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ABSTRACT

We introduce a new method for computing triply graded link homology, which is par-
ticularly well-adapted to torus links. Our main application is to the (n, n)-torus links,
for which we give an exact answer for all n. In several cases, our computations verify
conjectures of Gorsky et al relating homology of torus links with Hilbert schemes.
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1. Introduction

Triply-graded Khovanov-Rozansky homology is a link homology theory which was originally
introduced by Khovanov-Rozansky [KR08] using matrix factorizations, but was soon after rein-
terpreted by Khovanov [Kho07a] using the Hochschild homology of Soergel bimodules. It has
generated a great deal of interest, admitting spectral sequences which converge to various sln-
link homology theories [Ras15], and having deep connections to the representation theory of
Hecke algebras in type A.

Khovanov’s construction begins with a braid β on n strands. To such a braid, Rouquier
[Rou] has associated a complex (up to homotopy) F (β) of Soergel bimodules, which are certain
graded bimodules [Soe07] over the polynomial ring R = Rn = Q[x1, . . . , xn] in n variables.
More precisely, Rouquier associates a complex to each braid generator (e.g. over- or under-
crossing). From this, one obtains a complex for any braid diagram by taking the tensor product
of these elementary complexes. Rouquier proves that two braid diagrams for the same braid
yield complexes which are canonically isomorphic in the homotopy category of R-bimodules.

Khovanov [Kho07b] observed that taking the closure β of a braid β should correspond to
identifying the right and left actions of R, or rather the higher derived functors of this op-
eration. These higher derived functors are known as Hochschild homology and are denoted
by HHi(R;M), where M is an (R,R) bimodule; when R is understood we write HHi(M) =
HHi(R;M). Khovanov proved that the complex obtained by applying HHi to each Soergel bi-
module in a Rouquier complex F (β) yields a complex of vector spaces which (up to homotopy)
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depends only on the closure β, and thus the homology groups of this complex are link invariants
of β. The three gradings come from the Hochschild homological grading, the usual homological
grading, and the internal grading of the Soergel bimodules.

It is well known (see [Kho07b] and references therein) that if R = Rn is a polynomial ring
and M is an R-bimodule, then there is an isomorphism between Hochschild homology group
HHi(R;M), and the Hochschild cohomology group HHn−i(R;M). The Hochshild cohomology
groups are the the higher derived functors of M 7→ Hom(R,R)(R,M), the space of R-bimodule
maps from the monoidal identity R. For the remainder of this paper, we work exclusively with
Hochschild cohomology.

The Khovanov-Rozansky homology of torus links has deep connections to Hilbert schemes,
rational Cherednik algebras, and refined Chern-Simons theory [GORS14; GN15; GNR16]. At
the moment these connections are purely conjectural, but they suggest that the Khovanov-
Rozansky homologies of torus links are quite interesting objects. Up until now, however, the
connection with other subjects has been difficult to verify, since the computation of Khovanov-
Rozansky homology is quite challenging in practice. In this paper we introduce a new method
for computing Khovanov-Rozansky homology which seems particularly well adapted to com-
pute homologies of torus links. In particular, we provide a remarkably simple description of the
triply-graded homology of the (n, n) torus links, in Theorem 1.6.1 .

In §1.5 we compare our results with the predictions of Gorsky-Negut [GN15] (also Gorsky-
Negut-Rasmussen [GNR16]2) coming from flag Hilbert schemes; in every case we have checked,
they match identically. Previous checks of the connection with Hilbert schemes have been lim-
ited to the cases n = 2, 3, but with our method we are able to verify the predictions of loc. cit.
for n 6 4.

On the other hand, it is difficult to compare our results on (n, n) torus links with the con-
jectures of Gorsky-Oblomkov-Rasmussen-Shende [GOR13] since they focus on the case of the
(n,m)-torus knots, that is, when n and m are coprime, and much less is known about the link
case. Nonetheless, from P. Etingof we learned that the ring of k-quasi-invariants for Sn acting
on Q[x1, . . . , xn] (see [ES] for a survey) is a representation of the rational Cherednik algebra
for sln, and is the correct replacement for the simple module Lm/n which appears in [GORS14]
when m = kn. Thus, the minimal Hochschild degree part of the Poincaré series of the (n, nk)
torus links is expected to equal the Hilbert series for a certain filtration on the ring of k-quasi-
invariants. However, it is not clear how to filter the ring of quasi-invariants in an appropriate
way, so we we will not say more about this connection in this paper.

In Appendix A we include some additional computations. We found that the Poincaré poly-
nomial of HH0 of the (n, n + 1) torus knot is given by the q, t Catalan number for n = 2, 3, 4,
which verifies a conjecture of Gorsky’s [Gor12] for these knots.

Our particular interest in the homology of the (n, n) torus links stems from the fact that
this triply graded vector space parametrizes maps from the identity Soergel bimodule R to the
Rouquier complex associated to the full twist braid FTn. The computation above is used in

1After the initial appearance of this paper on the arXiv, our technique was utilized by the second author [Hog] to
compute the homologies of the (n, nk), and (n, nk ± 1) torus links. Soon afterward, Anton Mellit [Mel] related our
technique with his work on the rational shuffle conjecture, yielding a computation the homology of the (n,m) torus
knot, meaning that n,m are coprime (with a slight adaptation of Mellit’s idea, it is possible to remove the coprime
condition).
2The work [GNR16] was still in preparation when the present paper was originally posted, and these results were
initially communicated to us privately by Eugene Gorsky.
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forthcoming work of the authors, in which we decompose the Soergel category into its “eigen-
categories” for the action of FTn, thereby laying the groundwork for the study of the categorical
representation theory of Hecke algebras.

1.1 Motivation from categorical representation theory
It was shown by Khovanov-Thomas [KR07] that Rouquier complexes give a faithful action of
the braid group on the homotopy category of Soergel bimodules. For this reason, the collection
of Rouquier complexes is often referred to as a categorification of the braid group, but this is
somewhat misleading, as this particular action of the braid group is intricately tied to its Hecke
quotient. Soergel [Soe07] proved that Soergel bimodules over Rn categorify the Hecke algebra
H = Hn of the symmetric group Sn. Note that H is linear over the ringZ[Q,Q−1], whereQ is cat-
egorified by the grading shift of an R-bimodule3; for this to work correctly, R is graded so that
deg xi = 2 for all 1 6 i 6 n. Taking the image of a Rouquier complex in this Grothendieck group
yields the familiar quotient map from the braid group (or its group algebra over Z[Q,Q−1]) to
the Hecke algebra. However, the fact that Rouquier complexes only reflect the “Hecke-type”
actions of the braid group is an advantage, not a limitation, as one can lift results from the
representation theory of Hecke algebras to study the homotopy category of Soergel bimodules.
This paper can be understood and appreciated without a foray into categorical representation
theory, but we provide some brief motivation here.

The Hecke algebra admits a sign representation sgnn, on which each of its standard gener-
ators (the images of the overcrossings) acts by −Q−1. The projection from an arbitrary Hecke
algebra representation to its isotypic component for the sign representation is an idempotent of-
ten known as a (generalized) Jones-Wenzl projector, after the corresponding idempotent in the
Temperley-Lieb algebra [Jon01; Wen87]. This projection can not be defined in H itself, requiring
certain scalars to be inverted (like Q + Q−1, for example). It can be defined in the base change
H⊗Z[Q,Q−1] Z((Q)).

In [Hog15], the second author constructs an infinite complex of Soergel bimodules Pn which
categorifies this Jones-Wenzl projector. In this paper we study a finite complex Kn which cate-
gorifies the “renormalized” Jones-Wenzl projector, a rescaling of the projector which is actually
defined within H before base change. The fact that the Jones-Wenzl idempotent projects to the
sign representation is categorified by the fact that the Rouquier complex for an overcrossing,
acting by tensor product on Kn, will simply act by a homological and a grading shift.

The inductive construction of Kn itself also is motivated by the representation theory of the
Hecke algebra. When sgnn is induced from Hn to Hn+1, it splits into two irreducible represen-
tations, sgnn+1 and another representation V . This splitting is actually the eigenspace decom-
position for the Young-Jucys-Murphy operator yn+1, a certain element of the braid group on
n + 1 strands which commutes with any braid on the first n strands. If γ is the eigenvalue cor-
responding to V , then yn+1− γ kills V , and thus is equal to the projection to sgnn+1 up to scalar.
If kn ∈ Hn ⊂ Hn+1 denotes the renormalized projection onto the sign representation, then by
the previous discussion there is a linear relation

kn+1 = knyn+1 − γkn.

On the categorical level, this relation becomes an exact triangle. More precisely, there is a grad-
ing shift Γ and a chain map ϕ : ΓKn → KnF (yn+1) such that Kn+1 := Cone(ϕ) categorifies the

3Works of Soergel and those who followed him often work over the ring Z[v, v−1] instead; to compare conventions,
use the equality Q = v−1.
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renormalized projection to sgnn+1. Recall that F (yn+1) indicates the Rouquier complex associ-
ated to yn+1. It turns out that γ = Q2, and Γ = Q2 is simply the functor which shifts internal
degree up by 2. This chain map is constructed in [Hog15], and we recall the basics in §2.6.

This is an example of categorical diagonalization, a concept which is developed in forthcom-
ing work4. The chain map ϕ mentioned above is an eigenmap; in our categorification of various
concepts in linear algebra, the cones of eigenmaps are used to categorify the operators (A− λI)
for an eigenvalue λ of an operatorA. This makes the computation of HH0 of a braid particularly
significant, because it describes the space of maps from the (shifted) monoidal identity, which
are potential eigenmaps. In fact, the main result of this paper is used as a lemma in [EH18]
to prove that the full twist in the braid group has enough eigenmaps and therefore is categor-
ically diagonalizable. We use this to construct categorical projections to arbitrary irreducible
representations of the Hecke algebra, not just the sign representation.

In this paper, our focus is on computation: the existence of Kn is known by other means,
and we use the recursive definition of Kn to compute link invariants. This strategy is outlined
below.

1.2 Our method, decategorified
The Hecke algebra Hn is isomorphic to a quotient of the group algebra Z[Q,Q−1][Brn] where
we identify

− = (Q−Q−1) .

The Jones-Ocneanu trace Tr : Hn → Z[Q±, A±] is such that Tr(β) is the Homfly polynomial of
the braid closure β̂. Using the skein relation above, and the formula which defines Tr, one can in
principal compute the Homfly polynomial for any link. In (1.2) we introduce another skein-like
relation which is often useful.

There are elements kn ∈ Hn defined inductively by k1 = 1 ∈ Hn, and

kn =
kn−1

− Q2 kn−1 . (1.1)

The element kn is a renormalized projection onto the sign representation: knσ±i = −Q∓kn =
σ±i kn for all 1 6 i 6 n− 1, where σi denotes the elementary braid generator. This implies that

kn−1
= (−Q)n−1 kn + Q2 kn−1

. (1.2)

The Jones-Ocneanu trace Tr(kn) can easily be computed inductively from this equation using
the invariance of Tr under the Markov moves together with the fact that kn absorbs crossings.
We can use kn to compute link invariants:

– Assume β is given. Choose a crossing x in β. Place k1 somewhere in the vicinity of this
crossing. Since k1 is the idenity element of H1 , this does not change the element β ∈ Hn.

4Preprints now available [EH17; EH18]
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– Apply the relation (1.2); one of the terms will involve the switched crossing x−1, and in the
other term k1 will have grown to k2, which now has the potential to absorb some crossings.

– Repeat. That is, assume that β is a braid with a k` inserted somewhere. After manipulating
the diagram, if necessary, arrange the picture so that Equation (1.2) can be applied. In
one of the resulting terms, some crossings will be switched, which in good situations will
simplify β. In the other term, k` grows in size and can now absorb more crossings, also
resulting in a simpler diagram.

If one is lucky, this process can be repeated until the trace Tr of the resulting terms is trivial to
compute. Torus links seem especially well adapted to the application of this trick.

EXAMPLE 1.1. Let x = σ1 ∈ H2 denote the crossing. The trefoil is the (2, 3) torus knot, and can
be presented as the closure of x3. Equation (1.2) says that x = −Qk2 +Q2x−1. Multiplying by x
gives

x2 = k2 +Q2.

Multiplying by x again gives

x3 = (−Q−1)k2 +Q2x.

The trace of k2 is easy to compute, and the trace of x is the Homfly polynomial of the unknot,
up to normalization. Thus, the trace of x3 is expressed in terms of known quantities. We can
continue in this manner, obtaining

x2m = (Q2(1−m) +Q2(2−m) + · · ·+Q2(m−1))k2 +Q2m

and

x2m+1 = (−Q−1)(Q2(1−m) +Q2(2−m) + · · ·+Q2(m−1))k2 +Q2mx,

from which the Homfly polynomials of the (2,m) torus links are readily computed.

1.3 Our method, categorified
In this paper we categorify the method outlined in the previous section. As alluded to ear-
lier in this introduction, the element kn ∈ Hn gets replaced by a finite complex Kn of So-
ergel bimodules, and the relations (1.1) and (1.2) become exact triangles. More precisely, there
is a chain map constructed in [Hog15] from Q2Kn → KnF (yn+1), and Kn+1 is defined to
be the mapping cone on this map. The fact that kn absorbs crossings becomes the fact that
KnF (σi) ' TQ−1Kn ' F (σi)Kn. Here and throughout we use T and Q to denote the functors
which increase homological degree and bimodule degree respectively. We have, for instance, an
equivalence

Kn−1 '

(TQ−1)1−n Kn −→ Q2 Kn−1

 , (1.3)

where the notation A ' (B → C) means that there is an exact triangle

C → A→ B → T−1C.

The distinguished triangle (1.3) will be essentially the only weapon we need to attack our com-
putations. Suppose F (β) is a Rouquier complex that we would like to study. Iterated appli-
cation of the above exact triangle results in a certain kind of filtered complex (a convolution
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of a twisted complex; see below) which is homotopy equivalent to F (β), and whose subquo-
tients are tensor products of Rouquier complexes and some K`. In favorable situations these
have Hochschild cohomologies which are easy to compute. There then arises the problem of
recovering the homology of the total complex from the homology of its constituents. For certain
computations, we will see that this very serious complication is nullified by an equally serious
miracle: the miracle of parity.

We first explain what sorts of filtered complexes we will use. Suppose Ai (i ∈ I) is a family
of complexes, indexed by a finite partially ordered set I . Suppose dij : Aj → Ai are a collection
of linear maps such that

– dij increases homological degree by 1.

– dii is the given differential on Ai.

– dij = 0 unless i > j.

– the total differential dtot :=
∑

i>j dij satisfies d2
tot = 0.

Then C := (
⊕

i∈I Ai, dtot) is a chain complex, which we call a convolution of the Ai. More pre-
cisely, this is the convolution of a one-sided twisted complex; see [BK90] for more details on this
construction in homological algebra. We will also say that C =

⊕
iAi with twisted differential, to

indicate that the differential is not merely the sum of the differentials on the Ai. The differential
on this complex may be quite complicated, possibly sending terms in homological degree m
inside Aj to terms in homological degree m + 1 inside many different Ai, but it does respect
the order on I . Thus, convolutions can also be thought of as certain kinds of filtered complexes,
whose subquotients are the Ai.

Note that any exact triangle

A2 → C → A1 → T−1A2

gives rise to an equivalence C ' (A1 ⊕ A2) with twisted differential. Iterated mapping cones
can be regarded as convolutions in a similar way.

Our main application is to the Rouquier complex FTn associated to the full twist braids. In
§3 we iterate the equivalence (1.3), obtaining a convolution description of F (yn), the Rouquier
complex associated to the Young-Jucys-Murphy braid. Using the relation FTn = FTn−1 F (yn),
we then prove:

THEOREM 1.2. We have FTn '
⊕

v q
kDv with twisted differential. The sum is over sequences

v ∈ {0, 1}n such that vn = 1. Here, q = Q2 indicates a grading shift, k is the number of zeroes in
v, andDv is described below. The differential respects the anti-lexicographic order on sequences.

In the antilexicographic order we regard (∗, 1) as larger than (∗, 0), where ∗ denotes any
sequence of zeroes and ones. For each sequence v ∈ {0, 1}n—which we will call a shuffle—
there is a complex which we call Dv. For example, here is D10101101, which occurs (up to shift)
in the expression of FT8.

D10101101 = FT3 K5
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Inside v, the zeroes indicate which strands are connected to the full twist FTk, and the ones
indicate which are connected to K`, for k + ` = n.

Then, of course, one wants to compute the Hochschild homology of the complexes Dv. Let
us be precise. Given a complex F of Soergel bimodules, let HHi(C) denote the complex obtained
by applying the functor HHi to each bimodule, and let HH(C) = ⊕HHi(C). Let HHH(C) denote
the cohomology of the complex HH(C).

Because Hochschild cohomology of a complex C is unchanged by conjugation C 7→ FCF−1

for any invertible complex F , we can move part of Dv from the bottom to the top, yielding the
complex C ′v:

C ′10101101 =

FT4 K3

Note that FTn = C ′00···0.
For purely combinatorial reasons, we work instead with a similar complex Cv, which is

defined by the same expression as C ′v, but with K` replaced by its reduced version K̂`. Reduced
complexes are discussed in §4.3. The effect this has on Poincare polynomials is multiplication
by a factor of (1−Q2).

Let v · w denote the concatenation of two shuffles (sequences of zeroes and ones). For any
shuffle v, we can use our distinguished triangle for Kn to prove the following:

PROPOSITION 1.3. We have HH(Cv·0) '
(

HH(C1·v)→ Q2 HH(C0·v)
)

.

Next, we can use some relatively easy arguments involving the complex Kn to prove that
HH(Cv·1) is just a direct sum of shifted copies of HH(Cv). For readers familiar with knot theory,
this last statement should be thought of as analogous to the Markov move; it allows us to reduce
the number of strands by 1. Finally, a simple observation (pertaining to reduced complexes)
allows one to replace the computation of HH(C000···0) with HH(C100···0). Combining these three
operations, we obtain a recursive convolution description of any HH(Cv). This is the main result
of §4.5.

Let us return to the computation of the Hochschild cohomology of the Rouquier complex
for the full twist FTn on n strands.

We are interested in the cohomology HHH(Cv) of the complexes HH(Cv). However, in gen-
eral, the cohomology of a convolution of complexes is not the direct sum of the cohomology
of the individual complexes; instead, there is a spectral sequence relating the two. Our final
argument comes from observing a parity miracle! We prove inductively that HHH(Cv) is con-
centrated in even homological degrees. This forces every spectral sequence in sight to degener-
ate at the E1 page, and implies that our convolution description of HH(Cv) gives a direct sum
description of HHH(Cv). See Theorem 4.22 and its proof for further discussion of this parity
argument.

Thus, we have a recursive formula for the triply graded cohomologies HHH(Cv), and as a
special case, a formula for HHH(FTn). We discuss this formula in the next section.
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Let us pause to point out one of the subtleties we have ignored above. One can conjugate
a complex by a braid and obtain a non-isomorphic complex with the same Hochschild coho-
mology. We begin to apply this operation freely in §4. Above, we have stated that HH(Cv·0) is
a convolution of HH(C0·v) and HH(C1·v), but the same statement does not hold for the orig-
inal complexes. Instead, some conjugate of Cv·0 is a convolution of a conjugate of C0·v and a
conjugate of C1·v (conjugating by different braids for each term). For purposes of Hochschild
cohomology, this imprecision is harmless. However, were one to try to actually construct a chain
map from R to Cv using this computation of HHH0(Cv), then one would need to keep track of
conjugation more carefully, which would be rather difficult.

On the other hand, the work done in §3 describes full twist as a genuine convolution of
complexes Dv, not complexes up to conjugation. This result is not actually needed or used
in the recursive computation of HHH(Cv) which is our main result. We include this auxiliary
result because it can be used to construct chain maps from R to FTn. Our main theorem implies
that the complexes Dv satisfy a parity condition, and therefore our convolution description of
FTn induces a direct sum decompositions on Hochschild cohomology. In particular, any chain
map (up to homotopy) from R to the complex Dv (an element of HHH0(Dv)) can be extended
uniquely (up to homotopy) to a chain map from R to the entire complex FTn. We use this fact
to construct eigenmaps to the full twist in [EH18].

In addition, the convolution description involving Dv from §3 can be adapted to other torus
links, whereas the results §4 are fundamentally tied to the case of (n, n)-torus links.

Remark 1.4. Suppose that one were interested in computing the Hochschild cohomologies of
FT−1

n . One can produce a convolution description of FT−1
n similar to the description of FTn

above, but the parity miracle no longer holds! The corresponding spectral sequence is far from
degenerate, and consequently there are extremely few (non-nulhomotopic) chain maps from
R to FT−1

n . This lack of symmetry between FTn and FT−1
n is an interesting and complicating

feature in categorical representation theory.

1.4 The recursive formula
We will find it convenient to use a non-standard choice of variables for our Poincare series.
We let t = T 2Q−2, q = Q2, and a = Q−2A, where T denotes the usual homological degree, Q
the bimodule degree (also called internal degree, or quantum degree), and A the Hochschild
degree. For instance, the Poincaré series of the polynomial ring R = Q[x1, . . . , xn] is written
1/(1−q)n, and the Poincaré series of its Hochschild cohomology is (1−q)−n(1+a)n. In general,
all our Poincaré series will be power series in the variables q, a, and t

1
2 .

PROPOSITION 1.5. There is a unique family of polynomials fv(q, a, t), indexed by integers n > 0
and binary sequences v ∈ {0, 1}n, satisfying f∅ = 1 together with

fv·1(q, a, t) = (t|v| + a)fv (1.4a)

fv·0(q, a, t) = qf0·v + f1·v (1.4b)

Here |v| := v1 + · · ·+ vn is the number of ones of v = (v1, . . . , vn) ∈ {0, 1}n.

The following theorem, together with the fact that the fv are rational functions in q, a, t rather
than q, a, t

1
2 implies that the parity miracle holds:

THEOREM 1.6. The Poincaré series of HHH(Cv) is fv(q, a, t), where Cv are the complexes from
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Definition 4.8. In particular, the Hochschild cohomology HHH(FT) is given by fv(q, a, t) for
v = (00 · · · 0). These homologies are all supported in even homological degrees.

These results are restated and proved in §4.6. The proof of Theorem 1.6 comes from the
convolution description of HH(Cv) discussed in the previous section.

For the reader’s edification, here are the complete power series for HHH(FTn) for n = 1, 2, 3.

f0(q, a, t) =
1 + a

1− q
.

f00(q, a, t) =
1 + a

(1− q)2
(q + t− qt+ a).

f000(q, a, t) =
1 + a

(1− q)3

(
(t3q2 + q3t2 − 2t2q2 − 2tq3 − 2qt3 + t3 + q3 + tq2 + qt2 + tq)

+(t2q2 − 2tq2 − 2qt2 + t2 + q2 + tq + t+ q)a+ a2
)
.

The recursion can be unraveled into the equivalent recursion below, which is more compli-
cated but faster to implement.

DEFINITION 1.7. For each integer n > 0, we let [n] := {1, . . . , n}. We identify subsets v ⊂ [n]
with binary sequences v ∈ {0, 1}n. For each such v ⊂ [n], we define a rational function fv(q, a, t)
by f∅ = 1, together with the following rules:

f000···0(q, a, t) =
1

1− q
f100···0(q, a, t). (1.6a)

f11···1(q, a, t) =

n∏
i=1

(ti−1 + a), (n indices). (1.6b)

fv(q, a, t) =
∑
w⊂[k]

Pv,w(a, t)qk−|w|fw(q, a, t), v 6= (0 · · · 0) and v 6= (1 · · · 1). (1.6c)

Here k = n−|v| is the number of zeroes in v. Definition 5.3 contains the description of Pv,w(a, t),
which is a product of n − k factors each of the form (t`+m + a) for various numbers ` and m
depending on the sequences v and w.

The equivalence between these recursions is proven in chapter 5, which contains various
such numerological considerations. For example, one can show that both rule (1.6a) and (1.6b)
are actually just consequences of rule (1.6c) when applied verbatim, although this is not obvious.

Remark 1.8. In our original version of this manuscript, our convolution argument categorified
the recursive formula of Definition 1.7 rather than Proposition 1.5, thus proving that this com-
plicated recursion does compute HHH(Cv). Then we discovered the simpler recursion of Propo-
sition 1.5, drastically simplifying our arguments.

Note that the contribution to higher Hochschild gradings comes only from a factor in rule
(1.6b) and the factor Pv,w(a, t) in rule (1.6c); both of these become explicit monomials in t upon
setting a = 0. Thus, to understand the zero-th Hochschild degree coefficient, i.e. the polynomial
fv(q, 0, t), one use a simplified recursion relation. Using this, we prove the following closed
formula for the power series f00···0(q, 0, t), also known as the Poincaré series of the zero-th
Hochschild cohomology HHH0(FT):
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THEOREM 1.9. The Hochschild degree zero part of the unreduced triply graded homology of
(n, n) torus links has Poincare series equal to

Fn(q, t) =
∑
σ

ta(σ)+b(σ)qc(σ)

where the sum is over functions σ : {1, . . . , n} → Z>0, and the integers a(σ), b(σ), c(σ) are
defined by

(i) a(σ) =
∑

k>0

(|σ−1(k)|
2

)
(ii) b(σ) is the number of pairs (i, j) ∈ {1, . . . , n} such that i < j and σ(j) = σ(i) + 1.

(iii) c(σ) =
∑n

i=1 σ(i).

EXAMPLE 1.10. In case n = 1 we have F1(q, t) = 1 + q + q2 + · · · = 1/(1− q).

EXAMPLE 1.11. In case n = 2, F2(q, t) is the sum of monomials appearing in the following
diagram:

t tq q2 q3 · · ·

q tq2 tq3 q4 · · ·

q2 q3 tq4 tq5 · · ·

q3 q4 q5 tq6 · · ·
...

...
...

...
. . .

After rearranging, this becomes F2(q, t) = t/(1− q) + q/(1− q)2, agreeing with f00(q, 0, t) which
was computed above.

The proof of this closed formula from Theorem 1.6 is a simple combinatorial argument, and
is found in §5. Unfortunately, the polynomials Pv,w(q, a, t) are sufficiently complicated so that
we have been unable to produce a closed formula for the higher Hochschild degrees along these
lines.

We conclude with a recursion for the normalized polynomials f̃v(q, a, t) := (1−q)kfv(q, a, t),
where k is the number of zeroes in v. The recursion of Proposition 1.5 immediately gives rise to

f̃v·1(q, a, t) = (t|v| + a)f̃v (1.7a)

f̃v·0(q, a, t) = qf̃0·v + (1− q)f̃1·v (1.7b)

Remark 1.12. A clumsy card dealer has a deck of n cards, some face up and some face down.
When the dealer encounters a face down card, he deals it. When the dealer encounters a face
up card, he puts it back on the bottom of the deck, sometimes remembering to flip it face down.
Eventually, the deck is dealt (with probability 1). Every time the dealer deals a card, you, the
player, choose whether to receive 1 silver coin, or a number of dollars equal to the number
of face-up cards in the deck. Then the coefficient of akt` in f̃v(q, a, t) is the number of ways
of ending up with k silver coins and ` dollars, weighted by their probability of occuring. In
particular, the coeffcient on an is 1.

Computer experiments suggest the following:

CONJECTURE 1.13. We have the following symmetry: f̃00···0(q, a, t) = f̃00···0(t, a, q).
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This symmetry would follow from a formula of Gorsky-Negut-Rasmussen, which we dis-
cuss now.

1.5 Flag Hilbert schemes and a magic formula
According to the remarkable work of Gorsky, Negut, and Rasmussen [GN15; GNR16], triply
graded link homology can be extracted from flag Hilbert schemes.5 Roughly, the picture looks
like this: there is a space FHilbn(C2), which parametrizes flags of ideals I1 ⊂ · · · ⊂ In ∈ C[x, y]
such that Ii/Ii−1 is 1-dimensional. Associated to each n-strand braid, Gorsky-Negut-Rasmussen
conjecture that there exists a line bundle (or sheaf, or complex of sheaves) on FHilbn(C2) whose
space of global sections recovers HHH0(F (β)). The sheaves are meant to be equivariant with
respect to an obvious action of C∗ × C∗, and the variables q, t correspond to weights with re-
spect to this action. The variable a can also be accounted for with more work. A combination
of Atiyah-Bott localization and careful analysis of the flag Hilbert scheme near its torus fixed
points yields a remarkably simple combinatorial formula which, given their conjecture, will de-
scribe the knot homology of positive torus links. Now we state the formulas, and we will make
no further mention of the geometric foundations which motivate them.

Let λ be a Young diagram, drawn in the “English style” as in:

Suppose a box c is in the i-th column and j-th row. Here columns and rows are counted left-to-
right and top-to-bottom, starting at zero. To such a box we associated the monomial zc = tiqj .6

To a Young diagram, we let zλ = zλ(q, t) be the product of zc as c ranges over all the boxes of λ.
Note that zλ(q, t) = zλt(t, q), where λt is the transposed partition.

A box in λ is removable if λ r c is a Young diagram. Now we discuss boxes, i.e. coordinates
(i, j), which need not be in the given Young diagram λ. We call c /∈ λ an outer corner of λ if the
top left corner of c coincides with the bottom right corner of a removable box in λ. We call a box
c /∈ λ an inner corner of λ if λ ∪ c is a Young diagram. Pictorially, we have

The inner corners are darkly shaded, and the outer corners are lightly shaded. Let In(λ) and
Out(λ) denote the sets of inner and outer corners of λ. If c ∈ In(λ), then we define

fλ,c(q, t) :=

∏
d∈Out(λ)(zc − zd)∏
e∈In(λ)r{c}(zc − ze)

.

It is easy to observe that fλ,c(q, t) = fλt,ct(t, q), where ct is the corresponding transposed inner
corner of λt.

Remark 1.14. Let {x1, . . . , xn} and {y1, . . . , yn+1} be two families of abstract variables. It is not a

5We warn the reader that this story is related to, but quite different from, other connections between link homology
and algebraic geometry.
6 In other variables, zc = T 2iQ−2x(c), where x(c) is the content of the box c, which is i− j.
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hard excercise to show that
n+1∑
i=1

∏
j(yi − xj)∏
k 6=i(yi − yk)

= 1.

Applying this general formula to the definition above, one obtains∑
c∈In(λ)

fλ,c = 1, (1.8)

a fact which has nothing to do with the combinatorics of partitions.

A standard tableau T can be thought of as a sequence of Young diagrams T = (λ1, . . . , λn)
such that λ1 = � and λi+1 r λi = �. Let Sh(T ) = λn denote the shape of T . To each tableau we
set

fT (q, t) :=
n−1∏
i=1

fλi,ci(q, t)

where ci ∈ In(λi) is the box such that λi+1 = λi ∪ ci. Once more, fT (q, t) = fT t(t, q), where T t is
the transposed tableau.

Finally, associated to a Young diagram λ, let gλ(q, a, t) denote the product over all boxes
c ∈ λ of (1 + az−1

c ).

CONJECTURE 1.15 Magic formula. Let Fn,r(q, a, t) denote the Poincaré series of HHH0(FT⊗rn ).
Then

(1− q)nFn,r(q, a, t) =
∑
T

zrSh(T )gSh(T )fT , (1.9)

a sum over all tableaux with n boxes. In particular, the right hand side is symmetric under
replacing q with t, and thus so is the left hand side. We remind the reader that zSh(T ) and fT are
functions of q and t, while gSh(T ) is a function of q, a, and t.

When r = 0, the formula yields 1 =
∑

T gSh(λ)(q, a, t)fT (q, t), whose a-degree zero part
follows from (1.8). We have verified the magic formula for r = 1 and for 1 6 n 6 4, using a
mathematica notebook which is available upon request.

According to the magic formula, the a-degree n part of the Poincaré series of the (n, n) torus
link is supposed to be (1− q)−n times∑

T

zSh(T )z
−1
Sh(T )fT (q, t) = 1.

The factor z−1
Sh(T ) comes from taking the a-degree n part of gSh(T )(q, a, t). This instance of the

magic formula can be prove directly from our recursive description of this series (see Remark
1.12).

Another consequence of the magic formula concerns the sub-maximal part of the Poincaré
series of full twists:

CONJECTURE 1.16. The a-degree n − 1 part of the Poincaré series of HHH(FTn) is a geometric
progression

1

(1− q)n
1− (q + t− qt)n

(1− q)(1− t)
=

1

(1− q)n
(

1 + (q + t− qt) + · · ·+ (q + t− qt)n−1
)

12
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We expect that this is not difficult to prove, but we do not do so here. We have verified this
conjecture up to n = 7 using computer calculations.

In the algorithm to compute f00···0(q, a, t) using (1.6c), one travels from the zero sequence
(00 · · · 0) ∈ {0, 1}n to the sequence ∅ ∈ {0, 1}0 by repeatedly choosing subsets (i.e. smaller
sequences in {0, 1}k) of the previous set of zeroes. Our instinct indicates that such a sequence
of sequences can be thought of as encoding the entries in a Robinson-Shensted row-bumping
algorithm, and can thus be assigned a tableau. The contribution to f00···0(q, a, t) coming from
this sequence of sequences and the contribution to

∑
T zSh(T )gSh(T )fT coming from the tableau

T have many superficial similarities, but no direct relation has yet been found.

1.6 Organization of the paper

In §2 we provide some background. We describe various elements of the braid group, includ-
ing full twists, Young-Jucys-Murphy elements, shuffle braids, and shuffle twists. In §2.4 we
briefly recall Soergel’s categorification of the Hecke algebra and Rouquier’s categorification of
the braid group. In §2.5 we define convolutions of complexes, and give the crucial argument in-
volving the degeneration of a spectral sequence thanks to parity considerations. In §2.6 we recall
the main result of [Hog15], a complex which categorifies a renormalized Jones-Wenzl projector,
and state its properties. The specifics of the Soergel-Rouquier construction need not concern the
reader, as all we will use in this paper are facts about the braid group and the results of [Hog15].

In §3 we find a convolution description of the full twist FTn in terms of certain complexes
Dv associated to v ∈ {0, 1}n.

In §4 we switch to a Hochschild frame of mind. Since Hochschild cohomology of a complex
is invariant under conjugation by Rouquier complexes of braids, we will allow ourselves to
freely conjugate complexes. In §4.2 we discuss another result of [Hog15] which is an analog of
the Markov move on braid closures: a relationship between the Hochschild homologies of the
Jones-Wenzl projector on n strands and the projector on n− 1 strands. We also discuss reduced
complexes in §4.3, finally describing complexes Cv in §4.4 which may be thought of as reduced
versions of conjugates of Dv. Finally, in §4.5 and §4.6 we state and prove the main result, which
is a convolution description of the Hochschild cohomology of Cv in terms of the Hochschild
cohomologies of smaller Cw, which is an analogue of the recursion of Proposition 1.5.

In §5 we prove some combinatorial results which justify Theorem 1.9, our closed form solu-
tion for HHH0(FT), and show that the two recursive formulas agree.

In the appendix, we include without proof some computations for other (n,m) torus links.
These were obtained by techniques entirely analogous to the computation for (n, n) torus links,
and many of them have not appeared in the literature before.

Acknowledgments The authors would like to thank Eugene Gorsky, Alexei Oblomkov,
Pavel Etingof, and Andrei Negut for enlightening conversations. A substantial amount of this
work was completed during the second author’s visit to the University of Oregon during the
summer of 2015; we are indebted to the UO math department for its hospitality and support,
and apologize for filling the lounge chalkboard with half twists. Both authors would like to
thank Yeppie for her excellent sandwiches, which kept us full of hope and inspiration.

1.7 Notation

We collect here some of our notational conventions, for the reader’s convenience. Unfamiliar
concepts will be explained in due course. Soergel bimodules are graded. We denote by (1) the
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grading shift, so that M(1)i = M i+1. We let Q = (−1) denote the functor which increases the
degree of each element. Complexes of Soergel bimodules are bigraded. The differentials always
preserve the bimodule degree, and increase homological degree by 1. The shift in homological
degree is denoted by 〈1〉, so that C(a)〈b〉i,j = Ci+a,j+b. We denote by Kb(A) the homotopy
category of finite complexes over an additive category A. Isomorphism in Kb(A), that is, chain
homotopy equivalence, is denoted by '. The existence of a distinguished triangle

A→ B → C
δ→ A〈1〉

will be indicated by writing B ' (C
δ→ A). We also let T = 〈−1〉 denote the functor which

increases homological degree by 1. If β is a braid, we denote the braid exponent by e(β); this
is the signed number of crossings in a diagram representing β. The Rouquier complex F (β) is
normalized so that if β is a positive braid, then there is a chain map (TQ−1)e(β)R→ F (β) which
is the inclusion of the degree e(β) chain bimodule, whereas if β is a negative braid, there is a
chain map F (β)→ (TQ−1)e(β)Rwhich is the projection onto the degree e(β) bimodule. Note, in
[AH] and [Hog15], the shifts (k) and 〈`〉would have been denoted (−k) and 〈−`〉, respectively.

Hochschild cohomology gives rise to a functor HH whose input is a graded bimodule, and
whose output is a bigraded vector space. The additional grading is called the Hochschild grad-
ing, and shifts in the Hochschild grading are denoted by A. Extending to complexes gives a
functor from complexes of graded bimodules to complexes of bigraded vector spaces. These
are triply graded objects, so all together we have the shift functors Q,A, T . If C is a complex of
bimodules, then the homology of HH(C) is denoted by HHH(C).

We also find it convenient to introduce t = T 2Q−2, q = Q2, and a = AQ−2. One might call
these the geometric variables, since they appear most naturally in the connection with Hilbert
schemes. When convenient, we express our degree shifts and Poincaré series in terms of these
variables.

2. Background and key tools

2.1 Braids
Let Brn denote the braid group with n strands. The generators will be denoted by σi, for 1 6
i 6 n−1, and drawn as an overcrossing of the i-th and (i+1)-st strands. The overcrossing σi and
its inverse, the undercrossing σ−1

i , are depicted below.

σi = i− 1 n− i− 1 σ−1
i = i− 1 n− i− 1

A labelled strand denotes the corresponding number of parallel copies of that strand. We will
always draw our braids in a rectangle, with n boundary points on the top and bottom. Com-
position of braids is given by vertical stacking, so that ββ′ is β on top of β′. There is a group
homomorphism e : Brn → Z sending σ±i 7→ ±1. The integer e(β) is called the braid exponent of
β.

A braid is positive if it has an expression only involving overcrossings, and negative if it has
an expression only involving undercrossings. Given an element w of the symmetric group Sn,
its positive braid lift in Brn is the product σi1σi2 · · ·σid , where si1si2 · · · sid is a reduced expression
for w in terms of the usual Coxeter generators {si} of Sn. This element is independent of the
choice of reduced expression. Its negative braid lift is σ−1

i1
· · ·σ−1

id
.

DEFINITION 2.1. We define the following symmetries of Brn:
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(i) Rotation about the vertical axis: Let τ : Brn → Brn satisfy τ(σi) = σn−i and τ(αβ) =
τ(α)τ(β). Then τ is an involution.

(ii) Rotation about the horizontal axis: Let ω : Brn → Brn satisfy ω(σi) = σi and ω(αβ) =
ω(β)ω(α). Then ω is an antiinvolution.

(iii) Reflection across a horizontal plane: Let (−)∨ : Brn → Brn satisfy σ∨i = σ−1
i and (αβ)∨ =

β∨α∨. Then (−)∨ is an antiinvolution, and is just another notation for taking the inverse
braid.

(iv) Crossing swap: Let (−)L : Brn → Brn satisfy σLi = σ−1
i and (αβ)L = (α)L(β)L. Then (−)L

is an involution, and (β)L = ω(β)∨.

The letter L indicates that βL this is the left-handed version of the braid β. This swaps the
positive and negative braid lifts of an element of Sn. Note that τ and ω preserve positive braids,
while (−)∨ and (−)L swap positive braids and negative braids. These symmetries all commute
with each other.

We let t : Brk×Brl → Brk+l denote the homomorphism given by horizontal concatenation.

2.2 Shuffle braids
DEFINITION 2.2. A shuffle permutation is a permutation π ∈ Sn which is a minimal length coset
representative for some coset in Sn/(Sk × S`), for some 0 6 k, ` 6 n with k + ` = n. Said
differently, a shuffle permutation preserves the ordering of {1, . . . , k} and {k + 1, · · · , n} for
some k, but “shuffles” these two sets together.

Let v ∈ {0, 1}n be a sequence with k zeroes and ` ones. We call v a shuffle. There is a cor-
responding shuffle permutation πv, a minimal coset representation for Sn/(Sk × S`), for which
πv({1, . . . , k}) gives the locations of the zeroes, and πv({k + 1, . . . , n}) gives the locations of the
ones.

Note that a shuffle permutation can come from a shuffle in multiple different ways. For
example, the identity element is a minimal coset representative for Sk × S` for every k and l
with k + ` = n; whenever all the zeroes come before all the ones, π0···01···1 is the identity. When
the shuffle v ∈ {0, 1}n is understood, k will always refer to the number of zeroes, and ` to the
number of ones.

EXAMPLE 2.3. The shuffle permutation π1···10 is the n-cycle (n, n− 1, . . . , 2, 1).

DEFINITION 2.4. For each v ∈ {0, 1}n, let βv denote the positive braid lift of πv. Let Twv :=
ω(βv)βv, the shuffle twist, denote the positive pure braid obtained by gluing βv with its rotation.

EXAMPLE 2.5. If v = (0101100), then the shuffle permutation πv, its positive braid lift, and the
associated pure braid are pictured as:

πv = βv = Twv = .

Note that v partitions the strands in these diagrams into two subsets: the 0-strands and the 1-
strands. In βv the 0-strands cross over the 1-strands. In the ω(βv) portion of Twv, they cross back
under.
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The following gives a useful recursive description of the braids Twv:

PROPOSITION 2.6. Let v be a shuffle with k zeroes and ` ones, with k + ` = n. Let · denote
concatenation of shuffles, so that v · 0 and v · 1 are the two shuffles of length n+ 1 which extend
v. Then

Twv·0 = Twv

k 1
`

Tww·1 = Twv

k ` 1 .
Here a strand labeled ` actually represents ` strands cabled together in the usual way, so that the
“thick crossings” in the expression for Twv·0 each represent ` ordinary crossings. This recursion,
together with the base cases Tw0 = Tw1 = 1, produces all the shuffle twists Twv. There is a
similar such recursion which describes Tw0·v and Tw1·v.

Proof. Graphically obvious.

We now discuss the behavior of the shuffle braids with respect to the symmetries of the
braid group.

DEFINITION 2.7. For each v ∈ {0, 1}n, let r(v) denote the sequence obtained by reversing the
order, so that r(v)i = vn+1−i. Let v∗ be the sequence obtained by swapping the 1’s with 0’s and
vice versa: (v∗)i = 1− vi.

PROPOSITION 2.8. Let v ∈ {0, 1}n be given. Then

(i) τ(βv) = βr(v)∗

(ii) ω(β−1
v ) = βLv

Proof. Clear.

2.3 Half twists and shuffle braids
Let HT = HTn ∈ Brn denote the half twist braid

HTn = σ1(σ2σ1)(σ3σ2σ1) · · · (σn−1 · · ·σ2σ1).

The full twist is FTn = HT2
n, and is central in the braid group. This implies that the mapping

β 7→ HTβHT−1 defines an involution on the braid group. Indeed, HTβHT−1 = τ(β). We leave
the proof of this fact to this reader, as it is elementary. It is also elementary that HTn is fixed by
τ and ω.

We will need to know how the shuffle braids interact with HT and FT:

PROPOSITION 2.9. Let v ∈ {0, 1}n be given. Let k and ` be the number of zeroes and ones in v,
respectively. Then

(i) HTn γv = γr(v)∗ HTn, where γv is any of the braids βv, ω(βv), βLv , or ω(βv)
L.

(ii) HTn β
L
v = βr(v)(HTk tHT`).

(iii) FTn TwL
v ∼ Twr(v)(FTk tFT`).

Here ∼ denotes that the given braids are equivalent modulo conjugation.

Proof. Statement (1) follows from Proposition 2.8, since conjugation by HTn acts on the braid
group by τ (180 degree rotation about a vertical axis).
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The idea of the proof of (2) is best illustrated with an example. For instance, when v =
(1100101) we have

HTk+` '
HTk+`

'

HTk HT`

'
HTk HT`

.

In the second diagram, the left-handed shuffle braid corresponds to r(v)∗ = (0101100) by state-
ment (1) of the proposition. In the third diagram we have simply rewritten the half twist in
terms of the “thick crossing” between 4 cabled strands and 3 cabled strands. This is a well-
known identity in the braid group. In the last diagram we have performed an isotopy.

Finally, statement (3) follows from (2). First, note that an application of ω to statement (2)
yields

ω(βLv ) HT = (HTk tHT`)ω(βr(v))

Then observe:

FT TwL
v = FTω(βLv )βLv

= ω(βLv ) FTβLv

= ω(βLv ) HT HTβLv

= (HTk tHT`)ω(βr(v))βr(v)(HTk tHT`)

∼ ω(βr(v))βr(v)(FTk tFT`)

The second equality holds since FTn ∈ Brn is central. The third holds since FT = HT HT.
The fourth holds by (1) and (2). Finally the last ∼ holds by transferring the (HTk tHT`) to the
right-hand side (recall that β ∼ β′ means β is conjugate to β′). This completes the proof.

2.4 Rouquier complexes
Let R = Rn = Q[x1, . . . , xn] be the polynomial ring in n variables, graded so that deg xi =
2. This is the polynomial ring associated to the standard n-dimensional representation of Sn
over Q. Given a graded R-bimodule M , we let M(1) denote the shifted bimodule for which
M(1)d = M1+d, where Md denotes the degree d part of M . We denote tensor product of graded
bimodules over R simply by juxtaposition: M ⊗R N = MN . We often let 1 = 1n denote the
bimodule R, which is the monoidal identity.

For each i with 1 6 i 6 n− 1, let Bi denote the graded R-bimodule

Bi := R⊗Ri R(1),

where Ri denotes the subring of polynomials invariant under the reflection si = (i, i + 1). A
Bott-Samelson bimodule is any tensor product of the bimodules B1, . . . , Bn−1. Let SBimn denote
the category of Soergel bimodules associated to R. This is the full graded monoidal additive
Karoubian subcategory of graded R-bimodules generated by Bi for 1 6 i 6 n − 1. Thus, its
objects those objects isomorphic to direct sums of direct summands of grading shifts of Bott-
Samelson bimodules.

Let Kb(SBimn) denote the homotopy category of bounded complexes of Soergel bimodules.
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Objects of Kb(SBimn) are finite complexes with differentials of degree +1

· · · → d→ Ck
d→ Ck+1

d→ · · · , Ck ∈ SBim,

and morphisms in Kb(SBimn) are chain maps modulo homotopy.
Associated to each braid word β we have the Rouquier complex F (β) inKb(SBimn), defined

by

F (σi) = (Bi → R(1)) F (σ−1
i ) = (R(−1)→ Bi)

together with F (ββ′) = F (β)F (β′). The underline indicates which object lies in homological
degree 0. Rouquier proved that there is a canonical homotopy equivalence between F (β) and
F (β′) when β and β′ are braid words expressing the same braid. A more direct proof which
works over Z can also be found in [EK10].

Remark 2.10. Recall the notation Q,T for gradings shifts (see §1.7). One reason why t is more
natural that T is that any Rouquier complex F (β) always has a unique copy ofR which appears
in homological degree e(β) and internal degree −e(β), so that this copy of R appears with shift
t
1
2
e(β), where e(β) is the braid exponent. It was proven in [EW14] that Rouquier complexes for

reduced expressions are perverse (when one works in characteristic zero). A complex is perverse
if each indecomposable bimodule in the complex appears with a grading shift equal to its ho-
mological degree, or equivalently, that the grading and homological shifts are described only
as powers of (TQ−1). Note that the Rouquier complex for the full twist is not perverse, nor are
shuffle twists. We will not use any perversity results in this paper. Nonetheless, we will express
our shifts using the variables t = T 2Q−2 and q = Q2.

The symmetries of the braid group lift to symmetries of SBimn and its homotopy category.
Let τ : R→ R denote the map sending xi 7→ xn+1−i.

DEFINITION 2.11. We define the following symmetries of SBimn:

(i) Rotation about vertical axis: let τ : SBimn → SBimn denote the covariant graded monoidal
functor induced by the Dynkin automorphism of Sn. That is, τ : Bi 7→ Bn−i, and satisfies
τ(MN) = τ(M)τ(N) and τ(M(1)) = τ(M)(1).

(ii) Rotation about horizontal axis: let ω : SBimn → SBimn denote the covariant graded anti-
monoidal functor which sendsBi 7→ Bi and satisfies ω(MN) = ω(N)ω(M) and ω(M(1)) =
ω(M)(1).

(iii) Reflection across a horizontal plane: let (−)∨ : SBimn → SBimop
n denote the contravariant

anti-graded anti-monoidal “duality” functor on SBimn, which sends Bi 7→ Bi and satisfies
(MN)∨ = N∨M∨ and M(1)∨ = M∨(−1).

(iv) Crossing swap: Let (−)L : SBimn → SBimn denote the contravariant anti-graded monoidal
functor (−)∨ ◦ ω.

These symmetries commute up to canonical isomorphism.

PROPOSITION 2.12. These symmetries intertwine the braid symmetries from Definition 2.1, un-
der Rouquier’s map F , via a canonical isomorphism. In particular, F (β)∨ ∼= F (β−1).

Proof. This is easy. Although we have not stated explicitly what the differentials in F (σi) and
F (σ−1

i ) are, they live in one-dimensional morphism spaces, and are interchanged by duality.
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There is an isomorphism of rings Rk � Rl → Rk+l given by renaming the variables, where
� denotes tensor product over Q. Correspondingly, there is an inclusion functor t : SBimk �
SBiml → SBimk+l, which sends Bi � 1l to Bi and sends 1k � Bi to Bk+i. This intertwines with
the map t : Brk×Brl → Brk+l after applying Rouquier’s map F .

It was proven by Soergel that morphisms between objects in SBimn are free as left or right
modules over Rn. Using Soergel’s Hom formula [Soe07, Thm 5.15], one can prove that t is
actually fully faithful, after identifying Rk �Rl with Rn. Another way of phrasing this result is
that the inclusion SBimi → SBimn for i < n, which comes from the functor (−) t 1n−i, is fully
faithful after base change along the inclusion from Ri to Rn. See [EW, Remark 3.19] for further
discussion.

2.5 Complexes and convolutions
We may write 〈1〉 for the homological shift of a complex, so that the homological degree d part
of F 〈1〉 is the homological degree d+1 part of F . By convention, 〈1〉 also negates the differential.

We now introduce some notation which we will be used exhaustively throughout. To moti-
vate it, we begin with an example. Suppose A and B are complexes, and f : A → B is a chain
map. The mapping cone Cf is the chain complex (Cf )k = Ak+1 ⊕ Bk with differential given by

the matrix
[
−dA 0
f dB

]
. In other words Cf = A〈1〉 ⊕ B with an additional component of the dif-

ferential from A〈1〉 to B, given by f . Note that the additional sign on the differential of A〈1〉 is
necessary for the differential on Cf to satisfy d2 = 0. We prefer to keep track of the homological
degree shift explicitly, so that the mapping cone can be written as

Cf = (A〈1〉 f−→ B).

We will also say that Cf = A〈1〉 ⊕B with twisted differential. This notation will come in handy
when we later consider mapping cones of mapping cones, and so on.

For instance, this notation allows us to use explicit shifts instead of underlines in a complex,
so that we may write

F (σi) = (Bi → R(1)〈−1〉) F (σ−1
i ) = (R(−1)〈1〉 → Bi).

The general way to describe an iterated cone is using the idea of a convolution of complexes.
Let Fj (j ∈ J) be complexes of R-bimodules indexed by a finite partially-ordered set J . Let dj
denote the differential on the complex Fj (which, in our notation, is a map of bigraded R-
bimodules of homological degree +1 and graded degree 0). Let E = ⊕j∈JFj be a bigraded
R-bimodule, and let d be a differential on E such that

– restricted to a map Fj → Fj , d agrees with dj , and

– restricted to a map Fj → Fj′ , d is zero unless j 6 j′.

Then E is called a convolution of the complexes Fj , as is any complex which is homotopy equiv-
alent to E. We may write d =

∑
i6j dji, where dji is the component of the differential mapping

Fi to Fj .
We refer to Fj as the subquotients of the convolution E. We say that E = ⊕j∈JFj with twisted

differential, indicating that the differential is not just the direct sum of the differentials on each
summands. We say that this twisted differential respects the partial order on J because dji = 0
for i � j.
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Remark 2.13. By abuse of language, we will refer to a two term convolution E = (A
f−→ B) as a

mapping cone. Note that, strictly speaking f is not a chain map from A to B, but rather a chain
map A〈−1〉 → B. Here J has two elements, with the order determined by the arrow. A general
convolution can be described as an iterated cone of complexes, where each Fj is added one at a
time.

In practice, one can often show indirectly that a complex E is a convolution of other com-
plexes Fj , in which case the components dji of the differential may be difficult to write down for
i 6= j (the task is complicated further by the presence of homotopy equivalences). In particular,
this makes it difficult to compute the homology H(E). Thankfully, a parity argument will come
to the rescue in this paper.

PROPOSITION 2.14. Suppose E =
⊕

j∈J Fj with twisted differential, for some finite partially
ordered set J . Suppose the homology H(Fj) is supported in even homological degrees, for all
j ∈ J . Then H(E) ∼=

⊕
j H(Fj).

Proof. We induct on the cardinality of J . In the base case J = {j}, we have E = Fj , and the
statement is trivial. Now, assume by induction that we have proved the result for partially
ordered sets of cardinality r, and let J be a partially ordered set of cardinality r + 1. Let j ∈ J
be maximal. Set B := Fj and A =

⊕
i∈Jr{j} Fj with twisted differential. Note that E = A ⊕ B

with twisted differential:

E = (A
δ−→ B)

for some map δ of homological degree +1. We have H(A) ∼=
⊕

i 6=j H(Fi) by induction, so we
must prove that H(E) ∼= H(A)⊕H(B).

The short exact sequence 0→ B → E → A→ 0 gives rise to a long exact sequence

· · · → Hk−1(A)→ Hk(B)→ Hk(E)→ Hk(A)→ Hk+1(B)→ · · · .

Our parity assumption implies that Hk(A) = Hk(B) = 0 when k is odd. Thus Hk(E) = 0 when
k is odd. When k is even we have a short exact sequence

0→ Hk(B)→ Hk(E)→ Hk(A)→ 0.

If we work over a field, then this short exact sequence splits. This completes the inductive step,
and completes the proof.

Remark 2.15. In general, there is a spectral sequence converging to H(E), whose E2 page is⊕
j H(Fj). If H(Fi) is even, then the subsequent differentials (which have odd homological

degree) must all vanish. This gives an alternate proof of the above.

Remark 2.16. The above presents a “computation-free and serendipitous” approach to comput-
ing homology groups. Suppose we wish to compute the homology of a chain complex E. We
may get lucky and discover a filtration on E whose successive quotients are supported in even
homological degrees. In this case, Proposition 2.14 says that H(E) simply splits as a direct sum
of these homology groups. In this paper we are extraordinarily lucky in this regard.

2.6 Categorified symmetrizers
In this subsection we recall the constructions of the second author in [Hog15], and extract from
them a finite complex Kn ∈ Kb(SBimn) which will play an essential role in this paper. First,
define the following complexes:
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DEFINITION 2.17. Let X = Xn = F (σn−1 · · ·σ1) and Y = Yn = F (σ−1
n−1 · · ·σ

−1
1 ) denote the

Rouquier complexes associated to the positive and negative braid lifts of the standard n-cycle
(n, n − 1, . . . , 2, 1). In other words, X = F (βv) and Y = F (βLv ) for v = (11 · · · 10). Note that
τ(X) = ω(X) = Y −1, τ(Y ) = ω(Y ) = X−1.

In this paper we adopt a graphical notation for certain complexes of Soergel bimodules. We
will denote a braid and its Rouquier complex similarly, so for example pictures such as

X4 = and Y4 =

will denote the complexes Xn and Yn of Definition 2.17. The tensor product of complexes corre-
sponds to vertical stacking. For example we have

X4Y
−1

4 = ∈ Br4 (2.1)

Complexes of the form XY −1 play a very special role in this paper. They are the Rouquier
complexes associated to the Young-Jucys-Murphy braids. Note that braids corresponding to
XkY

−1
k generate a commutative subgroup of the braid group, and their product is the full twist.

The following defines a family of complexes Kn which are compatible with these braids, in a
particular sense.

PROPOSITION 2.18. There exists a family of finite complexes Kn ∈ Kb(SBimn) (n > 1) such that:

(i) K1 = R.

(ii) We have Kn−1XY
−1 ' (Kn → qKn−1). Graphically this is

Kn−1

'

 Kn −→ q Kn−1

 (2.2)

(iii) Kn kills all generating Bott-Samelson bimodules in SBimn. That is, KnBi ' 0 ' BiKn for
1 6 i 6 n− 1.

Note that finiteness of the Kn follows from the recursion (2).

Proof. In [Hog15] the second author defined defined a family of complexes Pn ∈ K−(SBimn)
such that

– Pn kills all Bott-Samelsons: Pn ⊗Bi ' 0 ' Bi ⊗ Pn for all 1 6 i 6 n− 1.

– Any other complex M ∈ K−(SBimn) kills Bott-Samelsons if and only if Pn ⊗M ' M '
Pn ⊗M .

Further, Pn is uniquely characterized up to homotopy equivalence by these properties. The
complexes Pn can be thought of as categorical projections onto the sign representation of the
Hecke algebra:

We will construct the complexes Kn inductively. First, set K1 = R1. Now, assume Kn−1 has
been constructed for n > 2. In §4 of [Hog15] it was shown that there is a chain map ψ : qPn−1 →
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Pn−1XY
−1 such that the mapping cone Qn := Cone(ψ) kills Bott-Samelsons7. Graphically, this

is:

Qn '

q Pn−1 〈1〉 ψ−→
Pn−1

 . (2.3)

From the above characterization of Pn−1, the fact that Kn−1 kills the Bott-Samelsons in
SBimn−1 implies that Kn−1Pn−1 ' Kn−1. We define Kn by tensoring Equation (2.3) on the
left with Kn−1 and applying the equivalence Kn−1Pn−1 ' Kn−1. Note that Kn ' Kn−1Qn. The
recursion (2) is satisfied after rotating triangles. Clearly Kn kills all Bott-Samelsons on the right
since Qn does. It was shown in [Hog15] that a complex kills Bott-Samelsons from the right if
and only if it kills all Bott-Samelsons from the left. This gives statement (3).

LEMMA 2.19. The complex Kn absorbs Rouquier complexes: if β is a braid, then KnF (β) '
t
1
2
e(β)Kn ' F (β)Kn. Recall that e(β) is the braid exponent, which records the number of over-

crossings minus the number of undercrossings in a braid word.

Proof. It suffices to prove the result for β = σ±i . In this case the claim is obvious since Kn kills
Bi, hence the only term of KnF (σ±i ) which survives is Kn(±1)〈∓1〉.

Remark 2.20. It is sometimes also useful to consider the following equivalence:

Kn−1 '

t 12 (1−n) Kn −→ q
Kn−1

 . (2.4)

This follows from (2.2) by tensoring on the right with Y , applying the equivalence KnY '
t
1
2

(1−n)Kn.

EXAMPLE 2.21. There is a chain map qF (σ−1
1 ) → F (σ1) whose mapping cone is the 4-term

complex

K2 = R(−2) - B1(−1)
x2⊗1−1⊗x2- B1(1) - R(2).

There is a projection map K2 → R(−2)〈1〉, the mapping cone on which is

(K2 → qR) ' B1(−1)
x2⊗1−1⊗x2- B1(1) - R(2).

By (2.4), this is homotopy equivalent to the full twist FT2 = F (σ2
1) on two strands. This fact is

also straightforward to check directly.

The construction of Kn appears to be asymmetric. However, Kn is preserved by the symme-
tries of the Soergel category up to homotopy:

PROPOSITION 2.22. We have
ω(Kn) ' τ(Kn) ' Kn.

Further,
tn−1K∨n ' (t−

1
2 q

1
2 )n−1Kn.

7Actually, in [Hog15] the renormalized Rouquier complexes F ′(β) := t−
1
2
e(β)F (β) are used, where e(β) is the braid

exponent. To match the conventions, set X ′ = t
1
2
(1−n)X and Y ′ = t

1
2
(n−1)Y . Then the chain map constructed in

[Hog15] is actually ψ′ : qt1−nPn−1 → Pn−1X
′(Y ′)−1. Clearly this gives rise to ψ : qPn−1 → Pn−1XY

−1 as claimed.
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3. Resolving the full twist

In this section we give a new expression for the Rouquier complex associated to the full twist
braid FTn. Our main result is that FTn ∈ Kb(SBimn) is homotopy equivalent to a convolution
whose subquotients are described in terms of shuffle braids and the complexes Kn.

3.1 Young-Jucys-Murphy braids
First, we describe the Rouquier complexes for Young-Jucys-Murphy braids as convolutions. We
write yi = σi−1 · · ·σ2σ1σ1σ2 · · ·σi−1 for the i-th Young-Jucys-Murphy braid, which is an element
of Bri. For example, y4 is picture in (2.1). We may also view yi as an element of Brn for any n > i,
which acts on the first i strands; this comes from the inclusion Bri = Bri×1n−i ⊂ Bri×Brn−i →
Brn.

DEFINITION 3.1. Let v ∈ {0, 1}n be a shuffle on n letters, with k zeroes and ` ones, so that
k + ` = n. Let Ev ∈ Kb(SBim) be defined as follows:

Ev := F (βLv )(1k tK`)F (ω(βLv )). (3.1)

Note that the shuffle braids involved here are left-handed.

EXAMPLE 3.2. For example, when v = (1011001), the complex Ev looks like

K4 .

In this section the only complexes that concern us are those of the form Ev·1. Recall that ·
denotes concatenation of sequences, so that v · 1 ranges over all sequences which end in 1. Note
that (analogously to Proposition 2.6) βv·1 is equal to βv t 11, and the right-most strand in Ev·1 is
a straight vertical line which does not cross over or under any other strands.

PROPOSITION 3.3. The Rouquier complex F (yn) satisfies

F (yn) '
⊕

v∈{0,1}n−1

t−(`2)qkEv·1

with twisted differential. As usual, k is the number of zeroes in v and ` is the number of ones,
with k + ` = n − 1. The partial order in this convolution is the antilexicographic order on
sequences.

Remark 3.4. Consider the “thick crossing” between Km and n −m parallel strands, which one
might picture as

Km

n−m m

.

There is an expression of this complex as a direct sum (with twisted differential) of complexes
Ev·1m with shifts, where v ∈ {0, 1}n−m. Proposition 3.3 corresponds to the case m = 1. This is
the only case that concerns us, so we leave the statement (and proof) for m > 1 to the reader.
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Proof. We prove this by induction on n > 1. In the base case we have y1 = 1 and F (y1) = K1.
There is exactly one element of {0, 1}0, the empty sequence, so that the sum on the RHS has one
term E∅·1, and that term is K1. This establishes the base case.

Assume by induction that the result holds for n > 1. Note that yn+1 = σnynσn. By induction,
we have

F (σn)F (yn)F (σn) '
⊕

v∈{0,1}n−1

GvF (σn)(Ev·1 t 11)F (σn) (3.2)

with twisted differential, for some grading shifts Gv. Each of the above summands can be
rewritten as follows: for fixed v ∈ {0, 1}n−1, let k denote the number of zeroes in v and ` the
number of ones. Then the summand corresponding to v is

βL
v

ω(βL
v )

K`+1

k ` 1 1

'

βL
v

ω(βL
v )

K`+1

k ` 1 1

'


t
1
2

(−`−1)

βL
v

ω(βL
v )

K`+2

k ` 1 1

→ q

βL
v

ω(βL
v )

K`+1

k ` 1 1


.

The first equality (or rather, homotopy equivalence) is a simple isotopy, pulling one strand
past the cable of l strands. In the second equality we have used (2.4). Applying Lemma 2.19
to the first complex on the right, K`+2 absorbs the ` negative crossings (in the cabled crossing
below K`+2) and 1 positive crossing (above), gaining an additional grading shift of t

1
2
− 1

2
`. After

absorbing these crossings and applying an isotopy to the right-most complex, we obtain

F (σn)(Ev·1 t 11)F (σn) '


t−`

βL
v

ω(βL
v )

K`+2 → q

βL
v

ω(βL
v )

K`+1


. (3.3)

The first term is just Ev·1·1, and the second is Ev·0·1. Applying this simplification to each term of
the right-hand side of (3.2) completes the inductive step. It remains to verify that the grading
shifts and partial order on the convolution are as claimed.

The grading shifts are determined recursively byGv·1 = t−|v|Gv andGv·0 = qGv, from which

the formula Gv = t−(|v|2 )qn−1−|v| follows easily.

Suppose that, for two sequences v, w ∈ {0, 1}n−1, the differential from the summand Ev·1
to the summand Ew·1 is zero in the twisted differential for F (yn). Then replacing F (σn)(Ev·1 t
11)F (σn) and F (σn)(Ew·1t11)F (σn) by the equivalent complexes in the right-hand side of (3.3)
does not introduce any differential between any of the corresponding terms in the twisted dif-
ferential for F (yn+1). Moreover, there is no differential fromEv·0·1 toEv·1·1. Therefore, induction
implies that the twisted differential respects the antilexicographic order.
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3.2 The full twist
It is fairly easy to bootstrap this convolution description of the Young-Jucys-Murphy elements
into a convolution description of the full twist.

DEFINITION 3.5. Let v ∈ {0, 1}n be a shuffle, with k zeroes and ` ones, so that k + ` = n. Then
let Dv ∈ Kb(SBim) be defined as follows:

Dv := F (βv)(FTk tK`)F (ω(βv)). (3.4)

Note that the shuffle braids involved here are right-handed.

EXAMPLE 3.6. Here is Dv for v = (10101101).

D10101101 = FT3 K5

In this example, the last index in v is a one, so the rightmost strand in Dv does not cross the
strands coming from the full twist.

THEOREM 3.7. Let FTn denote the full right-handed twist on n-strands. We have

FTn '
⊕

v∈{0,1}n−1

qkDv·1 (3.5)

with twisted differential, respecting the antilexicographic order on {0, 1}n−1. Here k is the num-
ber of zeroes in v.

We have omitted the functor F from the notation, identifying a braid with its Rouquier
complex. We employ this abuse of notation frequently henceforth.

Proof. Note that the full twist braid factors as FTn+1 = FTn yn+1, where as usual FTn is viewed
as an element inside Brn+1 via the inclusion Brn → Brn+1. Actually it will be more useful to
write

FTn+1 = HTn yn+1 HTn .

Proposition 3.3 gives an expression of the Jucys-Murphy complex F (yn+1). Tensoring on the left
and right with HTn = HTn t11 gives

FTn+1 '
⊕
v

Gv(HTn t11)(βLv t 11)(1k tK`+1)(ω(βLv ) t 11)(HTn t11)

'
⊕
v

Gv((HTn β
L
v ) t 11)(1k tK`+1)((ω(βLv ) HTn) t 11)

'
⊕
v

Gv(βr(v) t 11)(HTk tHT` t11)(1k tK`+1)(HTk tHT` t11)((ω(βr(v))11)

'
⊕
v

Gvt
(`2)(βr(v) t 11)(FTk tK`+1)((ω(βr(v))11).

Here, Gv = t−(`2)qk is the shift determined by Proposition 3.3. The second equivalence is simply
given by reassociating. The third equivalence holds by Proposition 2.9, which describes how
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HTn interacts with shuffle braids. The last equivalence holds since K`+1 absorbs the two copies
of HT` (each of which has

(
`
2

)
crossings), and the two copies of HTk contribute a factor of FTk.

The grading shift on each summand is Gvt(
`
2) = qk, as claimed. This completes the proof.

Remark 3.8. One can construct convolution descriptions of other torus links in much the same
way. At the moment, we have done this ad hoc for small torus links, and have neglected to
write it down here for reasons of space. It would be interesting to find a combinatorial frame-
work (analogous to shuffles) in order to treat the general torus link in a more holistic fashion.
The results of the next chapter, including the parity miracle which makes these convolution
descriptions useful, can also be adapted to our small examples in a straightforward way. The
fruits of this labor are presented in the appendix.

4. Resolving the Hochschild homology of the full twist

In this section we introduce Hochschild cohomology HH, and we compute HH(FTn) for all
n > 1. Our strategy is recursive. The main result of the previous section expresses FTn as a
filtered complex whose subquotients are of the form Dv. In this section we show that HH(Dv)
has a filtration in terms of other HH(Dw), with smaller w. However, we will find it convenient
to work instead with related complexes Cv, to be defined in section §4.4.

4.1 Hochschild cohomology

The zeroth Hochschild cohomology functor HH0 is the functor which takes a gradedR-bimodule
M to the graded vector space ⊕m∈ZHom(R,M(m)) of bimodule maps of all degrees. Its higher
derived functors HHk are packaged together in a single functor HH = ⊕k>0 HHk : SBimn →
Q-vectZ×Z, where this latter category is the category of bigraded vector spaces. The two grad-
ings are the internal grading of the bimodule (them in the direct sum above), and the Hochschild
cohomological grading k, which we call the Hochschild grading.

Extending to complexes gives a functor HH: Kb(SBimn)→ Kb(Q-vectZ×Z). Given a complex
C, HH0(C) is the complex RHom(R,C) used to compute maps of all internal and homological
degrees from the complex R (concentrated in a single homological degree) to C. The homology
of HH(C) and HH0(C) are denoted by HHH(C) and HHH0(C). When we wish to emphasize the
index n (which is not a degree, but the number of strands) we will write HH(Rn;C), HH0(Rn;C),
and so on.

Note that HH(C) is triply graded. We will denote shifts in the tridegree by QiAjT k HH(C),
where Q is the usual degree, A is Hochschild degree, and T is homological degree. In previous
sections we found it useful to introduce the variables (or grading shifts) t = T 2Q−2 and q = Q2.
In the sequel it will prove convenient to package the Hochschild and q-degrees together by
introducing a = AQ−2. We write PC(q, a, t) for the Poincaré series of HHH(C).

The experienced reader may wish to orient himself or herself by observing that in these
conventions, we have

PR1 =
1 +Q−2A

1−Q2
=

1 + a

1− q
which is the Hochschild cohomology of the ring Q[x] as a bimodule over itself. The reader
should think of (1 − q)−1 as the Poincaré series of Q[x] itself, and (1 + a) as the Poincaré series
of the exterior algebra in one variable. Similarly, PRn = (1 + a)n(1− q)−n.
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EXAMPLE 4.1. We have PBs = (1−Q2)−n(1 +Q−2A)n−1(Q+Q−3A). Here is a brief conceptual
explanation. Consider the Koszul complex which resolves R by free R-bimodules. Applying
Hom to R, the differentials all become zero, yielding (1 + Q−2A)n times the Poincaré series of
R, as for PR above. Applying Hom to Bs instead, one of the differentials in the Kozsul com-
plex is non-zero, becoming the middle differential in Example 2.21, except dualized. Thus this
differential yields a factor of (Q+Q−3A) instead. We will not use this computation.

DEFINITION 4.2. We say that two complexes A,B ∈ Kb(SBimn) are HH-equivalent if HH(A) '
HH(B) as complexes of triply graded vector spaces. In this case we will write A ∼ B.

The basic property of Hochschild cohomology which motivates its relationship with braid
closures is that HH(CD) ∼= HH(DC) whenever these tensor products make sense (e.g. if C,D ∈
K(SBimn) are simultaneously bounded above or below). Thus, any complexC is HH-equivalent
to F (β)CF (β−1) for any braid β.

Note that HHi can actually be viewed as a map from R-bimodules to the subcategory of R-
bimodules for which the left and right actions agree, which can be identified with R-modules.
However, the isomorphism HH(CD) ∼= HH(DC) is not an isomorphism of (complexes of) R-
bimodules, only of their underlying vector spaces. Nonetheless, there is still an action of Rn on
any Hochschild complex HHi(Rn;C).

Remark 4.3. The isomorphism HH(Rn;CD) ∼= HH(Rn;DC) of complexes of vector spaces does
actually lift to an isomorphism of modules over the invariant subring RSn .

4.2 The Markov move for Jones-Wenzl projectors
The Markov move states that the closure of a braid β on n−1 strands is isotopic (as a link) to the
closure of the braid σ±n−1(β t11) on n strands. To prove that HHH is a link invariant, Khovanov
[Kho07b] proved a result comparing HH(Rn−1;β) and HH(Rn;σ±n−1(β t 11)). In this paper, we
will need a similar result, comparing HH(Rn−1;Kn−1) and HH(Rn;Kn).

PROPOSITION 4.4. Suppose that 2 6 n. Let C ∈ Kb(SBimn−1) be viewed as a complex in
Kb(SBimn) via the usual inclusion functor. We have

HH(Rn;CKn) ' tn−1 HH(Rn−1;CKn−1)⊕ aHH(Rn−1;CKn−1). (4.1)

This can also be described as

HH(Rn;CKn) ' tn−1 HH(Rn−1;CKn−1)⊗ Λ[ξn]

where deg(ξn) = t1−na. Hence PCKn = (tn−1 + a)PCKn−1 .

Proof. We use results in [Hog15]. Let Cn denote the bounded derived category of graded (Rn, Rn)-
bimodules, where Rn = Q[x1, . . . , xn] as usual. Let Dn = Kb(Cn) denote the homotopy category
of Cn. Note that SBimn includes as a full subcategory of Cn, and Kb(SBimn) includes as a full
subcategory of Dn. In case n = 0, D0 is equivalent to the category QZ×Z×Z of triply graded
vector spaces.

There is a partial Hochschild cohomology functor Tn : Dn → Dn−1, such that HH = T1 ◦ · · · ◦ Tn.
These can be defined as the right adjoints to the standard inclusions In : Dn−1 → Dn. We usually
abuse notation, and write C when we mean I(C). For each C ∈ Dn−1 and each D ∈ Dn we have

T (CD) ∼= CT (D) and T (DC) ∼= T (D)C.
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Recall from the proof of Proposition 2.18 that Kn ' Kn−1Qn, so that Tn(Kn) ' Kn−1Tn(Qn).
It was proven in §4 of [Hog15] that Tn(Qn) ' tn−1Pn−1 ⊗ Λ[ξn]. Since Kn−1Pn−1 ' Kn−1, we
conclude that

Tn(Kn) ' Kn−1T (Qn) ' tn−1Kn−1 ⊗ Λ[ξn]. (4.2)

From this, the Proposition follows from the observation that HH = T1 ◦ · · · ◦ Tn.

In our reduction algorithm to come, we need a relative version of the above proposition.

COROLLARY 4.5. Suppose that 2 6 ` 6 n, with n = k + `. Let C ∈ Kb(SBimn−1) be viewed as a
complex in Kb(SBimn) via the usual inclusion functor. We have

HH(Rn;C(1k tK`)) ' t`−1 HH(Rn−1;C(1k tK`−1))⊗ Λ[ξ`]. (4.3)

Hence PC(1ktK`) = (t`−1 + a)PC(1ktK`−1).

Proof. We picture the partial trace Tn : Dn → Dn−1 graphically as identifying the top right and
bottom right strands. The statement of the Lemma then becomes

K`

C

k `− 1

1
' t`−1

K`−1

C

k `− 1

⊗ Λ[ξ`] (4.4)

whose proof is immediate given (4.2).

This corollary allows one to slowly shrink copies of K` that appear, reducing the number of
strands in the process. However, the case ` = 1 is separate; diagrammatically, this corresponds
to taking the complex C and adding a circle, since K1 is the identity.

PROPOSITION 4.6. Let C ∈ Kb(SBimn−1) be viewed as a complex in Kb(SBimn) via the usual
inclusion functor. We have

HH(Rn;C tK1) ' HH(Rn−1;C)⊗Q[xn]⊗ Λ[ξ1] (4.5)

where deg(ξ1) = Q−2A = a. Hence PCtK1 = (1− q)−1(1 + a)PC .

Proof. In general, HHH(A t B) ∼= HHH(A) ⊗ HHH(B). So this proposition just amounts to the
observation that HHH(Q[xn]) ∼= Q[xn]⊗ Λ[ξ1]. This may be pictured as

C

n− 1

1 ' t`−1
C

n− 1

⊗Q[xn]⊗ Λ[ξ1].

Results like these we will also call HH-equivalences.

DEFINITION 4.7. We extend Definition 4.2 above to say that two complexes A ∈ Kb(SBimn) and
B ∈ Kb(SBimk) are HH-equivalent, written A ∼ B, if HH(A) ' HH(B) as complexes of triply
graded vector spaces. Note that n and k need not be equal. The complexes A and B are allowed
to have built-in formal Hochschild grading shifts.
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4.3 Reduced complexes
Observe that the formulas for PC(1ktK`) for ` > 2 and ` = 1 do not follow the same pattern, as
the ` = 1 case has an extra factor of (1 − q)−1. We will need to use both (4.3) and (4.5) in our
recursion for HHH(FTn), and the differences between these two formulas lead to a bookkeeping
nightmare. Instead, we will introduce the reduced complexes K̂`, which admit a streamlined
formula which works for ` = 1 as well as for ` > 2.

DEFINITION 4.8. For each complex C ∈ K(SBimn) and each element f ∈ Rn of the ground ring,
let f IdC and IdC f denote the endomorphisms of C given by left and right multiplication by f ,
respectively. Set Ĉ := Cone(xn IdC).

Remark 4.9. Effectively, Ĉ is the result of killing the left action of xn on C. Indeed, since Rn
acts freely on Soergel bimodules, standard arguments imply that Ĉ ' C/xnC. Thus, one may
think of Ĉ as a reduced version of C. The usual reduced complex is the mapping cone on e1 IdC
(equivalently, the quotient C/e1C), where e1 = x1 + · · · + xn. The two notions are related, but
generally different. Our sole reason for introducing Ĉ is have a functorial way of converting
expressions involving Kn to expressions involving K̂n.

The relationship between K̂n andKn is best understood as follows. Let Pn be the complex in-
troduced in [Hog15], whose definition is recalled in the proof of Proposition 2.18. Let END(Pn)
denote the bigraded ring spanned by all homogeneous chain maps QiT jPn → Pn modulo ho-
motopy. In [Hog15] the second author showed that END(Pn) ∼= Q[u1, u2, . . . , un], where the uk
are variables of bidegree deg(uk) = Q2kT 2−2k = qt1−k. In particular, u1 has degree q, and is
represented by left or right multiplication by xi ∈ R in the ground ring (in [Hog15] it is shown
that all such maps are homotopic; see also the proof of Lemma 4.10 below).

The complex Kn can be interpreted as the total complex of the Koszul complex associated
to the action of u2, . . . , un acting on Pn. Precisely: Kn ' Cone(u2)Cone(u3) · · ·Cone(un), where
concatenation denotes tensor product. This description clarifies the manner in which our defi-
nition of Kn gives special treatment to the case n = 1. A more equitable construction would
also include a factor of Cone(u1). By our comments above, this is precisely what K̂n does:
K̂n ' Cone(u1)Cone(u2) · · ·Cone(un).

LEMMA 4.10. We have K̂n ' K̂1Kn.

Proof. It is clear that K̂1Kn = Cone(x1 IdKn), while K̂n = Cone(xn IdKn) by definition. Thus, it
suffices to prove that x1 IdKn ' xn IdKn , and the Lemma will follow by homotopy invariance of
mapping cones. It is a standard fact that there are canonical mapsR(−1)→ Bi andBi(−1)→ R
whose composition is αi := xi − xi+1. Thus, BiKn ' 0 implies that αi IdKn factors through a
contractible complex, hence is null-homotopic for all 1 6 i 6 n− 1. This implies that x1 IdKn '
xn IdKn , and completes the proof.

Remark 4.11. Applying the functor C 7→ Ĉ to the result of Theorem 3.7 yields an equivalence
F̂Tn '

⊕
v∈{0,1}n−1 qkD̂v·1 with twisted differential. Further, D̂v·1 is given by the same formula

as Dv·1, except with K` replaced by K̂`.

Our next result will later be used to show that the computation of HHH(FTn) reduces to a
computation of HHH(F̂Tn). In particular PFTn = 1

1−qPF̂Tn
.

PROPOSITION 4.12. If C ∈ Kb(SBimn) is such that HHH(Ĉ) is supported in even homological
degrees, then so is HHH(C), and HHH(C) ∼= Q[xn]⊗HHH(Ĉ). In particular, ifPC(q, a, t) denotes
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the Poincaré series of HHH(C), then

PC =
1

1− q
PĈ .

Proof. Consider a more general situation in which M is a chain complex on which some poly-
nomial ring Q[x] acts. Let Z denote the dg algebra Q[x, y, θ] with d(θ) = x − y, d(x) = 0, and
d(y) = 0. Here, θ is an odd variable, hence we assume that θ2 = 0. The differential ensures that
y ' x. More precisely, there is a chain map Z → Q[x] sending θ 7→ 0, x 7→ x, and y 7→ x. This
map is a homotopy equivalence Z → Q[x]. Further, the inverse map and the relevant homo-
topies can all be chosen to beQ[x]-equivariant.

Consider the chain complex M ′ ' Z ⊗Q[x] M . This is regarded as a dg Q[x]-module in a
slightly non-standard way, where x acts by multiplication by y on the first tensor factor. The
above paragraph implies that there is a homotopy equivalence M ′ ' M which commutes the
Q[x] actions up to homotopy. Now, M ′ ∼= Q[y, θ]⊗M with twisted differential

– d(y ⊗m) = y ⊗ d(m),
– d(θ ⊗m) = 1⊗ xm− y ⊗m− θ ⊗ d(m).

After rearranging, we see that M 'M ′ ' Q[y]⊗ M̂ with twisted differential, where M̂ denotes
the “reduced complex” M̂ := Cone(M

x→ M). This construction is formally analogous to the
fact that if X is a topological space on which a group G acts, then there is a space X ′ on which
G acts freely, such that X ' X ′ via a G-equivariant homotopy equivalence.

Now we apply this construction to the case of interest. Since HH is a linear functor which is
extended to complexes, we have that HH commutes with mapping cones. In particular HH(Ĉ)
is the mapping cone of xn acting on HH(C). The above construction then produces a twisted
differential onQ[xn]⊗HH(Ĉ) such that the resulting complex is homotopy equivalent to HH(C).
Thus we may regard HH(C) as a convolution of complexes qk HH(Ĉ), indexed by k ∈ Z>0.
The result now follows by the parity miracle (Proposition 2.14). Strictly speaking the parity
miracle doesn’t directly apply, because the indexing set is not finite. To fix this problem we fix
r and consider the subcomplex of HH(C) consisting of chains with q-degree r. Each of these
is a convolution with only finitely many terms, since qk HH(Ĉ) is supported in large q-degrees
for k large. Thus, the parity miracle can be applied separately to each q-degree. The details are
straightforward, so we omit them.

PROPOSITION 4.13. The complexes K̂n satisfy the same recursion as Kn. That is:

K̂n−1
'

 K̂n −→ q K̂n−1

 . (4.6)

This holds for all n > 1, where by convention we set K̂0 = Q ∈ SBim0.

Proof. For n > 2 simply tensor (2.2) on the left with K̂1 and use Lemma 4.10. For the somewhat
degenerate case n = 1, the result follows from the following argument. Note that when n = 1,
the left hand side of (4.6) is Q[x1], and the second term on the right-hand side can be identified
with x1Q[x1]. Then the result follows from the observation that K̂1 ' Q, and Q[x1] ∼= Q ⊕
x1Q[x1].

We have the following streamlined version of the Markov move for the reduced Jones-Wenzl
complexes.
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COROLLARY 4.14. Suppose that 1 6 ` 6 n, with n = k + `. Let C ∈ Kb(SBimn−1) be viewed as
a complex in Kb(SBimn) via the usual inclusion functor. We have

HH(Rn;C(1k t K̂`)) ' t`−1 HH(Rn−1;C(1k t K̂`−1))⊗ Λ[ξ`] (4.7)

where Λ denotes an exterior algebra, and deg ξi = t1−ia. HencePC(1ktK̂`) = (t`−1+a)PC(1ktK̂`−1).

Proof. For ` > 1 this follows by the same argument in the proof of Corollary 4.5. For ` = 1
this follows from the fact that HH(K̂1) is the mapping cone of x1 acting on HH(Q[x1];Q[x1]) =
Q[x1]⊗ Λ[ξ1]. Since x1 acts freely, standard arguments imply that this mapping cone is equiva-
lent to the quotient Λ[ξ1], which has Poincare polynomial 1 + a.

COROLLARY 4.15. Let Λ = Λ[ξ1, . . . , ξn] be the exterior algebra, where deg(ξi) = at1−i. Let PΛ

denote its Poincaré polynomial. Then PK̂n = t(
n
2)PΛ.

Note that

PK̂n =

n∏
i=1

(ti−1 + a) =

n−1∏
i=0

(ti + a). (4.8)

4.4 The complexes we use
Now let us return to the convolution description of the full twist.

DEFINITION 4.16. For each v ∈ {0, 1}n with k zeroes and ` ones, let Cv = Twv(FTk tK̂`). Recall
that the shuffle twist Twv was described in Definition 2.4. Again, we identify a braid with its
Rouquier complex.

EXAMPLE 4.17. If v = (0101100), then we have

Cv =

FT4 K̂3

It is clear that Cv is conjugate to D̂v, where Dv is as in Definition 3.5. These will be the
complexes we use in our inductive computation of Hochschild cohomology.

EXAMPLE 4.18. We have C00···0 = FTn while C10···0 = F̂Tn. In general C1···10··· ,0 is given by a
diagram of the form

C1111000 =

exemplified here in the case of v = (1111000). The empty white box represents K̂4.

We now present a simple convolution recursion for HH(Cv).
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4.5 The key recursion
LEMMA 4.19. Let v ∈ {0, 1}n be a sequence with k zeroes and ` = n− k ones. Then

Twv·0 =

k 1 `

Twv .

Proof. This is simply the result of Proposition 2.6, followed by an isotopy.

PROPOSITION 4.20. We have HH(Cv·0) '
(

HH(C1·v)→ qHH(C0·v)
)

.

Proof. Let v ∈ {0, 1}n be a sequence with k zeroes and ` = n− k ones. Observe that Cv·0 can be
written

Cv·0 =

k 1 `

FTk+1

K`

Twv

,

where we have used Lemma 4.19 to rewrite Twv·0. Now, the exact triangle for Kn (2.2) says that
this complex is homotopy equivalent to a convolution of the form

Cv·0 '


k 1 `

FTk+1

K`+1

Twv

−→ q

k 1 `

FTk+1 K`

Twv


.

To prove the Proposition, we must show that the term on the left is HH-equivalent to C1·v,
and the term on the right is HH-equivalent to C0·v. For the term on the right, simply slide the
left-handed crossing (rather, the cabled crossing between 1 strand and k parallel strands) from
the top to the bottom, through the full twist, where it meets and annihilates the right-handed
crossing. The resulting complex is C0·v. For the term on the left, we have the following sequence
of simplifications:

k 1 `

FTk+1

K`+1

Twv

=

k 1 `

FTk

K`+1

Twv

∼

k 1 `
FTk

K`+1

Twv
'

k 1 `
FTk

K`+1

Twv

.
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The first equivalence is obtained by rewriting the full-twist as FTk+1 = FTk Jk+1, where Jk+1

is the Jucys-Murphy braid. The second is an HH-equivalence which slides the Jucys-Murphy
braid from the bottom to the top. The final equivalence is an obvious isotopy. The braid on the
top of the resulting complex is Tw1·v (similar to the statement of Proposition 2.6 for Twv·0). The
resulting complex is therefore C1·v. Each of the above equivalences corresponds to an honest
homotopy equivalence after applying the functor HH(−). This completes the proof.

4.6 Our main result
In this section we prove our main theorem, which gives a recursion formula for the Poincaré
series for HHH(Cv).

PROPOSITION 4.21. There is a unique family of rational functions fv(q, a, t), indexed by binary
sequences v ∈ {0, 1}n with n ∈ Z>0, satisfying

fv·1(q, a, t) = (t|v| + a)fv(q, a, t) (4.9a)

fv·0(q, a, t) = qf0·v + f1·v(q, a, t) (4.9b)
together with f∅ = 1.

Proof. Let us first prove uniqueness. Note that (4.9b) applied to the sequence v = (00 · · · 0)
yields f00···0 = qf00···0 + f10···0. In other words:

f00···0 =
1

1− q
f10···0. (4.10)

Now, define a partial order on the set of binary sequences as follows: given v ∈ {0, 1}n and
w ∈ {0, 1}m, write v < w if one of the following conditions is met:

– n < m

– n = m and v has fewer zeroes than w.
– n = m, v and w have the same number of zeroes, and number of inversions in the shuffle

permuation πv is less than the number of inversions in πw.

Then < defines a partial order on the set of binary sequences. The number of inversions in πv
is the number of pairs (i < j) where vi = 1 and vj = 0. Thus, 0 · v 6 v · 0 with equality if and
only if v = (00 · · · 0). Clearly the empty sequence is the unique minimum with respect to this
partial order, and relations (4.9a), (4.9b) (where we use (??) to rewrite the all zeroes sequence)
for express any fv in terms of fw with w < v. This proves uniqueness.

For existence, we need to prove consistency of the relations (4.9a), (4.9b). However, this is
clear since for each v, exactly one of the relations (4.9a) or (4.9b) can be applied.

We now have our main theorem:

THEOREM 4.22. The Poincaré series for HHH(Cv) equals the rational function fv(q, a, t) from
Proposition 4.21. In particular, HHH(Cv) is supported in even homological degrees. As a spe-
cial case we have that HHH(FTn) = f00···0(q, a, t) is the Poincaré series of the triply graded
homology of the (n, n) torus link, up to an overall shift.

Proof. Let Pv = PCv denote the Poincaré series for HHH(Cv). We will show that Pv = fv by
induction on v, using the partial order on the set of binary sequences introduced in the proof of
Proposition 4.21.
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In case v = ∅, we have C∅ = Q, which satisfies HHH(R0;Q) = HHH(Q;Q) = Q. Thus
P∅ = 1 = f∅.

Now, fix v ∈ {0, 1}n, and assume by induction that Pw = fw for all w < v. If v = (00 · · · 0),
then P10···0 = f10···0 by induction. Further, C10···0 = Ĉ00···0, so Proposition 4.12 says that P00···0 =

1
1−qP10···0, which equals f00···0 by (4.10). This takes care of the case where v is the zero sequence.
Thus, we assume below that v is nonzero.

There are two cases: either v = w · 1 or w · 0 for some w. In the first case, then Corollary 4.14
says that Pw·1 = (t|v|+a)Pw, hence Pw·1 = fw·1 by Equation (4.9a) and induction. Thus, we may
assume that v = w · 0. Since v is nonzero, we have 1 · w < w · 0 (fewer zeroes) and 0 · w < w · 0
(fewer inversions). Thus, by induction, we have P1·w = f1·w and P0·w = f0·w. Also by induction,
we may assume that HHH(C1·w) and HHH(C0·w) are supported in even homological degrees.
Thus, the terms of the convolution Proposition 4.20 have the same parity after taking HHH.
Proposition 2.14 implies that HHH(Cw·0) splits as a direct sum

HHH(Cw·0) ∼= qHHH(C0·w)⊕HHH(C1·w).

Taking Poincaré series, we see that Pw·0 = qP0·w + P1·w. It follows that Pv = fv, by induction
and the uniqueness statement of Proposition 4.21.

5. Numerological considerations

Below, we give an alternate recursive formula for the power series fv(q, a, t) for sequences v ∈
{0, 1}n. We then give a closed formula for a = 0 specialization f00···0(q, 0, t).

5.1 An alternate recursive formula
The recursion described in this section was actually discovered before the recursion that appears
in Proposition 4.21. We originally proved our main result (Theorem 4.22) using this recursion,
and later found a much more elegant route which now appears in our §4.6. Nonetheless this
alternate recursion is quite useful, and will lead us to a closed formula for the a-degree zero
part of HHH(FTn) in §5.3. We introduce some combinatorial notions which will be relevant
below.

DEFINITION 5.1. Fix a sequence v ∈ {0, 1}n. We will call a pair of sequences (v, w) compatible
if w ∈ {0, 1}k, where k is the number of zeroes in v. If (v, w) is a compatible pair, we define a
sequence v ◦ w by “inserting w into the zeroes of v.” That is, let (v ◦ w)i = 1 if either vi = 1, or
if vi is the j-th zero in v and wj = 1. We let Iv,w ⊂ {1, . . . , n} denote the subset of indices such
that vi = 0 but (v ◦ w)i = 1. We say that i is a one in v if vi = 1, and i is a one in w (relative to v) if
vi = 0 but (v ◦ w)i = 1. When v is understood, we omit the phrase relative to v.

EXAMPLE 5.2. Let v = (1101001) and w = (001). In this case we have v ◦ w = (1101011), where
the underlined terms indicate where we have inserted w into v.

DEFINITION 5.3. Fix v ∈ {0, 1}n and w ∈ {0, 1}k as above. For each index i, let `(i) denote
the number of ones of v strictly to the left of i, and let m(i) denote the number of ones in w
strictly to the right of i. Let Pv,w,i denote (t`(i)+m(i) + a) if vi = 1 and Pv,w,i = 1 otherwise. Set
Pv,w :=

∏n
i=1 Pv,w,i.

LEMMA 5.4. The following relations hold:

(i) Pv·1,w = (t|v| + a)Pv,w
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(ii) Pv·0,w·0 = Pv,w
(iii) P1·v,w = (t|w| + a)Pv·0,w·1.
(iv) P0·v,0·w = Pv,w
(v) P0·v,1·w = Pv,w

Proof. These are easily verified directly from the definition.

PROPOSITION 5.5. The functions fv(q, a, t) defined in Proposition 4.21 can also be defined by
the recursion:

f00···0(q, a, t) = (1− q)−1f10...0(q, a, t) (5.1a)

fv(q, a, t) =
∑

w∈{0,1}k
Pv,w(q, a, t)qk−|w|fw(q, a, t) ( if v 6= 0) (5.1b)

The base of the recursion is still f∅ = 1.

Note that we regard {0, 1}0 as the set containing the empty set. Thus, (5.1b) gives

f11···1(q, a, t) = P11···1,∅(q, a, t) =
n∏
i=1

(ti−1 + a)

as a special case.

Proof. Both recursions uniquely pin down a collection of functions fv(q, a, t). Therefore, if one
of these definitions satisfies the other’s recursive formula, then they are equivalent definitions.
The recursions are clearly equivalent when computing fv for sequences of length n 6 1. Let us
temporarily denote by gv the family of functions determined by (5.1a) and (5.1b). We will show
that the gv also satisfy the recursion which defines fv (Equations (4.9a) and (4.9b)).

First, note that gv·1 =
∑

w∈{0,1}k Pv·1,wqk1gw where k1 is the number of zeroes in w. By part
(1) of Lemma 5.4, we have Pv·1,w = (t|v| + a)gw, which implies that

gv·1 = (t|v| + a)gv. (5.2)

Thus, the rule (4.9a) is satisfied by gv.
We now check that gv·0 satisfies (4.9b). If v = (00 · · · 0), then this translates precisely to rule

(5.1a), which we are assuming is valid. Thus, we may assume that v is nonzero. We must show
that gv·0 = qg0·v+g1·v. To do this, fix v ∈ {0, 1}n, let ` = |v| the number of ones in v and k = n−`
the number of zeroes. Below, we let k1 denote the number of zeroes in w, so that

gv =
∑
w

Pv,wqk1gw

Let us expand gv·0(q, a, t) using the rule (5.1b). Because of the extra zero, there are twice as many
terms in this sum as there were for gv, corresponding to sequences w · 0 and sequences w · 1. We
obtain

gv·0 =
∑
w

qk1
(
qPv·0,w·0gw·0 + Pv·0,w·1gw·1

)
.

For the sequence w ·0 relative to w, there is an extra zero yielding an extra factor of q. By Lemma
5.4, we have Pv·0,w·0 = Pv,w, and by (5.2), we have gw·1 = (t|w| + a)gw. This yields

gv·0 =
∑
w

qk1
(
qPv,wgw·0 + (t|w| + a)Pv·0,w·1gw

)
. (5.3)
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Recall that we are assuming v is not the zero-sequence, hence k < n. Now we apply induc-
tion on n, assuming (4.9a) and (4.9b) hold for gw. Applying both of these equations to the right
hand side of (5.3) we obtain

gv·0 =
∑
w

qk1
(
q2Pv,wg0·w + qPv,wg1·w + (t|w| + a)Pv·0,w·1gw

)
. (5.4)

Similarly,

g0·v =
∑
w

qk1
(
qP0·v,0·wg0·w + P0·v,1·wg1·w

)
and

g1·v =
∑
w

P1·v,wq
k1gw.

Lemma 5.4 says P0·v,0·w = Pv,w = P0·v,1·w and P1·v,w = (t|w| + a)Pv·0,w·1. Thus,

qg0·v + g1·v =
∑
w

qk1
(
q2Pv,wg0·w + qPv,wg1·w + (t|w| + a)Pv·0,w·1gw

)
. (5.5)

Comparing (5.4) to (5.5), we have shown that gv·0 = qg0·v + g1·v, as desired.

5.2 The redundancy of rule (5.1a)

PROPOSITION 5.6. Equation (5.1a) follows from a verbatim application of Equation (5.1b) to the
case of the zero sequence v = (00 · · · 0).

Proof. Let v be the zero sequence of length n. When we expand f00···0 using Equation (5.1b) ,
we obtain a sum of 2n terms, indexed by sequences w ∈ {0, 1}n. We claim that the sum of the
terms with w ending in 1 is actually just f10···0; that the sum of the terms with w ending in 10
is actually just qf10···0; the sum of the terms with w ending in 100 is q2f10···0; and so forth. Of
course, the unique term where w ends in 10 · 0 (length n) is just qn−1f10···0, because qn−1 is easy
observed to be the coefficient of f10···0 in this expansion.

Given this claim, we have

f00···0 = qnf00···0 + (1 + q + q2 + . . .+ qn−1)f10···0,

which immediately implies Equation (5.1a). So it is enough to show the claim.

The claim is proven by an easy induction, using Equation (4.9b). For instance,

qn−2f10···0 = qn−1f010···0 + qn−2f110···0.

by one application of Equation (4.9b). These are the two terms which end in (10 · · · 0) (length
n− 1). This proves one statement of the claim. For the next, we apply Equation (4.9b) again and
decrease the power of q, obtaining

qn−3f10···0 = qn−1f0010···0 + qn−2(f1010···0 + f0110···0) + qn−3f1110···0.

These are the 4 terms which end in 10 · · · 0 (length n − 2), and each appears with the correct
power of q. This proves the second statement of our claim. The remaining parts of the claim
follow by repeating this argument. We leave the details to the reader.
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5.3 The closed form of HHH0(FTn)

One useful consequence of the alternate recursion is that it leads to a simple derivation of The-
orem 1.9. To remind the reader, this theorem stated that

f00···0(q, 0, t) =
∑
σ

ta(σ)+b(σ)qc(σ)

where the sum is over functions σ : {1, . . . , n} → Z>0, and the integers a(σ), b(σ), c(σ) are
defined by

(i) a(σ) =
∑

k>0

(|σ−1(k)|
2

)
(ii) b(σ) is the number of pairs (i, j) ∈ {1, . . . , n} such that i < j and σ(j) = σ(i) + 1.

(iii) c(σ) =
∑n

i=1 σ(i).

DEFINITION 5.7. Recall Definition 5.1. If (v, w) is a compatible pair of sequences, let c(v, w)
denote the number of pairs of indices i < j such that i is a one in v and j is a one in w (relative
to v).

EXAMPLE 5.8. Let v = (1101000101) andw = (10110). In this case we have v◦w = (1111011101),
where the underlined terms indicate where we have inserted w into v. Then c(v, w) = 8. We
interpret c(v, w) as the number of crossings in a certain diagram associated to (v, w). First, draw
the shuffle permutation associated to v:

1 1 0 1 0 0 0 1 0 1

The 1’s in the sequence w tell us which strands corresponding to zeroes of v are “on.” We will
indicate the “on” and “off” strands by dotted green and dashed red lines, respectively, in the
case of w = (10110):

1 1 0 1 0 0 0 1 0 1

Then c(v, w) is the total number of crossings between the 1-strands and the “on” 0-strands,
shown here as dots.

We now prove:

LEMMA 5.9. Let v ∈ {0, 1}n be a sequence with `0 ones and k0 = n − `0 zeroes. The functions
fv(q, 0, t) satisfy the recursion f∅(q, 0, t) = 1 and

fv(q, 0, t) =
∑

w∈{0,1}k0

t(
`0
2 )+c(v,w)qk1fw(q, 0, t)

where w has k1 zeroes.

Proof. Setting a = 0 in Definition 5.3, we see that Pv,w(q, 0, t) is the product of t`(i)+m(i) over all
indices i such that vi = 1. The t`(i) factors contribute t(

`0
2 ) and the tm(i) factors contribute tc(v,w).

Thus, setting a = 0 in the alternate recursion Proposition 5.5 gives the statement. We are also
using the result of Proposition 5.6 in the special case where v is the zero sequence.
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Proof of Theorem 1.9. Consider a sequence v = (v(0), v(1), . . . , ) of sequences v(r) ∈ {0, 1}n such
that v(r)

i 6 v
(r+1)
i for all i ∈ {1, . . . , n} and all r > 0. Assume that v(r) = (1, 1, . . . , 1) for r � 0.

Then v defines a function σ : {1, . . . , n} → Z>0, where σ(i) is the smallest r such that v(r)
i = 1.

It is easy to see that this yields a bijection between sequences v and functions σ.
Let k(r) denote the number of zeroes of v(r), and let w(r) ∈ {0, 1}k(r) denote the sequence

such that w(0) = v(0) and v(r−1) ◦ w(r) = v(r) for r > 1. Clearly this establishes a bijection
between increasing sequences v and eventually empty sequences w = (w(1), w(2), . . .) such that
(w(r), w(r+1)) are compatible for all r.

With these notions in place, we apply Lemma 5.9 to f(00···0) iteratively. After one application,
we see that f00···0 is a sum over sequences w(0) of fw(0) , weighted by some monomials in q and t.
We apply the recursion again. The result can be viewed as a sum over sequences w(0) and w(1)

with (w(0), w(1)) compatible. Iterating indefinitely, we see that f00···0 can be expressed as a sum
over all sequences w of some monomials in q and t. Using the bijection between the w’s and the
v’s, we regard this as a sum over all sequences v of some monomials gv computed from v. We
claim that gv = ta(σ)+b(σ)qc(σ), which would prove the theorem.

Suppose an index i is such that v(r−1) = 0 but v(r) = 1, with r > 1. Then the t contribution at

the r-th step is tc(w
(r−1),w(r))+(σ

−1(r)
2 ) by Lemma 5.9. Taking the product over all r > 1 accounts

for the factor of ta(σ)+b(σ).
Finally, the number of zeroes in w(r) equals the number of indices i ∈ {1, . . . , n} such that

σ(i) > r, that is,
∑

s>r |σ−1(s)|. Each of these contributes a factor of q. Taking the product over
all r > 0 yields q to the power of∑

06r<s

|σ−1(s)| =
∑
06s

s|σ−1(s)| =
n∑
i=1

σ(i) = c(σ).

This accounts for the factor of qc(σ).

Appendix A. Miscellaneous computations

In this appendix we illustrate the usefulness of our method with a few computations of triply
graded homology for certain torus knots. For the reader’s convenience we present our results
with the proper normalization, and we state how to obtain classical invariants from them.

Let Pβ(Q,A, T ) denote the Poincaré series of HHH(F (β)), where Q,A, T denote the usual
quantum degree, homological degree, and Hochschild degree, respectively. This Pβ is an in-
variant of the braid closure L = β̂ up to multiplication by a unit in Z[A±, Q±, T±]. The precise
normalization which yields a link invariant requires that we introduce half-integral powers of
A and T :

PL(Q,A, T ) = T−e(β)Qn(Q−1A1/2T 1/2)e(β)−nPβ(Q,A, T ),

where e(β) is the braid exponent (signed number of crossings). The decategorification corre-
sponds to specializing T = −1. To avoid choosing a square root of −1, we first rewrite PL in
terms of Q,T , and the Homfly variable α = A1/2T 1/2Q−1:

PL(Q,α, T ) := T−e(β)Qnαe(β)−nPβ(Q,α, T ).

We call PL the super polynomial. Setting T = −1 recovers the Homfly polynomial in variables
α,Q. The slN specialization is then obtained by setting α = QN . For reference, the invariant of
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the unknot is

PU (Q,α, T ) =
α−1 + αT−1

Q−1 −Q
.

Recall that we prefer the variables t = T 2Q−2, q = Q2, a = AQ−2. Thus, we will usu-
ally rewrite PL in terms of these variables. The decategorification is obtained by setting t1/2 =
−q−1/2; if one wishes to avoid working in a ring with

√
−1, then one should also set a1/2(tq)1/4 =

−α. For knots, it turns out that the reduced superpolynomial P̃L(q, a, t) := PL(q, a, t)/PU (q, a, t) is
a Laurent polynomial in q1/2, a, t1/2, so no technical issue arises from the decategorification
t1/2 7→ −q−1/2. The slN specialization is then obtained by setting a = −qN . The following com-
putations were all done by hand. We omit their derivations, in the interest of readability and
length.

EXAMPLE A.1. The reduced superpolynomial of the (2, 2k + 1) torus knot is

ak(tq)−k/2
(
tk + qtk−1 + · · ·+ qk + a(tk−1 + qtk−2 + · · ·+ qk−1)

)
In particular, the superpolynomial of the right-handed trefoil—that is, the (2, 3) torus knot—
is a(tq)−1/2(q + t + a). The decategorification is −a(q + q−1 + a), and the slN specialization is
qN−1 + qN+1 − q2N .

EXAMPLE A.2. The reduced superpolynomial of the (3, 4) torus knot is

a3(tq)−3/2

(
t3 + qt2 + qt+ q2t+ q3 + a(t2 + t+ qt+ q + q2) + a2

)
.

The decategorification is

−a3
(
q−3 + q−1 + 1 + q + q3 + a(q−2 + q−1 + 1 + q + q2) + a2

)
.

Setting a = −q2 and tq = 1 gives the correct sl2 specialization (Jones polynomial):

q6
(
q−3 + q−1 + 1 + q + q3 − (1 + q + q2 + q3 + q4) + q4)

)
= q3 + q5 − q8.

EXAMPLE A.3. The reduced superpolynomial of the (3, 5) torus knot is a4(tq)−2 times

t4 + qt3 + qt2 + q2t2 + q2t+ q3t+ q4 + a
(
t3 + t2 + qt2 + 2qt+ q2t+ q2 + q3

)
+ a2

(
q + t

)
.

EXAMPLE A.4. The reduced superpolynomial of the (4, 5) torus knot is

a6(tq)−3

(
t6 + qt5 + qt4 + qt3 + q2t4 + q3t2 + q2t3 + q2t2 + q3t+ q3t3 + q4t2 + q4t+ q5t+ q6

+ a
(
t5 + t4 + t3 + qt4 + q2t3 + 2qt3 + 2qt2 + qt+ 2q2t2 + 2q2t+ 2q3t+ q3t2

+ q4t+ q3 + q4 + q5
)

+ a2
(
t3 + t2 + t+ qt2 + qt+ q2t+ q + q2 + q3

)
+ a3

)
.

Observation A.5. Each of the above polynomials is symmetric with respect to exchanging q and
t. Further, the smallest a-degree summands of the Poincaré series of the (n, n + 1) torus knots
are the q, t Catalan numbers, for n = 2, 3, 4. This verifies a conjecture in [GORS14] in these cases.
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