Automated Recording and Semantics-Aware
Replaying of High-Speed Eye Tracking and
Interaction Data to Support Cognitive Studies of
Software Engineering Tasks

Vlas Zyrianov
Department of Computer Science
University of Illinois at Urbana-Champaign
Champaign, Illinois USA
vlasz2@illinois.edu

Bonita Sharif
Dept. of Computer Science and Engineering
University of Nebraska-Lincoln
Lincoln, Nebraska USA
bsharif@unl.edu

Abstract—The paper introduces a fundamental technological
problem with collecting high-speed eye tracking data while
studying software engineering tasks in an integrated development
environment. The use of eye trackers is quickly becoming an
important means to study software developers and how they
comprehend source code and locate bugs. High quality eye
trackers can record upwards of 120 to 300 gaze points per second.
However, it is not possible to map each of these points to a line and
column position in a source code file (in the presence of scrolling
and file switching) in real time at data rates over 60 gaze points
per second without data loss. Unfortunately, higher data rates are
more desirable as they allow for finer granularity and more
accurate study analyses. To alleviate this technological problem,
a novel method for eye tracking data collection is presented.
Instead of performing gaze analysis in real time, all telemetry
(keystrokes, mouse movements, and eye tracker output) data
during a study is recorded as it happens. Sessions are then
replayed at a much slower speed allowing for ample time to map
gaze point positions to the appropriate file, line, and column to
perform additional analysis. A description of the method and
corresponding tool, Déja Vu, is presented. An evaluation of the
method and tool is conducted using three different eye trackers
running at four different speeds (60Hz, 120Hz, 150Hz, and 300
Hz). This timing evaluation is performed in Visual Studio and
Eclipse IDEs. Results show that Déja Vu can playback 100% of
the data recordings, correctly mapping the gaze to corresponding
elements, making it a well-founded and suitable post processing
step for future eye tracking studies in software engineering.

Keywords— Eye Tracking, Empirical Studies,
Comprehension, High-speed Eye Tracking

Program

I. INTRODUCTION

Eye trackers are a critical research tool in understanding how
people observe and in turn comprehend visual stimuli [1].
Researchers have successfully used eye tracking hardware to

Drew T. Guarnera
Department of Computer Science
Kent State University
Kent, Ohio USA
dguarner@kent.edu

Cole S. Peterson
Dept. of Computer Science and Engineering
University of Nebraska-Lincoln
Lincoln, Nebraska USA
Cole.Scott.Peterson@huskers.unl.edu

Jonathan I. Maletic
Department of Computer Science
Kent State University
Kent, Ohio USA
jmaletic@kent.edu

better understand how people read prose, understand diagrams,
and process visual landscapes. Computer scientists use eye
tracking devices to study how people interact with graphical user
interfaces and web pages [2]. The software engineering
community is now using eye tracking equipment to study how
developers read and understand source code [3]. A detailed and
practical guide on conducting eye tracking studies in software
engineering is presented in [4].

There are a wide range of eye tracking devices and
technology. The devices are made up of hardware, mainly
specialized cameras, along with sophisticated software that
computes the focal point of the eyes using data collected by the
cameras. Additional software is needed to map each of the eye
gazes to locations on a visual stimulus (i.e., screen). Eye tracking
devices differ greatly with regards to accuracy (of tracking eye
movements) and the applications and environments they can be
applied to [5]. Studying how people read and comprehend text
or source code requires high precision (and costly) eye tracking
hardware and software, while determining general spatial
regions where a person is looking (left, right, up, down) only
requires simple and lower cost hardware and software. Low cost
systems cannot identify the exact focus of the eyes, such as what
word or letter someone is looking at. They only work well on
larger stimuli such as objects in computer games. A high quality,
accurate, research-grade eye tracking device allows researchers
to determine the exact xy-coordinate on the screen a person is
examining. The higher-end eye trackers, in a controlled setting,
can pinpoint down to the letter being examined. Research on
reading prose and source code does not always require that much
accuracy, rather accuracy to the word level is sufficient.

Research grade eye trackers work by presenting an image or
text (stimuli) on a computer screen and then using the data from
cameras, determine the location (xy-coordinate) the person is
looking at. There are a number of limitations to this technology.

The person must be forward looking at the stimuli, cannot look
around the room and must be fairly stationary. While these are
not serious limitations for conducting scientific studies there is
one underlying limitation that poses a substantial road block for
studying how programmers understand large, real-world
software. Accurate research-grade eye trackers only work on
fixed stimuli (i.e., an image or text block) that fits on the
computer screen. Changes to the stimuli (screen), such as
scrolling or switching files, present a very complex problem. In
order to deal with this problem, iTrace was introduced to the
research community [6], [7]. iTrace allows a software
engineering researcher to conduct eye tracking studies directly
in an integrated development environment (IDE) such as Visual
Studio or Eclipse. It supports the tracking of eye gaze in the
presence of scrolling and context switching. As such,
researchers can study developers in a real-world environment
and on large realistic software systems. iTrace does this by
hooking up to the IDE via a plugin architecture and invoking
application and system calls to map the screen xy-coordinate to
a line and column in the file in real time. This is then used in a
post processing phase to determine the source code token being
examined by the study participant.

Eye trackers sample eye gazes x-times every second denoted
by the frame rate. For example, a 120 Hz eye tracker generates
120 samples per second of raw eye gaze coordinates that needs
to be looked up in real time to map to the line, column
underlying beneath it. This lookup time is limited to the time it
takes for the system calls to return. If the response time of this
system call is too long it is not possible to map all gazes coming
in accurately to the correct file location. Through use of the
iTrace infrastructure we determined that the maximum frame
rate at which this can be done in real time is approximately 60Hz
(for both Visual Studio and Eclipse). This means that anything
above 60Hz will cause the tracker in iTrace to incorrectly map
data or drop gaze points altogether. While having a faster
computer may help a little, getting to 120Hz, 300Hz or even
1000Hz (at which reading studies are typically done in
psychology) is currently impossible with real time mapping.

The work presented here addresses this limitation of the
current iTrace architecture by taking all the processing offline.
While the IDE API function call response time is fixed, our
technique allows for all events to be recorded and replayed back
at any given data rate. This allows for mapping gaze data to
source code locations with very high-speed eye trackers. The
technique is implemented in Déja Vu, a novel tool that leverages
the iTrace infrastructure. The technique and details of Déja Vu’s
implementation are presented. The main contributions presented
in this paper are:

e Formalization. We introduce a fundamental problem in
performing eye tracking studies in practical developer
environments with high-speed eye trackers.

e Technique. We present a novel technique to solve the
technological problem presented using automated
recording and semantics-aware replaying of eye tracking
and interaction data to support cognitive studies of software
engineering tasks.

e Tool. The novel technique is designed and implemented in
a practical tool, Déja Vu, that leverages the iTrace eye

tracking infrastructure. The tool and usage documentation
is available at: https://zenodo.org/record/3976520.

e Evaluation. An evaluation of the fundamental problem
with collecting high-speed eye tracking data with and
without Déja Vu is presented in the context of two
integrated development environments (Eclipse and Visual
Studio) with a sample task.

The paper is organized as follows. Section II presents related
work in interaction monitoring. Section III formally presents the
problem and motivation for Déja Vu. Section IV discusses
details of the Déja Vu architecture, design decisions, and how
Déja Vu integrates with iTrace. Section V discusses
implementation details of the recording and replaying stages
including the challenges faced and how they were mitigated or
need managed. Section VI provides an evaluation on the impact
of data output rates from eye tracking devices on real-time
analysis of eye tracking data on source code with respect to the
iTrace framework [6], [7]. Section VII presents conclusions and
future work on Déja Vu’s method and implementation.

II. RELATED WORK

Capturing user interaction data for analysis is a common
approach in a variety of computational research studies. In [8]—-
[10] Minelli et al. record mouse, keyboard, and IDE interaction
data. Fine grain interactions are grouped into broad categories
such as comprehension, editing, navigating, etc. to observe
developer behavioral during typical tasks. Findings about what
activities consume the most developer time, the proportion of
development time is dedicated to program comprehension, and
the IDE navigational efficiency of developers are presented. The
Blackbox project [11] has collected programming interactions
within the BlueJ Java IDE for over five years. This dataset has
been aimed at providing raw data for research analysis towards
better understanding software development behaviors of novice
developers. Mylar [12], now known as Mylyn for the Eclipse
IDE, allows a developer to track IDE usage activity related to
defined tasks. These task contexts can be easily switched in
order for developers to multitask without the need to manually
relocate artifacts upon returning to a previous task activity. Déja
Vu drastically differs from Mylyn in that Déja Vu is intended to
store interactions along with cognitive information (eye tracking
data) for the purpose of replay and subsequent analysis while
Mylyn is an active development productivity tool.

ActivitySpace [13] stores mouse and keyboard events
related to applications used by software developers to
accomplish daily tasks. Event information is logged to a
database as an “action record” to create a historical profile of
developer interactions. Action records are grouped by a user
defined time window and can be queried to help remind
developers of resources used and actions taken while working
on a given task to improve productivity. Interaction data from
ActivitySpace has also been used with machine learning
techniques are compared to classify developer activity into
higher level categories such as coding, debugging, testing,
navigation, web browsing, and documentation [14].

In addition to the capture user interactions, running
simulated interactions is a popular solution for software testing
research. Sikuli is used in [15] to construct synthetic macro

scripts that are application agnostic based on common keyboard
and mouse usage. User interactions are supplemented with
desktop screenshots and image processing to determine the
targets of the actions and automate GUI testing. Specific
environments such as websites [16], [17] and Android
applications [18], [19] have also been instrumented to record
and replay user interactions for the purpose of testing and
evaluating web or GUI based applications.

Capture and replay approaches also benefit general purpose
automation techniques. The Online Synchronous Education
Platform (OSEP) records and abstracts user interactions with
websites allowing for editable interactions scripts to be run as
pre-recorded or synchronous demonstrations to support
educational environments [20]. Using the same framework, an
system for automating common or lengthy website interactions
is also proposed to improve user productivity [21]. Recent works
by Ramler et al. [22] and Bernal-Cardenas et al [23] take a
different approach to capturing and replaying user interaction.
Instead of instrumenting applications or recording interactions
atan OS level, recorded video of an activity is broken down into
individual still frames which are post processed to reverse
engineer user interactions shown in the video.

While Déja Vu makes use of existing recording and
replaying techniques, it differs from the state of the art by
recreating an eye tracking study in its entirety. User interactions
with mouse and keyboard and gaze locations are all replayed to
simulate a prior eye tracking study while allowing ample time
for more detailed analysis that is not feasible to perform in real-
time using high speed eye tracking equipment. Additionally,
Déja Vu affords researchers an opportunity to replicate a study
any number of times while analyzing the study in different ways
each time to greatly increase the value of participant recording
sessions. This is a novel contribution to the current state of the
art and provides the eye tracking software research community
added incentive to use eye tracking equipment in their studies.
The additional advantage of supporting high-speed trackers
above 60 Hz (most research grade trackers are 120 Hz or higher)
without data loss enables many different types of cognitive
analyses (outlined in the next section) that were unable to be
done before because of the engineering problem described.

III. PROBLEM FORMALIZATION

Eye trackers have been used for decades to study how people
comprehend visual stimuli [1]. Modern eye trackers collect a
person’s eye gaze data on the visual display (referred to as the
stimulus) in an unobtrusive way while the subject is performing
a given task. This eye movement data can provide very valuable
insight into comprehension strategies [24] as to how and why
people arrive at a certain solution. Eye movements are essential
to cognitive processes because they focus a subject’s visual
attention to the parts of a visual stimulus that are processed by
the brain. Visual attention triggers cognitive processes that are
required to perform such things as comprehension. Eye
movement is also a proxy for cognitive effort [1] and allows us
to determine what parts of a visual stimuli are difficult to
understand.

am
forgin@i @) ; ™ acounts. lan

65 123"
il (@& R g
i Y haa v B
Syl Y Dma g 520y

@z 1 (&
5 70
51 555
95

+
238

¢
g bt (ATl ! - o
B 1 315 120" 85 86 248 23T 549 236 a7 5
COMin s Ul i e G = o 31 246
} 29 9 |97 242 241 " T.00

28

}

25

=< 34 os 2y ok
108 b, | 243 ¥ 03 %

134
PUise - {5 el
Y4011 c et s a4 dsew i1 de0dE]
157

@sint [Bowitd btters (S4ss¥ng % {

foust (MW 45 duie 1< s (Bnges!); i %) {
if (fBara@-or.isl@Pror i~ Miral®i)))
: 7
courlwz [s.ch@@At (1)@ 8508,
}

r(-.WUJrn cois;
Fig. 1. Gaze plot of a developer’s fixations on code.

The underlying basis of an eye tracker is to capture various
types of eye movements that occur while humans physically
gaze at an object of interest. Fixations and saccades are the two
types of eye movements. A fixation is the stabilization of eyes
on an object of interest for a certain period of time. Saccades
are quick movements that move the eyes from one location to
the next (i.e., re-fixates). Dwell time is defined as the sum of all
fixations in a dwell (one visit to an area of interest from entry to
exit) [25]. An area of interest is defined by the researcher as any
part of the stimulus that is of interest for analysis. For example,
in source code, it could be a token or a line. A scan path is a
directed path formed by saccades between fixations. The
general consensus in the eye tracking research community is that
the processing of visualized information occurs during fixations,
whereas, no such processing occurs during saccades [26]. The
visual focus of the eyes on a particular location triggers certain
mental processes in order to solve a given task [27]. Modern eye
trackers are accurate to 0.5 degrees (0.25 in. dia.) on the screen.
In Fig. 1, we see eye gazes on source code (some areas having a
much higher density of fixations than others). The fixations are
shown as circles on the diagram. The radius of the circle
represents the duration of the fixation. The bigger the radius, the
more time was spent looking at that particular point. Each
fixation has a number displayed in the center of the circle, which
indicates the order in which the fixation occurred.

It is important to note that not all eye trackers are made
equal. Generally, eye trackers range from low-cost consumer-
grade to more expensive research-grade tracking equipment.
Research-grade eye trackers are thoroughly tested for accuracy,
quality, and reliability compared to low-cost models. Low-cost
eye trackers costing approximately $200 USD are for consumer
use (mainly gaming). Low-cost eye trackers miss the subtle
differences in how humans read and navigate text. Another
difference is the frame rate. Low-cost eye trackers capture gazes
at a slower rate compared to the research-grade ones. More
gazes captured per second give more detailed insight into how
people read and analyze software artifacts.

The current generation of eye tracking devices offer a wide
range of data rates [5]. Older and entry level devices tend to
operate at 60 Hz meaning that 60 data points are provided within
one second. When performing real-time analysis with received
gaze data, analysis tools would be left with approximately 17
milliseconds (ms) for any analysis before a subsequent new data
point will be received from a tracker. This window narrows as

20 348 g’))

modern trackers are capable of supporting anywhere from 120
Hz to over 2000 Hz.

Eye tracking of source code within an integrated
development environment (IDE) is a serious challenge
compared to the traditional approach of using static images or
text that fit completely on a single screen. In the case of a static
stimulus, the position of the image or the source text has little to
no variance. The gaze data recorded while the stimulus is visible
can be mapped down to the pixel on an image-based
representation of the data on the display. In contrast, while using
an IDE, users may manipulate the view of the source code in any
number of ways such as scrolling, file switching, or even editing.
These actions require that the gaze data recorded is contextually
informed of state of the IDE with respect to the positioning of
the source code text and interface elements at a specific moment
in time. For example, if a user is scrolling through a source code
file looking for a specific identifier, the user's eye positioning
may remain fixed within a limited region of the display as the
text scrolls past. The issue is that location of the stimulus is
changed drastically due to scrolling and it is no longer possible
to easily map the screen location of a gaze to the stimulus.

In the case of the iTrace infrastructure [6], [7] (or other
similar gaze analysis infrastructures), IDE plugins map gaze
locations to interface elements and source code text. The high
latency of IDE plugin environment AP calls significantly limits
the feasibility of deep real-time gaze and textual analysis at the
data sampling rate of high-speed trackers. Currently, solving
this problem requires serious tradeoffs. One option is to drop
gaze points received while the plugin is busy performing gaze
mapping operations causing valuable data points to be lost.
Another choice is to buffer all gazes to prevent data loss, but this
causes the mapping process to steadily fall behind as the
mapping process is a real-time operation and relies on the
context of the current state of the IDE when the gaze data is
received. This ultimately leads to a desynchronization of the
gaze data and the IDE state and renders the data invalid.

Enabling support for high speed trackers allows researchers
to collect data for software engineering tasks and better enable
them to come to conclusions similar to cognitive psychology
reading studies that typically use 1000-2000Hz trackers. We
now enumerate several benefits of having support for high-
speed trackers implemented in Déja Vu by extending current eye
tracking community infrastructure.

Running realistic studies using the community infrastructure
such as iTrace on a tracker greater than 60Hz is now possible as
Déja Vu takes full advantage of the faster frame rate. Most
affordable eye trackers are at least 120Hz. This enables
researchers to take advantage of the higher frame rate available
to them. The higher the sampling rate, the greater the precision
of the eye in space causing less error on dwell time [25] at any
given point on the stimulus. This relates directly to the accuracy
of the eye tracker. Accuracy is important when drilling down to
specific token the developer is examining. Tokens are of
varying length (e.g., short variable names, data types (int) or
even opening and closing braces) and accurate dwell time is
important for a study. With higher precision we can much more
accurately map the eyes to the parts of the stimuli with more
realistically sized fonts. Currently, to overcome this limitation,

researchers use a larger font, however, this is not very realistic
as developers do not normally program in very large fonts. With
a 60Hz tracker, the window of error is about 32 ms (once every
16 ms in either direction) [5].

There are known attentional effects such as attentional cuing
[28], inhibition of return [29]-[31], distractor inhibition [32],
and flanker effects [33], to name a few, that are highly
significant but often quite small and range between 10-15 ms in
response and in dwell time. It is impossible to capture these
effects with low-precision eye trackers. Many of these effects
are highly relevant to software engineering studies. But none of
the current studies analyze such effects as there is currently no
support to do this in current infrastructure. Note that this is still
possible to do with high speed trackers if using short code
snippets that fit on the screen, however it has been shown that
the results from short snippets do not necessarily translate to
realistic tasks [34]. Researchers have studied how eye curvature
affects a task. These characteristics can only be discerned at a
high sampling rate requiring the use of high-speed tracking. For
example, the eye can be attracted to or repelled from a distractor
as a function of temporal relationship between a target and a
distractor [32]. We have yet to determine if these issues impact
real world programming behavior.

Researchers can generally extract a lot more information
from high precision data such as pupillary activity [35], [36] and
velocity measures that can help with saccade [37] and
microsaccade analysis [38]-[40]. Microsaccades are miniature
eye movements along with tremor and drift that are made during
a fixation. They are typically found 1-2 times per second and
have an amplitude of between 1°-25° (arcminute).
Microsaccades have regained popularity recently and are being
studied by eye tracking researchers to learn about the cognitive
load [41] and task difficulty [42]. However, to correctly do
microsaccade analysis, a 300Hz or higher (500Hz
recommended) tracker is necessary to be confident in the
velocity measures. Typically, oversampling of the data is used
as an alternative but this is not recommended due to the artificial
nature of the generated samples. Finally, with the introduction
of multiple data collection streams such as studies that
incorporate fMRI [43], fNIRS [44], EEG, or GSR with eye
tracking, it is recommended to have high speed precision to align
timing data.

In summary, we have only begun to start studying
developers and cognition in software engineering using eye
trackers, however we have yet a lot to learn from cognitive
psychology and one of the ways to do this correctly is to have
support for high-speed trackers in order to start collecting data
correctly and making meaningful conclusions.

IV. THE DEJA VU APPROACH

Calculating all the necessary mappings of eye positions to
elements on the stimulus in real time is not feasible in the context
of high-speed eye trackers (as previously noted). To address this
problem, it is possible to calculate the mappings after the eye
tracking session, as a post-processing step. We record all
telemetry data (e.g., keyboard, mouse), along with eye tracker
data, and time stamps. This allows us to replay the session in
slow motion and calculate mappings as necessary. Hence, we

are no longer is constrained by real-time performance
requirements.

One method of implementing this is capturing the entire
operating system after receiving each gaze during an eye
tracking study session. After the study, each operating system
state is loaded and all mappings are calculated. This is entirely
accurate, however is not practical. It has very poor performance
due to requiring copying the entirety of RAM to disk and may
require introducing the complexity of a hypervisor.

Déja Vu takes an alternative approach. Only actions that get
the environment to each state are recorded and stored.
Practically, these are mainly human-computer interaction events
— mouse movements and keyboard key state data. Other vital
information includes the operating system state history, such as
the exact position where a window pops up (in Windows, it
depends on where it was previously opened). In these cases, a
Déja Vu style approach needs to take measures to address this
and ensure that replays are deterministic. This paper discusses
the measures taken by the Déja Vu tool to address this problem.

In the Déja Vu approach, the execution process is split into
two steps. First, during an eye tracking study, this computer
interaction data is collected in real time. After the eye tracking
study session is completed, all the computer interactions can be
replayed at some later time. This involves replaying the session
on the same machine but at a slower frame rate. Since all data
is timestamped this can be done without loss and in an accurate
manner. Thus, the system/application calls to calculate the line,
column in the file can be run without concern and in-depth
analysis (of almost any type) can be performed during the
replay. Déja Vu leverages the iTrace infrastructure [6], [7] to
capture mouse and keyboard activity during an eye tracking
study. To understand the role of Déja Vu it is necessary to be
familiar with the basics of iTrace.

A. iTrace

iTrace is an eye tracking infrastructure to enable research
studies within multiple types of software development
environments. The infrastructure design is modular featuring
three key components, iTrace Core, iTrace Plugins, and an
offline post processing application for gaze analysis (see Fig. 2).

The Core provides a unified interface for managing
supported eye tracking devices. Through this application eye
trackers can be set to calibrate or begin and end eye tracking data
recording. All data generated by the eye trackers is first received
by the Core which then makes quick decisions based on validity
indicators whether the data is acceptable for use by other iTrace
infrastructure applications. The Core also provides socket and
websocket servers to allow for iTrace Plugins to connect to the
Core and receive gaze data for additional processing. In addition
to gaze data, the socket communication also coordinates the start
and stop of a recording session and subsequent Plugin data
processing as well as any output file storage locations for
organizational purposes.

Plugins for iTrace support applications such as Eclipse,
Visual Studio, and the Google Chrome web browser allow study
participants to engage with standard development tools instead
of simulated proxies. This allows for data collection to occur in

a natural and realistic development environment. Plugins
receive the screen coordinate location of a gaze via socket or
websocket communication as well as a unique identifier from
the Core. Using this information, each plugin performs real-
time analysis to map a gaze to contextual information within the
IDE or web browsing window. This mapping constitutes line
and column positions within a visible source code editing
window, IDE interface widgets, or HTML elements (with
respect to Google Chrome) that fall under a participant’s gaze.
These contextual mappings are essential as study participants
are free to manipulate the stimulus environment through
scrolling, resizing, switching files or pages, searching, and many
other activities. Without any kind of context to associate with a
gaze, combined with the volatile nature of the stimulus
environment, it would be impossible to correctly determine what
elements of the stimulus are actually viewed at a given moment
in time.

iTrace

[Study Participant]
* Gazes

iTrace Core
* Gaze Data

iTrace Plugins (Visual Studio, Eclipse, etc.)

v

Content-aware Gaze Data (File,
Line/Column, etc.)

Fig. 2. The architecture of iTrace

All data collected from each eye tracking recording session
is stored in XML files. The Core stores participant and study
metadata, calibration information, details about the specific
tracker used to record the data, and all the raw gaze data points
(valid or invalid) received from the eye tracking device during
the session. Each plugin records valid gaze points received by
the Core and contextual information about the gaze location with
the IDE or web browser environment. When a study is
complete, the custom offline post processing application
provided by the iTrace infrastructure aggregates the data from
all XML files. All study metadata and gaze data is collected into
aunified Sqlite database where raw gaze data and plugin context
information is joined using the aforementioned unique
identifiers. Once all of the data is aggregated into the Sqlite
database it can be queried using standard SQL commands or
further analyzed using the post processing application.

The post processing application provided by the iTrace
infrastructure is capable of performing two key analysis
methods on the collected study data. The first allows for deeper
analysis on all source code context information. Using srcML
[45] in conjunction with the line and column information
provided by the iTrace IDE Plugins, all textual tokens and the
syntactic context of each token within a source code document
can be recovered and stored within the database for later
querying. Finally, the iTrace post processing application
supports three different fixation filtering algorithms (Basic [46],

I-VT, and I-DT) each with adjustable parameters [47]. All
fixations identified are stored within the database and each
fixation references the raw gaze collection that it represents.

The contextual information that iTrace provides is of great
value. However, the overhead incurred by collecting this
information in real time becomes problematic as the speed at
which eye tracking devices are capable of transmitting data
increases. To alleviate this issue and fully support high speed
eye tracking while still collecting contextual stimulus
environment information a new approach is required.

B. Usage Scenario

As far as we are aware, this is the first attempt at supporting
high-speed trackers for software engineering-based studies that
work on complex artifacts that are tracked within an IDE. We
expect Déja Vu to be used in the following way. A researcher
wants to understand how developers understand class
hierarchies using a high-speed 1000Hz eye tracker. Before the
study, the researcher chooses a suitable real-world code base and
the questions a study participant must answer. The code base is
imported into a project file in an IDE that has iTrace plugin
support (such as Visual Studio). The layout is saved. During the
study, a participant is invited in. The eye tracker is calibrated for
the participant. The IDE is opened, and the layout is restored.
Eye tracking is started in iTrace-Core. Déja Vu Record is
opened, connected to the core, and recording is enabled. At this
point, the study participant performs the assigned task. They
have the freedom to interact with the IDE, OS, and any
applications if they so desire (for example, opening a web
browser to access StackOverflow). Once the participant is
finished, iTrace-Core and Déja Vu Record are stopped. The
Recording phase is finished. Later, the replay phase begins. Déja
Vu Replay is opened. Analysis plugins are enabled in the IDE
and are connected to Déja Vu Replay. The IDE layout is restored
again. Replay is started in Déja Vu. Everything that happened
during the study is now replayed slowly on the computer.
Analysis is being performed in the background. Once it is
finished, the researcher can collect the data from the plugins and
analyze it in any statistical package.

V. DEJA VU IMPLEMENTATION

Déja Vu augments iTrace to allow all gaze analysis that
occurs in real-time to be deferred to an offline post processing
phase. This requires Déja Vu to record all user interactions. A
subsequent replay phase is used to synchronize each user action
with respect to recorded gaze data.

A. Recording Stage

During the recording phase (see Fig. 3), Déja Vu captures
human-computer interaction data by recording mouse, and
keyboard, along with the eye tracking gaze data. Mouse and
keyboard events are captured using Win32 hooks. Hooking into
operating system events is a feature of the Windows API and is
done through the SetWindowsHookEx function. By using this
function to hook into low level mouse and keyboard events, Déja
Vu can capture these events before they are added into the input
queue. If a study participant is typing code in an IDE, Déja Vu
captures and saves each keystroke before the IDE even receives

it. This capturing and saving step happens imperceptibly fast.
Performing the capture this way allows for perfect accuracy and
replays. Gaze data is collected by listening for broadcasted event
data from iTrace-Core.

As this data is collected, it is saved to disk in a CSV format.
A sample of the recorded data is shown in Fig. 4. Each row is
in the following format: event type, a 64-bit integer specifying
the system time, and any data related to the event. This format
contains all data necessary for replaying the user’s computer
interaction. Every event type recorded is shown in Fig. 5 in its
CSV format. KeyDown and KeyUp is used to represent keyboard
key state changes. A Windows virtual key code (which is the
size of a byte) can store any keyboard key, including modifier
keys such as shift or control.

Each of the mouse buttons are explicitly stated as an event
type. Forward and back refers to the buttons on the left side
of a mouse (generally used for webpage navigation).
MouseMove specifies the new absolute position on screen after
the mouse has been moved. MouselWheel stores any scroll that
happens with a value that specifies how much the mouse is
scrolled. This event also collects touchpad scrolling on laptops.

The gaze, session_start, and session_end events are
directly retrieved from iTrace Core. Gaze events store the x and
y screen coordinate the participant’s gaze at that time including
validity codes, pupil diameter, and distance to screen.
session_start and session_end events are used by iTrace
to mark the beginning and end of a study. These are primarily
used to synchronize iTrace Core state with plugins.

Recording Phase

[Study Participant]

*Gazes
Computer

v Gaze Data

Deja Vu |

Fig. 3. Recording stage of Déja Vu. The original steps from iTrace are
shaded. The new steps that Déja Vu adds have white backgrounds.

gaze,132277258033906585,314,769
KeyDown,132277258035886613,72
gaze,132277258037224389,336,790
gaze,132277258037601928,333,791
KeyDown,132277258037645064,73
gaze,132277258037758814,323,786
gaze,132277258037914237,333,794
gaze,132277258039069772,270,767
KeyUp,132277258039085245,72
KeyUp,132277258039090178,73
gaze,132277258039225920,276,771
gaze,132277258039755087,316,804
MouseMove, 132277258055005185, 391,823
MouseMove,132277258055085137, 388,823

Fig. 4. Example of data collected during the recording phase. Some gazes
omitted for brevity.

B. Replaying Stage

During the replaying phase (see Fig 6), Déja Vu reads in the
CSV data produced during the recording stage and replays each
event by creating mouse and keyboard events using the
Windows APL Specifically, the mouse_event and
keyboard_event functions are used to synthesize button
presses, mouse motions, and mouse scrolls. In addition, Déja Vu
also replays all gazes and emulates the communications protocol
used by iTrace Core. This allows existing iTrace plugins to
connect to Déja Vu to receive gaze data and perform analysis
during the replay. In essence, Déja Vu works as proxy for the
iTrace Core.

Keyboard

KeyDown Virtual key code
KeyUp Virtual key code
Mouse
LeftMouseDown Mouse button
LeftMouseUp Mouse button
RightMouseDown Mouse button
RightMouseUp Mouse button
MiddleMouseDown Mouse button
MiddleMouseUp Mouse button
ForwardMouseDown Mouse button
ForwardMouseUp Mouse button
BackMouseDown Mouse button
BackMouseUp Mouse button
MouseMove (x,y) coordinates
Mouse scroll amount (positive for
MouseWheel an upward scroll and negative for
a downward)
Eye Tracker
Raw Gaze — for both left and R_aw (x.y) _c_oordinates,_ pupil
right eyes diameter, validity codes, distance
to screen.
Study Session
. The time when the study session
session_start
- starts.
. The time when the study session
session_end
ends.

Fig. 5. Timestamped CSV format for all events from the mouse, keyboard,
and eye tracker in a study session. Each of the event types is timestamped.
The format description includes the main components of each event type.

All events are replayed synchronously. To slow down the
replay, Déja Vu pauses in between events it produces. This
pause provides time for connected plugins to process received
gaze data. Therefore, time in between events must be carefully
considered to give ample time for each connected plugin to
perform its analysis. There are multiple possible algorithms for
choosing the time to wait in between replaying each event. Déja
Vu implements three such methods so researchers can choose
whichever fits their needs the best.

1) Fixed Pause Delay

The time waited after each event is a fixed amount of time
based on the type of the event. Plugin processing time for each
type of event received will vary depending on the type of
analysis performed. Generally, most processing is done after
gaze events. Other events, such as mouse movements, may not
need any analysis (depending on the researcher’s needs). In
these cases, processing-heavy events (such as gazes) can be set

to have a greater pause time than processing-light events (such
as mouse movements).

The primary drawback to this mode is that choosing a good
pause length is difficult. Gaze processing latencies are not
necessarily easy to predict and outliers are possible. However,
via some trial runs a suitable duration could be determined and
used. If the experiment is short and fairly simple the fixed
paused approach should work well.

2) Proportional Delay

The time after each event is proportional to what it is during
the recording. For example, Déja Vu can set to replay everything
at exactly half the speed of recording. This mode is useful for
visualizations. Screen recordings performed during the replay
stage can easily be sped up by the same factor as the replay is
slowed down. Using this method, the sped-up recording of the
replay is identical to a recording of the session.

The drawback to this mode is that it is impossible to set a
minimum time between events. If processing is to happen after
each keypress, nothing stops events from being generated during
replay at a very high frequency. During recording, the user can
have press several keys on the keyboard, generating key presses
nearly simultaneously. It is possible that one might want to do
some analysis after each keystroke. If the analysis takes 20 ms,
it is impossible to set a minimum pause after each keystroke.
Even if slowed down by a factor of 10, when a user presses two
keys within less than 2 ms, there is not have enough time for
analysis. However, this is not an issue for gaze data as eye
trackers typically generate readings quite uniformly, making it
possible to reinforce a minimum pause time in between gaze
events.

Replaying Phase

| Deja Vu
Computer Gaze
Interactions Data
Y

Windows
\

| iTrace Plugins (Visual Studio, Eclipse, etc)

y

Content-aware Gaze Data (File,
Line/Column, etc.)

Fig. 6. The Replay stage of Déja Vu. The original steps from iTrace are
shaded. The new steps that Déja Vu adds have white backgrounds.

3) Bidirectional Delay

In the third method, after gaze events, Déja Vu waits
indefinitely for a reply/acknowledgement from each connected
plugin. This reply marks that the plugin is finished doing
processing and is ready to process more data. Communication
between Déja Vu and plugins happens bidirectionally. Events
that do not need to be waited on are followed by a short fixed-
length pause. From a technical point of view, this is the best
pausing method. The difficulty of choosing a good fixed-pause
length is alleviated. Pauses after gaze events are always correct.

No extra time is wasted as padding for the highest-latency
lookup/processing cases.

The primary drawback to this method is that it requires
modification to the existing components in the iTrace
infrastructure. Plugins need to be modified to reply a ready-
signal in response to events that require confirmation. In
addition, there is the potential added overhead due to the
additional layer of communication that needs to take place.

C. Challenges

While developing the Déja Vu tool, we ran into several
challenges that can be solved in several different ways and will
show up in the implementation of tools that use a similar
approach to what Déja Vu does.

1) Solving Non-Deterministic Window Placements

Initial window position is non-deterministic on MS
Windows. During a replay, the position where a window opens
up can be different from where it opened during recording. To
address this, Déja Vu forces each window opened during replay
and recording to open in a single predefined location on the
screen. In Déja Vu, this predefined location is the top left corner
of the screen. This is done by frequently iterating over each
window handle and checking if any new handles appear.

In theory, this method is not entirely accurate for every
application, since the application can move its window without
human interaction. However, we have not found a single
application that does this to date. To maintain integrity of
replays, researchers performing studies need to still consider this
issue and avoid using applications in studies that have this
behavior.

2) Restoring Initial Interface State

A slight change in interface layouts between runs can cause
replay to become out of sync with the events that happen during
recording. This can happen in a butterfly-effect style. To address
this, researchers need to be careful choosing a replicable initial
state between runs.

Many IDE’s, such as MS Visual Studio, support saving and
restoring Ul layouts. Saving a layout before running a study and
restoring it before performing a replay is a method of ensuring
initial interface state in an IDE with adjustable element sizes will
remain consistent.

Start Eye Tracking
Session
Repeat

l ¢_0»4 Tabsj

Perform Eye Open Additional
Movements Tab
Repeat
For5 l l
Seconds

Calculate Lookup
Time For Plugin

End Eye Tracking
Session

Fig. 7. Process diagram for data collection in experiment 1

3) Relative or Absolute Mouse Positioning

The MS Windows API allows for two methods of capturing
and moving the mouse: by the absolute value (directly
specifying mouse position with x and y coordinates) or by
relative value (changes the x and y coordinate of the mouse)
[48]. Déja Vu uses absolute mouse values.

The advantage of absolute values over relative value is that
replays are more robust. Moving the mouse accidentally during
a replay using relative values will cause all subsequent mouse
usages to be off. Absolute mouse values solve this issue by
automatically locking the mouse back where it should be after
each mouse move event.

VI. EVALUATION

The evaluation of our approach is conducted via two
experiments. Experiment 1 evaluates the initial problem by
looking at two typical data analysis plugin implementations
(iTrace Visual Studio and iTrace Eclipse) to show data loss and
degradation with high-speed trackers. Experiment 2 evaluates
Déja Vu to determine whether it can recreate all gazes that were
produced during the recording phase. This is done in the context
of a sample eye tracking experiment.

Experiment participants are assigned to one of two groups
each denoted by the identifier K and L respectively. Table I
shows the eye trackers and data rates used by each group. Each
tracker for Group K is connected to a 64-bit MS Windows 10
desktop with a 3.6 GHz Intel i7-7700 CPU, mechanical hard
disk drive, 8 GB of RAM, and two 24-inch LCD displays
running at a 1920x1200 resolution. Group L eye trackers ran on
two separate machines. The machine connected to the Tobii
Tx300 used the tracker’s built-in 23” monitor running at
1920x1080 resolution on a Windows 10 desktop with 3.5 GHz
Intel 17-7800X, a solid-state drive, and 32 GB of RAM. The
Gazepoint GP3-HD was connected to a 27 LCD panel running
at 1920x1080 resolution, on a Windows 10 laptop with 2.7 GHz
Intel i17-6820HQ CPU, a solid-state drive, and 32 GB of RAM.

TABLE 1. PARTICIPANT GROUPS AND THE EYE TRACKING DEVICES
AND DATA RATES UTILIZED
Participant Eye Tracker Model Core Data
Groups

K Gazepoint GP3 HD 60Hz

Tobii Pro X3-120 120Hz

L Gazepoint GP3-HD 150Hz

Tobii TX300 300Hz

A. Experiment 1: Data Collection without Déja Vu

This experiment evaluates the initial problem i.e., does the
latency for real time data collection make it infeasible to map
eye gaze to semantic elements at high-speed tracking
frequencies? To determine this, the iTrace Visual Studio and
iTrace Eclipse plugins are evaluated to determine the impact on
data rate limitations when performing real-time gaze analysis.

1) Experiment Setup

The iTrace-VisualStudio and iTrace-Eclipse plugin are
instrumented to collect timings from the functions related to
real-time line, column lookup analysis. The evaluation is run on

multiple hardware configurations (Group K and Group L) to
provide a less biased performance measure. Each plugin
environment (Eclipse and Visual Studio) is also stressed with an
increasing number of open source-code tabs to identify potential
implementation specific overhead.

2) Data Collection

A process diagram for the first experiment is shown in Fig.
7. An eye tracking study was set up in iTrace. The IDE gaze
analysis plugins were connected to iTrace Core. The study
participant was instructed to have no files open in the IDE and
gaze at the screen for 5 seconds. Then they were instructed to
open a file and look at it for 5 seconds. This was repeated until
4 files were opened inside the IDE. Each IDE plugin was
modified before the study to collect implementation and
environment API performance data. In the iTrace-VisualStudio
plugin, this was done using the C# Stopwatch API. Elapsed
times for each call to the gaze analysis functionality within the
plugin is stored in memory and written out to a file at the end of
a recording session. For the iTrace-Eclipse plugin, API
performance data was collected using the
System.nanoTime() API and calculating the difference
between the start and stop time for each call to the gaze analysis
function. This timing data was stored in memory and written out
to a file at the end of a recording session.

3) Results Showing Loss of Data

This data collection process is repeated for each plugin with
0-4 open tabs and the results are presented in Fig. 8. iTrace
Eclipse provides an optimized API for translating screen
coordinates to the file, line, and column at that screen
coordinate. Each lookup in eclipse takes 0.015 seconds. 0.015
seconds is equivalent to approximately 66Hz. This means that
real time data collection can only happen for eye trackers
operating at 66Hz or less.

Visual Studio does not provide an optimized API for
converting screen coordinates to file, line, and column data. For
this reason, the lookup timings for iTrace Visual Studio plugin
implementation scales linearly with respect to the number of
tabs open (due to needing to iterate over all open files). When a
single tab is open, the plugin is able to support up to 166hz
trackers. However, typically developers have more than a single
tab open and any number of tabs open above two will not even
support 60Hz. However, both eye tracker speeds estimates are
liberal because they do not consider outliers. Fig. 9 shows the
raw timing data in the Visual Studio plugin. In conclusion, real
time data collection in IDE’s using the iTrace eye tracking
infrastructure is infeasible for high speed eye trackers (running
above 60Hz).

B. Experiment 2: Is Déja Vu an Effective Solution?

In this section, we describe a simple experiment on two tasks
with the goal of showing that Déja Vu is able to keep up with
high speed eye trackers to collect and recreate all gazes that
occurred during an experiment.

1) Experiment Setup

The simulated eye tracking experiment consists of two tasks
and each task is repeated twice per participant with variations in
the data rate of the eye tracking device. The first task requires
participants to read out loud each method name and return type

from the source code file SvgExporter. java taken from the
JHotDraw$ project. This file contains 1,166 lines of code and
42 methods. While this task is straight forward, it will require
active engagement with the source code while ensuring a long
enough recording duration, minimize cognitive fatigue, and
require scrolling.

IDE Lookup Timings
35 p 8

30 °
25 o7
20 &

15 > o

10 >~

Median Lookup Time (ms)

Number of Tabs Open

--@--iTrace Visual Studio iTrace Eclipse

Fig. 8. IDE screen coordinate to file/line/column lookup times in the Visual
Studio and Eclipse iTrace Plugins

iTrace Visual Studio Raw Lookup Timings

0 1 2 3 4

Number of Editor Tabs Open Over Time

Fig. 9. Raw timing data from Visual Studio. A trendline showing the linear
growth is displayed as the number of tabs open increase.

The second task requires participants to summarize three
methods in the SvgExporter.java file selected randomly
from a collection of the eight largest methods. Participants
perform the summarization out loud and the selected methods
are not repeated by the participant on the second run of the task
when the eye tracker data rate is changed. This task is designed
to engage the participant and represent a more advanced eye
tracking study task.

2) Data Collection

A process diagram for this experiment is shown in Fig. 10.
Participant data captured during the simulated eye tracking
study consists of a set of data comprised of: 1) an iTrace-Core
data file representing all valid data points generated by the eye
tracking device; 2) an iTrace-Eclipse or iTrace-VisualStudio
plugin data file containing all data received from iTrace-Core
and processed in real-time; and 3) a Deja Vu recording file
storing all mouse and keyboard interactions and gaze positions
sent from iTrace-Core. Each participant generates two sets of
data representing tasks recorded using different eye tracking
data rates. Audio recordings of participant activities are also
saved via a cellular phone audio recording application. To

determine the effectiveness of Déja Vu’s data collection, all gaze
data present in the plugin and Déja Vu output files is compared
against the valid raw data points stored and transmitted to each
application by iTrace-Core. Gaze data is uniquely identified by
an event id value and is used to determine any data loss (e.g. data
transmitted, but not received by the plugin or Déja Vu).

Recording Phase
B ” Start Eye Tracking
Déja Vu Begins [€ Session <
Déja Vu Records | Read Aloud Each
Gazes Method and
Return Type
Participant Is
S — .
m Given Method
Name
Repeat
¢ Three
ici Times
Déja Vu Records | Spue::rlr%?;rens
Gazes Method
Déja Vu Stops |, End Eye Tracking
Listening - Session
Change Eye | Repeat
Tracker And Once
Sample Rate

Fig. 10. Process diagram for data collection in experiment 2

3) Results

Table II shows the data rates of eye tracking devices and the
amount of valid data successfully captured by iTrace-Core, Déja
Vu, and the iTrace plugins for Eclipse and Visual Studio. From
the table we see that an eye tracking device running at 60 Hz,
tends to moderately tax the real-time analysis component of the
iTrace plugins. As the data rate doubles to 120 Hz, real-time
analysis in the plugins falls behind and nearly half of the data
transmitted to the plugins for analysis is lost as plugins cannot
keep up with the faster data generate rate of the eye trackers. It
is interesting to note that in nearly all cases, the data rate of the
eye tracker poses no issue for Déja Vu with nearly 100% of the
data sent from iTrace-Core is also recorded by Déja Vu along
with participant mouse and keyboard interactions.

4) Limitations

We are not implying that the high-speed support for trackers
will be needed for every study. Just like not every study needs
to be an eye tracking study (there has to be a specific reason for
doing that), not every eye tracking study will need to be done
using a high-speed tracker. However, as we pointed out in

Section 111, there are specific use cases for when this is needed.
In those cases, Déja Vu will significantly improve data
collection without any data loss or incorrect mapping. Closer
investigation of the instances where Déja Vu did not manage to
capture all data points transmitted from iTrace-Core revealed a
bug in the research prototype. Occasionally, Déja Vu can
corrupt a data entry which we believe to be caused by a race
condition on the output file resource. While this can explain the
missing data points given Déja Vu’s generally consistent
performance, we still consider these data points to have been lost
in Table II to avoid underreporting the findings.

TABLE II. RAW GAZE DATAPOINTS COLLECTED DURING STUDY. THE
PERCENT SHOWS THE DATA LOSS. THE K SAMPLES WERE COLLECTED IN THE
VISUAL STUDIO PLUGIN. THE L. SAMPLES (LAST FOUR) WERE COLLECTED IN

THE ECLIPSE PLUGIN.

Sample Data Core

Rate Data
K1 60 Hz 22629
K2 60 Hz 21333
K3 60 Hz 28392
K1 120 Hz 41999
K2 120 Hz 48405
K3 120 Hz 67024
L1 150 Hz 52506
L2 150 Hz 48090
L1 300Hz 138442
L2 300Hz 106674

VII. CONCLUSIONS AND FUTURE WORK

The paper presents a unique solution to a fundamental
technological problem for studying software developers using
high-speed, high-quality eye trackers while working in a
realistic development environment on realistically sized
software systems. In summary, the Déja Vu approach captures
all relevant user and system interactions for later replay of a user
session within a study. The replay allows for very accurate
calculation of user gaze points on the entire stimuli of the
software system. This overcomes serious real-time limitations
posed in mapping screen coordinates to line and column in a
given file. The work is aimed at directly facilitating software
engineering researchers in studying how developers read
software during various tasks (e.g., comprehension, debugging,
feature location, etc.). It will also allow the software engineering
research community to leverage and apply the more recent
advances in cognitive psychology research on text
understanding. We believe this will lead to a much deeper
understanding of how developers read source code and solve
problems which is a complex mixture of many factors. We also
foresee this approach being extended to support eye tracking
studies in the presence of editing source code. However, editing
is a very difficult problem and more research is needed to
support this type of data collection in an accurate manner.

ACKNOWLEDGMENTS

This work is supported in part by the United States National
Science Foundation under grant numbers CCF 18-55756/55753,
CCF 15-53573, and CNS 17-30307/30181.

(1]

(2]

[3]

(4]

(3]

(6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

VIII. REFERENCES

K. Rayner, “Eye movements in reading and information processing: 20
years of research,” Psychol Bull, vol. 124, no. 3, pp. 372—422, Nov. 1998,
doi: 10.1037/0033-2909.124.3.372.

J. H. Goldberg, M. J. Stimson, M. Lewenstein, N. Scott, and A. M.
Wichansky, “Eye tracking in web search tasks: design implications,” in
Proceedings of the symposium on Eye tracking research & applications
- ETRA 02, New Orleans, Louisiana, 2002, p. 51, doi:
10.1145/507072.507082.

Z. Sharafi, Z. Soh, and Y.-G. Guéhéneuc, “A systematic literature review
on the usage of eye-tracking in software engineering,” Information and
Sofiware Technology, vol. 67, pp. 79-107, Nov. 2015, doi:
10.1016/.infsof.2015.06.008.

Z. Sharafi, B. Sharif, Y.-G. Guéhéneuc, A. Begel, R. Bednarik, and M.
Crosby, “A practical guide on conducting eye tracking studies in software
engineering,” Empir Software Eng, Jun. 2020, doi: 10.1007/s10664-020-
09829-4.

Holmqvist, Kenneth; Lund University, Nystrom, Marcus; Lund
University, and Andersson, Richard; Lund University, “Sampling
frequency and eye-tracking measures: how speed affects durations,
latencies, and more,” 2010, doi: 10.16910/JEMR.3.3.6.

D. T. Guarnera, C. A. Bryant, A. Mishra, J. I. Maletic, and B. Sharif,
“iTrace: eye tracking infrastructure for development environments,” in
10th ACM Symposium on Eye tracking Research and Applications,
Warsaw, Poland, Jun. 2018, p. 3, doi: 10.1145/3204493.3208343.
Bonita Sharif and Jonathan I. Maletic, “iTrace: Overcoming the
Limitations of Short Code Examples in Eye Tracking Experiments,” Oct.
2016, pp. 647-647, doi: 10.1109/ICSME.2016.61.

R. Minelli, A. Mocci, and M. Lanza, “I Know What You Did Last
Summer - An Investigation of How Developers Spend Their Time,” in
2015 IEEE 23rd International Conference on Program Comprehension,
Florence, Italy, May 2015, pp. 25-35, doi: 10.1109/ICPC.2015.12.

R. Minelli, A. Mocci, M. Lanza, and T. Kobayashi, “Quantifying
Program Comprehension with Interaction Data,” in 2014 [4th
International Conference on Quality Software, Oct. 2014, pp. 276-285,
doi: 10.1109/QSIC.2014.11.

R. Minelli, A. Mocci, and M. Lanza, “Measuring Navigation Efficiency
in the IDE,” in 2016 7th International Workshop on Empirical Software
Engineering in Practice (IWESEP), Mar. 2016, pp. 1-6, doi:
10.1109/TWESEP.2016.11.

N. C. C. Brown, A. Altadmri, S. Sentance, and M. Kélling, “Blackbox,
Five Years On: An Evaluation of a Large-scale Programming Data
Collection Project,” in Proceedings of the 2018 ACM Conference on
International Computing Education Research, Espoo, Finland, Aug.
2018, pp. 196204, doi: 10.1145/3230977.3230991.

M. Kersten and G. C. Murphy, “Using task context to improve
programmer productivity,” in Proceedings of the 14th ACM SIGSOFT
international symposium on Foundations of sofiware engineering,
Portland, Oregon, USA, Nov. 2006, pp. 1-11, doi:
10.1145/1181775.1181777.

L. Bao, D. Ye, Z. Xing, X. Xia, and X. Wang, “ActivitySpace: A
Remembrance Framework to Support Interapplication Information
Needs,” in 2015 30th IEEE/ACM International Conference on Automated
Sofiware Engineering (ASE), Nov. 2015, pp. 864-869, doi:
10.1109/ASE.2015.90.

L. Bao, Z. Xing, X. Xia, D. Lo, and A. E. Hassan, “Inference of
development activities from interaction with uninstrumented
applications,” Empirical Sofiware Engineering, vol. 23, no. 3, pp. 1313—
1351, Jun. 2018, doi: 10.1007/s10664-017-9547-8.

J. Sun, S. Zhang, S. Huang, and Z. Hui, “Design and Application of a
Sikuli Based Capture-Replay Tool,” in 2018 IEEE International
Conference on Software Quality, Reliability and Security Companion
(ORS-C), Jul. 2018, pp. 42—44, doi: 10.1109/QRS-C.2018.00021.

B. Burg, R. Bailey, A.J. Ko, and M. D. Ernst, “Interactive Record/Replay
for Web Application Debugging,” in Proceedings of the 26th Annual
ACM Symposium on User Interface Sofiware and Technology, New
York, NY, USA, 2013, pp. 473—484, doi: 10.1145/2501988.2502050.

1. J. Nino, B. de la Ossa, J. A. Gil, J. Sahuquillo, and A. Pont, “CARENA:
a tool to capture and replay Web navigation sessions,” in Workshop on
End-to-End Monitoring Techniques and Services, 2005., May 2005, pp.
127-141, doi: 10.1109/E2EMON.2005.1564474.

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

F. Yan, M. Xia, Z. Qi, and X. Liu, “Poster: Efficient and Deterministic
Replay for Web-Enabled Android Apps,” in 2018 IEEE/ACM 40th
International Conference on Software Engineering: Companion (ICSE-
Companion), May 2018, pp. 329-330.

J. Guo, S. Li, J.-G. Lou, Z. Yang, and T. Liu, “Sara: Self-Replay
Augmented Record and Replay for Android in Industrial Cases,” in
Proceedings of the 28th ACM SIGSOFT International Symposium on
Sofitware Testing and Analysis, New Y ork, NY, USA, 2019, pp. 90-100,
doi: 10.1145/3293882.3330557.

Y. Sun, D. Chen, W. Jiao, and G. Huang, “An Online Education
Approach Using Web Operation Record and Replay Techniques,” in
2014 IEEE 38th Annual Computer Software and Applications
Conference, Jul. 2014, pp. 456-465, doi: 10.1109/COMPSAC.2014.68.
Y. Sun, D. Chen, C. Xin, and W. Jiao, “Automating Repetitive Tasks on
Web-Based IDEs via an Editable and Reusable Capture-Replay
Technique,” in 2015 IEEE 39th Annual Computer Sofiware and
Applications Conference, Jul. 2015, vol. 2, pp. 666675, doi:
10.1109/COMPSAC.2015.12.

R. Ramler, M. Gattringer, and J. Pichler, “Live Replay of Screen Videos:
Automatically Executing Real Applications as Shown in Recordings,”
presented at the SANER, London, Ontario, Canada, Feb. 2020.

C. Bernal-Cardenas, N. Cooper, K. Moran, O. Chaparro, A. Marcus, and
D. Poshyvanyk, “Translating Video Recordings of Mobile App Usages
into Replayable Scenarios,” presented at the ICSE 2020, Seoul, South
Korea, May 2020.

E. Soloway and K. Ehrlich, “Empirical Studies of Programming
Knowledge,” IEEE Transactions on Software Engineering, vol. 10, pp.
595-609, Sep. 1984.

K. Holmgqvist, M. Nystrom, R. Andersson, R. Dewhurst, H. Jarodzka, and
J. Van de Weijer, Eye tracking: A comprehensive guide to methods and
measures. Oxford University Press; Reprint edition.

A. T. Duchowski, “Eye tracking methodology : theory and practice,”
2017.
http://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p
=5579221.

M. A. Just and P. Carpenter, “A theory of reading: from eye fixations to
comprehension.,” Psychological review, 1980, doi: 10.1037/0033-
295X.87.4.329.

S. Van der Stigchel and J. Theeuwes, “The influence of attending to
multiple locations on eye movements,” Vision Research, vol. 45, no. 15,
pp. 1921-1927, Jul. 2005, doi: 10.1016/j.visres.2005.02.002.

M. D. Dodd, S. V. der Stigchel, and A. Hollingworth, “Novelty Is Not
Always the Best Policy: Inhibition of Return and Facilitation of Return
as a Function of Visual Task,” Psychological Science, Mar. 2009,
Accessed: May 27, 2020. [Online]. Available:
https://journals.sagepub.com/doi/10.1111/j.1467-9280.2009.02294 x.

R. M. Klein and W. J. Maclnnes, “Inhibition of Return is a Foraging
Facilitator in Visual Search,” Psychol Sci, vol. 10, no. 4, pp. 346-352,
Jul. 1999, doi: 10.1111/1467-9280.00166.

J. Lupiafiez, “Inhibition of Return,” in Scholarpedia, vol. 3,2010, pp. 17—
34.

S. Van der Stigchel and J. Theeuwes, “Our eyes deviate away from a
location where a distractor is expected to appear,” Exp Brain Res, vol.
169, no. 3, p. 338, Nov. 2005, doi: 10.1007/s00221-005-0147-2.

C. W. Eriksen, “The flankers task and response competition: A useful tool
for investigating a variety of cognitive problems,” Visual Cognition, vol.
2,n0.2-3, pp. 101-118, Jun. 1995, doi: 10.1080/13506289508401726.
N. J. Abid, B. Sharif, N. Dragan, H. Alrasheed, and J. 1. Maletic,
“Developer Reading Behavior While Summarizing Java Methods: Size
and Context Matters,” in Proceedings of the 4lst International
Conference on Software Engineering, Montreal, Quebec, Canada, May
2019, pp. 384-395, doi: 10.1109/ICSE.2019.00052.

A. T. Duchowski, K. Krejtz, N. A. Gehrer, T. Bafna, and P. Bakgaard,
“The Low/High Index of Pupillary Activity,” in Proceedings of the 2020
CHI Conference on Human Factors in Computing Systems, Honolulu HI
USA, Apr. 2020, pp. 1-12, doi: 10.1145/3313831.3376394.

A. T. Duchowski et al., “The Index of Pupillary Activity: Measuring
Cognitive Load vis-a-vis Task Difficulty with Pupil Oscillation,” in
Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems - CHI '18, Montreal QC, Canada, 2018, pp. 1-13,
doi: 10.1145/3173574.3173856.

[37]

[38]

[39]

[40]

[41]

[42]

[43]

S. Van der Stigchel, M. Mills, and M. D. Dodd, “Shift and deviate:
Saccades reveal that shifts of covert attention evoked by trained spatial
stimuli are obligatory,” Atten Percept Psychophys, vol. 72, no. 5, pp.
1244-1250, Jul. 2010, doi: 10.3758/APP.72.5.1244.

R. Engbert and R. Kliegl, “Microsaccades uncover the orientation of
covert attention,” Vision Research, vol. 43, no. 9, pp. 1035-1045, Apr.
2003, doi: 10.1016/S0042-6989(03)00084-1.

Z. M. Hafed and J. J. Clark, “Microsaccades as an overt measure of covert
attention shifts,” Vision Research, vol. 42, no. 22, pp. 2533-2545, Oct.
2002, doi: 10.1016/S0042-6989(02)00263-8.

E. Lowet, B. Gomes, K. Srinivasan, H. Zhou, R. J. Schafer, and R.
Desimone, “Enhanced Neural Processing by Covert Attention only
during Microsaccades Directed toward the Attended Stimulus,” Neuron,
vol. 99, no. 1, pp. 207-214.e3, Jul 2018, doi:
10.1016/j.neuron.2018.05.041.

C. Kelleher and W. Hnin, “Predicting Cognitive Load in Future Code
Puzzles,” in Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems - CHI 19, Glasgow, Scotland Uk, 2019, pp. 1—-
12, doi: 10.1145/3290605.3300487.

A. Duchowski, K. Krejtz, J. Zurawska, and D. House, “Using
Microsaccades to Estimate Task Difficulty During Visual Search of
Layered Surfaces,” I[EEE Trans. Visual. Comput. Graphics, pp. 1-1,
2019, doi: 10.1109/TVCG.2019.2901881.

B. Floyd, T. Santander, and W. Weimer, “Decoding the Representation
of Code in the Brain: An fMRI Study of Code Review and Expertise,” in

[44]

[45]

[46]

[47]

[48]

2017 IEEE/ACM 39th International Conference on Software Engineering
(ICSE), Buenos Aires, May 2017, pp. 175-186, doi:
10.1109/ICSE.2017.24.

S. Fakhoury, Y. Ma, V. Arnaoudova, and O. Adesope, “The effect of poor
source code lexicon and readability on developers’ cognitive load,” in
Proceedings of the 26th Conference on Program Comprehension - [CPC
’18, Gothenburg, Sweden, 2018, pp- 286-296, doi:
10.1145/3196321.3196347.

M. L. Collard, M. J. Decker, and J. I. Maletic, “srcML: An Infrastructure
for the Exploration, Analysis, and Manipulation of Source Code: A Tool
Demonstration,” in 2013 IEEE International Conference on Software
Maintenance, Eindhoven, Netherlands, Sep. 2013, pp. 516-519, doi:
10.1109/ICSM.2013.85.

P. Olsson, “Real-time and Offline Filters for Eye Tracking,” Masters
Thesis, KTH Electrical Engineering, Stockholm, Sweden, 2007.

R. Andersson, L. Larsson, K. Holmqvist, M. Stridh, and M. Nystrom,
“One algorithm to rule them all? An evaluation and discussion of ten eye
movement event-detection algorithms,” Behav Res, vol. 49, no. 2, pp.
616637, Apr. 2017, doi: 10.3758/s13428-016-0738-9.

Microsoft, “mouse_event function (winuser.h) - Win32 apps,”
mouse_event function, Dec. 05, 2018. https://docs.microsoft.com/en-
us/windows/win32/api/winuser/nf-winuser-mouse_event (accessed Feb.
24, 2020).

