatˆ1j
Z0

W .U; d
Z

/ ! .B
�1.y; r/;�1/

is an isometry. Fix any two points z
1

; z
2

2 U and y
i

D ˆ1.zi / 2 B
�1.y; r/ for i D 1; 2. As

before we choose z
i;k

2 .X; !
tk
/ such that z

i;k

! z
i

along the GH convergence for i D 1; 2.
It follows then fromˆ

k

D ˆ ! ˆ1 that d
�1.ˆ.zi;k/; yi / ! 0, and when k is large,ˆ.z

i;k

/

lie in B
�1.y; 1:1r/. Choose !

tk
-minimal geodesics �

k

connecting z
1;k

and z
2;k

such that

d
!tk
.z
1;k

; z
2;k

/ D L
!tk
.�
k

/ ! d
Z

.z
1

; z
2

/:

The curve N�
k

D ˆ.�
k

/ connects ˆ.z
1;k

/ with ˆ.z
2;k

/. If N�
k

⇢ B
�1.y; 3r/, from (5.6) it fol-

lows that

d
�1.ˆ.z1;k/; ˆ.z2;k//  L

�1. N�
k

/  .1C ✏.t
k

//L
!tk
.�
k

/ ! d
Z

.z
1

; z
2

/:
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In case N�
k

6⇢ B
�1.y; 3r/, we have

d
�1.ˆ.z1;k/; ˆ.z2;k//  3:8r  L

�1. N�
k

\ B
�1.y; 3r//

 .1C ✏.t
k

//L
!tk
.�
k

/ ! d
Z

.z
1

; z
2

/:

Letting k ! 1, we conclude that d
�1.y1; y2/  d

Z

.z
1

; z
2

/. To see the reverse inequality, we
take �1-minimal geodesics �

k

connecting ˆ.z
1;k

/ and ˆ.z
2;k

/. Clearly �
k

⇢ B
�1.y; 3r/.

Take a lift of �
k

, Q�
k

in ˆ�1.B
�1.y; 3r//; it follows from (5.5) that

d
!tk
.z
1;k

; z
2;k

/  L
!tk
. Q�
k

/  L
�1.�k/C ✏.t

k

/L
!

. Q�
k

/ ! d
�1.y1; y2/:

Letting k ! 1, we get
d

Z

.z
1

; z
2

/  d
�1.y1; y2/:

Hence d
Z

.z
1

; z
2

/ D d
�1.y1; y2/ and ˆ1j

Z0
W U ! B

�1.y; r/ is an isometry.

ˆ1j
Z0

is surjective. This is almost obvious from the definition. Take any y 2 Xı
can and

any fixed point x 2 ˆ�1.y/ ⇢ .X; !
tk
/. Up to a subsequence,

x
dGH��! z 2 .Z; d

Z

/:

It then follows from ˆ
k

! ˆ1 that d
�

.y;ˆ1.z// D d
�

.ˆ
k

.x/;ˆ1.z// ! 0 as k ! 1.
Hence ˆ1.z/ D y and z 2 ˆ�11 .Xı

can/ D Z

0

.

Step 5. In this step we will show Z

0

⇢ Z is dense. Fix a base point Nx 2 Z

0

, upon rescal-
ing if necessary we may assume the metric ball B

�1.f
�1. Nx/; 2/ ⇢ .Xı

can;�1/ is geodesic
convex. Choose a sequence of points Np

k

2 .X; !
tk
/ such that Np

k

! Nx along the GH conver-
gence .X; !

tk
/ ! .Z; d

Z

/. We define a function onX ⇥ Œ0;1/ as the normalized volume ([5])

V
k

.x; r/ D Vol
!tk
.B
!tk
.x; r//

Vol
!tk
.B
!tk
. Np
k

; 1//
I

by standard volume comparison it is shown in [5] that V
k

. � ; � / is equi-continuous and uni-
formly bounded hence they converges (up to a subsequence) to a function

V1 W Z ⇥ Œ0;1/ ! Œ0;1/

in the sense that for any x
k

! x along the GH convergence and r � 0,

V
k

.x
k

; r/ ! V1.x; r/ as k ! 1:

And V1 satisfies similar estimates as in volume comparison, i.e., for r
1

 r
2

,

V1.x; r1/
V1.x; r2/

� �.r
1

; r
2

/ > 0;

where �. � ; � / is the quotient of volumes of balls in a space form. The function V1 induces
a Radon ⌫ on .Z; d

Z

/. More precisely, for any K ⇢ Z, define

O⌫.K/ D lim
ı!0

O⌫
ı

.K/ D lim
ı!0

inf
X

i

V1.xi ; ri /;

where the infimum is taken over all metric balls B
d

Z

.x
i

; r
i

/with r
i

 ı whose union coversK.
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Claim 4. For any x 2 Z

0

and r D r
x

> 0 such that B
�1.f

�1.x/; 2r/ ⇢ Xı
can is geo-

desic convex, we have

V1.x; r/ D v
0

Z

ˆ

�1
.B�1 .f

�1
.x/;r//

e�'1✓n

for a fixed constant

v
0

D
✓Z

ˆ

�1
.B�1 .f

�1
. Nx/;1//

e'1✓n
◆�1

:

Proof of Claim 4. The proof is parallel to that in [11], so we only provide a sketch. For
the given x 2 Z

0

, we choose a sequence of points p
k

2 .X; !
tk
/ such that p

k

! x. As in [11],
due to (5.5) and that the metrics !

tk
and ✓ are equivalent inˆ�1.B

�1.f
�1.x/; 2r//, it can be

shown that

(5.7) ˆ�1.B
�1.f

�1.x/; r � ✏
k

// ⇢ B
!tk
.p
k

; r/ ⇢ ˆ�1.B
�1.f

�1.x/; r C ✏
k

//

when k � 1 and here ✏
k

! 0 as k ! 1. It follows then that

lim
k!1

Z

B!tk
.pk ;r/

e'tk ✓n D
Z

ˆ

�1
.B�1 .f

�1
.x/;r//

e'1✓n:

From the equation !n
t

D tn�e't ✓n, we have

V
k

.p
k

; r/ D
R
B!tk

.pk ;r/
tn�e'tk ✓n

R
B!tk

. Npk ;1/
tn�
k

e'tk ✓n
!

R
ˆ

�1
.B�1 .f

�1
.x/;r//

e'1✓n
R
ˆ

�1
.B�1 .f

�1
. Nx/;1// e'1✓n

;

where for the convergence of the denominators we use a similar relation as in (5.7) for Np
k

; Nx.
From the definition that V

k

.p
k

; r/ ! V1.x; r/, we finish the proof of Claim 4.

Since along the Gromov–Hausdorff convergence the diameters are uniformly bounded
by D < 1, we have

Vol
!tk
.B
!tk
.p
k

;D// D Vol.X; !n
tk
/:

So

V1.x;D/ D lim
k!1

Vol
!tk
.B
!tk
.p
k

;D//

Vol
!tk
.B
!tk
. Np
k

; 1//

D lim
k!1

R
X

e'tk ✓nR
B!tk

. Npk ;1/
e'tk ✓n

D v
0

Z

X

e'1✓n:

Therefore from Z D B
d

Z

.x;D/, we have

O⌫.Z/  v
0

Z

X

e'1✓n:

Assume Z

0

⇢ Z were not dense; then there exists a metric ball B
d

Z

.z; ⇢/ ⇢ Z n Z

0

such
that, by volume comparison estimate for V1,

O⌫.B
d

Z

.z; ⇢// � V1.z;D/�.⇢;D/ DW ⌘
0

> 0:
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Then for any compact subset K ⇢ Z

0

, O⌫.K/  O⌫.Z/ � ⌘
0

. On the other hand, for any open
covering B

d

Z

.x
i

; r
i

/ ofK with B
�1.f

�1.x
i

/; 2r
i

/ geodesic convex in .Xı
can;�1/ and r

i

< ı,
we have X

i

V1.xi ; ri / D
X

i

v
0

Z

ˆ

�1
.B�1 .f

�1
.xi /;ri //

e'1✓n

� v
0

Z

ˆ

�1
.f

�1
.K//

e'1✓n:

Taking infimum over all such coverings and letting ı ! 0, we get

O⌫.K/ � v
0

Z

ˆ

�1
.f

�1
.K//

e'1✓n:

If we take K large enough so that f �1.K/ ⇢ Xı
can is large, we can achieve that

O⌫.K/ � v
0

Z

ˆ

�1
.X

ı
can/

e'1✓n � ⌘
0

10
D v

0

Z

X

e'1✓n � ⌘
0

10
� O⌫.Z/ � ⌘

0

10
:

Hence we get a contradiction, and Z

0

⇢ Z is dense since O⌫.Z n Z

0

/ D 0.

6. Proof of Theorem 1.4

The proof of Theorem 1.4 is almost identical with that of Theorem 1.3. We give the sketch
here. The solution g

t

lies in the Kähler class tLC .1 � t /K
X

for all t 2 .tmin; 1ç. By definition
and straightforward calculations from estimates of Yau [40] and Aubin [1], for any t 2 .tmin; 1ç,
the class tLC .1 � t /K

X

is Kähler and so tminLC .1 � tmin/K
X

is nef. We let � be a smooth
volume form on X and let � 2 ŒtminLC .1 � tmin/K

X

ç be a smooth closed .1; 1/-form defined
by

� D i�N� log�C ✓:

Then the twisted Kähler–Einstein equation (1.11) is equivalent to the following complex
Monge–Ampère equation for t 2 .tmin; 1ç:

(6.1) .�C .t � tmin/✓ C i�N�'
t

/n D .t � tmin/
n�e't�;

where  D ⌫.tminLC .1 � tmin/K
X

/, which is the numerical dimension of the line bundle
tminLC .1 � tmin/K

X

. By Proposition 1.1, there exists a constant C D C.X;�; ✓/ > 0 such
that for all t 2 .tmin; 1ç,

k'
t

� V
t

k
L

1
.X/

 C;

where V
t

is the extremal function associated to �C .t � tmin/✓ . The rest of the proof for
Theorem 1.4 is exactly the same as that of Theorem 1.2 and we leave it as an exercise for
interested readers.
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