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Abstract. The peculiar velocities of biased tracers of the cosmic density field contain important
information about the growth of large scale structure and generate anisotropy in the observed
clustering of galaxies. Using N-body data, we show that velocity expansions for halo redshift-
space power spectra are converged at the percent-level at perturbative scales for most line-of-sight
angles pu when the first three pairwise velocity moments are included, and that the third moment
is well-approximated by a counterterm-like contribution. We compute these pairwise-velocity
statistics in Fourier space using both Eulerian and Lagrangian one-loop perturbation theory
using a cubic bias scheme and a complete set of counterterms and stochastic contributions.
We compare the models and show that our models fit both real-space velocity statistics and
redshift-space power spectra for both halos and a mock sample of galaxies at sub-percent level
on perturbative scales using consistent sets of parameters, making them appealing choices for the
upcoming era of spectroscopic, peculiar-velocity and kSZ surveys.
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1 Introduction

The large-scale structure (LSS) of the Universe contains a trove of information relevant to as-
trophysics, cosmology and fundamental physics, including the initial conditions from the early
universe and constraints on cosmological parameters and gravity [1-3]. As cosmological distances
are typically inferred through redshifts, a common theme in LSS observations is the necessity
to operate in redshift space, where the peculiar velocities of observed targets lead to structure
beyond what exists in real space [4, 5]. These so-called redshift-space distortions (RSD) present
both a modeling challenge and additional information by encoding information about cosmic
velocities in observed densities, for example allowing us to measure the derivative of the lin-
ear growth factor fD = dD/dIna, where f(a) and D(a) are the linear-theory growth rate and
growth factor (see e.g. refs. [1, 2] for recent reviews). Current and upcoming spectroscopic sur-
veys such as DESI [6] and EUCLID [7] will test these measurements at unprecedented precision.
At the same time, the rise of next-generation ground-based CMB experiments [8, 9] as well as
renewed interest in low-redshift peculiar velocity surveys [10-12] in recent years makes it likely
that direct measurements of the peculiar velocity statistics underlying redshift space distortions
will become available in the near future, offering complementary probes for theories of structure
formation. These developments make it timely to revisit our understanding of velocities in large
scale structure and their link to redshift space distortions.

The evolution of the LSS at high redshifts and large scales is well modeled by linear pertur-
bation theory [13-15], and the reach of the perturbation theory can be extended to intermediate
scales by including higher order terms in the equations of motion [16]. In this paper we shall
consider 1-loop perturbation theory in both the Eulerian (EPT; [16-27]) and Lagrangian (LPT;
[28-39]) formulations, and their extensions as an effective field theories [39-41]. EPT has been
extensively employed in the analysis of large-scale structure surveys, with the most recent incar-
nation being refs. [42—44]. LPT provides a natural means of modeling biased tracers in redshift
space [32, 33], including resummation of the advection terms which is important for modeling
features in the clustering signal, and deals directly with the displacement vectors of the cosmic
fluid, making it an ideal framework within which to understand their derivatives, i.e. cosmological
velocities.



The goal of this paper is to develop a consistent Fourier-space model of both peculiar-velocity
and redshift-space statistics. Our strategy is twofold: first, since the redshift-space power spec-
trum of galaxies can be understood in terms of series expansions of their velocity statistics, we
explore the convergence of these expansions to understand their requirements and limitations.
Our analysis of these expansions for halo power spectra uses nonlinear velocity spectra mea-
sured directly from simulations, which include nonlinear bias and fingers-of-god [45], and is a
continuation of that in ref. [46], who explored these convergence properties within the Zeldovich
approximation, and refs. [47, 48], who explored them in the context of matter and halo power
spectra. Similar expansions using velocity statistics from N-body data have also been studied
in configuration space for the Gaussian and Edgeworth streaming models [49-52]. Second, we
use one-loop perturbation theory with effective corrections for small scale effects to model the
requisite velocity statistics. Our work builds naturally on previous work in configuration space
combining velocity statistics and the correlation function in LPT, particularly within the context
of the Gaussian streaming model [13, 49-51, 53, 54], though modeling these statistics in Fourier
space enables us to more effectively extend the reach of perturbation theory. We compare and
contrast the behavior of these velocity statistics in both EPT and LPT.

This work is organized as follows. We begin in Section 2 by describing the N-body simulations
that we use throughout the paper. In Section 3 we briefly review two methods of expanding
velocity statistics in the redshift-space power spectrum (the moment expansion approach and the
Fourier streaming model) and study their convergence at the level of velocity statistics measured
from N-body simulations. We describe the modeling of these velocity statistics in perturbation
theory in Section 4 providing a comparison of and translation between the two approaches.
Finally, in Section 5 the velocity expansions and PT modeling of velocities are combined to yield
a consistent model for the power spectrum within one-loop perturbation theory. We conclude
with a discussion of our results in Section 6. In Appendices, we compare our work to existing
models (A, B), discuss differences between power spectrum wedges and multipoles (C) and provide
details of our numerical calculations (D,E,F,G).

2 N-Body Simulations

In this paper we will use N-body data for two purposes: (1) to test the convergence of various
velocity-based expansions for redshift space distortions using exact velocity statistics extracted
from simulations and (2) to investigate the extent to which these velocity statistics can be modeled
within 1-loop perturbation theory and combined to model the redshift-space power spectrum for
biased tracers. To this end we make use of the halo catalogs' from the simulations described in
ref. [55]. These were the same simulations used in ref. [51], to which the reader is referred for
further discussion. Briefly, there were 4 realizations of a ACDM (£, = 0.2648, Q,h? = 0.02258,
h = 0.71, ns = 0.963, 0 = 0.8) cosmology simulated with 4096 particles in a 4 h~!Gpc box.
We measured the halo power spectrum in two mass bins (12.5 < IlgM < 13.0 and 13.0 < IlgM <
13.5; all masses in h=1Mg) at z = 0.8 and 0.55, in both real and redshift space. We compute
the power spectra in bins of width 0.0031 A Mpc~!, which is small enough that effects due to

!The data are available at http://www.hep.anl.gov/cosmology/mock.html. Of the 5 realizations, the data for
the first were corrupted so we used only the last 4.



lgM Redshift n b
12.5 —13.0 0.55 0.61 1.45
13.0 —13.5 0.55 0.19 1.93
12.5 - 13.0 0.8 0.53 1.72
13.0 —13.5 0.8 0.15 2.32
‘Galaxies’ 0.8 0.80 1.97

Table 1. Number densities and bias values for the samples we use. Halo masses are log;, of the mass in
h~' Mg, number densities are times 1073 h3 Mpc~3. The last row, labeled ‘Galaxies’, refers to the mock
galaxy sample drawn from the halo occupation distribution described in the text.

binning are 0(0.1%) for the theories we wish to test. We additionally computed the Fourier-
space pairwise velocity statistics up to fourth order in real space. The aforementioned quantities
were all computed using the publically available nbodykit software [56]. The number densities
and rough estimates for the linear biases of the halo samples we consider are given in Table 1.

The total volume simulated, 256 h=3Gpc?, is equivalent to > 40 and > 25 full-sky surveys for
redshift slices 0.5 < z < 0.6 and 0.75 < z < 0.85, respectively. The statistical errors from the
simulations should thus be much smaller than those of any future survey confined to a narrow
redshift slice and are dominated by systematic errors in the algorithms or physics missing from
the simulations themselves. In fact, the simulations were run with “derated” time steps and
halo masses were adjusted to match the halo abundance of a simulation with finer time steps
[55]. As detailed in ref. [51], tests of halo catalogs produced with and without derated time steps
lead us to assign a systematic error of several percent to the clustering statistics measured in
these simulations. Of direct relevance to redshift-space statistics, by comparing the mean-infall
velocity and pairwise velocity dispersion on very large scales with linear theory predictions we
see evidence that the velocities are underpredicted by about 1-2% by z = 0.55. In particular we
note that agreement with theory can be improved on all scales if we increase N-body velocities
by such a constant factor. To keep the measured redshift-space power spectrum and velocity
statistics consistent, we do not apply this correction. Rather, we choose to focus our analysis
primarily on the redshift bin z = 0.8, relevant in the near term for spectroscopic surveys such as
DESI [6] and where the accumulated effects of this systematic are less severe, noting that a few
percent error is well within the error budget for simulations of this form.

Finally we construct a mock galaxy sample at z ~ 0.8 using a simple HOD applied to the
dark matter halo catalogs. Since it is not our goal to match any particular sample, but rather to
investigate how well our model performs on a sample covering a wide range of halo masses and
with satellite galaxies, we simply populate all halos above My, = 1025 h=1 M, with a “central”
galaxy taken to be comoving with the halo and at the halo center. We also draw a Poisson
number of satellites with

M
<Nsat> = @ (M - Mcut) <]\41> 3 Ml == 1014 hilM@ (21)

and arrange them following a spherically symmetric NEFW profile [57] scaled by the halo concentra-
tion and virial radius. In addition to the halo velocity, the satellites have a random, line-of-sight



velocity drawn from a Gaussian with width equal to the halo velocity dispersion. This sample
has complex, scale-dependent bias and finger-of-god velocity dispersion on small scales providing
a test of the ability of our model to fit observed galaxy samples which exhibit both properties.

3 Redshift Space Distortions: Velocity Expansions and Convergence

3.1 Formalism

In large-scale surveys, line-of-sight positions are typically inferred by measuring redshifts. Since
redshifts are affected by the peculiar motions of the observed objects, these inferred redshift-
space positions s will be shifted from the “true” positions x of these objects according to s =
x + n(n - v)/H, where fi is the unit vector along the line-of-sight and H = aH is the conformal
Hubble parameter [14, 15]. Overdensities in redshift space are thus related to their real space
counterparts via number conservation as

14+ d4(s,7) = / d*x (14 64(x,7)) dp(s —x — u)
(27)30p (k) + 65(k) = / dPx (14 3y(x,7)) elbetub) (3.1)

where we have defined the shorthand u = n(n - v)/H. From the above, the redshift space power
spectrum can be written as a special case of the (Fourier transformed) velocity moment-generating
function [58]

- k3 4 .

M(J, k) = 27?2/ d3r kT <(1 + d4(x1))(1 + 5g(x2))e"]'A“>er2:r, (3.2)
where we have defined the pairwise velocity Au = u; — up and the k3/(27?) in inserted for
convenience. Specifically, we have

k? > K 3,. ikr ik-Au

T pk) = M(I =k k) = / Br e <(1 +8,(x1))(1+ 6,(x2))e > . (33)

27’[’2 27‘(‘2 X1 —X2=T
Note that the moment generating function with J = 0 is directly proportional to the real space
power spectrum, i.e. My = k3P(k)/(27%) = A?(k), where A2(k) is the power per log interval in
wavenumber in real space.

There exist many approaches to model the redshift space power spectrum (see e.g. refs. [58—
60] for recent reviews). Roughly speaking, these techniques can be understood as different series
expansions of the exponential in Equation 3.3 (see e.g. the discussion in ref. [58]; a related
discussion on the correlation function and velocity expansions in configuration space can be
found in ref. [61]). Our main objective here is to explore the effectiveness of two Fourier-space
based approaches: the moment expansion (ME), or “distribution function approach” [62], and
the recently proposed Fourier Streaming Model (FSM) [58].

In the moment expansion approach the redshift-space power spectrum is derived by expanding
the exponential in Equation 3.3 such that

k3 )

- i
Ps(k):M(J:k):QTTQ ki

k3

o ok 2 (k) (3.4)
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where the density-weighted pairwise velocity moments are defined to be the Fourier transforms
E?)Zn = ((14+1)(1 4+ d62)Auy, - - - Au;, ). For example, the first and second moments are the
(1)

mean pairwise velocity between halos separated by distance r, =’ = v12,(r), and the pairwise

(2)

velocity dispersion, B = 0'1271']'(1')2.

of =

In the Fourier Streaming Model, the redshift-space power spectrum is evaluated by applying
the cumulant theorem to the logarithm

- ~ 1 ~
In[1+A(K)] =In [1+ MT =0,k)] +iJiC" (k) - iJichff) ¥ (3.6)

The first few cumulants are related to the Fourier pairwise velocity moments by

) = 21132 1%(122
00 = g g - CE
&) (1) = Q’jﬂfj@ — QW — GMEME
Cli(k) = ;jiifﬁ? - el - el - e e, (3.7)

The redshift-space power spectrum is then

k’3

53 Pa(l) = (14 A%(h)) exp ilkh...kiné@}in(k) . (3.8)

1+
At any order the nonlinearity of the exponential in the FSM will produce a resummation of select
terms when compared to the moment expansion. Indeed, ref. [58] found distinct differences in
the rate of convergence for the case of Zeldovich matter dynamics. However, the two expansions
are necessarily equivalent order-by-order in the Taylor-series expanded pairwise velocities, and
on scales where A% < 1, they will tend to behave similarly. Evaluating whether the differences
between the two expansions are significant for halos and galaxies with nonlinear bias and dynamics
will be one of the goals of the following sections.

3.2 Comparison of methods using simulated data

The Fourier-space velocity expansions described in the previous subsection can be tested by
comparing the redshift-space power spectra measured in N-body simulations to velocity power

2Since redshift-space distortions depend only on line-of-sight velocities the only nonzero contributions in Equa-
tion 3.4 are those due to ks = ku, where p is the cosine of the angle between the line-of-sight (LOS) and wave
vector, which in turn multiplies only velocity statistics projected along the LOS 7i. However, models of large-scale
structure naturally predict not only the LOS component but the full tensorial quantity

i, = HTH )L+ 82)Avi, o Avy,), (3.5)
where Av = v; — v, along with its Fourier transform =’

=) _ (@) s
B o= E 0.

, such that the statistics of u are given by the e.g.

However, due to the symmetric structure of these velocity moments, the tensor components of
=’ can be mapped 1-1 to the multipole moments of =, and for this reason we will refer to them interchangeably
throughout the text.
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Figure 1. Convergence for the moment expansion (left) and Fourier streaming model (right) at each order
in velocity statistics — using inputs extracted from simulation data — for halos of mass 12.5 < log M < 13.0
(in h~1Mg) and 2z = 0.8. The top, middle, and bottom columns show five wedges P(k,u) represented
as kP(k), the log ratio of 1 + A in real and redshift space, and the error of each method (smoothed
for presentation) and order compared to N-body data. While going from n = 2 to n = 3 dramatically
improves agreement at essentially all scales, especially for large i, going to n = 4 mostly only improves the
asymptotic convergence at low k and p at the mostly subpercent level without significant improvement at
higher £ and p.

spectra measured from the same simulations. Our aim in this subsection is to use this comparison
to test the convergence of each expansion at n'® order in both the moment expansion and Fourier
streaming approaches. Since the velocity expansions are effectively expansions in both k£ and p
we will focus on their convergence in terms of power spectrum wedges, sufficiently finely binned
such that their values are equivalent to P(k, u1;) where p; is the central value of each angular bin,
but comment on the extension to power spectrum multipoles where appropriate.

Figure 1 shows the convergence of the moment expansion and Fourier streaming model for
halos of mass 12.5 < log M < 13.0 in units of h™'My at z = 0.8 at orders n = 2, 3, 4 in
each method using velocity spectra é(”)(k) from simulations. The dots show power spectrum



wedges (arranged by color in u) extracted from simulations, while the curves show predictions
for each model when keeping velocity statistics up to n* order. The top two rows show the
wedges expressed as kP(k, ) and the ratio In([1 + A2]/[1 + A2]), while the bottom row shows
the fractional difference between the data and models. The ME and FSM behave very similarly,
except at high k and p where they diverge. This can be understood from the fact that the redshift-
to-real-space logarithm shown in the middle row is significantly below unity for most of the angles
and scales shown, except for the u = 0.9 wedge where it reaches 30% and where the ME seems
to have somewhat better convergence properties at high k. In both models, going from n = 2 to

n = 3 dramatically improves the broadband shape predictions at k& > 0.05 h Mpc™?

, especially in
the highest p bins where the improvement can be in the tens of percents. As a further test, we
compute the multipoles predicted by the moment expansion at n = 2 and 3 and compare them to
the data in the right panel of Figure 2. Once again, while staying at n = 2 grossly mis-estimates
the power spectrum quadrupole, going to n = 3 yields excellent agreement on these scales. A
similar improvement when incorporating third-order velocity statistics extracted from simulations
was seen by refs. [52, 61] in configuration space in the context of correlation function multipoles
(see Appendix B for further discussion of configuration space). Interestingly, the fractional error
on the quadrupole in both cases grows slightly faster than the the fractional error in the highest
bin in Figure 1 (rather than the fractional error of some intermediate wedge), while the fractional
error on the hexadecapole far exceeds that of any wedge. We comment on these counter-intuitively
large errors for multipoles and implications for data analyses in Appendix C.

Going to n = 4 improves the behavior at low k& and u, but it does not improve — indeed
somewhat worsens — the recovery of the broadband shape over the scales smaller than k ~
0.15 hMpc~!. This suggests that the reach of both the ME and FSM are limited to perturbative
scales, k|Au| < 1, by the magnitude of the halo velocities and n = 3 almost saturates this reach.
Indeed, at the scale where the virial velocities of halos become important one might expect
that all velocity moments and cumulants contribute significantly to the redshift-space power,
slowing the convergence of the velocity expansions. The fact that the inclusion of higher velocity
moments does not obviously improve convergence suggests that extending treatments of RSD
beyond industry-standard 1-loop order for extended reach in k might give meager returns beyond
those generated from overfitting with more parameters. We have chosen to focus on this mass
bin and redshift for ease of presentation but note that the other samples discussed in Section 2
exhibit qualitatively similar behavior; however, we caution that halos at even higher redshifts —
relevant to futuristic galaxy surveys [63—66] or 21-cm surveys [67] for example — might behave
differently due both to the diminishing magnitude of large-scale velocities and differences in virial
motions at high redshifts.

The above results suggest that in order to reproduce the broadband shape of P(k, ) at the
percent level on perturbative scales (k ~ 0.25 hMpc™1) it should be sufficient to model velocity
statistics up to third order. However, as we have already discussed we can expect that the higher
velocity statistics will be dominated by stochastic contributions, i.e. the small scale virial motions
of galaxies or halos. In this limit, neglecting the connected contributions to the correlator (see
refs. [68, 69] for similar decomposition), we have

Z0(r) = (14 01)(1 + 62) AwAu; Auy) = (AugAug) E) (r) = 020(,Z)) (1)



1400 -

1200 b PP TSP PP PSS I Pt
o
< 1000

0 ...... n=2

o
S 800 S o3
< T 4 =--- ct
T 6001 f N
& 400

---n‘.nc‘.. .0..00000

——— -
- e

Ly - -
N ———— ——— T e
N —————

0.15 0.20 0.25 0.30
k [h/Mpc]

Figure 2. Convergence of the moment expansion at z = 0.8 for the first three multipoles of the redshift
space power spectrum. The top panel shows kP, while the bottom panel shows the fractional error in
each expansion, smoothed to highlight systematic trends. Similarly to the wedges, going from n = 2 to
n = 3 presents substantial improvements in all three multipoles, with the agreeement in the quadrupole
going from worse than 50 percent for n = 2 to a few percent at perturbative scales (k < 0.25hMpc™).
In interpreting these differences it is important to bear in mind that for any observation the error on the
quadrupole and hexadecapole are dominated by the monopole contribution and are therefore fractionally
much larger than for the monopole.

where the curly brackets indicate a sum over symmetric combinations of 4, j, k. At leading order

in the moment expansion this is equivalent to a counterterm-like contribution
Py(k) 3 gkjo; 20 (k) ~ SOk " PL(R), (3.9)

where Py, stands for the linear theory prediction with appropriate factors of bias. The predictions
for using the moment expansion at n = 2 combined with this contribution are shown in dashed
lines in Figure 2. In addition to providing excellent agreement in the monopole and quadrupole,
the counterterm also gives a good fit to the hexadecapole. This supports the assumption we
made above of keeping only the disconnected piece of the n = 3 velocity moment, indicating that
due to the relativly large contribution of the small-scale part of the velocity dispersion, o2, this
term dominates over the connected contributions on the scales of interest. We anticipate that
this conclusion would only be strengthened by considering small-scale virial motions of satellite
galaxies. This suggests that we focus our modeling efforts on the first two velocity moments, and
in the next two sections we shall discuss the modeling of these moments in 1-loop perturbation
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Figure 3. Angular contributions (n,m) to the redshift-space power spectrum from the m‘* multipole
of the n'" velocity moment at three wavenumbers k = 0.05, 0.15, 0.25 h Mpc™! as a fraction of the real-
space power spectrum. The anisotropic signal is dominated by the first moment at all scales. For higher
multipole moments, for example the quadrupole of the second moment, the absolute magnitude of the
contribution to Ps(k, 1) is small at intermediate p due to the occurence of zeros in L.

theory.

Finally, it is instructive to consider the relative roles played by the multipole moments of
the velocity moments in the redshift-space power spectrum. By symmetry we can write each
line-of-sight velocity moment as

=2{0s(k) = > (k) Lolp), (3.10)

where Ly(u) are Legendre polynomials of the line-of-sight angle; since each moment =(n) gets
multiplied by (ku)™ in the moment expansion, the components één) contribute with the angular
structure p"Ly(p). As an example, in Figure 3 we have plotted the thus-enumerated contributions
to Ps(k, ) at three representative wavenumbers as a fraction of the real-space power spectrum
at that wavenumber. At all of these scales, which cover the reach of perturbation theory at low
redshifts, the anisotropic signal is dominated by the first moment, which contributes proportion-
ally to uL1, with the relative importance of higher moments roughly increasing with LOS angle
. Moreover, the root structure of Legendre polynomials with ¢ > 0 plays an interesting role in
the relative prominence of each contribution—for example, while the quadrupole moment of =(2)
is typically larger in absolute magnitude than the monopole, its relative importance at interme-
diate p can be comparatively suppressed due to proximity to the root of Lo(u) at u = 1/4/3, and
similarly for the octopole moment of Z(3). On the other hand, beyond these intermediate p we
expect the contamination of the cosmological signal by small scale (FoG) effects, as well as the
importance higher velocity moments, to be increasingly large. Indeed, as we will see for realistic
(galaxy) samples the monopole of =2 will tend to contain a large, constant small-scale contribu-
tion, further increasing its relative importance over the quadrupole. Roughly speaking, then, the
contributions to the redshift-space power spectrum rank in importane as 380)7 égl), 362), 352), égg),
and so on.



4 Pairwise Velocity Spectra in Perturbation Theory

In this section we present formulae for the real-space pairwise velocity spectra required for both
the ME and FSM in Lagrangian and Eulerian perturbation theory. These quantities live naturally
in configuration space, where they can be directly interpreted as density-weighted pairwise veloc-
ities, while in Fourier space they must be broken down into components to be measured. While
we shall primarily employ the velocity spectra for computation of the redshift-space power spec-
trum, we emphasize that pairwise velocity statistics are well-defined, Galilean invariant quantities
and have the potential to be measured (in redshift space) by future kSZ and peculiar velocity
surveys [10, 11, 70]. They are therefore interesting in their own right. Our results for the zeroth,
first and second moments of the pairwise velocity in LPT are the Fourier-space analogues of
the results presented in ref. [51], though we differ slightly in the treatment of counterterms in
the velocity dispersion, include stochastic contributions to both densities and velocities and a
superset of the density-bias expressions given in ref. [58]. We organize the expressions so that
they can be efficiently evaluated numerically by converting the angular integrals into sums over
spherical Bessel functions, then treating the resulting tower of Hankel transforms via the FFT-
Log algorithm [38, 51, 71]. The explicit form of these Hankel transforms is given in Appendix
E. Throughout this section and the next we will compare our theoretical predictions to velocity
statistics of the same halos studied in Section 3 (i.e. 12.5 < log M < 13.0 at z = 0.8). Results for
the other mass bins and redshifts are qualitatively similar, though the potential for even higher
systematics in the N-body data at lower z are an important caveat. We shall consider our mock
galaxy catalogs when we combine the ingredients into the redshift-space power spectrum.

4.1 Background
4.1.1 Lagrangian and Eulerian Perturbation Theory

The two conventional frameworks within which to perturbatively model cosmological structure
formation are Eulerian and Lagrangian perturbation theory (see the references in the introduc-
tion). Lagrangian perturbation theory models cosmological structure formation by tracking the
trajectories x(q,t) = q + ¥(q,t) of infinitesimal fluid elements originating at Lagrangian po-
sitions q. These fluid elements cluster under the influence of gravity and their displacements
obey the equation of motion ¥ + HW = —V®(x) — where the dotted derivatives are with
respect to conformal time 7, H = aH is the conformal Hubble parameter and ® is the gravita-
tional potential — which we solve for order-by-order in terms of the initial density contrast g as
U =004 9O 4. ... where

v(q) == ¢ 60 LM (py, ..., py) S0(D1)--00(Pn)s (4.1)
n! k, p;.--P,

were we use the shorthands p = Y, p;, 0)_, = (27)36(P)(k — p) and b= [d®p/(27)3. Ex-
pressions for the n*® order kernels can be found in, for example, ref. [32]. By contrast, Eulerian
perturbation theory (EPT, often also called standard perturbation theory: SPT), solves per-
turbatively for the density and velocity at the observed, Eulerian position x (see e.g. ref. [16]),

~10 -



09 =3 / 50 . Fa(Br,- - Pu)do(D1) - Bo(Dy) (4.2)
p1--

( = _Zf/Hkg Z/ 6k Pin (pl’ s 7pn)50(p1) s SO(pn)

However, despite the apparent differences LPT and EPT are formally equivalent (see e.g. the
discussion in ref. [41]). In particular, by solving for the observed matter overdensity

1+ 8(x / B op(x—q— ), (21)6p (k) + o(k) = / P e @) (43)

order-by-order in the linear initial conditions, one recovers the expressions of EPT, and similarly
for velocity statistics by weighting the integral above by appropriate functions of the velocity
\Il(q) Nonetheless, the exponentiated displacements in Equation 4.3 can be used to motivate
resummations of particular contributions to the nonlinear density due to long-wavelength (IR)
displacements [39, 72], which can lead to dramatic differences with the predictions of (pure) EPT,
as we will see later. A proper treatment of these IR displacements is important for cosmological
inference.

4.1.2 Modeling biased tracers

The fact that cosmological surveys generally do not observe the underlying matter distribution
but rather tracers of the nonlinear density field such as halos and galaxies presents an additional
complication in mapping theory to observations. In PT one approaches this problem by pertur-
batively expanding the large-scale component of the galaxy and halo field that responds to the
short-wavelength (UV) galaxy and halo formation physics via the so-called bias coefficients (see
e.g. ref. [26] for a review, and recent ref. [73] for a direct construction based on the equivalence
principle). Once again the treatment of bias in LPT and EPT, though ultimately equivalent, are
subtly different; we will now describe them in turn.

In the Lagrangian approach the positions of discrete tracers like galaxies and halos are assumed
to be drawn according to a distribution depending on local initial conditions such that their
overdensities in their initial (Lagrangian) coordinates are given by

Floo(a), 50,i5(a), -+, Vdo(a)] = 1+ d4(q, 70)
=1+ bido(q) + b2(50 —(68)) + bs(sg(a) — (s5))
+b3 O3(q) + -+ + by Véo(a) + e(q), (4.4)
where sg is the initial shear field® and we have included a representative third-order operator

O3 to account for the various degenerate contributions to the power spectrum at one-loop order
[24]. Definitions for these quantities are given in Appendix A. Given this bias functional, these

3The inclusion of the initial shear and Laplacian information, in addition to the initial density, improves the
ability to model assembly bias to the extent that this is encoded in the peak statistics (e.g. ref. [74]).
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initial overdensities can then be mapped to the evolved overdensities of biased tracers via number
conservation much like the nonlinear matter density:

14 d4(x,7) = /dgq F(q) dp(x—q—¥(q,7))
(2m)%0p (k) + 0,4(k) = /dgq kAt p(q). (4.5)

In this way, within LPT we have the apparent separation of clustering due to initial biasing in
F(q) and clustering due to nonlinear dynamics enforced by the equality x = q + .

In the Eulerian approach, on the other hand, the galaxy overdensity is expressed in terms of a
bias expansion based on present-day operators such as the nonlinear density §(x). Here we adopt
the biasing scheme of ref. [24], where up to third order a biased tracer field is expanded in terms
of the nonlinear Eulerian fields as

0p = c10 + %252 +ces? + %353 + €1508% + oSt + co38° + cytp, (4.6)

where s? = 5ijSij, s3 = sij8j151; and st = s;;t;;, and the shear operators are defined as

2 4 0;0;, 1 0;0;, 1
Yv=n- ;SQ + 552, Sij = ( 82] - 3517‘) 6, tij = < 82] - 35z‘j> n, n=0-2. (4.7)

In the above bias expansion we also implicitly assume subtraction of mean field values like <62>.

Despite formal differences, the bias schemes in LPT and EPT can in fact be mapped to one
another via the appropriate linear transformations of the bias parameters (see e.g. refs. [75, 76]).
Indeed, these two approaches are a subset of a more general scenario in which the response of
tracer formation to the large-scale structure is local in space but not in time, requiring us to take
into account the evolution of the density field in the neighborhood around a tracer’s trajectory;
fortunately, these time-dependent responses have been shown to be perturbatively factorizable
and equivalent to either LPT or EPT [26, 77, 78]. For our purposes, at one loop we have that the
rotation* between the Lagrangian and Eulerian bases can be accomplished by (see e.g. ref. [26])

c1=1+4+b;
8 2
62—52-1-551, Cs—bs_?bl
c3 =bg + aby (4.8)

where we have used b and c to distinguish between the Lagrangian and Eulerian bias parameters,
respectively, and a is a constant depending on which third-order bias parameter one chooses. For
instance, choosing the third order operator to be st = s;;t;; we obtain cy = bg + %bl. Beyond
being necessary to complete the correspondence between LPT and EPT, these bias mappings
can also be of practical use; for example there is some evidence that higher order Lagrangian
bias is small for halos in N-body simulations and the higher-order Eulerian bias parameters are
generated primarily by evolution [78-80]. The Eulerian ¢, thus tend towards those predicted
by “local” Lagrangian bias, allowing us to set useful restrictions on the Eulerian biases in EPT
analyses.

4In performing this rotation we have implicitly assumed that the contributions from cs and bs degenerate with
linear bias have been removed.
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4.1.3 Derivative Corrections and Stochastic Contributions

In addition to the bias operators discussed in the previous subsection, one also needs to consider
terms from the derivative expansion and contributions arising purely from the coupling of short
modes (stochastic contributions). In this paper, we follow the standard approach in the litera-
ture (see, e.g., ref. [26] for a review) and add the leading order derivative contributions in the
galaxy field of the form (0/k.)d (in the appropriate coordinates for LPT and EPT). In the power
spectrum, these terms generically result in contributions of the form (k?/k2) Py, (or (k?/k2) Py
in case of LPT). In most of the velocity moment power spectra, these terms are degenerate with
the counterterm contributions at one-loop order. We explicitly account for these in each of the
moments discussed below and finally combine them in the redshift space power spectrum.

Stochastic contributions, in the RSD power spectrum as well as velocity moments, can come
in two forms. First, we should add the pure noise field € to our density expansion, which captures
the galaxy field component uncorrelated with the long density fields and is characterized by
scale-independent autocorrelations (shot noise). The second type of stochastic contributions
appear as small-scale counterterms of the contact velocity correlators of the form (v"(x)) that
feature prominently in the higher velocity moments. These terms are traditionally labeled as
“Finger of God” terms [45]. They reflect the non-linear structure of the redshift space mapping,
encapsulating the feedback of small-scale (non-perturbative) velocity modes on the correlators
on large scales.

It is important to note that ‘perturbative’ operators carry the bulk of the cosmological de-
pendence, while stochastic terms mostly parameterize the part of the signal that is decorrelated
with the linear density fluctuations and consequently with the initial conditions. Thus, once
stochastic parameters dominate, it can be taken as an indication that little cosmological signal
is left to be extracted from these scales. However, it is important to distinguish between pure
stochastic terms, such as shot noise, and FoG-like contributions due to stochastic velocities; the
latter behave like counterterms with shapes that depend nontrivially on large-scale modes. Simi-
larly, higher derivative terms can show a significant correlation with long-wavelength fluctuations
and thus, in principle, can also carry cosmological information. However, heavy reliance on these
terms can, in practice, lead to many approximate degeneracies and thus can quickly reduce the
amount of information available from the scale dependence of the correlations of interest. In the
rest of this section, we shall see how velocity moments exhibit this behavior, with higher moments
displaying stronger reliance on stochastic and derivative contributions.

4.2 Velocity Correlators in LPT and EPT

Having reviewed the essential ingredients of LPT and EPT, our goal in this subsection is to
provide expressions for the pairwise velocity moments at one loop in both formalisms. In LPT,
these can be naturally computed as derivatives of the generating functional in Equation 3.2,
which can be written as
k° 3. ik k- A+iJ-A

M(J, k) = 9.2 /d q e (F(qy)F(qy) €' H >q:q1—q27 (4.9)
where A = ¥; — ¥y and A is its time derivative, and which has the additional benefit that
derivatives with respect to J are automatically Galilean invariant. In EPT, on the other hand,
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Figure 4. Fits to zeroth (P(k), top left), first (v(k), bottom left), and second (o, right column) halo
pairwise velocity moment spectra measured from simulations (gray points) in one-loop Lagrangian pertur-
bation theory (blue) for the fiducial mass bin and redshift. The second moment is split into its monopole
and quadrupole for ease of presentation. The contributions from sequentially adding linear bias (orange),
nonlinear bias (green) and counterterms (red) are also shown as separate curves. The full model (blue)
differs from the red curves by stochastic contributions (though they are identical for o5, for which we do
not include any stochastic corrections in the lower right panel). We do not include the separate contri-
butions to the power spectrum as the stochastic contribution contributes significantly at all scales. Our
model fits these velocity statistics at the percent level out to k = 0.25 hMpc ™', except for oy which is
only fit to around k = 0.1 hMpc™" (see text for discussion).

the pairwise velocity moments are most straightforwardly computed by decomposing them into

density-velocity correlators

(1+9) *u5’>/, (4.10)

PLL’(k;M) = <(1 + (5) *ué

where, for brevity, we introduce the primed expectation values to denote expectation values
with Dirac delta function dropped and a bar notation to indicate the arguments, i.e. (A|B) =
(A(k)B(X')) = (2m)36p(k + k') (A(k)B(K'))". Working at one loop in perturbation theory yields

non-zero zeroth through fourth velocity moments, which we will now describe in detail.
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4.2.1 Zeroth Moment: Power Spectrum

In LPT, the zeroth moment pairwise velocity spectrum, i.e. the real-space power spectrum P(k),
is given by

P(k) = / d*q e e—%’fikﬂ*iﬁ“@ —~ %kiijEOp + ékikjkkWijk
+ 2ib1 kU — bikikj AL + 036, + btk UM — bikik, U UM
+ %bggﬁn + 2ib1bo&inki U™ — bokike, U U™ + ibok; U
+ bs(—kik; Tij + 2ik; Vi) 4 2ik;b1bs Vi + babsx + b2¢
+ 2ibgkiUp, ; + 2b1bs0 + apk? + } + RS, (4.11)

The “1” in the first line gives the (linear) Zeldovich prediction [81] for matter power spectrum Pg).
The first line gives the one-loop matter power spectrum in LPT, while the second to fifth lines
give contributions successively including the linear, quadratic, shear and third-order biases. The
final line also includes a counterterm, apk? and stochastic term R%- The Lagrangian correlators
due to third-order bias Up, and 6 are defined in Appendix A.1; the other various Lagrangian-
field correlators (e.g. U;, Aij, Wiji etc.) are defined® in [32-34, 39, 51]. Some quantities, such as
Ui =U+ U;OOP, contain contributions at both linear and one-loop levels, which we will use the
“lin” and “loop” sub- or superscripts to denote when separated.

Lagrangian perturbation theory in principle includes a much larger set of effective contribu-
tions [39, 40] — including derivative bias by [51] — however, all of these contributions to the
real-space power spectrum are proportional to k? Pz (k) at one-loop order (counting ap as itself
first order), so we will summarize their effect by one counterterm only. Finally, the autocorrela-
tion of the stochastic modes gives a “shot-noise” contribution Ri ~ 771, where 7 is the number
density of tracers [24-26].

In EPT, on the other, hand we have

P() = AR+ [

[203 [Fa(p, k — p)]2 + 2c1c0F»(p, k — p) + 4eies Fa(p,k — p)S2(p, k — p)
P

2
+ 52 + 2¢2¢592(p. k — p) + 2¢2[Sa(p, k — P)]Z} Pin(p)Pin(|k — pJ)

ki2
+ 61 Pin (k) / (e1F5(P. =P k) + €154 (P.~P.K) ) Fun(p) + e 5 Pin (k)
P *

+ “consty” . (4.12)

Many of the third order bias operators listed in Section 4.1.2 do not contribute explicitly to the
one-loop power spectrum, and only one non-vanishing independent contribution remains. The
details of the EPT derivations for this and the velocity statistics below are given in Appendix A.2.
In addition, in EPT an explicit IR-resummation is required to tame the effects of long-wavelength
modes, which is described in Appendix A.4 for all velocity moments and implicitly performed in
all our EPT results.

®Note that there is an erroneous factor of two in the expression for V' in Eq. D.17 of ref. [51] . The correct
prefactor should be —§; /7 not —2§;/7.
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Figure 5. Same as Figure 4 but for EPT. Note that, in the lower right panel, there is almost no (numerical)
difference between the green and blue lines, the former of which differs from the full prediction of EPT by
a counterterm; we have not included any stochastic contributions in os.

In addition to the “deterministic” bias parameters there is one counter term (with coefficient
c(()o)) that is required to regularize the one-loop, P;3-like terms and is degenerate with the deriva-
tive bias contribution. In general, for counterterm we will use the c,(f ) thus notation taking into
account that different angular dependence can have different counterterm contributions. In addi-
tion to these terms there is a constant shot noise contribution obtained by correlating the purely

stochastic component of the halo field with itself (labeled constg in the above).

Fits to the power spectrum extracted from N-body data, along with fits for other velocity
statistics using a single, consistent set of bias parameters, are shown in Figures 4 and 5. As
shown in the top-left panels of the two figures, both LPT and EPT provide good fits to the data
past k ~ 0.25 hMpc~!, beyond which the shot noise accounts for an increasingly large share of
the total power, reaching more than 35% of the total power by k = 0.2hMpc~!. Setting the
third-order Lagrangian parameter bs = 0, as discussed in Section 4.1.2, does not qualitatively

change our results.
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4.2.2 First Moment: Pairwise Velocity Spectrum
The pairwise velocity spectrum, the Fourier transform of v;(r) = Z;(r), is given in LPT by®
. 1. alin . 1 .
vi(k) —/d3q ok o kik; Al {iijji _ ikjkkwjki
+ 201 U; + 203ik; U U™ + (2iby kU™ + b36nn) ik AR + 2ibik; ALY + b0
+ Q(ibgk‘jU]l-in + blbgflin) Uilin + b2U20 + 2bs(VZ~10 + Zk]Tﬂ) + 25153%12
o+ 205U s + ki + o | + BAG s (4.13)

Here again the first two lines give the matter and density bias contributions, while the third
line contains contributions due to shear bias and an effective correction ~ a,k;Pze. The latter
regulates, for example, UV sensitivities in Aij = AZLJ-PT + a,d;; + - -+ and is contracted with the
wavevector k; in the velocity spectrum. By symmetry, v;(k) must be imaginary and point in the
k direction, so we can decompose it as v;(k) = iv(k)k;. Explicit expressions for v(k), written as
a sum of Hankel transforms, are provided in Appendix E.

As in the case of the power spectrum, while there are in principle several more counterterms
and derivative bias contributions in addition to the one indicated (e.g. ~ (A;V28) or (V;6,82)),
all such contributions Fourier transform to ~ k; P, (k) at lowest order and as such we account
for them using only one effective correction, «,. The final term, R%&Uk:i, is the leading or-
der stochastic contribution due to the correlation between the stochastic density and velocity,
(e(ay)ei(qy) ~ R3G,Vidp(q) [25, 26], which can be approximated as a Dirac-¢ derivative on large
scales.

Similarly to the density auto power spectrum, in EPT we have contributions from all the bias
operators introduced previously. We have

ki
vi(k) = = 2Zic15 Piin(k) (4.14)

. ki
— 21/ [162 (201F2(p, k —p) + 2 + 26552 (p k — P))G2(P> k—p)
P

+ 053 (2R k= p) + 1+ 2105 (p ke - p))}mpmmuk - p)

. k;
— 2Z-Plin(k) / |:3]{32 <ch3(p7 —-b, k) + ch3(p’ —-b, k) + CSSUI(p’ -b, k))
q

) |
2t (Ao, + KR

~

k;
— icgo)k—g]:’lin(k) + “const{”k; - - -

where cgo) is the coeflicient of the counterterm, and the consty is the leading stochastic velocity
contribution.

A comparison to v(k) from N-body data is shown in the bottom-left panels of Figure 4 and 5.
Both formalisms give a good fit to the data past k& = 0.2 h Mpc™!, though as noted in Section 2,

5Note that our expression for term proportional to bs differs from that in ref. [51] by a factor of two.
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comparing the theory to the N-body data at large scales suggests that the simulations slightly
under-predict velocities (by one or two percent). The stochastic contribution accounts for a
significant fraction of the power in both fits at high wavenumber (k > 0.1 ~Mpc~!) that cannot
be accounted for by the other bias parameters or counterterms. Not fiting for it leads to oscillatory
residuals due to a mismatch between the BAO and overall broadband amplitude.

4.2.3 Second Moment: Pairwise Velocity Dispersion Spectrum

The pairwise velocity dispersion spectrum, =Z;; = 07, ;;, is given in LPT by

U%2,z'j(k) :/d?’q ez‘k~qe—%kiij?]-“{Aij +iknij n (Qiblk‘nU»,llin + b%&ﬂ) Ailjn
kg ATAI 4 9(02 1 by OB | 9k by (Al 4 g

+ 201 AL + 20, Y35 + i + Bo& ((L-dj - ;52-]) 4 } + R} s25;;. (4.15)
The velocity dispersion spectrum can be decomposed into a number of possible bases such as
the parallel-perpendicular basis, aizj = UH(]{I)];‘ikjj + 1o (k) (65 — l%ik;j), or the Legendre basis,
oij = oo(k)dij + 302(@(1%@-@ — £6;;). These scalar components, expressed as Hankel transforms,
are detailed in Appendix E.

Unlike the zeroth and first moments, the second moment (crizj) requires two counterterms: o,
and B,. The latter contribution is proportional to the jo Hankel transform of the linear power
spectrum, §§7hn (Appendix D), and cancels UV sensitivities in the non-isotropic component of
Ailj*lmp. These contributions can alternatively be parametrized as counterterms ~ agPj, (k) and
o Py (k) to the velocity-dispersion monopole (o) and quadrupole (o3), respectively. Finally, we
include an isotropic stochastic contribution stgdij. Such a term can, for example, arise from
the disconnected part of the second moment

0'%2(1() > /d3r eik-r 0'12)(5”«1 -+ (51)(1 + 52)> = O'?,PNL(IC) 67Lj > Ung(SU (416)

2

~ is a contact term coming from evaluating the average velocity squared at a point and

where o
Py, is the full nonlinear real-space power spectrum including a constant stochastic contribution
R% (selectively resumming only these terms yields the exponential damping formula for FoG).
Our treatment of this stochastic contribution differs from much of the literature [25, 26]; this is
of no consequence when fitting the redshift-space power spectrum, since its contribution there is
degenerate with that of the stochastic component to v(k), but makes a signficant difference when
studying pairwise velocities on their own.

It is useful to note the relations between the parameters for o1 in Fourier and configuration
space, the latter as presented in ref. [51]. While the bias contributions are identical, up to Fourier
transforms, there are important differences in the counterterms and bias parameters. Firstly, the
corresponding expression for the pairwise velocity dispersion in configuration space contains two
isotropic counterterms in the curly brackets {--- } in Equation 3.10 of ref. [51], corresponding to
our Equation 4.15. These are A6;; + By&1in0;;, which both result at lowest order in contributions
to o2,(r) proportional to the linear correlation function &j,, and thus in Fourier space to a
counterterm o< Py, (k). For this reason, in Fourier space we have chosen to summarize them
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using one counterterm «,. However, we note that the constant counterterm proportional to d;;
stems in part from the contribution of small-scale velocities to the ¢ — oo limit of o192, which
shows up as a point-contraction of the stochastic velocities

<(1 + (51)(1 + (52)AuiAuj) ) U?(Sij (1 + {(r)) (4.17)

Roughly speaking, this 0? is the asymptotic value for the stochastic component of the halo velocity
Ocjij = (AeiAej> at scales ¢ > R}, above the halo scale. This contribution to the configuration-
space velocity dispersion is closely related to the Fourier-space stochastic contribution R?Ls% to
0%,(k), which is just the large scale (k < R; ') limit of the Fourier-transform of 2. There are
therefore two free parameters in o3, characterizing isotropic effective and stochastic contributions
in both real and Fourier space; if in addition the fit is performed in both spaces, it is important to
note that the counterterms in configuration space sum to that in Fourier space, i.e. ay, = A, + By,
while s2 remains independent, leaving us with three parameters total. This may be especially
relevant in predicting statistics for upcoming kSZ surveys.

Moving on to the EPT formulation of the velocity dispersion correlators, we find only up to
second order bias parameters contributing to the velocity dispersion (c.f. the density auto power
spectrum and pairwise velocity spectrum). This is consistent with our LPT analysis. In EPT we

have
U%Q,ij(k) =— Q%Hin(k) (4.18)
- 2/p (201F2(p, k —p)+ca2 + 2¢:52(p, k — p)) ;);Et : ?;]2 +2 Zjﬁ' Go(p, k — p)?
+ ey :;ZJZ Ga(p.k—p) + C?l% (i; + Elli — p;;) Piin(p) Pin(|k — p|)
) [ (3550 k)
+2¢ <<Z; + i;) WGz(—I% k) + :;ZJQ Fy(—p, k)) :|]Dlin(p)
+ QC%Hin(k)(Sij od —2 (cgo)ég + céz) k;;?) klzPlin(k) + “consty”,
where cgo) and cg) are two counterterm coefficients corresponding to different angular dependency,

olin 18 the linear velocity dispersion, and we have one isotropic stochastic contribution, “consts”.
Fits of LPT and EPT to o2 are shown in the right column of Figures 4 and 5. While both
theories give an excellent fit to g to similar scales as the real-space power spectrum, the fit to

1'in LPT. As we will discuss in more depth in Section 4.3,

o9 is only good up to k ~ 0.1 h Mpc™
this is partly due to particularities of the resummation scheme in LPT, which keeps all linear
displacements exponentiated. In principle, this could be somewhat mitigated by adopting an
alternative IR-resummation scheme or considering higher order corrections in the current scheme.
However, such a strategy would require some changes in the formalism above, and the overall
effect on the redshift space power spectrum due to these differences in o9 is negligible. Thus

we shall not pursue this strategy. We also note that the fit to g2 on large scales suggests that
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the velocities in the N-body simulations are somewhat underpredicted compared to theory”’,
consistent with our expectations of their systematic error.

4.2.4 Higher Moments

Finally, let us give expressions for the third and fourth moments despite them not figuring
prominently in our redshift-space model. In one-loop LPT these are given by

] ikiAii ) {17 . in in 4lin kl kkk
- —/d3q ezk-qféklij”{Wijk_i_ZklA%{ZAlk}+2b1Ulz A+ a, { yk} L8, k}
| ki ikid
Kkt = / dBq elaskikiAi {AI{I;;AI;?} ta %’““} + R s4501,0my. (4.19)

We see that at this perturbative order only the b; bias parameter contributes to the the third
velocity moment, while the fourth moment has purely velocity contributions and does not depend
on deterministic bias parameters. The expressions above also require the necessary counterterms
and stochastic contributions, together with the pure FoG contributions.

In EPT, at one-loop, we equivalently have contributions to both third and fourth velocity
moments. For the third moment we have

=) =12 [ (D Gatp k) + PP ARk p) (420

it = *(k — p)? p(k—p
k{zpj (k p)
p*(

+24iphn(k)/ Ui G2( )Phn( )

p k —p)?
Ogsi .
195, MM g 2 (85 + ki) AT
k k? k2
while the fourth velocity moment is given by
=) / ppi(k —P)i(k — P)my
Silm 12 P]in(p)Plin(|k - p’) (4'21)
it p 4(k -p)?
Ogiikikpy 1
(2) {ZJ 1"m} « 9
—24 (ahn —cy ) R —5 Piin(k) + “consts” d¢;;0pmy + - - ..

We note that the structure of these velocity moments in LPT and EPT is quite similar, with
equivalent counterterm and stochastic contribution structure. Further details of the one-loop
EPT contributions to higher moments are discussed in Appendix A.2.

4.3 Comparing LPT and EPT

In the previous section, we described the predictions for the pairwise velocity moments within
two formalisms, LPT and EPT, at one-loop in perturbation theory. A comparison of Figs. 4
and 5 shows that LPT and EPT both perform comparably well for the power spectrum, once
IR resummation is taken into account. The pairwise velocity and velocity dispersion monopole
likewise show a similar level of agreement for both LPT and EPT. Note however, that in the

latter spectrum essentially all of the power at & > 0.1 hMpc~! comes from the counterterm

"The fit to o is less succeptible to this systematic due to a floating stochastic contribution to its amplitude.
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and stochastic contributions in EPT, unlike in LPT where the contributions due to large-scale
modes and deterministic bias qualitatively match the spectral shape. In both cases the power
due to stochastic contributions (shot noise) becomes increasingly significant towards the highest
ks plotted, with the models correctly accounting for the mild non-linearity at intermediate k.
However, significant differences appear in the predictions of LPT and EPT for the second moment,
0%2, particularly in the broadband shape of the quadrupole, 2. Our goal in this section is to
compare and contrast the LPT and EPT models described in the previous sections with these
differences in mind.

As we have already noted, the two formalisms are equivalent, term-by-term, when Taylor-
series expanded in powers of the linear power spectrum and differ only in the treatment of
IR displacements, which are canonically included order-by-order in (non-resummed) EPT but
manifestly resummed via the exponential exp(—k;k; A?]n /2) in LPT. Within LPT, we can therefore
recover analagous EPT results by expanding this exponential— indeed, by splitting the linear
displacements into long and short modes separated by an infrared cutoff kg we can recover a
spectrum of theories between LPT and EPT. Specifically, writing Agp = Afj + Ai>j, where the
less-than indicates displacement two-point functions calculated by smoothing out long modes via
a Gaussian filter exp(—(k/kr)?/2) and the greater-than denotes all the remaining power, we

have generically for velocity moments

[1]:

; ke 1 1
(") (k) = /d3q ok a—gkiki A% (q) (1 _ 5’%ij¢]‘ + gkikjkkklAZ‘Alil + (9(]3&)){ e } (4.22)

where the {---} indicate the terms in curly brackets in Eqgs. 4.13 and 4.15. Taking kg — 0 and
keeping the product of the round and curly brackets to second order yields one-loop EPT. This
implies that the differences between the LPT and EPT predictions for the velocity moments,
and 0%, in particular, in both BAO wiggles and broadband shape must be due to the selective
resummation of A;;, i.e. to differences at > 2-loop order.

Let us briefly mention a technical detail in the above mapping between EPT and LPT. In
addition to expanding the linear displacement two-point function A;;, in order to make the low
kmr limit of LPT agree with EPT, one needs to use the bias-parameter mapping in Equation 4.8.
A useful feature of this mapping is that, while LPT contains the same number of bias parameters
as EPT, the contributions of these biases to various statistics are organized rather differently.
For example, since c% =1+4+2b + b%, the ‘1’ term in LPT is equal to the c% term and the b;
term is twice the ¢? term at leading order. We can take advantage of these differences to, for
example, compute the third-order bias contribution in EPT using those from the biases in LPT
up to second order alone. Specifically, we can write for the third-order bias contribution to the

power spectrum

8 2
aP0103 = 2Pb% - Pbl - ﬁpbﬂn + ?Pblbs + O(Pl?n) (4‘23)

and similarly for the third-order bias contribution to v(k):

8 2
ﬁ(vbg — Upyby) + ;(Ubs — Upyp,) + O(P). (4.24)

AVeg = Vp; — U1 — Vp2 —

We have checked these identities numerically.
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Figure 6. The monopole (¢ = 0) and quadrupole (¢ = 2) of o}, (k) predicted by 1-loop PT (Eq. 4.22) for
several cutoffs, kg, using a “no-wiggle” version of our fiducial power spectrum. The amplitude of o, at
high k is strongly affected by the choice of IR resummation in Eq. 4.22, indicating that 2-loop contributions
may be important for density-weighted velocity dispersion.

To look at the effects of IR resummation, let us begin with the broadband. Figure 6 shows the
monopole and quadrupole of the second moment o2, for a range of cutoffs, kg, computed using
a no-wiggle version of our fiducial power spectrum, which we use in this section only to isolate
broadband effects. As expected, the EPT prediction is recovered in in the limit of vanishing kg,
while LPT represents the kig — oo limit. It is notable that the two limits predict dramatically
different broadband shapes at even intermediate wavenumbers. For example, EPT predicts the
monopole to have close-to-vanishing power at k ~ 0.2hMpc~!, where LPT predicts k30 to
have significant power increasing with k; conversely, EPT predicts a more significant (more
negative) quadrupole compared to LPT. These differences are particularly noteworthy because
LPT shows excellent agreement with the ogp measured from simulations while under-predicting
o9 at small scales (Fig. 4), and conversely for EPT (Fig. 5), where essentially all of the power at
k ~ 0.1 hMpc~! and beyond in oy is accounted for by the stochastic and counterterms.

In addition to the above, EPT and LPT also make different predictions for the BAO feature.
In Figure 7 we have plotted P(k), v(k) and the monopole and quadruopole of 0%2 with smooth
broadbands—estimated using a Savitsky-Golay filter®—subtracted off. The blue and orange lines
show the predictions of LPT and EPT modulo a quartic polynomial in k& which we fit to the data.
Evidently, the IR resummation inherent in one-loop LPT provides and excellent description for the
oscillatory component in the second moment, while the resummation scheme we have employed
for EPT underpredicts the requisite nonlinear damping. On the other hand, the upper two panels
show that the two formalisms produce far better agreement for both the zeroth and first moments.
This is likely in part due to the dominance of the one-loop b; contributions noted in the previous
paragraph, which account for most of the oscillatory signal shown in both panels; indeed, we note

8We use a quintic filter linear in k with width of 0.25 A Mpc™!, but note that our results are relatively robust to
this choice as we are only concerned with the oscillatory components, modding out any residual broadband with a
smooth polynomial fit.
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Figure 7. Oscillatory component of the real-space power spectrum (top left), pairwise velocity spectrum
(top right) and the monopole and quadrupole (bottom left and right) of the velocity dispersion spectrum
0%, in LPT and EPT compared to N-body data (dots). The smooth component subtracted from the
data is computed using a Savitsky-Golay filter, and the theory signals are supplemented with a quartic
polynomial in k to improve agreement with the broadband-subtracted data. While the power spectrum and
pairwise velocity show excellent agreement between LPT and EPT even when the fitted independently, the

oscillatory signals in the velocity dispersion spectra differ significantly, with EPT underdamped compared

to LPT. Notably, unlike in the lower velocity moments the dominant oscillations in o, are due to one-

loop effects, whose damping seem to be more naturally captured by the IR-resummation in LPT when
compared to data (black dots).

that the (significantly smaller) damped linear BAO wiggles are more-or-less exactly out of phase
with the nonlinear wiggles shown [82-85].

The size of the one-loop terms and the divergence between one-loop LPT and EPT at even
intermediate k for o2, can heuristically be used to gauge the magnitude of higher-order (> 2-loop)
corrections, and suggests that density-weighted pairwise velocity statistics may be significantly
more nonlinear than the density-only real-space power spectrum. For example, direct inspection
of bias contributions to oo indicates that while the leading-order contribution is due to matter
velocities only, the largest numerical contribution comes from b; at one loop. Indeed, at k =
0.1 A Mpc~! the one-loop o9 predicted by our EPT model has 50% extra power compared to linear
theory and 100% by k = 0.15hMpc~!. In this case the level of agreement between the 1-loop
EPT and N-body results suggests that the two-loop contributions happen to be small for ACDM
power spectra of the amplitude we consider, so that the additional contributions included in the
IR resummation by LPT are worsening the agreement with the N-body results. We have been
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unable to find a symmetry that would explain why the 2-loop contribution to o9 should be small,
so it could be that this is a numerical coincidence where 1-loop EPT is ‘accidentally’ performing
better than expected for this particular power spectrum shape and normalization. Indeed, for
oo the one-loop terms in EPT — which are dominated by the stochastic and counterterms —
account for a 100% difference compared to linear theory by k& = 0.1 A Mpc™!, suggesting that
velocities at even these intermediate scales are subject to large nonlinearities. As suggested by
Fig. 3, and we discuss further below, a detailed modeling of o5 is not necessary in order to obtain
an accurate measure of the redshift-space power spectrum, P(k, 1), so we have not attempted to
further improve the performance of either LPT or EPT for this statistic.

Before leaving the velocity statistics and turning to the redshift-space power spectrum, it is
worth noting that our results have direct implications for the use of velocities (either from peculiar
velocity surveys or kSZ measurements) as cosmological probes. In particular, the relative size of
the perturbative contributions (green lines in Figs. 4 and 5) and the stochastic or counter terms
(blue lines) can be taken as a proxy for where cosmological information dominates over small-
scale information (e.g. about astrophysics). For az-zj, in particular, it appears that the cosmological
information is confined to reasonably small k, which argues that high resolution observations of
this statistic will not be necessary if the goal is inference about cosmological parameters.

5 All Together Now: the Redshift-Space Power Spectrum in PT

Sections 3 and 4 examined the convergence of velocity expansions for the redshift-space power
spectrum and how the required velocities can be computed using perturbation theory; in this
section we combine these ingredients to produce a model of the redshift-space power spectrum
based on 1-loop perturbation theory.

5.1 Comparison for halos

Figures 8 and 9 show the PT predictions for the redshift-space power spectrum wedges and
multipoles using the bias parameters, counterterms and stochastic contributions determined from
the fits in Figs. 4 and 5, together with the moment expansion approach. Figure 8 demonstrates
that these parameters give an excellent fit, agreeing with the data at the percent level even for the
highest © wedges. It is worth noting that the redshift-space distortions captured by the quasilinear
velocities is highly nontrivial, and a naive multiplication of the real-space power spectrum by the
factor (b + fu?)? yields P(k,p) that is 5% away from the data even at k = 0.1 hMpc™! and
w=0.5.

Figure 9 tells a similar story to Fig. 8, though with some caveats. The monopole, Py, remains
well-fit by both the LPT and EPT models. The same is not true of the quadrupole, which is
both noisier and possibly biased. However, recall there is some evidence that the simulations
with derated timesteps may not be converged. Indeed, the data quadrupole for k < 0.1 A Mpc™?
suggests that the simulations under-predict the value of velocities by around two percent com-
pared to perturbation theory. For such k the best fitting LPT and EPT models are in excellent
agreement, being dominated by linear theory, but differ visibly with the N-body quadrupole (the
contribution of the monopole to each wedge reduces the visibility of this effect substantially in
Fig. 8). As mentioned earlier, we cannot rule out a systematic error in the N-body simulations
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Figure 8. A comparison of the halo power spectrum wedges (0.0 < g < 0.2, ---, 0.8 < pu < 1.0)

measured in the N-body simulations (points) to the predictions from PT models where the first two
velocity moments are calculated using LPT (left) and EPT (right) and the third moment is approximated
using a counterterm ansatz (lines; Eq. 5.1). The upper panel shows the measurements, while the lower
panel shows the fractional differences. We have chosen to show the 12.5 < IgM < 13.0 mass bin at z = 0.8
though the other masses and redshifts behave similarly. The dashed lines show the PT contributions
excluding the n = 3 counter term, while the solid lines show the results of the full model. Note the
addition of these terms significantly improves the model for high ¢ while the improvement is much more
modest for low pu.

of several per cent and so we take this difference as a rough estimate of the size of the systematic
error in Ps.

The only remaining free parameter in our model once the power spectrum and first two velocity
moments are fit is the coefficient of the counterterm oc k?u*P(k), which we argued at the end
of Section 3 was a good stand-in for the higher-order velocity statistics not explicitly included
in our model. Indeed the input value, which we fit by eye, is comparable in magnitude to the
contribution from the dipole of the third moment divided by the linear power spectrum. In
the spirit of perturbation theory, our philosophy in adjusting this parameter was to increase
agreement at low k and p rather than minimize errors across the board, even at high u where the
convergence of the velocity expansions is poor. The model without this counterterm is shown in
the dashed lines. Absent this counterterm our model still describes the power spectrum wedges
with ¢ < 0.5 at the percent level out to k = 0.25 h Mpc ™!, with errors rapidly growing towards
higher p such that p = 0.7 is 5% off at a similar wavenumber; however, the strong angular
dependence of the errors means that the quadrupole is more than 10% away from the data at
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Figure 9. A comparison of the halo power spectrum multipoles measured in the N-body simulations
(points) to the predictions from our LPT (left) and EPT (right) models (lines; Eq. 5.1). The upper panel
shows the measurements, while the lower panel shows the fractional difference. The dashed lines show the
PT contributions excluding the n = 3 counterterm, while the solid lines show the results of the full model.
Note the addition of these terms significantly improves the model for ¢ > 0, even more dramatically
than in Fig. 8. In interpreting these differences it is important to bear in mind that the N-body data
contain systematics that can bias results at the few-percent level—indeed it clearly under-predicts the
quadrupole by around 2% around k = 0.05 2~ Mpc ™! compared to both LPT and EPT— and that for any
observation the error on the quadrupole and hexadecapole are dominated by the monopole contribution
and are therefore fractionally much larger than for the monopole— hexadecapole errors are not plotted in
the bottom panel for this reason.

k = 0.25 hMpc~!. This validates our approach of modeling the redshift-space power spectrum
using perturbative models of the first two velocity moments together with the counterterm ansatz
for the third moment.

It is important to note, however, that many of the velocity parameters are degenerate for
analyses of the redshift-space power spectrum only. In the moment expansion, all the one-loop
counterterms in the velocity statistics ultimately take the form k22" Pzq (k) [or k2p?" Pin (k)] at
leading order when combined to form the power spectrum. For example, both the counterterm
for o9 and the third moment take the form k?u*P(k). Similarly, the stochastic contributions will
tend to contribute as (ku)?®. Within the moment expansion we can thus write

PY() = () + iGh)osza k) — P03 0+ )

+ (Oéo + aop® + aap + - ) k*Pin ze1(k) + R} (1 +og(kp)® + - )7 (5.1)

where (...)P" refers to contributions due only to large scale gravitational dynamics and nonlinear
bias parameters computed in either EPT or LPT (with the kQPhn,Zel being the linear or Zeldovich
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power spectra in each case, respectively). This leads to a redshift-space power spectrum with
9 free parameters (4 bias, 3 counterterms, 2 stochastic) with a similar structure of effective
corrections as found in the EPT analyses of refs. [42, 43]°. If the corrections due to third-order
bias (b3, c3) can be set by assuming the Lagrangian bias b3 = 0, as noted in Section 4.1.2,
then this is reduced to 8 free parameters. On the other hand, if we wish to include the full
one-loop expressions for the third and fourth moments, which possess their own effective and
stochastic corrections, two additional non-degenerate parameters are needed, bringing the total
up to 11. The aforementioned degeneracy is less manifest in the Fourier streaming model due to
the nonlinear composition of the cumulants (and similarly in the configuration-space Gaussian
streaming model); however, due to the high degree of quantitative agreement between the ME
and FSM expansions at the data level, the various counterterms and stochastic contributions will
nontheless be highly degenerate, and as such should not all be fit. Indeed, it should be sufficient to
expand these effective contributions as in Equation 5.1, though doing so will break the structure
of the streaming model, strictly speaking. Finally, while our model for P(k,u) includes five
free parameters for counterterms and stochastic effects a condensed set of terms can be used if
fitting to more restricted summary statistics. For example, since the counterterms are of the form
k2 ;LQ”Phn,Zel(k) they contribute to each multipole proportional to k2Plin,Ze1- When fitting only the
monopole and quadrupole (as in refs. [42—44]) one should fit only for two summary contributions
Pyt = apk? Py, though doing so necessarily obscures some of the structure in P(k, 1) which
is poorly fit using only two counterterms. On the other hand, since we include only two purely
stochastic terms, nondegenerate in their contribution to the monopole and quadrupole, they can
be separately included even when fitting only for those two statistics.

In Section 4 we noted that the predictions of LPT and EPT for o;; differed, and that they
appeared to depend upon higher order contributions. The fact that both the LPT and EPT
models do well at describing P(k, 1) in Fig. 8 is thus surprising at first sight. As shown in Section
3 (Fig. 3), however, the errors in o9 are highly suppressed in P(k, 1) except near pu ~ 1 and so this
theoretical uncertainty is subdominant when predicting redshift-space clustering. Furthermore,
for realistic galaxy samples we expect the role of stochastic velocities, i.e. fingers of god, to be
even more significant than the halo sample studied in the figures above; these velocities further
increase the role of the monopole oy relative to oo. This also justifies our choice of modeling
for o9, where we do not spend further effort in improving the LPT and EPT modeling, as was
argued in Sec. 4.

5.2 Comparison for mock galaxies

As a further test of our power spectrum model, in Figure 10 we fit our RSD model in Equa-
tion 5.1 on the mock sample of galaxies embedded into the N-body data using a halo occupation
distribution as described at the end of Section 2. Galaxy samples present a more realistic and

9 Indeed, Equation 5.1 is equivalent, up to details of IR resummation and choices of marginal EFT parameters,
to the models in those works, with similar ranges of applicability. Specifically, compared to ref. [42] we do not
including the next-order real-space stochastic correction o k? but include a counterterm %218 Py, to account for UV
dependence in the fourth moment, while compared to ref. [43] we include a superset of 1-loop effective corrections
but omit the 2-loop FoG correction in their Equation 3.10, which we do not require for good fits at the velocity
level.
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Figure 10. A comparison of the (top) power spectrum wedges (0.0 < p < 0.2, .-+, 0.8 < p < 1.0) and
(bottom) multipoles measured for our mock galaxy sample at z ~ 0.8 (points) to the predictions from our
PT models (lines; Eq. 5.1). The upper panel shows the measurements while the lower panel shows the
fractional differences.

stringent test for our model as they are affected by the virial motions of satellite galaxies and
indeed, fits to the satellite velocity statistics require significantly larger counterterms (see the
discussion around Eq. 4.17) and stochastic contributions, particularly for the monopole oy of
the second moment and a slightly reduced range-of-fit (k ~ o, 1) compared to the halo case.
Nonetheless, at the power spectrum level our model fits the power spectrum wedges P(k, ) at
the percent level at least up to k = 0.25h Mpc~" for all but the highest p-bin (= 0.9), where
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unlike in the halo case the suppression of power by random velocities towards high k is evident
and which begins to deviate from our model prediction at k& = 0.15 h Mpc ™!, reaching 3 percent
off by k = 0.2hMpc~!. Similarly, our model yields a significantly sub-percent-level fit to the
galaxy power spectrum monopole on perturbative scales, while the quadrupole begins to deviate
around where the highest-u wedge does at around k ~ 0.15hMpc™'. We also checked that,
assuming Gaussian covariances and letting the growth f vary, our model (Equation 5.1) can fit
the redshift-space power spectrum directly to nearly identical, sub-percent precision over a wide
range of scales and recover the growth rate to 1%, consistent with the systematic error of the
simulations themselves.

5.3 Fingers of God and stochastic terms

Despite the above, the size and structure of stochastic velocities and finger-of-god effects, partic-
ularly for the specific galaxy samples that will be observed by upcoming spectroscopic surveys,
remains one of the biggest limitations of (perturbative) models of redshift-space distortions. It is
thus worth discussing the pros and cons of various approaches to tame these effects, in particular
the effective-theory parametrization of finger-of-god effects in EF'T models such as ours (and those
used in refs. [42-44]) compared to more conventional FoG models such as [86-90]. As discussed
in ref. [91], the main difference between these approaches is that traditional'® models assume
strict forms for FoG effects (e.g. exponential or Lorentzian damping) depending on a small set
of parameters, while EFT parametrizations such as ours are restricted only by symmetry argu-
ments and thus in principle span the entire allowed space of FoG models, such that the former
could be preferred if they well-describe observed FoGs. Assuming specific FoG models necessarily
implies setting strong restrictions on the structure of halo or galaxy velocities at small scales.
For example, in the language of the moment expansion approach, assuming Gaussian damping
o exp(—k*p?od, ) , as in the TNS model [89], is equivalent to requiring that the effects of
higher-order moments of virial velocities be described by the same paramter, op,q, as the lower
moments. A similar, but more EFT-minded, approach could be to input these restrictions as
priors (e.g. based on fits to simulations) while enabling fitting the full set of allowed parameters
to a given order. The priors would reduce the statistical impact of the additional free parameters
and a comparison of the posterior to the prior would allow us to tell if the observed data were in
tension with the assumptions. This is especially important since the velocities of galaxies with
complex selections can have significantly more structure than usually assumed in mock catalogs.

Finally we note that the impact of redshift errors, which also affect the line-of-sight clustering
signal, can be partly compensated by having a very flexible finger-of-god model such as we have
introduced above. If there is reason to suspect that redshifts are not being accurately estimated
in a survey, this could argue for broader priors on these terms than might otherwise arise just
from dynamical studies of galaxy orbits in observations or simulations.

5.4 IR resummation

Let us comment on the role of large-scale (IR) displacements in the velocity-expansion approach
to redshift-space distortions. While these large-scale modes have essentially linear dynamics, their

0 An intermediate case is represented by ref. [92], who assume a functional form with many free parameters.
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presence results in the nonlinear damping of spatially-localized features such as baryon acoustic
oscillations (BAO) that can be complicated to capture perturbatively in Eulerian treaments
[43, 72]. On the other hand, a convenient feature of Lagrangian perturbation theory is that it
naturally includes a resummation of these bulk displacements, making it a natural candidate with
which to understand the nonlinear damping of the BAO feature in both real and redshift space
[32, 34, 46]. By extension, our LPT calculations of the real-space velocity moments naturally
resums these modes.

However, the combination of these velocity moments into the redshift-space power spec-
trum breaks the resummation of IR wvelocities while keeping the isotropic displacements re-
summed. Within the framework of LPT, bulk velocities can be naturally resummed by promot-
ing Lagrangian displacements to redshift space using matrix multiplication \I/Z(n) — Rl(?)\llgn) =
(035 + fﬁmj)\llgn) [32]. This transformation takes the exponentiated linear displacements A;; —
Rin Rim Anm, naturally endowing the resummed exponential with the angular structure of redshift-
space distortions [32, 34]. For example, the isotropic part of A;; = X(q)d;; + Y d;g;, given by
¥%(g) = (X +Y/3), becomes multiplied by (1+ f(2+ f)u?) under this transformation. Expand-
ing order-by-order in the velocities as we have done in this paper, and thus in the growth rate
f, necessarily breaks this structure. The procedure to capture all the IR modes, including the
velocity contributions, in purely LPT framework has been outlined in [58]. We intend to return
to that in future work.

In the EPT framework, an approximate but pragmatic way of handling these IR modes has
been developed, relying on the wiggle/no-wiggle split. The essential feature of this IR resum-
mation procedure is the decomposition and isolation of the wiggle part (caused by the baryon
acoustic oscillations) of linear power spectra, and the damping of oscillatory components due
to the wiggles by an appropriate factor dependent on the IR displacements to be resummedsee
[46, 82, 83, 85, 93] (details in Appendix A.4). This procedure, however, relies on several ap-
proximation steps, from the details of the wiggle/no-wiggle splitting to ensuring that subleading
corrections can be neglected at the order of interest. As highlighted earlier, and in contrast to
EPT, LPT performs the resummation of long displacement modes directly and does not rely on
any of these approximation steps. LPT thus constitutes a natural environment to understand the
various approximation levels undertaken in the wiggle/no-wiggle splitting procedure, and thus
provides the bridge from the direct and exact treatment of IR modes to the comprehensive and
intuitive picture provided by the simplicity of the wiggle/no-wiggle splitting result.

These characteristics and differences of the LPT and EPT in the treatment of the IR modes
are highlighted even further once the possible additional, beyond BAO, oscillatory features of
the power spectrum are considered. Such oscillatory features can be produced by, e.g., primor-
dial physics, and are also affected by the long displacements in a similar manner to the BAO,
exhibiting damping and smoothing that can again be captured by performing IR resummation
[46, 94, 95]. The evident advantage of LPT in this scenario is that this resummation is performed
automatically without the need for further engagement or analysis, finding saddle points etc.

Despite the incomplete resummation of IR velocities as described above, however, as shown in
Figure 8, in Fourier space the velocity expansions are nonetheless able to capture the anisotropic
BAO wiggles to high accuracy. We can attempt to estimate the effects of the missing bulk
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contributions to the higher velocity moments as follows. Within the context of LPT we can
write, for example for the lowest-order b? contribution to the redshift-space power spectrum [46]

Ppa(k) = /d3q ez‘k-q—%kiijijmAnm(q)fhn(q) — e—%kQEQ(rs,u)pw(k) + Panooth- (5.2)

Equation 5.2 can be understood as follows: since the linear correlation function &, has a promi-
nent BAO “bump” at rs, it picks out the exponentiated damping factor at ¢ = r5 such that the
bump is smoothed by ¥2(rg, 1) = (14 f(2 + f)u?) ¥2(rs) in Fourier space, while the correlation
without the bump gets affected smoothly since it has no preferred scale. The separation into a
smooth component and the BAO feature is commonly used in the literature and known as the
wiggle /no-wiggle split [46, 96, 97], but LPT makes an exact prediction for the damping through
the resummation of linear modes at the BAO scale. In particular, we can now understand how
the BAO feature is affected if we neglect the effect of bulk velocities at n'" order in the moment
expansion. Noting that the n'® velocity moment contributes to the power spectrum proportional
to f™, we can expand the exponential in Equation 5.2 as

Pue(k) = e 5[ (ka?S37 + S (~(?S3 + b)*S0F +- ) Pull)  (53)

where the coefficients of f and f? correspond to contributions from the first two velocity moments
in Equation 5.1. Using the moment expansion to n = 2 is equivalent to Taylor-expanding in f and
keeping only two terms. However, a corollary of the above is that the damping beyond these terms
necessarily scales strongly with x (and k), making it negligible for all but the highest p wedges —
and indeed any residual anistropic wiggles in our fits to the redshift-space power spectrum from
simulations must be well within the errors of these measurements, which are themselves tighter
than state-of-the-art spectroscopic surveys like DESI.

Nonetheless, while being almost undetectable in Fourier space these errors will accumulate in
configuration space to produce deviations from measurements noticeable by eye, particularly in
the quadrupole, so our current strategy will need to be modified for configuration space analyses.
The two most obvious options to this end are (1) to compute Ps(k) for the broadband using
P, only and add in the exponential damping factor for P, by hand, as has been done in
recent analyses in the EFT framework [43] or (2) to use the Gaussian streaming model (GSM;
[51]) for configuration space analyses employing the same bias parameters and counterterms
for velocity statistics in configuration space. The latter is an attractive option because the
velocity expansions in Fourier space and in the GSM can be computed within the same dynamical
framework employing consistent bias parameters and counterterms'!, though the GSM captures
the IR displacements almost perfectly (see Appendix B) while the Fourier space methods can more
easily capture the broadband effects of the IR displacements. A more complete but laborious
approach would be to compute the power spectrum with both linear displacements and velocities
resummed as in Convolution Lagrangian Perturbation Theory [34]; we intend to return to this in
the near future.

" And keeping in mind the relation between stochastic terms in Fourier and configuration space.
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6 Conclusions

The upcoming generation of spectroscopic surveys and CMB experiments promise to deliver un-
precedented information about galaxy velocities on cosmological scales, either indirectly through
the anisotropic clustering of observed galaxies due to redshift-space distortions or directly through
the kinetic Sunyaev-Zeldovich effect or peculiar velocity surveys. Velocity and density statistics
provide us with complementary information about structure formation, which can further be
combined with probes such as weak lensing and allow us to test the predictions of ACDM and
general relativity on the largest scales.

Our goal in this paper is to consistently model both real-space velocity spectra and the redshift-
space power spectrum of biased tracers (e.g. galaxies) within one-loop perturbation theory. The
redshift-space power spectrum, P(k, i), can be understood as an expansion in the line-of-sight
wavenumber, k| = ku, multiplying n*-order pairwise velocity spectra. After describing the four
(4 h~! Gpc)? N-body simulations we compare to in Section 2, we begin in Section 3 by using the
N-body halo velocity statistics to test the convergence of two Fourier-space velocity expansions
of the redshift-space power spectrum, the moment expansion approach and the Fourier streaming
model. The expansions show good quantitative agreement with the P(k, ) measured from the
same set of simulations when the first three pairwise velocity moments are included, reaching
percent-or-below levels of agreement on scales of interest to cosmology except when u ~ 1 (i.e.
close to the line-of-sight) where the agreement is slightly worse at small scales, though still at
the percent level or below for k < 0.2hMpc~! for our fiducial halo sample. Including higher
moments (n = 4) fails to significantly improve the expansion, indicating slow convergence at
scales where the nonlinear velocities of halos become dominant. We find that the redshift-space
power spectrum can be modeled at the percent level on perturbative scales by using a counterterm
ansatz for moments beyond n = 2 valid in precisely this scenario.

In Section 4 we model the real-space power spectrum and the first two velocity moments within
one-loop Lagrangian and Eulerian perturbation theory, comparing them to N-body simulations
and highlighting their salient features and differences in the final subsection. Our model employs
effective field theory (EFT) corrections to the nonlinear dynamics as well as a bias scheme includ-
ing shear and cubic contributions as well as derivative bias degenerate with the counterterms. We
find that, when the appropriate counterterms and stochastic corrections are included, one-loop
LPT and EPT can model the zeroth and first velocity moments (the real-space power spectrum
and pairwise velocity) to comparable scales for both broadband shape and oscillatory features.
For the second moment (velocity dispersion) LPT shows a more limited range-of-fit while EPT
relies on one-loop terms of the same order as linear theory and slightly under-predicts the damp-
ing of oscillatory features in the one-loop terms, suggesting that the velocity dispersion spectrum
is subject to significant non-linearity even at intermediate scales. In general we find the higher
moments to be “more non-linear” and to have larger contributions from stochastic and counter
terms as we move up the hierarchy.

Finally, in Section 5 we combine the velocity expansions and velocity modelling to obtain
a model of the redshift-space power spectrum in one-loop perturbation theory. Using the bias
parameters and effective corrections derived from the data statistics in addition to the afore-
mentioned counterterm ansatz for contributions from velocity moments beyond n = 2 yields a
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percent-level fit to the halo power spectrum for all wedges out to k = 0.25hMpc~! at z = 0.8,
with similar performance for the multipoles. As a further test, we analyzed a sample of mock
galaxies using the same procedure, and found qualitatively similar results despite significantly
more pronounced stochastic terms (expected due to virial motions of satellites) and a slightly
decreased range of fit at higher u and in the quadruople as a result. In addition, we conducted
a fit directly to the power spectrum wedges for this sample, assuming Gaussian covariances and
letting both f and the bias parameters to float, and found that our model recovers the growth
rate to within the systematic error of the simulations themselves with no loss of accuracy.

Our python code velocileptors to compute the aforementioned one-loop velocity statistics
and redshift-space power spectrum in both EPT and LPT is publically available. For complete-
ness, the code includes all terms up to the fourth pairwise velocity moment in both formalisms as
well as modules to combine them using the moment expansion in both formalisms, full IR resum-
mation as in Equation A.30 in EPT, and the Fourier and Gaussian streaming models in LPT. The
LPT code takes slightly more than a second to compute the all relevant statistics to sub-percent
precision on perturbative scales, while the EPT code takes slightly less. We make abundant use
of the FFTLog algorithm throughout and compute one-loop EPT terms via manifestly Galilean
invariant Hankel transforms inspired by the Lagrangian bias expansion (Appendix E).

The structure of the moment expansion implies that the theoretical error should be a strong
function of p, which can be taken as an argument in favor of modeling power spectrum wedges,
P(k, ), over multipoles, Py(k). The importance of both counterterms and stochastic terms in
the velocity statistics suggests that the cosmological information in P(k, ) at high k& and p is
less than one might naively think, since it is precisely in this regime that these non-cosmological
contributions become an appreciable fraction of the total power. It is also at higher k and p
that non-trivial behavior of FoG models and observational redshift errors would be expected to
impact the measurements the most.

We close by noting some possible near-term applications. Firstly, our model naturally includes
precision modelling of cosmological velocities at quasilinear scales and will be directly applicable
to upcoming kSZ and peculiar velocity surveys [8-10, 12]. While we have focused our predictions
on velocity statistics in real-space, the conversion to redshift space can be straightforwardly
obtained by the appropriate f derivatives of the redshift-space power spectrum [70], which are
themselves predicted by the model as linear combinations of density-weighted pairwise velocity
statistics. In this regard the increasing importance of counterterms and stochastic terms as we
move higher in the moment hierarchy suggests that much of the cosmological information in
velocity surveys will be contained on large scales.

In terms of redshift-space distortions, our model includes a superset of effective corrections
at 1-loop level and is similar in many respects to those recently used to analyze BOSS data
in ref. [42-44, 98, 99] or the “blind challenge” of ref. [100]. An obvious next step from the
present analysis would be to analyze those data with the formalism described in this work.
Our model should likewise be competitive in analyses of future high-redshift galaxy surveys like
HETDEX [101], DESI [6], Euclid [7] and even futuristic LBG [63] or 21-cm [67] surveys, though
as discussed in Section 3 the applicable range of scales will likely be limited more by the scale
of stochastic velocities (kpog ~ 0, 1), or FoGs, than by the nonlinear wavenumber &y at higher
redshifts. This was demonstrated already in EFT analyses of BOSS, where kpog ~ 0.2 h Mpc ™1,
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though specific FoG properties will depend on the galaxies sampled by each survey, and will be
particularly interesting in the context of high-redshift 21-cm surveys where stochastic velocities
are relatively small [102] but observations are naturally limited by foregrounds to higher pu.
Finally, the aforementioned probes can be combined with upcoming lensing surveys. By letting
the gravitational slip [3, 103, 104] float as a free parameter like the linear growth rate f, this will
let us test the predictions of General Relativity on cosmological scales. By providing a model
which can simultaneously fit all of the relevant statistics we enable a principled statistical analysis
that can avoid taking ratios of noisy data points.
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A Velocity moments and RSD power spectrum in Eulerian PT

A.1 Third-Order Bias Expansion in EPT and LPT

In this paper we extend the expressions for the real-space power and pairwise-velocity spectra
found in [51] to include contributions from third-order bias operators. In principle, going to third
order in bias requires an additional four bias parameters (see e.g. [26]), however as shown in [24]
for EPT at one-loop order many of these contributions are either zero or amount to re-definitions
of the linear bias parameter b;. The remaining contributions are all degenerate and can be
combined into a single (EPT or LPT) third-order bias parameter c3 or bs. In this subsection we
will review the bias expansion in EPT and provide details for including the effects of third-order
bias in LPT predictions of the velocity moments.

In order to evaluate these velocity moment correlators in Eulerian PT we adopt the biasing
scheme of ref. [24] in Equation 4.6 up to third order, which we repeat here for convenience:

0p = c10 + %252 + 8 + %353 + 15082 + oSt + o385 + ey, (A1)

where s? = 5ijSij, s3 = sij8j151; and st = s;;t;;, and the shear operators are defined as

2 4 0;0; 1 0;0; 1
Y=mn- ?52 + ﬁ‘SQ? Sij = (8; - 35i‘> o, lij= (8; - 35ij> n, n=20-—29. (A.2)
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As usual we assume subtraction of mean field values like <52>. In Fourier space, the second and
third order shear operators are given by the kernels in momentum space
(ki -kg)* 1
ETER L
S5 (1, ka2, k) = 282 (ki, ko + kg) F (ka, ks),
(k1 -ko)(ko - k3)(ks-ki) (ky-k2)? (ki-k3)? (ks-ko)? 2

5(3)(k17k27k3) = - - - +77
3 k2 k2k3 3k2k3 3k7k3 3k3k3 9

S (k1 ko) = (A.3)

2 2
Sug?)(klvk%k@ = ;SZ (ki,ko +k3) [52 (k2,k3) — 3] 7
2
S‘(ﬁg)(kl’kQ’kS) = G (ki, ko, k3) — F3 (ki ko, k3) — = <S2 (ki1,ko + k3) — 3> F5 (ko, k3) .

Given that in this paper we are interested only in two-point statistics, many of the third order
bias operators listed above do contribute to the one-loop power spectrum in degenerate manner.
After shot-noise renormalization only one non-vanishing independent contribution remains. The

relevant correlators in one-loop EPT for the real-space power spectrum are:

(binl [55°] (3)>' _ <5hn\[s3]<3>>' _o, (A.4)
<6nnu621<3>>' = 03 (9%) (),
(hlt) = 3 5) | (0. P10 Pu(0),

;f <<5hn|[8t](3 > M <5gn>' phn>

16 136
~ 105 <<51‘“’< )¢ > 63 (o) P““)’

The corresponding contributions to the pairwise velocity, due to the correlator (dj|v;) can be
obtained by simply multiplying these terms by Zk%z

The above degeneracies also exist in one-loop LPT. In particular, for two third-order EPT
operators O3(x) and O%(x) such that (d,|O3) = <(51m]03 + A <6hn> (5hn> at one-loop, we also have
the degeneracies

(Os(an)Ai) = (O5(an)A:) + A(83,) U™ (a), (A.5)
(O3(a1)dtn(a2)) = (O5(a1)dtm(d2)) + A (5 ) &iin(a)

in one-loop LPT. In the main body of the paper we will thus summarize these contributions
with the third-order parameter Os(q) = sij(q)ti;(q) + 5 (62, ). This introduces the additional

lin
correlators

Usys(a) = Uy (0) ds = (Os(an) i) = = [ 5 R B (k)1 (k) (A.6)

2
0(a) = (Osla)dia(a)) = [ 55 oy (R)i(ka).
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An explicit formula for R;, expressed as a Hankel transform is given in Appendix E. Finally, the
expression for the pairwise velocity spectrum requires the time derivative of Us,, which is given

by Uy, = (O34 ) = fUs,.

A.2 Eulerian moment expansion

In this section we give a short overview of the Eulerian moment expansion framework for RSD
based on the distribution function model [62, 68, 69], using one-loop, Eulerian effective PT to
compute the components. These results, after including IR-resummation, are equvivalent to those

recently used in refs. [42, 43].

The velocity moments are combined to give the RSD power spectrum as in Eq. (3.4). Up to
one-loop we need to consider the contributions of several velocity moments

= 2ilm [Py (k, p)],
=P (k) = Poa(k, ) — 2Py (k, 1) + Py (k, 1)
= 2Re[Po2(k, p) — Pr1(k, )],
O (k) = Pos(k. ) — 3Pra(k, ) + 3P (k, 1) — P (k. )
= 2ilm[Po3(k, ) — 3P12(k, p)],
(k) = Poa(k, p) — 4Pr3(k, ) + 6Paa(k, 1) — 4Pf5(k, 1) + Py (k, )
= 2Re[Pos(k, 1) — 4P13(k, p) + 3P (k, ).

[1]x

[1]:

where the component spectra Py, are the cross-correlations of different velocity moments

(1+8) el ) = ((1+600) = uk () (1+6(K) = uk (), (A8)

PLL/(]{,,U) = <(1 + (5) *quL

where, for brevity, we introduce the primed expectation values to denote expectation values with

Dirac delta function dropped, i.e. (A|B) = (A(k)B(k)) = (27)30p(k + k') (A(k)B(K"))".

Note that Prr, = Py, , so, without loss of generality, we can assume L < L’. See ref. [58] for
a more detailed connection between the moment expansion and streaming models.

Contributions to =) arise from only Pyy. This is the usual real space halo-halo power
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spectrum. We have

(0n|0n) = i Piin(k) + 20?/
P

N

[Fa(p, k — P)Fplin(“{ —pl) +3F3(p, —p, k)Plin(k)>Plin(p) (A.9)

20169 / Fy(p.k — ) Pin(p) Pin [k — D))
p
+ derey / Fy(p,k — p)Sa2(p, k — P) Piin(p) Pin(Ik — pI)
P
c3
+ 5 Plin(]?)Plin“k - p’)
p

+2c9¢s | S2(p,k — p)Piin(p) Pin(Jk — p|)
P

+2¢2 / [S2(p.k — p)}QBin(p)le(!k -pl)
+ 6105 Pin(k) / Su(p, P, k) Pin(p) (in EPT)
P

where the third-order bias operators can be combined into a single term with the coefficient cs.
Counter terms that are required to regularise the one loop Z(*) terms are of form (k2/k2) Py, (k) (ks
is a characteristic proto-halo size scale) and thus degenerate with the derivative bias contribution.
Besides these there is a constant shot noise contributions obtained by correlating the stochastic
component of the halo density field €, (k), and we neglect the higher derivative stochastic terms.
Thus the total Z(©) expression reads

2
=(0 0 k « 9
20 o (k) = (A.9) + ¢ )ﬁplin(k) + “consty” + . .., (A.10)
where “consto” = (epep)’, and c((]o) is the leading derivative counterterm. In general, for coun-

terterms we will use the notation C% taking into account that different angular dependences can
have different counterterm contributions.
Contributions to Z() arise from only the Py; term. This gives us

(8p|(1 + 83) % v)) & (Snlvy)" + (Gnldn *v)), (A.11)

where in one-loop EPT we have
(Snlv)) ~ —i% (Clphn(k) +2¢; / Fy(p, k — p)G2(p, k — P) Pin(p) Piin (|k — PI) (A.12)
P

+ 3¢t Pan(k) /

[Fs(p, -p, k) + G3(p, —p, k)} Pin(p)

+ o / Ga(p.k — D) Pin(p) Pin [k — pI)
P
42, / S2(p,k — p)Ga(p, k — P) Pin(p) Pin(k — p|)
p

+ 3P (h) | Sulp.p. kmm(p)), (in EPT)
p
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and

(0ul6 vy’ = —21( || Th Pt K~ ) Pa) P ) (A13)
+ & Pin (k) / L]j!Fg(p, —k”HG?( ﬂ Pin(p)
+ereny | TP Pk )
tae / i!sxp,k—pmm@mmﬂk—pw,). (in EPT)

Note that, due to the angular symmetry, co and c¢; do not contribute to the tadpole diagrams,
i.e. to the P;3-like terms.

Counter terms that are needed to regularise the one-loop Z(1) terms scale as pu(k?/k2) Py, (k)
and are again degenerate with the derivative bias contribution. Collecting all the contributions
to 21 we have

= ke
20 op (k) = 2[(A12) + (A.13)] — i\ T Pnh) - (A.14)

2)

Contributions to =3 arise from two correlators Pyo and P;1. Pyo starts to contribute at

one-loop order, while P;; also has a linear contribution. We can write for the former

(1114 81) » vﬁ>/ ~ <5hyvﬁ>' + (Enlony (o) (A.15)

p?(k — p)?
+ 3 Py (k)ot,, (in EPT)
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and for the latter

<(1 + p) * UH‘(l + 0p) * 1}||>/ = <U|| ”UH>I +2 <UH ‘5hUH>/ + <5hv|| ’5hv||>/ (A.16)
2
=15 (P2 [ (6ot~ )Pl P )
p

+ 6Phr1(k) / G3<p7 —-b, k)ljlln(p)>
+ 461% </p Zng(p, k - p)Plin(p)Plin(’k - p‘)

) | [E iG2<—p,k>+§2F2<—p,k>]ain<p>)

—I—C%/ ;(i” _|_E pi )le( )Pin(|k — p|)- (in EPT)
P

The second contribution in Py (i.e. C%P]in(‘fﬁn) and the last term in P;; ensure IR cancelation
in the soft limit.

A new feature of the 2 correlator is that it has terms with isotropic angular dependence,
10, as well as u? dependence. Both of these have one-loop terms that need to be regularised
and thus we have to introduce counterterms of form (k?/k2) Py, (k) for each of these two angular
dependencies. The contribution to the isotropic angular dependence comes primarily due to
the small-scale velocity dispersion contribution in the Py term, i.e. Pyo? > C%le(k)aﬁon_hn.
Here oyon_iin encapsulates the non-perturbative, small-scale, contribution to the halo velocity
dispersion.

In addition to these derivative terms the Z(2) correlator contains both isotropic and anisotropic
stochastic contribtuions. For example, the UV dependence of the ¢y contribution to Py needs
to be renormalized by a constant, isotropic contribution proportional to d;;. Moreover, 2@ will

generically inherit a stochastic contribution via Py in (A.15). We can write

/
<5h]5h * vﬁ> > (enlen)’ <vﬁ> = “consty” (0f, + Tnon_1in) s (A.17)

where, in the last line, we split the halo velocity dispersion into the linear component and the
residual non-linear component coming from small-scales. However a similar contribution can be
obtained from the last term in Pj;, where we again have

/
(0, * V)| |6p * UH>/ > FT[<€h|€h> <’UH|U||>:| = (enlen)’ <vﬁ> = “constgy” (Gﬁn + Jﬁon,hn) ,  (A.18)

and the two shot noise contributions exactly cancel in the sum. In the more general case, the power
spectrum of stochastic field ¢, can have some nontrivial scale dependence, i.e. (e;len)’ = Pe(k).
In that case, the above discussed cancellation is no longer exact and we have

/
<5h|5hwﬁ> —<5h*v”]6h*v”>,9/(Pg(k)—Pg(k—p))Pm,(p)% “consts” + -+, (A.19)
P

where P,,(p) = <’UH|U||>/ is the halo velocity spectrum. It is also instructive to investigate a
polynomial Scale dependence of the stochastic power spectrum, P.(k) = ag + aok? + ask* +
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In that case it follows that the noise contribution takes the simple form
/ (Pe(k) — P.(k— p))Pm}(p) ~ “const(2 ())” + const(og”k:2 + const@)”,qu2 -, (A.20)
P

from which it follows that only the isotropic part obtains a shot noise like contribution. Collecting
all the contributions we get

E®) (k) = 2[(A.15) — (A.16)] — 2 (an + c§2)u2) 72 Fln(k) + “conste” +.... (A21)

—1—loop

Contributions to =) arise from two correlators, Py3 and Pja, both of which contribute at

one-loop
(60/(1 -+ 6n) vﬁ>’ ~ 3Py 0” (A.22)
= —3it-c1 P, (in EPT)
(0 w148 % 0f) = (oglod) + (oplonef) + (Buylo) (A.23)
:;@H/pg §G<gk P) Pin () Pin([k — )
+ 4p Py (k) /p M(}g(p, —k) Pin(p)

2 k —
+ 2k01 /p MHin(p)Plin(k - p)

- ClNPlinUﬁn> ) (in EPT)

The combination of FPy3 and the last two terms of Pjs ensure IR cancelation in the soft limit.

Collecting all the one-loop contributions we get

=@ (k) = 2[(A.22) — 3(A.23)] + 6i ( AT

—1—loop

) thn (A.24)

4) can be approximated by a contribution giving zero lag (which we can

Contributions to =(
consider as a non-perturbative contribution) multiplied by the lower order moments. Heuristically
we can write:

/
<5h|(1 +6p) * uﬁ> ~ 3Py0? ~ 3Py0’ (A.25)
= 3¢ Pynoit, (in EPT)
/
<(1 +5h) *U|||(1+5h) *Uﬁ> ~ 3P110‘2 (A.Qﬁ)
2
kQ ‘P11n011n7 (ln EPT)
<(1 1+ 64) * 07| (1 + 8) * Uﬁ> ~ <v”\v”> + Pyo (A.27)
2
pi(k —p))
~ 2 — 79 | Din(P)Pin(k —
[ ] Pt Pt
+ & Pinoiy (in EPT)
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The only proper one-loop contributions in the fourth moment come from P;3 o Phnoﬁn and
Py ~ <vﬁ\vﬁ>/, terms that also exhibit a degree of IR cancelation in the soft limit in their p?
angular dependence. Similar cancelation also appears at the two-loop level for the p® angular
dependence where all of the clleahn terms cancel in the IR limit.

Similarly to the case of 2@ we can show that the scale dependence of the stochasticity
field generates a shot-noise contribution in the =) term, even though to show these explicitly a
two-loop calculation is formally required. However, treatment of the shot noise terms on equal
perturbative footing as the deterministic fields might not generally be justified and thus even
an indication of the presence of such stochastic terms could serve as a justification for adding a
shot noise contribution. These stochastic terms would be suppressed by (uk)?* factors in the total
power spectrum.

Collecting all the one-loop contributions we get

- 1
=W (k) = 2[(A.25) — 4(A.26) + 3(A.27)] + 24c{P L = Pin (k) + “consty” + . (A.28)

—1—loop

A.3 Eulerian redshift-space power spectrum

Using the moment expansion of the redshift-space power spectrum given in Eq. (3.4) we obtain
the one-loop result

S ) . — 1 = 7 = =
P soop () = EO(K) + ikuE 0 (1) — JRED (1) — LED (1) + K ED M) (A20)

(A.9) + 2ifkp [(A.12) + (A.13)] — f2K*p?[(A.15) — (A.16)]

I
| —

- % PR P[(A22) — 3(A.23)] + i f4l<:4u4 [(A.25) — 4(A.26) + 3(A.27)]}
EPT

2 2 it
+ (CO + fap? + fPeopt + fiesp® ) 2 Pin(k) + <1 + 51/ 2t 2f 4k4> “const”.

The first two lines above refer to the EPT expressions of the given one-loop power spectra, while
in the last line counter terms and stochastic contributions are listed. The counter terms are
redefined so that ¢y = c(() ), c1 = c1 fcéo), cy = 02 fc and c3 = 03 fc(Q). This ensures

that all the UV sensitive P;3 terms are under control. In the last line we have also defined the

k2 ‘consta” 1 kA ‘consty4”
* “constg * “constg”

above we have neglected higher derivative contrlbutlons to the stochastlclty This result, up to

stochastic parameters “const” = “consty”, s1 = 5 and s = . In the result
the couple of different choices for the counter terms and stochastic contributions, agree with

recent references [42, 43].

A.4 IR resummation of Velocity Moments and RSD power spectrum

Eulerian perturbation theory expands density and velocity fields, and correlators thereof, in pow-
ers of long wavelength modes that are assumed to be small. However, this assumption does
not hold for long displacement modes that can have order one contributions and thus should be
resummed, i.e. treated non-perturbatively. Given that in the equal time correlators most of the
effects of such long wavelength displacements cancel out standard Eulerian PT is still an opera-
tional framework. However, the presence of the BAO feature on fairly large scales makes it more
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prone to these displacements and thus it is of interest to handle these non-perturbative contri-
butions. The procedure for handling these long modes goes under the name of IR-resummation,
and is most naturally done in Lagrangian perturbation theory [32, 39, 46, 72, 93, 96]. However,
in Eulerian perturbation theory results can also be resummed in order to obtain the equivalent
behavior [82-85].

In the Eulerian framework the most pragmatic rendering of these IR-resummation procedures
relies on splitting the linear power spectrum into smooth and oscillatory parts, P, (k) = Py +
B . The choice of splitting is in many ways arbitrary. The displacement resummation is taken
to act on P alone, and is usually applied to produce the real-space power spectrum. However,
the procedure can be generalised to any velocity moment power spectrum giving

=(n),IR (k) = &(n),nw(k) 1 e 3T (1 1 %Esz) 5(n),w<k) (A.30)

—1—loop —lin —lin
1v27.2
=24k Pv k:|
lin( )

+ 50,00 [Bin () = B (1) + ¢

op in

~ EIY (1) 4 e (14 15282) SV (k) 4 <&<”> (k) — ﬁ“”’“W(k))

—loop —lin —loop —loop

where the label “loop” stands for the next-to-linear-order correction in PT while the label “1 -
loop” stands for the total one-loop result, i.e. a sum of linear and next-to-linear orders. In the
above Y is the estimated dispersion of the long wavelength displacement contributions:

A

dk . .

52 _ / o5 (1= o (kPao) + 2 (Tba0) | Pin (k). (A.31)
0

and A is the scale of the IR mode split. In practice, A can be chosen to be arbitrarily large given
that the integral is naturally saturated by the power law drop of Py, at high k.

For redshift space power spectra, in addition to the long wavelength displacements one can also
resum long wavelength velocity modes. This introduces slight change to the expression above,
making the total redshift space dispersion Y5 dependent on the angle to the line of sight, i.e.

B2 = 1+ F(f +2)u?] 22 (A.32)
where the ¥? is given by Eq. (A.31). The power spectrum becomes

Py () = PR (k) 4 e 200K (14 4553 u)?) P (k) (A.33)

1—loop — “lin lin

lin

+ Py (k) [Hin(k) S PV (k) 4 e 3SR py (k)]

~ Py () + e RO (1 S2002) B (k) 4+ e300 (B (1) — P ()

1—loop lin oop loop

S

where the wiggle and no-wiggle Plf100p v

(and similarly the P oop DY dropping the linear Kaiser

part) are given by Equation (A.29).

B Gaussian Streaming Model

The Gaussian Streaming Model (GSM), like the ME and FSM described in the main body of
the text, is yet another way to expand the exponential in Equation 3.3. However, it differs from
the two aforementioned models in that it is a cumulant expansion in configuration space [51, 58].
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Our goal in this section is to explain why this structure makes it particularly easy to handle the
effects of bulk (IR) velocities within the GSM.

We begin by reviewing the derivation of the GSM as presented in ref. [51]. The exponential
in Equation 3.3 can be expanded using configuration space statistics as

<(1 + 0g(x1))(1 + (59(X2))eik'A“> (14 &4(r)) exp {Z — ki, .. kan“n)z (r=x; — XQ)}

where, for example, the first two configuration-space cumulants are given by

c(r) = (1+&) W ()

1

CPw) = 1+6) =)@ - e, (B.1)

i 7

and can be straightforwardly interpreted as the mean and variance of the density-weighted pair-
wise velocity. Truncating the cumulant expansion at second order and Fourier transforming yields
the intuitive form [49]

(1)?
C,

(14+¢&5)exp o)
\/271'0 QCH

As shown in Section 3, truncating the velocity expansion at second order yields rather imper-

14 &s(s (B.2)

fect fits to the redshift-space power spectrum, especially towards small scales and large u, and
thus does not yield a good model for the power spectrum broadband. However, the configuration
space structure is particularly suited to the close-to-Gaussian statistics of the large-scale bulk
motions critical to describing the BAO feature. This is because, roughly speaking, C(">2) do not
contribute to BAO damping, which can be attributed to

e The correlation function is much smaller than unity, such that 1 + ¢, ~ 1.

e For the nonlinear damping of the BAO we only need to consider the Gaussian statistics of
the linear A and Awu, such that higher moments factorize via Wick’s contraction.

For example, for the fourth cumulant we can write
CW ~ (AuAuAuAu) — 6¢PDC? ~ 6 (AuAu) (AuAu) — 6¢PC? ~ 0. (B.3)

Thus the truncation at second order, while not a good approximation for the power spectrum
broadband in general, well-describes physics around the BAO scale. Note that this is not the
case for the FSM, because the Fourier-space cumulants do not factor multiplicatively via Wick
contractions.

C Wedges vs. Multipoles

While perturbation theory models of the power spectrum expand in kj = ku and thus naturally
predict the values of power spectrum wedges, analyses of actual spectroscopic surveys naturally
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produce power spectrum multipoles Pp(k) [92, 105-107]. Since P(k,p) is a relatively smooth
function of p, dominated in amplitude by the monopole and quadrupole, choosing to analyze
the first few multipoles of the power spectrum vs. wedges should amount to little more than a
change of basis. However, as we have seen in Figures 1 and 2, this choice of basis can make a
dramatic and somewhat counterintuitive difference in the apparent goodness of fit or range of
model validity, which we comment on briefly in this appendix.

Perhaps the most surprising aspect of multipoles vs. wedges is that the errors on ¢ > 0 do not
have to be lesser in magnitude than wedge errors. Perhaps more importantly, even the quadruople
can diverge from perturbative predictions while all but the highest © wedges are predicted at the
sub-percent level. This was already seen in Figures 1 and 2; however, since in that case much of
the monopole power at higher k derives from shot noise it is worth considering a simpler example
which emphasizes the point.

Specifically, let us consider a shot-noise free example wherein our theory model is linear theory,
P(k,p) = (b+ fu®)?Pin(k), while “truth” is given by that model multiplied by 1 + k?c?u®, with

o normalized to produce a 10% error at k = 0.2 hMpc™*

and p = 1. Such an error term is
exactly what one might expect from the virial velocities in the fourth velocity moment which we
do not model in this work. In this example, shown in Figure 11, we see that while the p = 0 and
0.5 wedges are predicted by “theory” at sub-percent levels for all scales shown, the quadrupole

already differs from theory by ten percent by k = 0.15h Mpc~!.

The mathematical reason for
this is straightforward: unlike the monopole, the quadrupole is not a positive-definite average of
power spectrum wedges. Indeed, the Legendre polynomial Lo(u) = %(3u2 — 1) will tend to pick
up differences in the error between pu = 0, where errors are small and L5 is negative, and p = 1,
where errors are maximal and L is positive. The situation is particularly acute for perturbative
treatments of redshift space, which as we have shown expand order-by-order in u, making much
better predictions perpendicular to the line-of-sight than parallel to it.

The error properties of multipoles vs. wedges described above carry implications for data anal-
ysis. From an aesthetic standpoint, presenting data in terms of P(k, ) has the slight advantage
that fractional errors AP(k, pu)/P roughly correspond to standard deviations in the Gaussian
approximation while AP;/P, are hard to interpret as the errors for Py~ are dominated by the
monopole. Nonetheless, as the two statistics are connected by a basis transformation, the choice
between them should in principle be irrelevant to data analysis as long as errors are properly
taken into account, and theory errors'? for higher-order FoGs that scale strongly with p will have
the desired effect of down-weighting data from higher p. However, the magnitude and shape of
the theory error can be hard to estimate for non-simulated samples, and a far more common
choice in the literature is to adopt hard scale cuts kpax when fitting to theory (corresponding
to infinite theoretical error beyond that scale). In this case, operating in wedges corresponds to
defining an angular theshold kp,ax (1) where all but the highest © wedge can be fit over most per-
turbative scales, while u = 1 has be cut off at much smaller £ due to virial motions, fingers-of-god
and (for real surveys) redshift errors. On the other hand, operating within the multipole formal-
ism means setting kpyax ¢, which means much of the angular information carried by the lower-s

12See ref. [108] for an example calculation of the theory error on multipoles. Their calculation uses a different
ansatz for higher-order FoG effects than our k?u*P(k), underscoring the difficulty of modeling FoG effects not
incorporated into the base model.
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Figure 11. Toy model illustrating the different error properties of wedges (left) vs. multipoles (right).
In this example the “theory” is given by the Kaiser approximation with b = 2 and f = 1 while “truth”
is given by Kaiser multiplied by 1 + k%2021 normalized such that the power spectrum is 10% away from
theory at k = 0.15h Mpc™! and p = 1. While the © = 0 and 0.5 wedges agree with theory at sub-percent
level over the entire range shown, the quadrupole deviates from theory by more than 10% already at
k = 0.2hMpc ™!, showing that fractional errors on the quadruople do not have to be less than or equal to
those on the wedges.

wedges will be lost by the scale-cut in the quadrupole due to contamination from the highest-u
bin (complementary discussions of the robustness of wedges can be found in refs. [43, 108, 109]).
However, since redshift space power spectra are naturally measured as multipoles, an alterna-
tive approach beyond the strict wedges/multipoles dichotomy might be to weight multipoles in
a scale-dependent fashion to minimize contamination by FoG effects at high p. Devising such
an estimator is outside the scope of this work, though we note that related strategies have been
suggested to deal with systematics in configuration space [110, 111] and plane-of-the-sky effects
near = 0 [92]. The above suggests that rather than simply discarding one wedge or finding
an orthogonal basis on the range [—fimax, fimax), the practical need to go through the multipole
basis promotes an apodization or tapering of the wedges in u to restrict the support in £. Making
predictions for apodized wedges presents no problems over the case of sharp-edged wedges.

D Fast Evaluation of LPT Kernels via FFTLog

One of the more time-consuming steps in computing LSS statistics beyond linear order in pertur-
bation theory is the evaluation of one-loop integrals [33, 34, 51]. Recently, ref. [112] proposed a
method to dramatically speed up these calculations by exploiting the underlying spherical sym-
metry of these integrals. To do so they note that these kernels can generally be decomposed into
sums of integrals of the form

/ Pq " |k — "™ PGk — q) Pin(q)Pan(Jk — ql) = (=1)%4x / dr 1 jo(kr)&h, (r)€h, (r) (D.1)
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where P, are Legendre polynomials and the generalized linear correlation functions are defined
by
L _ dk 2+n
40) = [ o 4 P ). (0.2)
The intuition behind Equation D.1 is that, as the scalar-valued left hand side must be independent
of the orientation of k, the angular integral in q can be performed analytically, for example using
the plane-wave expansion, to yield the spherical Bessel integrals in right-hand-side expression.
Conveniently, these spherical Bessel integrals can be readily computed as Hankel transforms,
which can in turn be efficiently computed using the FFTLog algorithm.
Ref. [112] applied the above-described method to LPT kernels relevant to the matter power

spectrum, which can be written as

Ri(k) = kQPlin(k) [i/dr r jg(k:r)fg — g /dr r jg(kr)ﬁg + 385/d7‘ r j4(k:7‘)§61]
Ra(k) = K Pha (k) [ -3 [arr it - 2 [ drr g+ o [ g

+ 25k/dr r jl(k:r)gil - 25]€/dr T jg(k:r)fill (D.3)

and

8 16 8
dr r%jo(kr) B(§8)2 - ﬁ(fg)z + 35(53)2]

Qua(h) = 4r [ dr 12jo(hr) | 5 - 2(ED? - o (@)? - elely + éﬁ%&]

38 68 8
dr r?jo(kr) B(&()))Q + 5(53)2 + 5(561)2

2 32 4 8
riges- Tae s jaen-teel o

where the r dependence of the generalized correlation functions is left implicit. In this Appendix
we complete this list by deriving Hankel-transform expressions for the remaining LPT kernels
relevant to biased tracers up to one-loop order; these are:

Qs() = x| dr 12io(hr) | S(€)° - S(D? - Selels + 26k
Qu(h) = 1x [ dr +2io(hr)| S - ()
24

T4
Q) = ar [ dr 1%k = (69 + 1P - (&)

8 24 k> 16k 20k?
Riy (k) = g P6) [ dr v 25 hithr) = 2 ekin(hr) = (F5-65 — 163 (o)
24k 72

k,2
— = €llhr) + S€alhr) (D.5)
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where the final kernel is defined such that

16
(Onl (5t + 2 0501in)) = Ry (k). (D-6)
The relation of these kernels to physical quantities in LPT can be found in, for example, refs. [33,

34, 51].

E Hankel Transforms

In this section we give expressions for the Hankel transforms that give the k-space velocity mo-
ments in both LPT and EPT described in the main paper. We begin with LPT, from which we
show that the expressions for EPT can be extracted as an especially simple limit. Similar ap-
proaches to evaluating the integrals in EPT are discussed in e.g. [112-116]. We differ from these
mainly in that the FFTLog expressions are derived using the Lagrangian bias basis, which natu-
rally organizes 1-loop contributions into combinations of linear generalized correlation functions
&/ that are automatically Galilean invariant. We set the linear growth rate f = 1 throughout
this section, with the n*" velocity moment carrying an implicit factor f™.

E.1 LPT

The integrals for velocity moments in LPT take the form
/d3q gla ik AL m g

> in in Yln n
= Z47T/dq ¢ e PR (XY )f,T(k2Ynn)(kql> f(@) jn(kq), (E.1)
n=0

~

where © = k- ¢ and we have used Equation F.9; explicit expressions for f)* are provided in
Appendix F. The summands are Hankel transforms and can be efficiently evaluated using the
FFTLog algorithm. In practice we find that this series converges quickly; for the matter con-
tribution in the power spectrum (i.e. f(q) = 1) the series converges to sub-percent precision at
z = 0.8 and k = 0.25 hMpc ! for typical cosmologies when nmax = 5, with improving perfor-
mance towards smaller wavenumbers and higher redshifts. Our expressions agree with those in
ref. [58] up to shear and counterterms, as well as that for the power spectrum in ref. [51], and we
follow the conventions in refs. [34, 51] for the Lagrangian-space two-point functions (U;, A;;, Wijn
etc.) though we correct for minor algebraic mistakes in a few cases. In this section only we will
ignore the stochastic contributions and counterterms as they have trivial scale dependence.

E.1.1 Real-Space Power Spectrum

The real-space power spectrum expressed as an infinite sum of Hankel transforms was given in

Appendix B of ref. [51]. As it is an important component of our model, we include it here for
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completeness:

Plk) = /d3q eik-qef%kiijliij“{l _ %kz (Xloop n Ylooplu2> _ éks (VM n T/f’)
by (20kUp = (X0 4+ Y002) ) + 8 (&, — F2UR 02 + kU )
+ b2< — KRUZ 4 z‘kU20u> + 2ib1bakn UM 1 + %béﬁﬁn
+ bs< — k(X + You?) + Qikvlou) + 2ib1 b kV 2 + babgx + b2¢

+ 2ibskUp, o + 2b1b30} (E.2)

where for brevity we have defined we have defined V = 3(2V; + V3)13, T = 3T and T =
X055 + Ysqid;.

E.1.2 Pairwise Velocity Spectrum

This scalar decomposition of the pairwise velocity spectrum is given by v;(k) = iv(k)k;, with

o(k) = /d3q oika e’%kikalz‘if{k<X+Yu2> i il;z(VMJrTM?’)
42, <i(k2U“nX““ _ U)M kAU Yl 3 B (X0 4 Y10M2)>
1 b2 (k&thn F E(&a Y 4 2ty 2 iUH,u>
+ by (%UﬁnU“n,ﬂ _ iU20u) — 2ibybon U

+ bs( — 200 4 2(X, + Yslﬂ)) — 2ibby V2 — 2ib3 T, u} (E.3)

where we have followed the dot notation of Refs. [50, 51] such that each dotted quantity is
proportional to f. We have used dots on the scalar components to denote the components
of the vector quantities, e.g. U =0U q;. However, the three-indexed ka has a somewhat more
complicated structure than the one- or two-indexed quantities!* and we have chosen to summarize
its contributions in terms of its contractions with & alone, i.e. V = %f/ and V = %T.

13Note that there is a typo in Equations B21, B22 of ref. [34], such that one should substitute Vi3 — Vi3 + S,
where S(q) is defined in Equation B23, for the correct expressions.

4 Any one-indexed Lagrangian correlator must be proportional to §; and any two-indexed correlator must be a
linear sum of §;; or ¢;G; and therefore symmetric, whereas WZ(Jlk1 ) for example is not symmetric in all indices.
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E.1.3 Pairwise Velocity Dispersion Spectrum

For the pairwise velocity dispersion we have chosen to compute the two contractions U]%]; and 01-21-.

These are related to the multipole moments via 01-22- = 300 and az =09 + 02.

k
. _ 113 Alin . . . . . .
0']%]% = /d?’q ek g akiki Ay {((X — X3 + (Y — 2K X33, Vi) 1 — szliZnM4>

5f%ik
LA

(f/,u + T,u3>
+ 2 (ik(UlinXlin + QUlinXlin)'u 4 Z-k(UlinYIin 4 2UlinYIin)H3 LX0 }"/wluz)
o2 <§1inth + (G VT 4 UlinUlin)'u2> 4 20U 2 4 op (Xs2 i Ys?ﬂ2> }

1

o2 = /d3q ek e‘zkikj“‘?f{(?))'f +Y - K XE, - (Y, + 2XlinYhn)M2>

1
+if?k(18V4 + TV3 + 5T)u
+ le (ik(Ulin(3X1in + }"/lin) + (3X10 + }"/10) + 2Ulin(Xlin + Ylin))u>
+ b2 (ghn(sX““ +yliny 4 2U“nU“n) +ob, Ui 4 op (3K + 1"/52)}. (E.4)
Quantities with two dots are proportional to f2. Once again, the time derivative I/Vwk is more

complicated than the one- or two-indexed quantities, and in this case we have chosen to simply
write them out as f? multiplied by the relevant un-dotted quantities'®.

E.1.4 Higher Moments

As usual we decompose —ivy;j;, = %’yl l;:{iéjk} + 73 l%ll%]l;:k where the scalar components can be
derived from the contractions:

_il%i]%jifk%'jk =mn+y3=—i / d3q eikq*%kikiA?f{Vﬂ + T3
+ 36k (Xlin (X1 4 Pling2) 4 pling2(§lin 4 }'}linMZ))
+ 6b UMy (Xlin n }"/linMZ) }
—ikidjiyish = g% +g = i / d’q eik'q—%’“’““?f{(gv +7)u
+ik (th (5th v (1 2M2)}'}lin) 4 yling? (SXnn n 31"/1111)
20,0 (5K 4 37 ) .

For the sake of brevity we have defined the triple-dotted quantities V' = 2f3V and T = 2f3T
such that k‘ik}jksz‘jk = V,u + Tﬂ3 and kl(sjkWUk = %V-ﬁ- T

®Note that Equation C. 11 in ref. [51] should instead be W, = f2(2W2.<j1k,12> + 2Wi(j1,c21 + W72, i-e. the indices

on the right-hand side should not be permuted with the order of solution.
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The fourth moment ki = <(1 +01)(1+ 52)A,-AjAkAl> has only one contribution at one
loop order; in Fourier space this is

Kijki = /d3q elaghikidi <AiAjAkAl> = /d3q 6ik'q7%kiijijA{ijAkz} (E.5)

where the distinct unordered indices are now {ijkl} = (ij)(kl) + (ik)(51) + (il)(jk). This can be
similarly decomposed as k;jx = %/ﬁod{ij(;kl} + %mgl}:{il%jékl} + /{412:1'12/']'1;:;@1;:5, for which the following
linear equations hold

5 1, alin .. .o ..
Bro + §K2 + Ry = /d3q ek ;kzk’gAij {15X121n + 10X4in Yiin +3Y112n}

9 4 o 131 Alin .. N ..
3I€0+3H2+f€4:/d3q equ 2k1ij1:j {5X1%n+(1+7/J’2)X11n}/11n+3/12}/112n}

. 17..7.. Alin . . . .
Ko -+ Ko + Ky = / d3q eazkiki Al {3X12m + 642 Xy Yiin + 3M4}q?n}. (E.6)

E.2 EPT

As described in Section 4.3, EPT is equivalent to LPT when the exponential of
1 . 1 . )
— §kzk]Ailjn — —§k2(th + Yhn/LQ)

is expanded as its Taylor series. Doing so reduces Equation E.1 to the simpler form
) n
[a e s =S an [da i f@) o sutka) (E.7)
=0

where Hankel transform no longer has k-dependence beyond the spherical bessel function jy(kq)
and the coefficients aén) are defined such that p" =5, aén)ﬁg(u). The fact that the k dependence
is isolated to the Bessel function in EPT means that bias contributions at each k can be calculated
all at once, instead of requiring one set of FFTLogs per k point as in LPT. Transforming these
expanded LPT integrands into the EPT bias basis using Equation 4.8 yields Hankel transform
expressions for all one-loop contributions to the EPT redshift-space power spectrum at one loop.
An especially convenient feature of computing EPT integrals in the LPT basis is that the IR
cancellations in the small £ limit are explicitly satisfied in each expression.

Since the expressions required in the calculation outlined above are essentially identical to those
in the previous section for LPT, we have chosen not to explicitly enumerate them. However, let
us briefly comment on two particular numerical choices that both simplify the calculation and
improve stability. Firstly, a subset of the terms involved, due to “connected” correlators in Fourier
space, can be Fourier-transformed explicitly as the kernels (R,, @,) involved were themselves
already computed using FFTLogs of products of generalized linear correlation functions (App. D).
For example the matter power spectrum contains both the connected terms

1 1 i 00 .
Pi(k) > /d3q efafy Shik; (A?;l + AR p) - %kikjkkwijk}
9 10 6 3
= Plin(k) + %Ql(k) + iRl(k) + ?RQ(k) + ?QZ(’C)
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20 F(q) F(k)
L | —ghik; (A%“ + Ai?"p) — tkikikkWijk | Phin + 55Q1 + 29 R1 + SRy + 2Q
b1 2ik;U; — kikj A} 2Pin + 2Ry + 1(6R1 + 12Ry + 6Q5)
b} Ein + ik UL Piin + $(R1 + Ry)
b Z]{JZUZQO %QS
by 2ik; V1O 2Qs2
b3 2'Lszb3 2Rbg

b1bs 20 2Ry,

Table 2. Contributions to the real-space power spectrum from “connected” cumulants in LPT.

B F(q) K2F (k)
1| ik; (ijn + Aﬁ‘;op) — Lk Wik | —iki(2Pm + 35Q1 + 2R + 2Q2 + 2 Ry)
bi 2U; + 2ik; ALY —iki(2Pin + 4R1 + 2Ry + £Qs5)
b? UMt —ik;(12/7)(Ry + Ry)
bo U —iki(6/7)Qs
bs 2V10 —iki(4)7)Q2
bs 2Uy, i —ik;2 Ry,

Table 3. Contributions to the pairwise velocity spectrum from “connected” cumulants in LPT.

) F(q) K2F (k)
L | A+ kWi, | —(2Pin + 35Q1 + FR1+ 2Q2 + P Ra)
by 2470 —(24/7)(Ry + 2Rz + Qs)

=6
1| Ay+ anWzm — (2B — 3R — Q1+ PRa + 2 Qo)
by 2410 —(24/7)(2R2 + Qs)

Table 4. Contributions to the pairwise velocity dispersion from “connected” cumulants in LPT, decom-

. . 2 7 2
posed into its trace 075 ;; and k component o

12,kk"
S 0y
—ikikjkrYijk (36/7)(2R2 + Q2)

_ikiajk:')’ijk —(12/7)(2R1 —6Ry + Ql — 3Q2)

Table 5. Contributions to the third pairwise velocity moment from “connected” cumulants in LPT,
decomposed into its contractions with the unit vector k£ and d;;. At one-loop order, all such contributions
are due to matter velocities in the form of Wijk and therefore aren’t multiplied by any bias paremeters.

and a disconnected contribution equal to the Fourier transform of k;k;k;, klA?JpAE? /8 — the former
need not be Fourier transformed a second time. Note that since all displacement correlators
appear as pairwise displacements A, this split does not break Galilean invariance. The connected
components for each of the velocity moments are given in Tables 2, 3, 4 and 5.
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Secondly, the coefficients agn) are not unique and can be expressed in a number of ways by

utilizing the recurrence relations of spherical Bessel functions. Perhaps the most obvious in the
context of LPT corresponds taking the B — 0 limit of Equation F.1, in which case for example

/d3q eq 21 (q) = 47r/dq 7 f(q) (jO(kq) B 2]’1]?((;6(1))'

This choice, however, leads to extra factors of k¢ multiplying j, that make the separation of
k-dependences messier. Thus, we have chosen in our calculations to use, e.g.

[ e zgo =an [ a1t (Gintka) - Satk). (E:3)

F Useful Mathematical Identies

To evaluate the power spectrum we make use of the angular integrals of the form

1 tAp—=E— - m By
Iom(41) (4, B) = Q/dMM m(th) gt 0+le B/QZfQ (Z) Jnrny(4)  (F.1)

where the series coefficients f2™(B) can be explicitly written using confluent hypergeometric
functions of the second kind

2

m B
2m I _ o =
M(B) = (B) U(—m,n—m+1, 2) (F.2)
. For convenience we list the first few such integrals (see also Refs. [51, 58]):
1 iAu-B® g . /B\" .
5 /duu e =e E (71) Jn(4) (F.3)

/ dp pleiAn—24 —B/zz( )jnﬂ A) (F.4)

;/d”“ i _B/ZZ (=29 (5) i) (F.5)
; /du [Beitn—E _ ieB/zg (1 - %n) (%)njm_l(/l) (F.6)
; /dﬂﬂ elAu——z - @_3/272 <1 — %l + 471(2;1)) <§>n]n(A) (F.7)

The integrals that begin with j,11 can be merged with those that do not by shifting indices, e.g.

| i (A0 (20D By e

where ©,, =1 for integers n greater than zero and is zero for n = 0, such that we can write

1(A.B) = ;/dwm iAu- 2 e—B/zzcnm(B)<§)njn(A). (F.9)
n=0
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G Implementation in Python

Our PYTHON code to calculate the velocity components and combine them into redshift-space
power spectra, velocileptors, is publicly available!® and includes example Jupyter notebooks
and scripts introducing the main modules.

The library is split into two main subdirectories, LPT and EPT which house the calcula-
tions performed in LPT and EPT, respectively. The main workhorse module in each is called
moment_expansion_fftw.py, which produces the IR-resummed velocity moments and con-
tains functions to combine them into redshift-space power spectra. This is supplemented by
fourier_streaming _model _fftw.py and gaussian_streaming _model _fftw.py in LPT and
ept_fullresum_fftw.py in EPT, the latter of which calculates the one-loop EPT redshift-space
power spectrum directly.

In addtion to these the folder Utils contains various useful functions necessary for the above
calculations, the most important of which is qfuncfft.py, which comptues various one-loop PT
kernels and correlators using the FFTLog formalism described in ref. [112] and expressions derived
in Appendix D.

The structure of the basic LPT, and by extension EPT, class cleft_fftw.py is based on
earlier code!”, with a few modifications. Most importantly, the FFTLogs are evaluated using
spherical_bessel_transform_fftw.py, a custom FFTLog module based on mcfit!'® that saves
time on the Hankel transforms used to compute the various LPT spectra by storing the FFTLog
kernels'?, whose evaluations were the slowest steps of previous LPT codes, rather than computing
them on the fly. To further speed up these Hankel transforms we use a multi-threadable python
wrapper for FFTW?Y, pyFFTW?!, which can be installed via pip. Our LPT code takes less than
one and a half seconds to generate power spectra at 50 wavenumbers running on one thread on
a Macbook Pro purchased in 2013 and summing over spherical Bessel functions up to £ = 5,
generating all the bias contributions independently such that power spectra within the same
cosmology (but potentially different f) can be re-computed essentially instantly, as can power
spectra at different LOS angles p. We found that this setting was sufficient to produce < 0.5%
errors out to & = 0.25hMpc ! on all relevant spectra. Results at an arbitrary number of ks
can then be provided via cubic spline interpolation with no loss of accuracy. The EPT code is
slightly faster still and takes less than a second to run (independent of the number of k points).
For completeness, we include the capability to set 1-loop terms to zero (for Zeldovich calculations)
as well as a module to compute correlation functions in redshift-space via the Gaussian streaming
model.
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