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Abstract

Deception has been proposed in the literature as an effective defense mechanism to address Advanced Persistent Threats
(APT). However, administering deception in a cost-effective manner requires a good understanding of the attack landscape.
The attacks mounted by APT groups are highly diverse and sophisticated in nature and can render traditional signature
based intrusion detection systems useless. This necessitates the development of behaviororiented defense mechanisms. In
this paper, we develop Decepticon (Deception-based countermeasure), a Hidden‘Markov. Model based framework where
the indicators of compromise (IoC) are used as the observable features to aid in detection. This theoretical framework also
includes several models to represent the spread of APTs in a computer system. The presented framework can be used to
select an appropriate deception script when faced with APTs or other similar malware and trigger an appropriate defensive
response. The effectiveness of the models in a networked system is illustrated by considering a real APT type ransomware.

Keywords Advanced Persistent Threats (APT) - Computer security - Cyber-security - Hidden Markov Model (HMM) -

Ransomware

1 Introduction

Advanced Persistent Threats (APT) are a form of quiet
invaders (Mehresh 2013b) and are a lingering nuisance
to industries and government organizations. They silently
perform reconnaissance, quietly invade, and keep a com-
munication channel open in orderto communicate with the
command and control (C&C) centers. The attackers control
the behavior of the malware from the C&C centers. APTs
carry out fargeted attacks to achieve their goal. They are
quite persistent in their efforts of achieving the goals and
in doing so they might come with a contingency plan to
which they may resort to upon discovery (Baksi and Upad-
hyaya 2018). Such a type of attack has become prevalent
and frequent, owing to the fact that malware-as-a-service
(MaaS) are readily available, which provide the attackers
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with the necessary framework and infrastructure to create
attacks (Leonard 2015; Messaoud et al. 2016). APTs come
in different forms and formats. In this paper we focus on the
detection and mitigation of a ransomware that qualifies as
an APT (Baksi and Upadhyaya 2018).

According to FireEye, 4,192 attacks were detected in 2013,
which were mounted by groups that can confidently be
classified as APT groups (Bennett et al. 2013). They
were also able to detect 17,995 different infections by
APT groups. The attacks thereafter have been increasing
by leaps-and-bounds. RSA Security LLC suffered finan-
cial losses of about $66.3 Million when it became a
victim of an APT attack (Vukalovi¢ and Delija 2015).
According to a study by Ponemon Institute, the aver-
age financial losses suffered by a company owing to the
damaged reputation after an APT amounts to about $9.4
Million (LLC 2013). WannaCry, Petya and NotPetya are
ransomware campaigns that graduated to become APTs
and collected huge amounts of ransom causing consider-
able financial losses to the victims (Baksi and Upad-
hyaya 2018). WannaCry collected ransom in BitCoins.
According to published reports, between May 12, 2017
and May 17, 2017, the attackers collected $75,000 to
$80,000 in ransoms (Clark 2017; Secureworks 2017).
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With time the cost of financial damage suffered by the com-
panies is expected to go even higher. If the target of attack
is a government agency, the damage could be beyond mere
financial losses; the attacks might even threaten national
security.

These aforementioned factors and incidents outline a
great threat to the critical infrastructure as a whole, be it
government or industry. The problems are intense and the
attacks are adaptive in nature, requiring a holistic approach
to address them. However, it is not necessary to put the
entire defense framework into the same defense mode every
time the system comes under attack because deploying a
sophisticated defense mechanism indiscreetly to fend off
attacks will severely affect performance and degrade the
quality of service (QoS). A better approach is to deploy
the most sophisticated countermeasure against the most
severe form of attack. Lesser sophisticated countermeasures
taking care of the less severe attacks would not only
be economical but also might help in preserving a good
balance between security, performance, and the QoS of the
system. In the same vein, system security through different
forms of information isolation has been studied for quite
sometime (Madnick and Donovan 1973). Isolation can be
achieved through software or hardware (Lorch et al. 2011).
But with advanced attacks from APT groups which are
highly adaptive in nature, they have been successful in
attacking physically isolated systems as well. One such
example is the Stuxnet campaign that took place in the
Iranian nuclear facility (Bencsath et al. 2012; Falliere et al.
2011; Langner 2011). Therefore, a need for a new form
of defensive strategy arose. Researchers have looked into
various approaches to repel highly sophisticated-attacks.
One of the approaches is the use of deception as a defense
tool.

In this paper, the aforementioned research ideas, viz.
isolation and deception, are used .to confront intricate
attacks arising from APT groups. The paper puts forward
a basic architecture, which is aimed at deceiving the
attacker into believing in its success, while surreptitiously
triggering a fix to thwart the attack. To make the defense-
system cost-effective, the defender must have knowledge
about the attack scenario. The information about the spread
and the status of a malware helps a defender to develop
an efficient attack averting strategy. This paper presents
Decepticon, a Hidden Markov Model (HMM) based
deceptive countermeasure which uses certain indicators of
compromise (IoC) for detection and mitigation of APTs.
With the inclusion of several malware spread models for
the understanding of the IoCs, this HMM-based detection
system serves largely as a theoretical framework with
a ransomware as use case. The major contributions of
the paper are the design of a hardware-based defense
framework and the development of a model for a HMM-
based APT type ransomware detection tool. The framework
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is a special case of the Kidemonas architecture (Baksi and
Upadhyaya 2017) and uses the concept of smart-box from
Mehresh and Upadhyaya (2012) for surreptitious reporting
and triggering of defensive scripts on being attacked. The
paper is organized as follows. Section 2 discusses related
work in this area. Section 3 discusses three malware spread
models and analyzes their suitability for the understanding
of the indicators of compromise (IoC). Section 4 presents
the new deception architecture. Section 5 describes the
HMM based detection system. Section 6 shows the working
of the Decepticon architecture. Section 7 discusses the
applicability of the system in the presence of an APT type
ransomware, viz. WannaCry. Finally, Section 8 concludes
the paper and paves way for future work.

2 Preliminaries and Related Work

In this section, some preliminaries are given on malware,
APT, the Trusted Platform Module (TPM) hardware,
deception, and HMM, which are used to develop the
Decepticon architecture in Section 4. Related work on these
topics.s also reviewed.

Malware created by the APT groups do not carry out
the attacks in a single stage. The “Cyber Kill Chain”
framework developed by Lockheed Martin describes an
APT through a seven stage life cycle (Hutchins et al.
2011). The model describes the beginning of the attack
through a reconnaissance phase wherein the malware
gathers information about the system. This is followed
by the weaponization phase, thereupon creating a remote
access malware that can be controlled by the attacker.
The delivery phase denotes the intrusion of the malware
into the system. In the exploitation phase, the malware
exploits the vulnerabilities that exist in the system. The
installation phase signifies the escalation of privileges on
the part of the malware and installation of back-doors to
maintain a communication with the command and control
(C&C) centers to receive further instructions. The command
and control phase implies the access of the target system
gained by the attackers from the C&C centers. Finally,
in the actions on objective phase, the intruder mounts the
final assault on the system. LogRythm describes an APT
through a five stage life cycle (LogRhythm 2013). Lancaster
University describes APT through a three stage life cycle
(Rashid et al. 2014). Baksi and Upadhyaya (2018) describe
APT through a set of five characteristics exhibited by a
sophisticated malware.

Ransomware are a type of malware which infiltrate a
system and hold critical data for a ransom. Primarily there
are three simpler types of ransomware, namely the locker,
the crypto and the hybrid (Zakaria et al. 2017). The locker
variant of the ransomware locks the entire system and
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denies the user access to the system. The crypto form
of the malware, targets specific files and/or folders and
encrypts them, thereby denying the user any access to those
encrypted resources. The hybrid version of ransomware
possesses the capabilities of both types of ransomware.
It can encrypt and lock targeted resources and/or the
entire system. But the ransomware under consideration
in this paper is a more advanced form of malware. In
addition to possessing the features of a primary ransomware,
they are more sophisticated by having a contingency plan
of attack on being discovered (Baksi and Upadhyaya
2018). They also perform the attack through multiple
stages and generally are controlled by the attackers from
the C&C centers. They qualify as APTs. Recently, an
Australian beverage company and educational institutions
in India became victims of ransomware attack (Bizga 2020;
Correspondent 2020; Simhan 2020). Off late, the malware
WannaCash is also causing trouble to the cyber-world
(Meskauskas 2020). Another example of a recent attack is
the one on Indian nuclear power plants causing significant
data breaches (Robbins 2019).

The the Trusted Platform Module (TPM) is a hard-
ware component designed following the guidelines of the
security consortium, the Trusted Computing Group (TCG)
(TCG 2011). The TPM comes with essential cryptographic
potential. It can generate cryptographic keys, both sym-
metric and asymmetric keys. It also has the capability .of
generating random numbers when required and can_store
cryptographic credentials. It also provides hashing capabil-
ities. The primary functionalities of TPM include verifi-
cation of platform integrity, safeguarding encryption keys,
and preservation of password and user credentials. Figure 1
gives a simplified schematic of the TPM version 1.2, the
specifications of which are laid down by the TCG. TPMs

Fig. 1 A Simplified Schema of
TPM (Piolle 2008)

today come in different incarnations that depend on the
type of device and the manufacturer. Intel Software Guard
Extension (SGX) and ARM TrustZone are versions of
TPM-like hardware components which come with certain
functionalities in addition to the ones already mentioned for
TPMs (Costan and Devadas 2016; Jang et al. 2016; Shep-
herd et al. 2016; Zhao et al. 2016). They provide a Trusted
Execution Environment (TEE), which are generally outside
the purview of high-priority OS instructions but can be
accessed using the user credentials. Therefore, in general it
can be assumed, even if the OS is compromised, that the
hardware component is outside the purview of the attacker.

Deception can often be considered as a potential weapon
against sophisticated attacks and it is an important area of
research. In Ceker et al. (2016), the authors use deception
to fight against denial of service (DoS) attacks. The
authors have analyzed the deceptive strategy using a game-
theoretic model based on the signaling game with perfect
Bayesian equilibrium (PBE) to investigate the implications
of deception to counter the attacks. Deception as a defensive
strategy has been usedin Pauna (2012), wherein the authors
have used deceptive measures to lure the attackers to high-
interaction honeypots for designing a malware detection
system.

Hidden Markov Models (HMM) have been historically
used for speech recognition (Rabiner 1989a; Ljolje and
Levinson 1991). It has also been applied for handwritten
character and word recognition (Chen et al. 1994). The
biggest advantage that comes with HMM is that, in a
process wherein the stages are not visible to the observer,
certain observable features can be used to predict the
stage of the process at a certain instance. Owing to this
advantage, HMM-based techniques have often been used
for the analysis of sophisticated malware. Metamorphic
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virus can be an annoyance. A metamorphic virus is capable
of changing its code and become a new variant of itself
without changing the functionalities. The changes are not
exactly visible to the observer and therefore observable
characteristics play an important role in the analysis.
HMM has been used for detection and analysis of such
metamorphic viruses (Kumar Sasidharan and Thomas
2018).

3 The Malware Spread Model

The threat being considered in this paper is a ransomware
type malware created by the APT groups. A careful analysis
of this threat will reveal the types of vulnerabilities, the
systems that are at risk and the spread of the malware.
This knowledge would help the defender to identify the
indicators of compromise for the analysis of the HMM
based APT detection system. The spread model being
discussed in this section would help the defender in
detecting the malware in its early stages. We consider
exponential growth, epidemic spread model, and random
walk for the spread of the ransomware and discuss their
applicability in attack detection.

3.1 Model 1 - Exponential Growth

The exponential growth model (Faghani and Nugyen 2017;
Sanderson ) can be used to model those malware which
infect systems and/or devices that communicate directly
with the infected systems and/or devices. A number of
new infections are caused by already infected cases. If we
assume that the population is large enough then we can use
the exponential model. Let us assume that N; nodes in a
networked system of a very large enterprise are infected at
a given time ¢. Let E be the average number of nodes which
are directly interacting with an‘nfected node, and let p be
the probability of an exposed node becoming infected from
its interaction with an infected node. Then the increase in
the number of infected nodes is given by

AN, =E-p- N,

At time t+1 we have

ANit1 =N+ E-p- N

With the aforementioned logic we can have
AN, =(1+E-p)- Ny

where N is the initial number of infections or the number
of infected nodes at t = 0.

Therefore, (1 4 E - p) is a constant greater than 1, which
means the infection is forever exponentially increasing. But
that is not always the case. With time, either a kill-switch is
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discovered or the non-infected nodes stop interacting with
the infected nodes.There can be another possibility, wherein
the infected nodes are interacting only with the infected
nodes, and thus, no new infections are found. Taking these
factors into account, one can introduce new parameters in
the equation to form a logistic curve from the rate of change
of infected nodes given by the following equation

dN 1 N
e e S
dt PopulationSize

wherein N is the number of infected nodes at a given
point of time, c¢ is the constant of proportionality and
PopulationSize denotes the total number of nodes in a net-
worked system. Initially the logistic curve is generally indis-
tinguishable from an exponential growth when the slope
is increasing till the time it reaches the “inflection point”,
when the slope is 1. After crossing the inflection point, the
slope is decreasing and therate of change of infected nodes
decreases till it saturates out or becomes 0. The growth
factor is generally taken into account which is given by

ANt
AN;

GrowthFactor =

which is‘'number of new infections at time ¢ + 1 divided by
number of new infections at time ¢. Before the inflection
point, the growth factor is generally greater than 1 and it is
less than 1 after the inflection point. At inflection point the
growth factor is 1.

3.2 Model 2 - Epidemic Spread Model

The spread of diseases which become epidemic are
perceived mathematically using the epidemic spread model
(Daley and Gani 1999). It helps in assessing the risk to the
uninfected and measure the spread of the disease. Inspired
from real life, the epidemic spread model can be applied
to the cyber-physical world (De et al. 2008; Di Pietro and
Verde 2011). It is similar to the exponential growth model
but more detailed. It takes into account both the susceptible
systems and/or devices as well as the recovered ones. It
gives a more comprehensive insight to the nature of the
malware spread which could help the defender to apprehend
the spread. There are two popularly used epidemic spread
models, which are Susceptible-Infected-Recovered (SIR)
and Susceptible-Infected-Susceptible (SIS). In the SIR
model, the susceptible object can get infected and after
infection a chance of recovery by some means is possible. It
is assumed in this model, that once the object has recovered,
it cannot be infected by the same infectious malware. But
in the SIS model, an infected object who has recovered can
become susceptible to the same malware after a duration
called incubation period. Generally, if a system has been
attacked by a certain type of malware and has recovered,
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then there is a very low chance that it will be affected by
the same malware again. After the attack, the vulnerabilities
are generally taken care of through patch release and/or
taking back-up of the critical data of the system. With these
assumptions, we move forward with the SIR model.

For the model we use N(¢), S(z), I(t), and R(t) to
denote the total number of nodes (that have the exploitable
vulnerabilities), number of susceptible nodes, number of
infected nodes, and number of recovered nodes, respectively
in a networked system. This give us N(z) = S() + 1(¢) +
R(t). In the same network, there can be nodes which do
not have the vulnerabilities that can be exploited by the
malware and are not relevant to our model. We use the
standard notations for infection rate and recovery rates
which are § and y, respectively. For the type of malware
under consideration, susceptible nodes are the ones which
have the relevant vulnerabilities, that are being exploited
for infiltration, and are communicating directly with the
infected nodes. Recovery rate indicates the removal of
the infected nodes and/or removal of the malware from
the infected nodes. Once a malware starts spreading, the
susceptible nodes can get infected if they communicate
directly with the infected nodes or are in the same network
as the infected nodes. From these assumptions we can
calculate the following rates of change of susceptible,
infected and recovered nodes, respectively (De et al. 2008):

asw) oo
= 8-S(@)-1(t)
dl
_di’) =5-S() - 1(t)—y - 1(t)
dR(1)
dt =y 10

The rates of change of number of susceptible nodes,
infected nodes and recovered nodes help the defender know
the behavior of spread and. the nature of vulnerabilities
being exploited. This would help.in an early detection of
the malware and risk assessment of the system for the
attack. The Delta value (§) also gives the time constraint for
exploitation of the vulnerabilities that exist in the system
(Baksi and Upadhyaya 2018). The Gamma value (y) gives
a sense of the weaknesses of the malware and subsequently
might help in discovering the kill-switch to thwart the
attack (Baksi and Upadhyaya 2018). Both § and y values,
if correctly estimated, then become important elements in
designing a behavioral based intrusion detection and/or
intrusion prevention system.

3.3 Model 3 - Random Walk

In a networked environment, if the malware can spread
to the nearest neighbors, with equal probabilities for each
of the neighbors then one can model the spread with the

Random Walk model (Spitzer 2013; Zyba et al. 2009).
The APT type ransomware, which is being considered as
the malware for this paper, can move around randomly
in a networked environment, if all the nodes have equal
probabilities of possessing the vulnerabilities it exploits to
infiltrate.

For smaller and simpler networked systems, one can use
the 1-D random walk model to show the spread of the
malware within the network. It can be as simple as the walk
on the integer line. Just like the integer line, if we move
our frame of reference with the first infected node at point
zero, then the next move which the malware makes towards
the nearest neighbor can be a random variable Z; of value
-1 or +1 with probability 50%. We set the value Sp = 0
and then we have §,, = Z:’z 1 Zi. The series {S,} is known
as the simple random walk on Z, where {Zy, Z1, ..., Z,} €
Z. Such a series manifests the distance traversed by the
malware, if each of the hops made by the malware is of
equal distance and.is made with equal probability.

3.4 Model Comparison and Applicability

An early detection of malware created by APT groups
gives the defender a leverage in effectively thwarting the
attack. The spread of a particular malware often reveals
the type of vulnerabilities that are being exploited for
infiltration. It also helps the defender comprehend the
systems at risk and the timing constraints regarding the
exploitation of the vulnerabilities (Baksi and Upadhyaya
2018). The exponential growth model gives the growth rate,
the inflection point and the extent of the infection. The
limitation of this model is its applicability to systems only of
large population size. It means that small or medium-sized
systems of networked nodes may not be suitably modeled
with the exponential growth characteristic. If the malware
spread can be modeled by random walk, then the primary
advantage is that it gives the probability of a particular node
being infected, once the attack has begun. It also gives an
estimate of the time, within which a particular node can be
infected with certain probability. This gives the defender a
valuable information regarding the time for preparedness.
But again, the drawback is, it would be difficult to apply this
model for a system with a very large population size which
is at risk. The SIR epidemic spread model suggests the
estimate regarding the nodes at risk which are denoted by
the susceptible nodes. It also gives an account of the infected
and the recovered nodes in the system. It outlines the extent
of nodes at risk, the vulnerabilities being exploited and the
rate of infection. If the spread model is assessed in detail,
then it might even give the rate of recovery and weaknesses
on the part of the malware. This helps in building a behavior
oriented countermeasure to thwart the attack mounted by
malware created by the APT groups. The model can be
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used for large as well moderately sized population. The
applicability of the SIR model for systems to defend against
APT type malware is discussed in Section 7.

4 Decepticon - The Architecture

The Trusted Computing Group (TCG) laid down the
specifications for Trusted Platform Module (TPM) with
an intention of creating a trusted computing environment
(TCG 2011). These specifications were capitalized on
to create a deception based architecture, Kidemonas
(Baksi and Upadhyaya 2017), which provides isolation
to malware detection systems so that the detection can
occur outside the purview of the attacker and the intrusion
can be surreptitiously reported to the user or the system
administrator.

In this paper the capabilities of Kidemonas are extended
to realize a cost-effective system to detect intrusions
from APTs. In a business enterprise type environment,
Kidemonas gives the system administrator the capability
to run different forms of intrusion detection on different
computing units. The information regarding intrusion
is shared with the system administrator and the other
computing units through a separate channel called the
peer communication network. It comprises of a link-layer
communicating unit present in each computing unit called
the peer communication unit (PCU). A computing unit in
this scenario refers to a computer or a server or basically any
computing unit which forms a node in the networked system

in a corporate network monitored by a single user or a single
group of users working collectively for the same purpose.
To make the defense strategies cost-effective, we use the
smart-box proposed in (Mehresh and Upadhyaya 2012).
The objective here is that whenever a form of intrusion is
detected, it is reported to the system administrator silently,
who in turn can monitor the attacker’s moves and use the
smart-box to trigger an appropriate defensive response from
the repository. The repository is a storage unit for defense
strategies that could be triggered to defend the system at
the event of an attack on the system. The defense strategies
range from simply blocking certain processes to defending
against intricate attacks. The smart-box on learning from
the nature of the attack and the status of the malware can
trigger an effective response which would be economical
in terms of time and resources being used. The smart-box
is the decision making unit regarding defensive strategies
depending upon the characteristics of the malware.

Figure 2 represents the hardware based defense architec-
ture called Decepticon whose aim is to deceive APT type
ransomware: Kidemonas (Baksi and Upadhyaya 2017) is
a more generic architecture to counter any APT, whereas
Decepticon is a customized version to have a HMM based
ransomware detection tool (which is subsumed under the
Enclave in the figure and discussed in the next section), and
a smart-box to trigger defensive actions depending upon the
severity of the attack. If the attack is determined to be of a
simple nature, the smart-box triggers a simple response to
counter it, and if the attack is sophisticated in nature, then it
triggers an elaborate response.

FIREWALL
INCOMING
TRAFFIC
CRYPTO
RO NORMAI
TRAFFIC
ENCRYPTED

TRAFFIC

HARDWARE-BASED TPM
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Fig.2 Decepticon Architecture
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The firewall (Fig. 2) performs signature based detection.
If the malware is able to get past the firewall along with
the legitimate traffic, it reaches the crypto-box. The crypto-
box makes a copy of the incoming traffic and sends the
normal traffic to the system. The copied traffic is encrypted
and sent to the hardware-based TPM. The encryption is
performed using the public-key of the endorsement key
of the hardware-based TPM. In the TPM, the ciphertext
is decrypted using the private-key component of the
endorsement key of the TPM. The analysis of the traffic
is done by the HMM based detection tool. Any form of
intrusion being detected is sent to the peer communication
unit (PCU) and from there to the PCU network, so as to
inform every node in the networked system about the form
of intrusion. The PCU network is accessible only through
the PCU, which in turn is accessible through the hardware-
based TPM. At the same time, a surreptitious reporting is
done to the user or the system administrator. The system
administrator then uses the storage root keys (SRK) to gain
access to the TPM to gain knowledge and the nature of the
intrusion that has taken place.

The security of the entire system relies on the fact
that the private key component of the endorsement key of
the TPM, which was created when it was manufactured,
never leaves the TPM. The security also relies on the fact
that the storage root keys (SRK) created by the users,
when they took the ownership of the TPM, is kept safely
guarded.

Figure 3 shows a snapshot of a networked system in a
corporate environment. This representation shows multiple
computing units connected to a single access point. Each
computing unit is connected to other «computing units
through the PCU network, which is also used to inform each
other of any form of intrusion in the system. Figure 3 shows
different versions of detection tools running on different
computing units; some of them running Decepticon while
others are running the generic. Kidemonas style APT
detection tools.

Fig.3 The System
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5 A Hidden Markov Model Based Detection
Scheme

The threat model under consideration in this paper primarily
deals with ransomware which qualify as advanced persistent
threats. This means that the attack mounted would be highly
sophisticated and persistent in nature. Such attacks can
render the traditional signature based intrusion detection
systems useless. To deal with APTs that have no prior
history, behavior-oriented defense systems are a necessity.
APTs are generally mounted in multiple stages unlike
more common threats. The knowledge of the stage in
which an APT is currently in, is a utilitarian information
for the defender to make an informed decision about the
defense strategy. A crucial feature manifested by APTs is
the existence of a contingency plan of attack (Baksi and
Upadhyaya 2018). A simple ransomware can be taken care
of with the existing infrastructure and defense strategies but
an APT with a contingency plan needs special attention. A
contingency plan of attack is an alternate attack strategy,
which the attacker might resort to, if it believes that the
defender is able to thwart the primary attack campaign. The
type of alternate campaign the attacker might resort to can
be completely different from the primary attack strategy. If
the attacker is spooked, it can execute the contingency plan
and that can inflict unwanted but significant damage to the
victim.

The APT type ransomware are typically mounted by
quiet invaders (Mehresh 2013b) and they subtly graduate
through different stages. Therefore, difficulty arises in
figuring out the status of the malware. One can look into the
behavioral changes and using those as observables can help
make an informed decision. To help the defender in making
that informed decision, we develop a Hidden Markov Model
(HMM) based intrusion detection tool. This tool will help
the defender discern the status of the malware with certain
probability, which would define its confidence in choosing
the defensive action.
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The proposed HMM has N number of hidden states and
M number of observables. The model can be denoted by
A= (A, B, ), where

— A is an N x N matrix that gives the transition
probabilities, characterizing the transition of each
hidden state to another. Hence, it is called the transition
matrix.

— B is an N x M matrix that gives the emission
probabilities for each hidden state. Hence, it is called
the emission probability matrix.

— misal x N matrix that contains the initial probability
distribution for each of the hidden states.

This detection model strictly deals with ransomware. It
intends to figure out whether a malware is a ransomware
or not, and if it is a ransomware then is it a ransomware
that has graduated to become an APT. Moreover, the model
also investigates that if the ransomware is an APT then
is it still pursuing its attack as a ransomware or would
resort to a contingency plan of attack. Taking all these into
consideration, we formulate the model using the following
parameters:

— The value of N is 4 which denotes that there are 4
hidden states being considered in this model, termed as
Z ={z1, 22, 23, 24}

— The value of M is 5 which denotes that the number
of observable random variables is 5, termed as X< =
{x1, x2, x3, x4, x5}

— a;; denotes the transition probability of the malware
from i'” latent state to j** latent state, where i € {154}
and j € {1, 4}

—  Bir denotes the emission probability of i/ latent state
manifesting r'" observable behavior, where i € {1, 4}
andr € {1, 5}

The hidden or latent states.of the malware are as follows:

—  The first state z; is where it is just a malware, regardless
of the fact whichever form of malware it graduates to.

— The second state z; is where the malware becomes a
ransomware.

— The third state z3 is the one wherein the ransomware
has graduated to become an APT.

— The fourth and the final hidden state in this model is
denoted by z4, wherein the attacker chooses to execute
the contingency plan of attack instead of mounting a
ransomware attack on the victim.

The hidden states of the malware are often outside the
purview of the defender’s intrusion detection system and
hence, the term hidden state, which entails the use of
HMM based intrusion detection model for ransomware. For
the model, as discussed earlier, the observable behavioral
features, X = {x1, x2, x3, x4, x5}, are used to ascertain the
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status of the malware. Following are the details regarding
individual observable features used to design the model:

— x1 : Reconnaissance

—  x : Interaction with honeypots or real-databases which
are of high value

— x3 : Backdoor implants and/or back-channel traffic

— x4 : If the strategy of “Campaign Abort” exists

— x5 : Existence of any other contingency plan of attack

The observable features help the defender to discern
the latent state of the model, which the malware is in,
while an attack is ongoing. It starts with the feature of
reconnaissance. The prior knowledge about the spread
of a malware created by same or similar APT groups
(using one of the models described in Section 3) help
the HMM model to differentiate the interaction of a
legitimate process with the system from the interaction of
a malicious process with the system. Moreover, the spread
models of the malware also give an insight regarding the
frequently exploited vulnerabilities of a system. Systems
with very high value resources often deploy honeypots
and/or honeypot farms. The interaction with the honeypots
and the activity logs often reveal the nature of the malware
and. help in-understanding whether the malware is a
ransomware or not. The manifestation of other observable
features like existence of back-doors and back channel
communications, and existence of other plans of attack
including a “Campaign Abort” strategy are critical features
often portrayed by malware created by APT groups. Hence,
these features are important in ascertaining the latent state
of the malware in the HMM based detection model, while it
is performing an attack.

Figure 4 shows the HMM based ransomware detection
model. With the latent states, observable features, and
the associated parameters, we can determine the transition
probability matrix A and the emission probability matrix B.
We have the following for matrices A and B, respectively:

_0511 12 013 14
021 (022 €23 024
03] (032 (33 034
L &41 042 (43 C44

[B11 Br2 Bi3 Bis Bis
B21 P22 B2z Pos Bos
B31 P32 B3z B3a Bss

| Bar Baz Baz Basa Pas

Transition probability:

T(lj) = aij = pQzr+1 = jlae = 1)

wherei € {1,2,3,4}and j € {1, 2, 3, 4}
Emission probability:

gi(xk) = p(x = xplzg = 1) = Pir
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Fig.4 HMM based
Ransomware Detection Model

where ¢; (xy) is the probability distribution on X, such that
xre X, ke{l,2,3,4,5}andi € {1,2,3,4}
Initial probability distribution:

n(@)=pz=1i)

where i € {1, 2, 3, 4}
The joint probability distribution is given by:

3 5
P& s 2, X1, s X5) = 70() [ [ Trprlzn) [ | £206a)
k=1 n=1
The transition probabilities considered for this paper are

updated as in the following matrix:

o] o122 0 0
0 o) 03 0
0 0 o33 az
0 0 0 owu

The transition probability from state z; to state z3 is 0
owing to the fact that it has to first go through state z
as it will portray the features of ransomware anyway. If it
portrays features of any other form of malware, then it stays
in this state as the detection of other forms of malware is
outside the scope of this model. Similarly, the transition
probability of state z; to state z4 is also zero, as the malware
cannot directly make a transition to the final state without
becoming a ransomware first. According to the assumption
made in this model, effectively the malware can remain in
some other form of malware or become a ransomware.

The transition probability of state zp to state z; is
assumed to be zero. The basis for the assumption is, if
the model can depict characteristics of some other form of
malware, which is not a ransomware, then it is effectively
state z4. Hence, any behavior of this type is categorized
under state z4. The same reasoning applies to the transition
probabilities of states z3 to z; and states z4 to zj. The
transition probability of states z; to z4 is 0, owing to the fact

A=

"R

.

that in state z it is already.a ransomware, and if the attacker
is planning to execute a contingency plan of attack then it is
effectively state z3 as it has already graduated to become an
APT (Baksi and Upadhyaya 2018).

The transition probabilities of states z3 to zo and z4 to
zo arecassumed to be 0. In state z3 the ransomware has
graduated to become an APT. On reaching this state, the
ransomware will execute APT type attack and/or will abort
the campaign upon discovery. In state z4 the APT type
ransomware has decided to execute some other form of
attack as a contingency plan of action owing to a belief
of being discovered by the defender. The assumption here
is that once a ransomware has graduated to become an
APT, it cannot be considered as a simple ransomware,
even though it executes a ransomware style attack and/or
resorts to a contingency plan. Even if the attacker executes a
contingency plan, which effectively is a ransomware attack,
then there is a high possibility that the newer form of
ransomware attack would be somewhat different from the
primary form of attack, and therefore we assume this as an
alternate form of attack and the model denotes the state to
be z4.

The initial probability distribution depends on the type
of attacking group and the malware created by them. The
probabilities with which the observable features are visible
constitute the emission probability matrix and it depends on
the type of resources, the system, the attack framework and
the duration of attack.

6 Decepticon - In Action
The Decepticon architecture that is built upon Kidemonas
makes it scalable and easy to use due to its reliance

on commercial off-the-shelf components (COTS) such as
the TPM. This scalability helps in future proofing of the
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Fig.5 A Scenario wherein One System is under Attack

entire system. The transition and emission probabilities
once calculated, would provide the defender with valuable
information about the malware that would help the user
to trigger a cost-effective response from the repository
through a smart-box. The biggest advantage for the defender
is awareness, security and cost-effective countermeasure.
Once the model is put to application in the real world, it
would yield numerical values for the transition and emission
probability matrices. This helps the defender to make an
informed decision, without compromising the quality of
service of the system.

Given the scalability nature of Decepticon as shown in
Fig. 3, it is safe to assume that there will be ‘multiple
nodes in a networked environment and each of them
would be running a Kidemonas or a Decepticon type IDS
individually. The intrusion detection happens outside the
purview of the attacker. However, theframework presented
here doesn’t guarantee that the APT detection system would
be successful at all times. There can be advanced forms
of attacks, which might defeat the IDS itself, wherein the

Fig.6 Classifier Based On-line
Predictive Model

IDS fails to identify the‘attack and gives out false negative
and the system becomes defenseless. But once the attack
has occurred, a copy of the malware still exists within the
Decepticon architecture. That malware can then be analyzed
and attacks on systems with similar vulnerabilities can be
thwarteds:As shown in Fig. 5, if one system is under attack,
the information is communicated to the other nodes in
the networked environment through the PCU network and
preventive action can be taken to save the remaining nodes.
The probability matrix can be updated for future use. The
detection system can be trained on past attacks, extracting
features and updating the probability matrices. When the
IDS gives out false positives, then also the performance is
not affected as it happens outside the system.

Let us now discuss the benefit of using HMM to counter
APTs. The purpose of our framework is to anticipate the
state of the malware and take preventive action. For this
purpose, one can use a classifier. Using the feature set for
a given state, one can do online prediction of the state of
the malware. As shown in Fig. 6, given the feature set

R OSONOROR

ONONORO

X; : Feature Set

z;: States
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at time ¢ + 1 and the behavior observed till time ¢ (the
behavior observed through the feature sets manifested for
the respective states) and the states observed till time ¢, the
classifier can predict the state of the malware at time ¢ + 1.
This would be immensely helpful in tailoring a preventive
action against the malware. But the HMM based IDS can do
more than that. An HMM based IDS would also be able to
provide more behavioral data regarding the malware and in
case of an APT, the behavioral pattern of the attacker can be
logged and analyzed through the probability matrices. It can
be trained using similar attacks originating from different
APT groups and/or can be trained on different attacks
originating from the same APT group. This would not only
help the defender to ascertain the state of the malware but
also would give an insight regarding the behavior of the
malware and/or the attacker.

As illustrated above, our model shows the way the
countermeasures become more sophisticated as and when
the malware advances to the higher states. The calculation
of the transition probability and the emission probability
matrices as well as the initial probability distribution is not
done in this paper due to lack of real world data. The HMM
based detection tool and the surreptitious reporting of the
intrusion information by the Decepticon architecture pave
the way for better security in corporate environments as well
as in mission critical systems. We now discuss a use case
to illustrate how the proposed model can be used in the real
world.

7 WannaCry: a Use Case

We consider WannaCry (Endgame .2017; Secureworks
2017) to illustrate the effectiveness of the models developed
in this paper and the associated detection framework. It was
created by the APT group named Lazarus from North Korea
(Endgame 2017). We first look into the spread model for
probable indicators of compromise (IoC). This is followed
by HMM based ransomware detection taking over the
control of predicting the stage of attack, so that the defender
can tailor a defense strategy best suited to the stage of attack.

The series of attacks carried out by WannaCry in 2017
is known as “WannaCry Campaign.” Figure 7 shows the
execution flow of WannaCry (Endgame 2017). The attack
started on May 12, 2017 and ended on May 17, 2017.
Over this period, the attackers earned somewhere between
$75,000 to $80,000 from ransom (Secureworks 2017). The
execution flow of WannaCry malware gives an insight to
the indicators of compromise (IoC) to look for, which in
turn would help the defender to look for the observable
features for the HMM based intrusion detection system. The
systems which contained the Eternal Blue vulnerabilities
of SMBvI are the ones which are susceptible to the

WannaCry attacks. The dropper exploits the vulnerability
to infiltrate the system as shown in Fig. 7. The ones which
have already been locked out or the ones which have the
DoublePulsar back-door implant tools in the system and
some form of back-door communication is going on are the
ones which can be termed as infected systems. Figure 7
shows that after infiltration, the main task of the malware
is to encrypt the system using the AES encryption scheme
(Daemen and Rijmen 1999; Mahajan and Sachdeva 2013a).
The WannaCry execution flow diagram also shows, how
it queries a bogus domain in order to be certain that it is
not being run in a controlled environment. If the malware
believes that it is being run inside a sand-box or any
controlled environment, it resorts to a contingency plan of
attack. The systems which have received the decryption key
after the payment of the ransom or the systems which earned
some time once the kill-switch (or faking the initial beacon
as shown in Fig. 7) has been triggered, are the ones that
formed the population of recovered systems.

The spread model used for WannaCry in this paper is the
SIR model. The important data we need are the total number
of susceptible nodes, the infected nodes and the recovered
nodes. But it is'difficult to get all the data when the attack
is in.progressrand one could only make an estimation. The
estimates are then used to compute the rates of change of
susceptible, infected and recovered nodes as described in
Section 3.2.

The spread model gives a perception of the vulnerabili-
ties being exploited from the Delta value (§), the weaknesses
of the malware including the kill-switch, and the recovery
rate from the Gamma value () once the ransom is paid. All
these information from the spread model gives the defender
useful insight of the behavior of the malware, which helps
in understanding the observable features so as to predict its
clandestine states, to build a Hidden Markov Model based
detection tool.

In order to perceive the IoCs, we assume there are “ng”
susceptible nodes and “n;” infected nodes and “n;” total
nodes, then the total recovered nodes will be n; — (ng + n;).
So, the fraction of susceptible, infected and recovered nodes
are given as follows:

Fraction of Susceptible Nodes = ng/n;
Fraction of Infected Nodes = n;/n;

Fraction of Recovered Nodes = (ny — (ng +n;))/n;

— The Fraction of Susceptible Nodes gives an estimate of
the vulnerable nodes which might come under attack.
The total number of susceptible nodes is estimated to
be a few orders of magnitude more than that of the total
numbe r infected nodes. Through further investigation,
one can approximate the type of resources under attack.
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Fig.7 WannaCry Execution
Flow (Endgame 2017)
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An analysis of Fraction of Infected Nodes and Fraction
of Recovered Nodes would help the defender to gauge
the types of vulnerabilities being exploited for the
attack.

If we observe the attack for a brief period, we can
obtain the § and the y values. From these values we can
calculate the rates of change of susceptible, infected and
recovered nodes.

This would help us to calculate the time taken for
recovery if ransom is paid, and/or if there are other
ways to tackle the attack on the system including the
existence of a kill-switch (if there exists one). The
information about the resources under risk can be
obtained from analysis of the fractions of susceptible
and infected nodes.

We then can calculate the emission probability matrix
that accounts for the behavioral aspects manifested
by the attacking malware while interacting with the
system.

Moreover, the information regarding the § and the y
values gives us the Rg value. Ry is the number of nodes
that are at risk because of one infected node and is given
by Ry =4/y.

The § and the y values denote the intrinsic nature of
the malware and are “generally” different for different
malware. But if they are same or similar in value for two
different malware, then there is a very high probability
that they belong to the same family of APTs and/or are
created by the same attackers.

Using the aforementioned information, the systems on
which the attack is on-going, the state of the-malware
can be discerned, which gives the information about the
stage of the attack and a suitable defense strategy can
be tailored for that particular stage of attack

Table 1 gives us the parameters required for both
the spread model and the HMM based detection
model.

The first step now is the identification of the observable

features/states (as discussed in Section 5).

Table 1 Parameters for spread
model and the detection model

x1 in this case would flag any process or program
searching for the EternalBlue vulnerabilities if at all
they exist in the system.

x would flag any process that is actually interacting
with the SMBv1 vulnerabilities (Secureworks 2017).

It can also denote any process that is interacting with
honeypots with similar vulnerabilities.

— x3 feature manifests the existence of DoublePulsar
back-door implant tool in the system and/or existence
of a back-channel communication between the malware
and its command and control (C&C) centers.

— x4 feature denotes the “Campaign Abort” strategy
by the malware if it finds itself in a sand-boxed
environment.

— x5 feature is a bit tricky to predict or discern before
it has actually been manifested by the attackers. In
the context of WannaCry this can be the DDoS attack
mounted on the server that hosted the “Kill-Switch”
(Greenberg 2017).

Once we have the observable features, we can use the
HMM based detection system to predict the hidden/latent
states for the WannaCry campaign.

— z1 denotes the state where it can be any malware.

—  zp denotes the state where it has manifested the features
of being:a ransomware.

— z3 signifies the state where the ransomware has
qualified to'become an APT with primary intention of
executing ransomware attack or aborting the campaign
upon discovery (which in this case is a “do nothing”
strategy when the malware “believes” that it is being
run in a sand-boxed environment).

— 74 manifests the intention of the attacker of executing
some other form of attack as a contingency plan of
attack. In the context of WannaCry the contingency plan
of attack is the DDoS attack mounted in the server
hosting “Kill-Switch”.

The HMM based detection model takes over once we
have the emission probabilities of initial compromise from
the spread model. The initial probability distribution of the
malware would depend on the APT group which created
the malware. Initially, the origin of the attack may not be
known, so we use a standard probability distribution from
past attacks of similar nature. As and when the details
of the attack are revealed, we use the proper probability
distribution values of the malware attack created by a
particular APT group and then modify the distribution if
needed. The transition probabilities for different hidden
states are characteristics of the creators of the malware,

Spread model

HMM based detection model

Number of Susceptible Nodes [S(t)]
Number of Infected Nodes [1(t)]
Number of Recovered Nodes [R(t)]

Initial Probability Distribution (i)
Emission Probability Matrix(B)
Transition Probability Matrix(A)
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Table 2 Tllustrative transition probabilities for each hidden state

Table 3 Tllustrative emission probabilities for each hidden state

State to state transition

Probability X1 X2 X3 X4 X5
State 1 to State 1 P+ =llzg=1) =0a1; =03 State 1 0.65 0.25 0.1 0 0
State 1 to State 2 P+ =2z =1 =a1p =07 State 2 0.2 04 0.3 0.1 0
State 2 to State 2 P41 =2|zk =2) =an =04 State 3 0.1 0.3 0.3 0.2 0.1
State 2 to State 3 P41 =3lzk =2) = a3 = 0.6 State 4 0.1 0.2 0.2 0.2 0.3

State 3 to State 3
State 3 to State 4
State 4 to State 4

PZit1 =3lzk =3) = a33 =0.8
pakt1 =4z =3) =34 =02
k1 =4z =4) =aus =1

which in our case are the APT groups. To begin with, our
model uses standard transition probabilities learned from
similar attacks in the past based on the emission matrix. The
emission probabilities for each state will be given as stated
in matrix B in Section 5 and the transition probabilities will
be given as stated in matrix A in Section 5.

In order to show the working of our model in the absence
of experimental data, we make some assumptions regarding
the probability matrices, with WannaCry as the malware.
The transition probabilities manifest the transition of the
malware from one state to another given the last state.
WannaCry would behave simply as a malware in the first
state. But it is essentially a ransomware, hence it would
behave like one rather than be a simple malware. Therefore,
the transition probability of WannaCry will be considerably
higher for the transition from State 1 to State 2, wherein it is
a ransomware, as compared to the transition to State 1 from
itself. Inherently WannaCry is an APT type ransomware. So,
the transition probability of WannaCry will be considerably
higher for the transition from State 2 to State 3, wherein it
behaves as an APT, as compared to the transition from State
2 to itself. In State 3, WannaCry behaves.as APT and has
higher advantage if it remains in‘this‘state. The pay-off for
the malware is highest in thisstate until it is discovered. On
being discovered, it makes a transition to State 4, at which
point it executes a contingency plan of attack. The malware
on assuming that it has been discovered, makes a transition
to State 4. Once in State 4 it either aborts the campaign or
executes a contingency plan of attack. Therefore, WannaCry
in State 4 remains in State 4. With these assumptions, we
created an illustrative transition probability matrix as shown
in Table 2.

We now look for the observable features which are
manifested with certain probabilities given by the emission
probability matrix. The observable features in this context
are given by the feature set X in Section 5. In State 1,
WannaCry behaves mostly as a generic malware, so the
feature which is manifested with highest probability is x;.
It, being a ransomware, features x, and x3 are expressed
with lower probabilities. The features x4 and x5 may not be
expressed at all. In State 2, WannaCry being a ransomware,
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will manifest the feature x, with the highest probability and
other features will be manifested with lower probabilities.
In this state, it has not graduated to express all the features
of an APT malware, therefore, feature x5 will be manifested
with lowest probability. In State 3, it has graduated to
express all the features of an APT, so all the features will be
observable with certain probabilities. In State 4, WannaCry
is an APT malware with a contingency plan of attack.
Thus, in this state, the feature which will be observable
with highest probability is x5, while the remaining features
will be manifested with certain probabilities lower than that
of feature x5: The resulting emission probability matrix is
illustrated in Table 3.

The initial probability distribution of the states of a
malware created by an APT group generally depends on
the group. An APT group can create any random malware
which can be used to mount targeted attacks on certain
industry and/or institution. Therefore, the initial probability
matrix will have the highest probability for State 1 for
all types of malware. In the context of WannaCry, State
2 would have the second highest probability. The states 3
and 4 would have lower probabilities. The resulting initial
probability matrix is shown in Table 4.

Once we have all the three matrices for the HMM based
ransomware detection model, we can use either of the
Forward-Backward Algorithm, Baum-Welch Algorithm or
Viterbi Algorithm to predict the sequence of states for the
malware and the defender can tailor a response based on the
outcome of the algorithms (Forney 1973; Rabiner and Juang
1986, 1989a, b).

Through detailed experiments, the transition probability
matrix, the emission probability matrix and the initial
distribution matrix can be calculated and put to application
in the real world scenario. Every time the status of the
malware is detected, a cost-effective countermeasure could

Table 4 Tllustrative Initial Probability Values for Each Hidden State

State Initial probability
State 1 0.6
State 2 0.2
State 3 0.1
State 4 0.1
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be deployed. In the context of WannaCry, the following are
the countermeasures that could be employed once the status
of the malware is known:

— When it is at the state of malware, simple patching of
the system would help. Microsoft had released a patch
update as soon as it had learned of the vulnerability.

— When the malware is graduating to become a ran-
somware then backing-up of the important databases
would help.

— As the ransomware graduates to become an APT,
blocking back-door traffic along with patching the
system as well as maintaining a back-up of the database
would help. Also triggering the “Kill-Switch” might
help.

— In the final state, APT proceeds to execute the
contingency plan of attack which in this case is the
DDoS attack mounted on the server hosting the “Kill-
Switch.” The countermeasure in this case is all the
countermeasures applicable for the previous state as
well as another defensive action would be to protect the
server which hosts the “Kill-Switch”.

8 Conclusion and Future Work

The paper describes a new architecture which incorporates
the idea of isolation to secure a networked system against
advanced persistent threats (APT). It employs deception
as a defense technique through the use of a hardware-
based TPM. Deception is used to surreptitiously repotrt.-the
detection of an attack to the system administrator. This
dupes the attacker into believing in its silent invasion while
giving the defender valuable time to_prepare for preventive
strategy to thwart the attack. In this‘paper, we also described
the development of an HMM based APT type ransomware
detection tool.

Prior to the development of a prototype of the HMM
based detection tool, a test-bench needs to be created to
analyze and validate the model. Initially, the experiments
can be conducted via simulation using customized software.
Currently, commercially available TPMs have limited
memory and processing capabilities. This would make
running of process heavy detection models inside a TPM
a difficult proposition, and hence, the choice of software
simulation tools is a preferred option for initial experiments.
One of the drawbacks for the security in this framework
is the existence of insider threat (Bishop and Gates 2008;
Greitzer et al. 2008). An insider threat can defeat the
presented solution and addressing this threat will be a part
of future work.
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