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ABSTRACT

As the limits of traditional von Neumann computing come into view, the brain’s ability to communicate
vast quantities of information using low-power spikes has become an increasing source of inspiration for
alternative architectures. Key to the success of these largescale neural networks is a power-efficient
spiking element that is scalable and easily interfaced with traditional control electronics. In this work, we
present a spiking element fabricated from superconducting nanowires that has pulse energies on the order
of ~10 aJ. We demonstrate that the device reproduces essential characteristics of biological neurons, such
as a refractory period and a firing threshold. Through simulations using experimentally measured device
parameters, we show how nanowire-based networks may be used for inference in image recognition, and
that the probabilistic nature of nanowire switching may be exploited for modeling biological processes
and for applications that rely on stochasticity.

Keywords: spiking neural networks (SNNs), superconducting nanowire, neuromorphic computing,
spiking hardware

1. INTRODUCTION

Recent years have witnessed the growth of brain-inspired computing architectures in response to the
stagnation in performance of traditional systems', offering the opportunity to advance both electronics
and our understanding of how the brain operates. Of the existing neuromorphic architectures, spiking
neural networks (SNNs) are among the most bio-realistic approaches, relying on electrical spikes
analogous to action potentials in order to compute with high energy efficiency and speed.

At the heart of SNNs are devices or simple circuits that serve as a spiking element or “soma”,
generating electrical spikes with varying degrees of bio-realism while maintaining low power. To-date,
spiking behavior has been explored in a variety of hardware platforms, including CMOS, magnetic
materials, and Mott insulators, but each of these is accompanied by certain drawbacks. For example,
SNNs made from CMOS? allow for easy integration with external circuitry, but usually require many
components to generate spiking and are not as energy-efficient as the human brain. On the other hand,
magnetic materials that generate spiking by harnessing the spin-torque effect* suffer from small on/off
ratios that lead to low signal levels®. Relaxation oscillators using Mott insulators® can also generate
spiking, but maintain slow time constants and high pulse energies. These shortcomings motivate the need
for a robust, scalable, and power-efficient device that naturally generates spiking and integrates easily
with existing control circuitry.

Superconductors are prime candidates for spiking applications due to their negligible static power
dissipation and rapid switching speeds. Building off of a scheme first implemented in Josephson
junctions’, we recently proposed a nanowire-based artificial neuron® whose soma generates pulses by



taking advantage of coupled relaxation oscillations® that occur in nanowires as they switch between the
superconducting and normal states. In addition to having low switching dissipation, superconducting
nanowires can be densely packed for scaling and have high output voltages'® that enable compatibility
with external CMOS control circuitry'!, making them appealing candidates for the development of a
largescale neural network that can interface with traditional systems. Here we present a low-power
nanowire spiking element based on our previously proposed design that has a pulse energy on the order of
~10 aJ. We experimentally demonstrate that the device reproduces several bio-realistic behaviors and use
measured characteristics to simulate two potential applications of a nanowire-based neural network.

2. SOMA EXPERIMENTS

Figure 1a shows a simplified circuit schematic of our device, based on our previously reported design®.
Two nanowire relaxation oscillators are linked together in a superconducting loop and act analogously to
the sodium and potassium ion channels in a simplified action potential model'>’. To operate the device, a
bias current from the top port biases both oscillators right below their critical currents /., or the point at
which they transition into the resistive state. When an input current is applied from the left, the bias and
input sum together to trigger the “main oscillator,” which fires and adds flux into the loop in the form of a
circulating current, similar to the influx of Na+ in a biological neuron. This additional current then fires
the “control oscillator”, which acts analogously to the K+ outflux by removing current from the loop,
resetting the soma and allowing it to fire again. More details about the operating principles of this device
are described in our earlier work that simulated its behavior®.

Figure 1b shows scanning electron micrographs of a nanowire soma fabricated from thick (~25 nm)
niobium nitride. Each of the two relaxation oscillators consists of a 60-nm-wide nanowire switching
element placed in parallel with a shunt resistor R. In order to support relaxation oscillations, meandered
nanowire inductors of magnitude L were patterned in series with the switching element to give an L/R time
constant on the order of nanoseconds. Details of the fabrication process and design may be found in the
Supplemental Material.

To gauge the spiking characteristics of the soma, we first measured its frequency response when
driven as a single oscillator by overbiasing it from the bias port without applying an input pulse. In this
operation, the two oscillators fire simultaneously, since there is no input signal to induce a phase shift
between them. Figure 1c shows the oscillation frequency of the overbiased soma without the application
of an input pulse, revealing that the soma starts operating as a single oscillator around ~82 pA. This
frequency response can be well-explained by our LTspice model'*® for a nanowire soma, using circuit
parameters measured from an isolated oscillator that was patterned alongside the device (see
Supplemental Material Figure S1). The red data points in Fig.1c show the simulated response of the
nanowire soma when £ =38.5 uA, L=6 nH, R=1.2 Q, and the loop inductors are both 12 nH. By
comparing both the frequency response as well as the time-domain characteristics of the experimental and
simulated results, we can conclude that the LTspice soma model sufficiently reproduces real dynamics of
the physical device.
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Figure 1: Device design and characterization. (a) Simplified circuit schematic of the neuron, consisting of two superconducting
nanowire relaxation oscillators linked together in a superconducting loop.® The main oscillator adds circulating current into the
loop, acting like the Na+ influx in a biological neuron. The control oscillator removes that current, similar to the K+ outflux,
resetting the cell and allowing it to spike again. Inset shows experimentally measured oscillations from an isolated relaxation
oscillator. (b) Scanning electron micrograph of a fabricated soma. Dark areas are the niobium nitride film, while the grey outlines
are the underlying substrate. Inset: Scanning electron micrograph showing an enlarged view of one of the relaxation oscillators. (c)
Frequency response of the soma when it is driven as a single oscillator by overbiasing the device without applying an input pulse.
Inset shows the time domain at /vias = 93 pA, comparing the experimental results (blue) to the LTspice simulation (red).

With the updated LTspice model, we can experimentally test the soma’s spiking operation and
use simulations to better understand its behavior. Figure 2a-b show the outputs of the measured and
simulated soma in response to an input pulse when the bias current is 76.3 pA, below the point at which
the soma acts as a single oscillator. As demonstrated in the figure, the soma only spikes in response to the
input pulse, in agreement with the expected operation. To ensure that the spikes are coming from the
phase-shifted firing of both oscillators, we also examined the voltage signals of the input port and the bias
port, and compared them to the simulated responses (see Supplemental Material Figure S2).

Spiking reproducibility was assessed by gathering statistics on the interspike interval At. Figure
2c¢ shows a histogram of the interspike intervals from 100 captured waveforms, resulting in a distribution
with a mean of 50.4 ns and a standard deviation of 6.46 ns. This spread is comparable to what has been
observed in human motoneurons, where the standard deviation is 5-10% of the mean interspike interval'4,
suggesting that the nanowire soma possesses relative bio-realistic timing characteristics despite firing at a
much faster frequency (~10 MHz vs. ~10 Hz).

A key feature of biological neurons is the existence of a firing threshold, or a minimum input
signal required to initiate spiking for a given resting potential'®. In the nanowire soma, the resting



potential is dictated by the bias current—a larger bias current raises the resting potential and decreases the
firing threshold. Figure 2d shows the threshold response of the fabricated soma, measured as the mean
voltage output of 500 sequential traces for a given input current. This measurement translates into firing
probability, since the mean voltage of the 500 measurements will be higher if the soma spikes more often.
Comparing the mean voltage output of the different bias curves at the same input level shows that the
firing probability increases with increasing bias current, as expected.

The curves in Fig. 2d also reveal that the nanowire soma has an S-shaped firing probability as a
function of input current. This trend is attributed to the stochastic nature of nanowire switching in real
measurements, where thermal and quantum fluctuations cause premature switching at currents below the
critical current'®, leading to a switching probability that increases with the total applied bias. For low bias
currents, we observed that the firing probability decreases at some point as the input current increases.
One possible explanation for this phenomenon is if the inductances of the two oscillators are slightly
unequal due to material inhomogeneities or other defects, leading to differences in the amount of flux
they contribute to the loop (see Supplemental Material Section V for a more detailed discussion).
Choosing a higher bias current without this signature allows for optimal operation of the device where
there is a large difference in firing probabilities between the low and high input current levels.

While stochasticity like the variable firing threshold observed here is usually avoided in electrical
systems, biological neurons have firing probabilities that have inspired many neuromorphic applications
that take advantage of probabilistic switching, making nanowires a logical hardware platform for these
types of applications. An example of harnessing stochastic firing for a neuromorphic application is
demonstrated later in this paper.
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Figure 2: Response to an input pulse. (a) Simulated spiking of the nanowire soma when biased at 76.3 pA. Orange trace is the
input pulse while the blue trace is the output. (b) Spiking measured from the fabricated soma under identical conditions. The red
dashed line represents the threshold used to measure the presence of a spike, while At indicated the interspike interval. (c)
Histogram of the interspike intervals measured from 100 sequential waveforms. (d) Firing probability as a function of input current,
measured as the mean voltage output of 500 sequential traces. The different curves represent different bias currents, swept from 74
1A to 78 uA in 1 pA increments. Input pulses had a 150 ns pulse width and 20 ns edge times.

In addition to a threshold response, biological nanowires display a refractory period's, or a
required "resting period" between two inputs so that both elicit their own output spikes. Figure 3 shows
the measured and simulated output of the soma in response to two identical input pulses that were



gradually brought closer together. In Fig. 3a-b, the time between input pulses was sufficient for both
inputs to generate separate output spikes. In Fig. 3c, however, the soma only spikes once. The simulation
reveals that the second input pulse ends right as the first spike relaxes, suggesting a refractory limit in
which the main oscillator is not sufficiently biased during the second input pulse to fire again. Figure 3d
shows histograms of 200 repeated measurements of the time of each output spike as the input pulses
move closer together. The gradual collapse of two distinct histograms into one verifies reproducibility of
the refractory period observed in the individual traces.
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Figure 3: Demonstration of the refractory period. (a) Output voltage (blue) when rising edges of the input current pulses (orange)
are separated by ~70 ns. Top panel is the experimental waveforms while the bottom panel is the simulation. For both cases, lvias =
75.9 uA. (b) Same as (a), but with the rising edges separated by ~ 40 ns. The orange trace is the sum of the two input pulses, whose
rising and falling edges are indicated by the green dashed lines. (c) Same as (b), but with the rising edges separated by ~ 20 ns. The
presence of only one output pulse indicates the effect of the refractory period. (d) Histograms represent 200 measurements of the
time at which a spike occurs as the input pulses are brought closer together. The two distinct histograms collapse into one as the
refractory period is approached.

3. APPLICATIONS

Using the LTspice model of the nanowire soma updated with experimentally measured device parameters,
we can simulate how a nanowire-based network may be used in an inference chip for applications like
image classification. Figure 4a shows a simple 3%3 image of the letter “z” that is part of a test set
originally developed for physical memristor circuits!” and recently simulated in Josephson junction neural
networks'®. The complete set consists of three "ideal" images of the letters "z", "v", and "n", as well as
nine single-pixel-error images per letter (see Supplemental Material Figure S5). To identify these images,
we can use a 9x3 neural network consisting of nine input pixel neurons and three output letter neurons.
The pixel colors determine the input current to each pixel, with grey pixels corresponding to an input
current of 4.6 uA and white pixels corresponding to an input current of 0 uA.

The output of each pixel neuron is fed into the input of each letter neuron using an inductive
synapse with inductive coupling. As described in our previous work?®, the weight of each connection maps
to the magnitude of the synapse inductor, with higher weights represented as lower inductances, leading
to more synaptic current. Following methods previously applied to Josephson junction networks'$, we
used a basic neural network script!® written in Python to solve for the weights, which determined the



synapse inductances in our LTspice circuit. Due to the limited size of the data set, we used all 30 images
for both training and testing, leading to 100% classification. An example of the network’s performance
when fewer images were used during training may be found in the Supplemental Material (see Figure S6).

Figure 4b shows the pixel input currents and the letter output voltages for all 30 images. As
shown by the network’s output, each letter neuron fires 10 times, indicating correct classification of both
the ideal and error images, which is to be expected since all of the images were used during training.
Although the nanowire soma does not yet have a scheme for unsupervised learning, these results
demonstrate that it may serve as an energy-efficient inference platform in a hardware neural network
designed to perform a specific task.
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Figure 4: Recognition of 3x3 pixel images in a simulated network. (a) Simplified circuit schematic of the network, with the
ideal “z” image shown as an example. (b) Simulation of each of the 30 test images in the network. The first nine panels show the
input current sent to each pixel neuron, with missing bits represented by red dashed lines and extra bits represented by solid red
lines. The three panels shows the output voltage of each of the three letter neurons. Grey boxes indicate the "ideal" image for each



letter, followed by their nine single-pixel error images. For every synapse, the inductance was scaled relative to 0.1 uH, and the
series resistor was 5 Q and the parallel resistor was 25 Q.

Although the image recognition example above used a soma model that fires deterministically, or
exactly when the current through the nanowire exceeds its £, the threshold measurements in Fig. 2d
showed that real superconducting nanowires have a firing threshold that varies stochastically due to the
effects of noise and fluctuations.

As mentioned previously, biological neurons also have firing probabilities, which has inspired
theories of how stochastic behavior plays a critical role in the brain’s operation. One key example of
harnessing stochasticity is the winner-takes-all (WTA) theory?’, which suggests that the brain develops
selectivity through competition between excitatory neurons that share a set of inhibitory connections.
WTA subcircuits are suspected to be repeated throughout the brain, creating selective responses that
together dictate a cumulative behavior. This functionality has inspired the use of WTA in artificial
networks for filtering, image recognition, and decision-making?'.

Figure 5a shows a schematic of a two-inhibitor WTA network presented by Lynch et al.?> When a
set of input neurons X, fires, they trigger a set of output neurons Y., that have stochastically varying
thresholds. Competition between output neurons is facilitated by two inhibiting neurons Zs, the stability
inhibitor, and Z,, the convergence inhibitor. Z; is biased so that it fires when at least one output neuron is
firing, whereas Z. is biased so that it only fires if two or more output neurons are firing. Z. eventually
forces all but one neuron to stop firing, while Zs continues to fire in order to stabilize the network and
suppress all but the dominant neuron. Since Y., are identical and stochastic, they have equal probability
of winning if all inputs are active.

We can take advantage of the nanowire’s intrinsic stochasticity in order to simulate a WTA
competition. We amended our soma model to include Gaussian white noise sources, keeping the noise
bandwidth constant at 1 GHz and varying the noise amplitude until the firing probability was comparable
to what we observed experimentally. Figure Sb shows relative agreement between the simulated firing
probability and the experimentally measured probability converted from the mean voltage curves of Fig.
2d, suggesting that our model is suitable for implementing a realistic firing rate. With these adjustments
to our model, we designed a simple two-inhibitor WTA network with three deterministic inputs and three
stochastic outputs. As in the pattern recognition network, neurons were connected via inductive coupling.

Figure Sc displays the outcomes of 100 repeated competitions. Each output neuron won roughly
the same number of times (20-27), indicating that the winner is selected through probability. Figure 5d
shows the time domain of a competition when Y3 was the winner. As seen by the output voltages from
each neuron, Z. only fires as long as two outputs are active, while Z; continues to fire along with the
winner, keeping the other outputs suppressed. 29 of the 100 competitions resulted in no winner, usually
with all three output neurons being shut off. In some cases, this seemed to be due to continued firing of Z,
despite the outputs being turned off, which could be caused by instability resulting from biasing it close to
its critical current. This issue may be avoided by optimizing our circuit parameters to increase the
synaptic currents so that the biases to the neurons can be reduced.

Despite the competitions that resulted in no winner, the similar outcomes of the three output
neurons illustrate how we can build a network that uses probabilistic firing to produce a meaningful
output from a set of inputs, and that superconducting nanowires have enough inherent stochasticity to
support this type of competition.
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Figure 5: Winner-takes-all competition in a simulated network. (a) Basic schematic of a two-inhibitor WTA network.
Excitatory connections are shown in blue and inhibitory connections are shown in red, with their weights defined relative to the
dimensionless parameter y. (b) Experimental and simulated firing probabilities. The simulated probability was calculated by
recording the number of times the soma fired out of 50 trials for each input current level. The experimental bias was 74.5 uA, while
the simulated bias was 76.6 pA with a noise amplitude of 800 nA. (c) Results from 100 repeated WTA competitions. Each neuron
won between 20-27 competitions, while 29 of the trials had no winner. (d) Example of output voltages during a single WTA
competition. In this case, Y3 wins. For this simulation, the bias of the output neurons was 76.4 pA and synapse inductors were
scaled relative to 0.77 uH, and the couplers had a 1:2 ratio.

4. CONCLUSION

In summary, we have presented the first experimental results of a spiking element for neural networks
based on coupled relaxation oscillations in superconducting nanowires. The device takes advantage of the
low switching energies in nanowires to produce spikes analogous to action potentials, and is able to
reproduce critical bio-realistic characteristics such as a firing threshold and refractory period. Simulations
using experimentally measured device parameters enabled us to explore how nanowire somas are well-
suited to specific tasks, such as a low-power inference platform, while the WTA competitions showcased
how the stochastic dynamics of superconducting nanowires can be harnessed for real applications and for
testing theories about behaviors observed in nature. In the future, nanowire-based WTA circuits could be
combined with nanowire memory elements***% that save the competition result as a means of
establishing selectivity, while WTA subcircuits could be repeated throughout a large-scale network, like
they are thought to in the brain. Energy-efficient spiking using superconducting nanowires could also be
applied to event-based sensing’ or to temporal logic architectures®® 2’ that encode information in pulse
arrival times.



Supporting Information.

Fabrication and design of soma, measurement details, single oscillator characterization, output signals of
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L Fabrication and design

Before fabricating the soma, we considered several critical aspects of its design. First, each nanowire
oscillator must have a sufficiently large series inductance such that the L/R time constant is on the order
of nanoseconds, allowing for relaxation oscillations. As a result, long meandered nanowire inductors
(~200 squares) were added between the 60-nm-wide switching elements and the shunt resistor in order to
get a series inductance on the order of nanohenries for a typical NbN film with a sheet inductance of 20—
50 pH/sq. Additionally, the operation of the soma relies on the bias current splitting evenly between the
two branches of the nanowire loop so that both oscillators are biased identically. To ensure that the
oscillator biases were equal, COMSOL simulations of both pathways were used to check that the number
of squares on either side of the bias port were the same (~634 squares).

Once the design was finalized, the soma was fabricated using a two-step electron-beam
lithography process. Metal shunt resistors and alignment marks were patterned in the first process. To
begin, the positive-tone resist ZEP520 was spun at 5 krpm for 60 s and baked at 180 °C for 2 min. The
pattern was then exposed in a 125 kV Elionix system at a beam current of 5 nA and dose of 500 uC/cm?.
Following exposure, the resist was developed in o-xylene at 0 °C for 60 s and isopropyl alcohol (IPA) at
room temperature for 30 s, then dried with a nitrogen gun. Afterwards, a metal layer of 10 nm Ti and 25
nm Au was evaporated and lifted off in n-methyl-2-pyrrolidone (NMP) at 60 °C for 1 hr.

The second electron-beam lithography process patterned the nanowires. A niobium nitride film
with a sheet resistance of 150 /square was deposited' on top of the metal structures. Afterwards, the
positive tone resist gl.2000 was spun on top at 5 krpm for 60 s and baked at 180 °C for 2 min. The
nanowire structures were then exposed at a dose of 600 uC/cm?, using a beam current of either 500 pA or
5 nA depending on the size of the structure. Following exposure, the patterned resist was developed in o-
xylene at 5 °C for 30 s and IPA at room temperature for 30 s. After checking for pattern fidelity using a
scanning electron microscope, the pattern was transferred to the underlying superconducting film using
reactive ion etching in CF4 at a pressure of 10 mTorr and RF power of 50 W. The resist was then stripped
in heated NMP for 1 hr and left overnight.

I1. Experimental Details

For all measurements, the chip was attached to a custom printed circuit board (PCB) and immersed in
liquid helium at 4.2 K. Direct electrical connections were formed by wire bonding from the
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superconducting leads to the gold external pads on the PCB with aluminum wire bonds. Signals were sent
between the room temperature electronics and the PCB via coaxial cables with SMP connectors.

Oscillation frequency measurements

To measure the oscillation frequency as a function of bias current, a bias current was applied using a
battery source (SRS SIM928) in series with a 100 k€ resistor, and the output voltage was sent through a
50 dB, 1 GHz-bandwidth amplifier (MITEQ AM-1309) and read-out on an oscilloscope (LeCroy
WaveRunner 620Zi). A Fast Fourier Transform of the output signal was used to identify the frequency
peak.

Input pulse measurements

To measure spiking of the soma in response to an input pulse, we applied both a DC bias current and an
input current pulse. The bias current was supplied through a DC battery source in series with a 10 kQ
resistor and a bias-tee with the RF port shorted to ground. The input pulse was generated using an Agilent
waveform generator (Agilent 33600a) in series with a 100 kQ series resistor, which was sent to both the
device and the oscilloscope using a pulse splitter. The voltage output was sent through the RF port of a
bias-tee and a 50 dB, 1 GHz-bandwidth amplifier (MITEQ AM-1309) before being read-out by the
oscilloscope.

III. Single oscillator characterization

To understand the spiking characteristics of the soma, it was first necessary to measure the dynamics of
an isolated oscillator. Figure S1 shows the oscillation frequency as a function of bias current for an
individual oscillator identical to the main and control oscillators in the nanowire soma. To measure the
oscillation frequency, a bias current was applied using a battery source in series with a 100 k€ resistor,
and the output voltage was sent through a 50 dB, 1 GHz-bandwidth amplifier (MITEQ AM-1309) and
read-out on an oscilloscope, as described above. A Fast Fourier Transform (FFT) of the output signal was
used to identify the frequency peak.

The frequency-versus-bias curve of Fig. S1 was fit to a simplified model for nanowire relaxation
oscillations?, where the frequency is dominated by the slower time constant of the signal’s falling edge:

1 (L)l (Ibias - Isw)
f R Ibias

The red curve in Fig. S1 shows a fit to this expression when the switching current /s =45 uA and L/R =
4.92 ns. Using the calculated number of squares in the inductor and the approximate film inductance of 30
pH/sq, we can estimate that L ~ 6 nH and Ry ~1.22 Q.
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Figure S1: Frequency of a single oscillator as a function of bias current. Blue squares indicate experimentally
measured points, while the red squares were derived from the simplified expression for oscillation frequency. The
black box represents the 50 pA current bias, whose time domain characteristics are shown in the inset.

Iv. Output signals of the input and bias ports

To ensure that the spikes are coming from the phase-shifted firing of both oscillators, we examined the
voltage signals of the input port and the bias port, and compared them to the simulated responses. Figure
S2 (a) shows the output port (blue trace) and bias port (red trace) voltages in response to an input pulse,
while the output and input port signals are shown in (b). The simulated responses for both cases are
plotted in (c) and (d). By comparing Fig. S2(a) and (c), we observe that the signal from the bias port has
one positive spike for each oscillator, while the traces in Fig. S2(b) and (d) show that the input port signal
has one positive edge followed by one negative edge. The large spikes observed on the rising and falling
edge of the input pulse in Fig. S2 (b) are likely absent from the simulation in (d), since the simulation
does not account for the effects of the measurement setup, such as the amplifier and bias-tee used for
readout. Despite the experimental results being noisier than the simulations, the overall agreement in the
shapes of the input and bias signals indicates that the output port spikes are generated by the action of
both oscillators in the loop.
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Figure S2: Output voltages of the input and bias ports. For all panels, the voltage from the output port is shown in
blue, while the input/bias port output voltages are shown in red. Traces have been shifted on the y-axis for clarity. The
orange trace shows the input current pulse. (a) Response from the bias port when Ipias = 75.7 pA, and Iin = 1.75 pA
(pulse width = 150 ns). The bias port is indicated by the red circle in the circuit schematic above. (b) Response from
the input port when Ipias = 75.9 uA, and Iin = 3.25 uA (pulse width = 480 ns). The input port is indicated by the red
circle in the circuit schematic above. (c) Simulated response of the bias port. (d) Simulated response from the input
port.

V. Discussion on flux buildup from uneven oscillators

The firing probabilities Figure 2d of the main text showed a decrease in firing with high input currents for
low bias current values. One possible explanation for this phenomenon is unequal flux or L/ products of
the two oscillators that comprise the soma, where L is the series inductance and /. is the critical current. If
we consider the example where the control oscillator has a higher L, then the flux removed from the loop
by the control oscillator is more than the flux added to the loop by the main oscillator. Furthermore, the
time constant of the control oscillator is slower due to the higher inductance.

We can consider the example of when the loop inductors are both 12 nH and the inductance of the
main oscillator is 6 nH (like in the device presented in this work), but the control oscillator inductance is 1
nH higher at 7 nH. Simulating this scenario in LTspice, we see that the control oscillator contributes
roughly 115 @ into loop, while the main oscillator contributes 99 @, (we observed that only about ~ 33
pA of the current contributed to the L/ product). Since the total loop inductance is 12 nH + 12 nH + 6 nH
+ 7 nH = 37 nH, this translates to the main oscillator adding roughly 5.3 pA of counterclockwise
circulating current, and the control oscillator removing about 6.2 pA.

The control oscillator only fires if the sum of the bias, input, and circulating currents passing
through it exceeds its critical threshold. This condition may be expressed as:
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18 12
Ibias (ﬁ) + Icirc - Iin (ﬁ) > IC
where the fractions indicate the amount of bias and input currents that pass through the control oscillator
by inductive splitting, and L is the amount of trapped flux stored in the form of counterclockwise
circulating persistent current. As seen by this expression, the control oscillator requires more circulating

current to keep firing if the input current is increased.

Figure S3a shows a calculation of the number of times the control oscillator fires before shutting
off for different amounts of applied input current, based on the expression above. It assumes that the main
oscillator adds 5.3 pA of current and the control oscillator removes 6.2 pA of current for every spike
cycle, leading to a baseline shift of ~ -1 pA per cycle, and calculates how many times this cycle is
repeated before the sum of currents through the control oscillator drops below /.. Figures S3(b)-(d) show
time-domain LTspice simulations when the input current is 2 pA, 4 pA, and 8 pA. As seen in the time-
domain plots, the control oscillator fires after the main oscillator until the amount of circulating current is
too low. For higher input currents, more circulating current is required to keep the control oscillator
firing, and so it turns off after fewer cycles.
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Figure S3: Influence of uneven oscillators on soma operation. (a) Calculation of the number of times the control
oscillator is expected to fire before turning off as a function of applied input current when Zyias = 75 pA. It was assumed
that the main oscillator adds 5.3 pA of circulating current per cycle while the control oscillator removes 6.2 pA, and
that total current through the control oscillator needs to be slightly higher than its /. at 38.7 pA in order to fire. Red
circles indicate the input currents used in the time-domain simulations of (b)-(d). (b) LTspice simulation of the soma
with uneven oscillator inductances when /i, = 2 pA. Plots show the overall output voltage, the currents through the
main and control oscillator nanowires, and the circulating current caused by the added flux. (c) Same as (b), except fin

=4 pA. (d) Same as (b), except in = 8 HA.
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The time domain simulations in Figure S3 used the deterministic soma models that have firing
thresholds exactly at the defined critical current. However, as was observed in Fig. 2d of the main text,
the experimental soma fires with a stochastically varying threshold. The firing probability was observed
to increase with input current up to a certain point, after which it decreased with larger input currents.

We can simulate the effect of uneven oscillators on the firing probability by incorporating
Gaussian noise sources into our model, like those implemented in the WTA simulations. Figure S4(a)
shows a simulation of the firing probability as a function of input current, displaying a trend that is
qualitatively similar to the firing rates for low bias currents of Fig. 2d in the main text. Figure S4(b)
shows the respective time domain signals at two different input current points. Like in the deterministic
simulations of Fig. S3, higher input currents eventually result in the control oscillator firing fewer times
before shutting off. Note that the signals and spiking frequencies appear different than those of the
deterministic soma in Fig. S3 due to the added noise sources.

These results indicate that uneven flux contributions from the two oscillators can lead to a
nonzero baseline circulating current that eventually turns one of the oscillators off. However, as we
observed experimentally, this problem may be mitigated by increasing the bias current until the firing
probability curve plateaus at high input currents.

a b

— voul
1 Vo >:-40_ T k T T T T :
0.8
g ;§ 0 > = il i o
g 06 L - Irnain
8 \.\< ! . ; ; ; ; . .
<} el
a = 'l \
o 0.4 c-20 \ \
< @ \WAN
E =3P B | Y
02 O -40
= 0 It:cmlrcvl
0 < ,
— \
0 _1 2 3 = ooh \
input current (;:A) g N
(:} 40 1 I > I T T
l.
. circ
{ 67 T T T T T T T
Z o ]
s Of =
3 -3t . - L L L L L 3
0 50 100 150 200 250 300 350 400
time (ns)

Figure S4: Influence of uneven oscillators on simulated firing probability. (a) Firing probability as a function of
input current when Jyias = 75.3 pA, control oscillator inductance = 7 nH and main oscillator inductance = 6 nH.
Gaussian white noise sources had an amplitude of 0.8 pA. (b) Time domain of soma signals at /;, = 1.5 pA (blue) and
Iin =2.5 pA (red).

VI. Pattern recognition details

Figure S5 shows the complete set of 30 images used in the image recognition circuit, based on the data set
originally tested in physical memristor circuits. An external Python code was used to solve for the weight
of each of synaptic connection. Table S1 shows the resulting weights when the network was trained on all
30 images. The weights were mapped onto the inductance of each synapse, with a higher weight
interpreted as a lower inductance. For each synapse connecting to a pixel, the parallel resistance was 25
Q, while the left and right resistances were 5 Q and 6 Q. The synapse inductance and the coupling
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inductance are proportional to the weight, scaled to a baseline of 0.1 uH. The magnitude of the receiving
coupling inductor attached to each letter neuron was twice the synaptic inductance, and was placed in
series with a 0.5 Q resistor. Negative weights were implemented by reversing the direction of the
coupling.
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Figure S5: Complete set of images used in the pattern recognition network. Each letter has an ideal image and
nine single-pixel error images. Pixel colors were mapped onto the input current to each pixel neuron, as indicated on
the ideal z image on the righthand side. Figure adapted from M. Prezioso et al.

’fﬂ.f Iln,2 'rfn43

Irir.', 4 ’in, 5 I."n,ﬁ

"m,? ‘rin,s I."n,g

‘Pl P2 P3 P4 Ds DPe P Pg P9
z | 1.89 1.04 -097 -1.85 037 -233 -1.13 0.80 194

031 -198 1.98 050 -1.14 093 -0.80 1.46 -1.14
n|-1.53 099 -1.35 166 -0.81 0.14 223 -1.71 040

Table S1: Synaptic weights of the pattern recognition network using all 30 images for training. Weights are
converted into inductances for each synapse. A higher weight is translated into a lower inductance, leading to more
synaptic current.

In the case presented in the main text, we used all 30 images for both training and testing because
the data set is small, leading to 100% classification. However, for larger data sets, we would like to be
able to solve for the synaptic weights using only a fraction of the total images as a training set, and then
test the resulting network on all of the images. To show how our network would respond in this scenario,
we repeated the training process using just 9 images that were randomly chosen from the set of 30, and
then modified our circuit with these new synaptic weights. The results shown in Figure S6 indicate that
the circuit correctly identifies 23 of the 30 images in the complete set, which is to be expected in
comparison to the previous results since not all of the images were used during training. We found that
the classification could be improved by non-randomly selecting 12 training images (one ideal image and
three single-pixel error images, per letter), leading to correct identification of 27 of the 30 images. Given
that our circuit design has not undergone any optimization, we believe that our classification results could
be further improved by refining our parameters through processes like Bayesian optimization.
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Figure S6: Simulation of each of the 30 test images using a training set of 9 randomly chosen images. 23 of the
30 images were correctly identified. The letter neurons were biased at 76.9 uA and had input currents of 5.45 pA.

VII. WTA simulation details

Figure S7 shows simplified circuit schematics for each of the components in the WTA simulation. Each
input neuron excites its own output neuron through positive inductive coupling, as shown in (a). Fig.
S7(b) displays one of the two inhibitory neurons, which receive excitatory signals from all three output
neurons, and suppress each of the output neurons through negative inductive coupling on its output. Fig.
S7(c) illustrates one of the three output neurons. It receives two excitatory inputs from its particular input
neuron and from its own output, and receives two inhibitory inputs from the two inhibitors.

As noted in Figure 5a of the main text, the connections between neurons are weighted according
to the dimensionless parameter y—X:Y connections have strength 3y, Y:Y connections have strength 2y,
and Z:Y and Y:Z have connections of —y and y, respectively. In our system, weight corresponds to
inductance, with higher weights interpreted as lower inductances, leading to more synaptic current. In the
WTA circuit, all of the synapse inductances were scaled relative to 0.77 pH. For the simulations shown in
Fig. 5 of the main text, the parallel synapse resistors were 15 Q, the series resistors on the synapse outputs
were both 3 Q, and the series resistors on the inputs were 0.2 Q. Inhibitory connections were performed
through negative inductive coupling, and the couplers had a ratio of 1:2. Input neurons were biased at 77
LA and received input currents of 4 pA. The control inhibitor was biased at 76.9 pA and the stability
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inhibitor was biased at 76.97 pA, with both receiving input currents of 0.8 pA. Output neurons were
biased at 76.4 pA with input currents of 1.55 pA.

The Gaussian white noise sources at the input and bias ports of the output neurons had a
bandwidth of 1 GHz and amplitude of 0.8 pA. To simulate the effects of probability, the noise signal of
each output neuron was shifted in time by a different factor, giving them each effectively a different
chance of switching (this method was chosen since it was not possible to randomize the seed at the start
of successive simulations). For each competition, three unique random numbers were generated in Matlab
and used as the time shift factors for each of the three output neurons.

a b

{é / ias
% Ibias ’
Zc A
X 0 :
! XY
’,in

c % lias * hunite - _
Be T e
YA X

99

Figure S7: Simplified circuit schematics of the WTA components. (a) Example of an input neuron. (b) Example
of one of the two inhibitors. Each output neuron Y excites the inhibitor through positive inductive coupling. The output
of the inhibitor is negatively coupled to each of the output neurons in order to suppress them. (c) Example of an output
neuron. Each output neuron is excited by an input neuron and its own output, and is suppressed by both inhibitors.
The output is split into three connections to excite both inhibitors and the output neuron itself. Gaussian white noise
sources at the input and bias ports are used to create firing probabilities that match what is observed experimentally.
For all diagrams, excitatory coupling is indicated by blue text, and inhibitory coupling is indicated by red text.
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