
1

Automated Recording and Semantics-Aware
Replaying of High-Speed Eye Tracking and

Interaction Data to Support Cognitive Studies of
Software Engineering Tasks

Vlas Zyrianov
Department of Computer Science

University of Illinois at Urbana-Champaign
Champaign, Illinois USA

vlasz2@illinois.edu

Drew T. Guarnera
Department of Computer Science

Kent State University
Kent, Ohio USA

dguarner@kent.edu

Cole S. Peterson
Dept. of Computer Science and Engineering

University of Nebraska-Lincoln
Lincoln, Nebraska USA

Cole.Scott.Peterson@huskers.unl.edu

Bonita Sharif
Dept. of Computer Science and Engineering

University of Nebraska-Lincoln
Lincoln, Nebraska USA

bsharif@unl.edu

Jonathan I. Maletic
Department of Computer Science

Kent State University
Kent, Ohio USA

jmaletic@kent.edu

Abstract—The paper introduces a fundamental technological

problem with collecting high-speed eye tracking data while

studying software engineering tasks in an integrated development

environment. The use of eye trackers is quickly becoming an

important means to study software developers and how they

comprehend source code and locate bugs. High quality eye

trackers can record upwards of 120 to 300 gaze points per second.

However, it is not possible to map each of these points to a line and

column position in a source code file (in the presence of scrolling

and file switching) in real time at data rates over 60 gaze points

per second without data loss. Unfortunately, higher data rates are

more desirable as they allow for finer granularity and more

accurate study analyses. To alleviate this technological problem,

a novel method for eye tracking data collection is presented.

Instead of performing gaze analysis in real time, all telemetry

(keystrokes, mouse movements, and eye tracker output) data

during a study is recorded as it happens. Sessions are then

replayed at a much slower speed allowing for ample time to map

gaze point positions to the appropriate file, line, and column to

perform additional analysis. A description of the method and

corresponding tool, Déjà Vu, is presented. An evaluation of the

method and tool is conducted using three different eye trackers

running at four different speeds (60Hz, 120Hz, 150Hz, and 300

Hz). This timing evaluation is performed in Visual Studio and

Eclipse IDEs. Results show that Déjà Vu can playback 100% of

the data recordings, correctly mapping the gaze to corresponding

elements, making it a well-founded and suitable post processing

step for future eye tracking studies in software engineering.

Keywords— Eye Tracking, Empirical Studies, Program

Comprehension, High-speed Eye Tracking

I. INTRODUCTION

Eye trackers are a critical research tool in understanding how
people observe and in turn comprehend visual stimuli [1].
Researchers have successfully used eye tracking hardware to

better understand how people read prose, understand diagrams,
and process visual landscapes. Computer scientists use eye
tracking devices to study how people interact with graphical user
interfaces and web pages [2]. The software engineering
community is now using eye tracking equipment to study how
developers read and understand source code [3]. A detailed and
practical guide on conducting eye tracking studies in software
engineering is presented in [4].

There are a wide range of eye tracking devices and
technology. The devices are made up of hardware, mainly
specialized cameras, along with sophisticated software that
computes the focal point of the eyes using data collected by the
cameras. Additional software is needed to map each of the eye
gazes to locations on a visual stimulus (i.e., screen). Eye tracking
devices differ greatly with regards to accuracy (of tracking eye
movements) and the applications and environments they can be
applied to [5]. Studying how people read and comprehend text
or source code requires high precision (and costly) eye tracking
hardware and software, while determining general spatial
regions where a person is looking (left, right, up, down) only
requires simple and lower cost hardware and software. Low cost
systems cannot identify the exact focus of the eyes, such as what
word or letter someone is looking at. They only work well on
larger stimuli such as objects in computer games. A high quality,
accurate, research-grade eye tracking device allows researchers
to determine the exact xy-coordinate on the screen a person is
examining. The higher-end eye trackers, in a controlled setting,
can pinpoint down to the letter being examined. Research on
reading prose and source code does not always require that much
accuracy, rather accuracy to the word level is sufficient.

Research grade eye trackers work by presenting an image or
text (stimuli) on a computer screen and then using the data from
cameras, determine the location (xy-coordinate) the person is
looking at. There are a number of limitations to this technology.

The person must be forward looking at the stimuli, cannot look
around the room and must be fairly stationary. While these are
not serious limitations for conducting scientific studies there is
one underlying limitation that poses a substantial road block for
studying how programmers understand large, real-world
software. Accurate research-grade eye trackers only work on
fixed stimuli (i.e., an image or text block) that fits on the
computer screen. Changes to the stimuli (screen), such as
scrolling or switching files, present a very complex problem. In
order to deal with this problem, iTrace was introduced to the
research community [6], [7]. iTrace allows a software
engineering researcher to conduct eye tracking studies directly
in an integrated development environment (IDE) such as Visual
Studio or Eclipse. It supports the tracking of eye gaze in the
presence of scrolling and context switching. As such,
researchers can study developers in a real-world environment
and on large realistic software systems. iTrace does this by
hooking up to the IDE via a plugin architecture and invoking
application and system calls to map the screen xy-coordinate to
a line and column in the file in real time. This is then used in a
post processing phase to determine the source code token being
examined by the study participant.

Eye trackers sample eye gazes x-times every second denoted
by the frame rate. For example, a 120 Hz eye tracker generates
120 samples per second of raw eye gaze coordinates that needs
to be looked up in real time to map to the line, column
underlying beneath it. This lookup time is limited to the time it
takes for the system calls to return. If the response time of this
system call is too long it is not possible to map all gazes coming
in accurately to the correct file location. Through use of the
iTrace infrastructure we determined that the maximum frame
rate at which this can be done in real time is approximately 60Hz
(for both Visual Studio and Eclipse). This means that anything
above 60Hz will cause the tracker in iTrace to incorrectly map
data or drop gaze points altogether. While having a faster
computer may help a little, getting to 120Hz, 300Hz or even
1000Hz (at which reading studies are typically done in
psychology) is currently impossible with real time mapping.

The work presented here addresses this limitation of the
current iTrace architecture by taking all the processing offline.
While the IDE API function call response time is fixed, our
technique allows for all events to be recorded and replayed back
at any given data rate. This allows for mapping gaze data to
source code locations with very high-speed eye trackers. The
technique is implemented in Déjà Vu, a novel tool that leverages
the iTrace infrastructure. The technique and details of Déjà Vu’s
implementation are presented. The main contributions presented
in this paper are:

• Formalization. We introduce a fundamental problem in
performing eye tracking studies in practical developer
environments with high-speed eye trackers.

• Technique. We present a novel technique to solve the
technological problem presented using automated
recording and semantics-aware replaying of eye tracking
and interaction data to support cognitive studies of software
engineering tasks.

• Tool. The novel technique is designed and implemented in
a practical tool, Déjà Vu, that leverages the iTrace eye

tracking infrastructure. The tool and usage documentation
is available at: https://zenodo.org/record/3976520.

• Evaluation. An evaluation of the fundamental problem
with collecting high-speed eye tracking data with and
without Déjà Vu is presented in the context of two
integrated development environments (Eclipse and Visual
Studio) with a sample task.

The paper is organized as follows. Section II presents related
work in interaction monitoring. Section III formally presents the
problem and motivation for Déjà Vu. Section IV discusses
details of the Déjà Vu architecture, design decisions, and how
Déjà Vu integrates with iTrace. Section V discusses
implementation details of the recording and replaying stages
including the challenges faced and how they were mitigated or
need managed. Section VI provides an evaluation on the impact
of data output rates from eye tracking devices on real-time
analysis of eye tracking data on source code with respect to the
iTrace framework [6], [7]. Section VII presents conclusions and
future work on Déjà Vu’s method and implementation.

II. RELATED WORK

Capturing user interaction data for analysis is a common
approach in a variety of computational research studies. In [8]–
[10] Minelli et al. record mouse, keyboard, and IDE interaction
data. Fine grain interactions are grouped into broad categories
such as comprehension, editing, navigating, etc. to observe
developer behavioral during typical tasks. Findings about what
activities consume the most developer time, the proportion of
development time is dedicated to program comprehension, and
the IDE navigational efficiency of developers are presented. The
Blackbox project [11] has collected programming interactions
within the BlueJ Java IDE for over five years. This dataset has
been aimed at providing raw data for research analysis towards
better understanding software development behaviors of novice
developers. Mylar [12], now known as Mylyn for the Eclipse
IDE, allows a developer to track IDE usage activity related to
defined tasks. These task contexts can be easily switched in
order for developers to multitask without the need to manually
relocate artifacts upon returning to a previous task activity. Déjà
Vu drastically differs from Mylyn in that Déjà Vu is intended to
store interactions along with cognitive information (eye tracking
data) for the purpose of replay and subsequent analysis while
Mylyn is an active development productivity tool.

ActivitySpace [13] stores mouse and keyboard events
related to applications used by software developers to
accomplish daily tasks. Event information is logged to a
database as an “action record” to create a historical profile of
developer interactions. Action records are grouped by a user
defined time window and can be queried to help remind
developers of resources used and actions taken while working
on a given task to improve productivity. Interaction data from
ActivitySpace has also been used with machine learning
techniques are compared to classify developer activity into
higher level categories such as coding, debugging, testing,
navigation, web browsing, and documentation [14].

In addition to the capture user interactions, running
simulated interactions is a popular solution for software testing
research. Sikuli is used in [15] to construct synthetic macro

scripts that are application agnostic based on common keyboard
and mouse usage. User interactions are supplemented with
desktop screenshots and image processing to determine the
targets of the actions and automate GUI testing. Specific
environments such as websites [16], [17] and Android
applications [18], [19] have also been instrumented to record
and replay user interactions for the purpose of testing and
evaluating web or GUI based applications.

Capture and replay approaches also benefit general purpose
automation techniques. The Online Synchronous Education
Platform (OSEP) records and abstracts user interactions with
websites allowing for editable interactions scripts to be run as
pre-recorded or synchronous demonstrations to support
educational environments [20]. Using the same framework, an
system for automating common or lengthy website interactions
is also proposed to improve user productivity [21]. Recent works
by Ramler et al. [22] and Bernal-Cárdenas et al [23] take a
different approach to capturing and replaying user interaction.
Instead of instrumenting applications or recording interactions
at an OS level, recorded video of an activity is broken down into
individual still frames which are post processed to reverse
engineer user interactions shown in the video.

While Déjà Vu makes use of existing recording and
replaying techniques, it differs from the state of the art by
recreating an eye tracking study in its entirety. User interactions
with mouse and keyboard and gaze locations are all replayed to
simulate a prior eye tracking study while allowing ample time
for more detailed analysis that is not feasible to perform in real-
time using high speed eye tracking equipment. Additionally,
Déjà Vu affords researchers an opportunity to replicate a study
any number of times while analyzing the study in different ways
each time to greatly increase the value of participant recording
sessions. This is a novel contribution to the current state of the
art and provides the eye tracking software research community
added incentive to use eye tracking equipment in their studies.
The additional advantage of supporting high-speed trackers
above 60 Hz (most research grade trackers are 120 Hz or higher)
without data loss enables many different types of cognitive
analyses (outlined in the next section) that were unable to be
done before because of the engineering problem described.

III. PROBLEM FORMALIZATION

Eye trackers have been used for decades to study how people
comprehend visual stimuli [1]. Modern eye trackers collect a
person’s eye gaze data on the visual display (referred to as the
stimulus) in an unobtrusive way while the subject is performing
a given task. This eye movement data can provide very valuable
insight into comprehension strategies [24] as to how and why
people arrive at a certain solution. Eye movements are essential
to cognitive processes because they focus a subject’s visual
attention to the parts of a visual stimulus that are processed by
the brain. Visual attention triggers cognitive processes that are
required to perform such things as comprehension. Eye
movement is also a proxy for cognitive effort [1] and allows us
to determine what parts of a visual stimuli are difficult to
understand.

Fig. 1. Gaze plot of a developer’s fixations on code.

The underlying basis of an eye tracker is to capture various
types of eye movements that occur while humans physically
gaze at an object of interest. Fixations and saccades are the two
types of eye movements. A fixation is the stabilization of eyes
on an object of interest for a certain period of time. Saccades
are quick movements that move the eyes from one location to
the next (i.e., re-fixates). Dwell time is defined as the sum of all
fixations in a dwell (one visit to an area of interest from entry to
exit) [25]. An area of interest is defined by the researcher as any
part of the stimulus that is of interest for analysis. For example,
in source code, it could be a token or a line. A scan path is a
directed path formed by saccades between fixations. The
general consensus in the eye tracking research community is that
the processing of visualized information occurs during fixations,
whereas, no such processing occurs during saccades [26]. The
visual focus of the eyes on a particular location triggers certain
mental processes in order to solve a given task [27]. Modern eye
trackers are accurate to 0.5 degrees (0.25 in. dia.) on the screen.
In Fig. 1, we see eye gazes on source code (some areas having a
much higher density of fixations than others). The fixations are
shown as circles on the diagram. The radius of the circle
represents the duration of the fixation. The bigger the radius, the
more time was spent looking at that particular point. Each
fixation has a number displayed in the center of the circle, which
indicates the order in which the fixation occurred.

It is important to note that not all eye trackers are made
equal. Generally, eye trackers range from low-cost consumer-
grade to more expensive research-grade tracking equipment.
Research-grade eye trackers are thoroughly tested for accuracy,
quality, and reliability compared to low-cost models. Low-cost
eye trackers costing approximately $200 USD are for consumer
use (mainly gaming). Low-cost eye trackers miss the subtle
differences in how humans read and navigate text. Another
difference is the frame rate. Low-cost eye trackers capture gazes
at a slower rate compared to the research-grade ones. More
gazes captured per second give more detailed insight into how
people read and analyze software artifacts.

The current generation of eye tracking devices offer a wide
range of data rates [5]. Older and entry level devices tend to
operate at 60 Hz meaning that 60 data points are provided within
one second. When performing real-time analysis with received
gaze data, analysis tools would be left with approximately 17
milliseconds (ms) for any analysis before a subsequent new data
point will be received from a tracker. This window narrows as

modern trackers are capable of supporting anywhere from 120
Hz to over 2000 Hz.

Eye tracking of source code within an integrated
development environment (IDE) is a serious challenge
compared to the traditional approach of using static images or
text that fit completely on a single screen. In the case of a static
stimulus, the position of the image or the source text has little to
no variance. The gaze data recorded while the stimulus is visible
can be mapped down to the pixel on an image-based
representation of the data on the display. In contrast, while using
an IDE, users may manipulate the view of the source code in any
number of ways such as scrolling, file switching, or even editing.
These actions require that the gaze data recorded is contextually
informed of state of the IDE with respect to the positioning of
the source code text and interface elements at a specific moment
in time. For example, if a user is scrolling through a source code
file looking for a specific identifier, the user's eye positioning
may remain fixed within a limited region of the display as the
text scrolls past. The issue is that location of the stimulus is
changed drastically due to scrolling and it is no longer possible
to easily map the screen location of a gaze to the stimulus.

In the case of the iTrace infrastructure [6], [7] (or other
similar gaze analysis infrastructures), IDE plugins map gaze
locations to interface elements and source code text. The high
latency of IDE plugin environment API calls significantly limits
the feasibility of deep real-time gaze and textual analysis at the
data sampling rate of high-speed trackers. Currently, solving
this problem requires serious tradeoffs. One option is to drop
gaze points received while the plugin is busy performing gaze
mapping operations causing valuable data points to be lost.
Another choice is to buffer all gazes to prevent data loss, but this
causes the mapping process to steadily fall behind as the
mapping process is a real-time operation and relies on the
context of the current state of the IDE when the gaze data is
received. This ultimately leads to a desynchronization of the
gaze data and the IDE state and renders the data invalid.

Enabling support for high speed trackers allows researchers
to collect data for software engineering tasks and better enable
them to come to conclusions similar to cognitive psychology
reading studies that typically use 1000-2000Hz trackers. We
now enumerate several benefits of having support for high-
speed trackers implemented in Déjà Vu by extending current eye
tracking community infrastructure.

Running realistic studies using the community infrastructure
such as iTrace on a tracker greater than 60Hz is now possible as
Déjà Vu takes full advantage of the faster frame rate. Most
affordable eye trackers are at least 120Hz. This enables
researchers to take advantage of the higher frame rate available
to them. The higher the sampling rate, the greater the precision
of the eye in space causing less error on dwell time [25] at any
given point on the stimulus. This relates directly to the accuracy
of the eye tracker. Accuracy is important when drilling down to
specific token the developer is examining. Tokens are of
varying length (e.g., short variable names, data types (int) or
even opening and closing braces) and accurate dwell time is
important for a study. With higher precision we can much more
accurately map the eyes to the parts of the stimuli with more
realistically sized fonts. Currently, to overcome this limitation,

researchers use a larger font, however, this is not very realistic
as developers do not normally program in very large fonts. With
a 60Hz tracker, the window of error is about 32 ms (once every
16 ms in either direction) [5].

There are known attentional effects such as attentional cuing
[28], inhibition of return [29]–[31], distractor inhibition [32],
and flanker effects [33], to name a few, that are highly
significant but often quite small and range between 10-15 ms in
response and in dwell time. It is impossible to capture these
effects with low-precision eye trackers. Many of these effects
are highly relevant to software engineering studies. But none of
the current studies analyze such effects as there is currently no
support to do this in current infrastructure. Note that this is still
possible to do with high speed trackers if using short code
snippets that fit on the screen, however it has been shown that
the results from short snippets do not necessarily translate to
realistic tasks [34]. Researchers have studied how eye curvature
affects a task. These characteristics can only be discerned at a
high sampling rate requiring the use of high-speed tracking. For
example, the eye can be attracted to or repelled from a distractor
as a function of temporal relationship between a target and a
distractor [32]. We have yet to determine if these issues impact
real world programming behavior.

Researchers can generally extract a lot more information
from high precision data such as pupillary activity [35], [36] and
velocity measures that can help with saccade [37] and
microsaccade analysis [38]–[40]. Microsaccades are miniature
eye movements along with tremor and drift that are made during
a fixation. They are typically found 1-2 times per second and
have an amplitude of between 1’-25’ (arcminute).
Microsaccades have regained popularity recently and are being
studied by eye tracking researchers to learn about the cognitive
load [41] and task difficulty [42]. However, to correctly do
microsaccade analysis, a 300Hz or higher (500Hz
recommended) tracker is necessary to be confident in the
velocity measures. Typically, oversampling of the data is used
as an alternative but this is not recommended due to the artificial
nature of the generated samples. Finally, with the introduction
of multiple data collection streams such as studies that
incorporate fMRI [43], fNIRS [44], EEG, or GSR with eye
tracking, it is recommended to have high speed precision to align
timing data.

In summary, we have only begun to start studying
developers and cognition in software engineering using eye
trackers, however we have yet a lot to learn from cognitive
psychology and one of the ways to do this correctly is to have
support for high-speed trackers in order to start collecting data
correctly and making meaningful conclusions.

IV. THE DÉJÀ VU APPROACH

Calculating all the necessary mappings of eye positions to
elements on the stimulus in real time is not feasible in the context
of high-speed eye trackers (as previously noted). To address this
problem, it is possible to calculate the mappings after the eye
tracking session, as a post-processing step. We record all
telemetry data (e.g., keyboard, mouse), along with eye tracker
data, and time stamps. This allows us to replay the session in
slow motion and calculate mappings as necessary. Hence, we

are no longer is constrained by real-time performance
requirements.

One method of implementing this is capturing the entire
operating system after receiving each gaze during an eye
tracking study session. After the study, each operating system
state is loaded and all mappings are calculated. This is entirely
accurate, however is not practical. It has very poor performance
due to requiring copying the entirety of RAM to disk and may
require introducing the complexity of a hypervisor.

Déjà Vu takes an alternative approach. Only actions that get
the environment to each state are recorded and stored.
Practically, these are mainly human-computer interaction events
– mouse movements and keyboard key state data. Other vital
information includes the operating system state history, such as
the exact position where a window pops up (in Windows, it
depends on where it was previously opened). In these cases, a
Déjà Vu style approach needs to take measures to address this
and ensure that replays are deterministic. This paper discusses
the measures taken by the Déjà Vu tool to address this problem.

In the Déjà Vu approach, the execution process is split into
two steps. First, during an eye tracking study, this computer
interaction data is collected in real time. After the eye tracking
study session is completed, all the computer interactions can be
replayed at some later time. This involves replaying the session
on the same machine but at a slower frame rate. Since all data
is timestamped this can be done without loss and in an accurate
manner. Thus, the system/application calls to calculate the line,
column in the file can be run without concern and in-depth
analysis (of almost any type) can be performed during the
replay. Déjà Vu leverages the iTrace infrastructure [6], [7] to
capture mouse and keyboard activity during an eye tracking
study. To understand the role of Déjà Vu it is necessary to be
familiar with the basics of iTrace.

A. iTrace

iTrace is an eye tracking infrastructure to enable research
studies within multiple types of software development
environments. The infrastructure design is modular featuring
three key components, iTrace Core, iTrace Plugins, and an
offline post processing application for gaze analysis (see Fig. 2).

The Core provides a unified interface for managing
supported eye tracking devices. Through this application eye
trackers can be set to calibrate or begin and end eye tracking data
recording. All data generated by the eye trackers is first received
by the Core which then makes quick decisions based on validity
indicators whether the data is acceptable for use by other iTrace
infrastructure applications. The Core also provides socket and
websocket servers to allow for iTrace Plugins to connect to the
Core and receive gaze data for additional processing. In addition
to gaze data, the socket communication also coordinates the start
and stop of a recording session and subsequent Plugin data
processing as well as any output file storage locations for
organizational purposes.

Plugins for iTrace support applications such as Eclipse,
Visual Studio, and the Google Chrome web browser allow study
participants to engage with standard development tools instead
of simulated proxies. This allows for data collection to occur in

a natural and realistic development environment. Plugins
receive the screen coordinate location of a gaze via socket or
websocket communication as well as a unique identifier from
the Core. Using this information, each plugin performs real-
time analysis to map a gaze to contextual information within the
IDE or web browsing window. This mapping constitutes line
and column positions within a visible source code editing
window, IDE interface widgets, or HTML elements (with
respect to Google Chrome) that fall under a participant’s gaze.
These contextual mappings are essential as study participants
are free to manipulate the stimulus environment through
scrolling, resizing, switching files or pages, searching, and many
other activities. Without any kind of context to associate with a
gaze, combined with the volatile nature of the stimulus
environment, it would be impossible to correctly determine what
elements of the stimulus are actually viewed at a given moment
in time.

Fig. 2. The architecture of iTrace

All data collected from each eye tracking recording session
is stored in XML files. The Core stores participant and study
metadata, calibration information, details about the specific
tracker used to record the data, and all the raw gaze data points
(valid or invalid) received from the eye tracking device during
the session. Each plugin records valid gaze points received by
the Core and contextual information about the gaze location with
the IDE or web browser environment. When a study is
complete, the custom offline post processing application
provided by the iTrace infrastructure aggregates the data from
all XML files. All study metadata and gaze data is collected into
a unified Sqlite database where raw gaze data and plugin context
information is joined using the aforementioned unique
identifiers. Once all of the data is aggregated into the Sqlite
database it can be queried using standard SQL commands or
further analyzed using the post processing application.

The post processing application provided by the iTrace
infrastructure is capable of performing two key analysis
methods on the collected study data. The first allows for deeper
analysis on all source code context information. Using srcML
[45] in conjunction with the line and column information
provided by the iTrace IDE Plugins, all textual tokens and the
syntactic context of each token within a source code document
can be recovered and stored within the database for later
querying. Finally, the iTrace post processing application
supports three different fixation filtering algorithms (Basic [46],

I-VT, and I-DT) each with adjustable parameters [47]. All
fixations identified are stored within the database and each
fixation references the raw gaze collection that it represents.

The contextual information that iTrace provides is of great
value. However, the overhead incurred by collecting this
information in real time becomes problematic as the speed at
which eye tracking devices are capable of transmitting data
increases. To alleviate this issue and fully support high speed
eye tracking while still collecting contextual stimulus
environment information a new approach is required.

B. Usage Scenario

As far as we are aware, this is the first attempt at supporting
high-speed trackers for software engineering-based studies that
work on complex artifacts that are tracked within an IDE. We
expect Déjà Vu to be used in the following way. A researcher
wants to understand how developers understand class
hierarchies using a high-speed 1000Hz eye tracker. Before the
study, the researcher chooses a suitable real-world code base and
the questions a study participant must answer. The code base is
imported into a project file in an IDE that has iTrace plugin
support (such as Visual Studio). The layout is saved. During the
study, a participant is invited in. The eye tracker is calibrated for
the participant. The IDE is opened, and the layout is restored.
Eye tracking is started in iTrace-Core. Déjà Vu Record is
opened, connected to the core, and recording is enabled. At this
point, the study participant performs the assigned task. They
have the freedom to interact with the IDE, OS, and any
applications if they so desire (for example, opening a web
browser to access StackOverflow). Once the participant is
finished, iTrace-Core and Déjà Vu Record are stopped. The
Recording phase is finished. Later, the replay phase begins. Déjà
Vu Replay is opened. Analysis plugins are enabled in the IDE
and are connected to Déjà Vu Replay. The IDE layout is restored
again. Replay is started in Déjà Vu. Everything that happened
during the study is now replayed slowly on the computer.
Analysis is being performed in the background. Once it is
finished, the researcher can collect the data from the plugins and
analyze it in any statistical package.

V. DÉJÀ VU IMPLEMENTATION

Déjà Vu augments iTrace to allow all gaze analysis that
occurs in real-time to be deferred to an offline post processing
phase. This requires Déjà Vu to record all user interactions. A
subsequent replay phase is used to synchronize each user action
with respect to recorded gaze data.

A. Recording Stage

During the recording phase (see Fig. 3), Déjà Vu captures
human-computer interaction data by recording mouse, and
keyboard, along with the eye tracking gaze data. Mouse and
keyboard events are captured using Win32 hooks. Hooking into
operating system events is a feature of the Windows API and is
done through the SetWindowsHookEx function. By using this
function to hook into low level mouse and keyboard events, Déjà
Vu can capture these events before they are added into the input
queue. If a study participant is typing code in an IDE, Déjà Vu
captures and saves each keystroke before the IDE even receives

it. This capturing and saving step happens imperceptibly fast.
Performing the capture this way allows for perfect accuracy and
replays. Gaze data is collected by listening for broadcasted event
data from iTrace-Core.

As this data is collected, it is saved to disk in a CSV format.
A sample of the recorded data is shown in Fig. 4. Each row is
in the following format: event type, a 64-bit integer specifying
the system time, and any data related to the event. This format
contains all data necessary for replaying the user’s computer
interaction. Every event type recorded is shown in Fig. 5 in its
CSV format. KeyDown and KeyUp is used to represent keyboard
key state changes. A Windows virtual key code (which is the
size of a byte) can store any keyboard key, including modifier
keys such as shift or control.

Each of the mouse buttons are explicitly stated as an event
type. Forward and back refers to the buttons on the left side
of a mouse (generally used for webpage navigation).
MouseMove specifies the new absolute position on screen after
the mouse has been moved. MouseWheel stores any scroll that
happens with a value that specifies how much the mouse is
scrolled. This event also collects touchpad scrolling on laptops.

The gaze, session_start, and session_end events are
directly retrieved from iTrace Core. Gaze events store the x and
y screen coordinate the participant’s gaze at that time including
validity codes, pupil diameter, and distance to screen.
session_start and session_end events are used by iTrace
to mark the beginning and end of a study. These are primarily
used to synchronize iTrace Core state with plugins.

Fig. 3. Recording stage of Déjà Vu. The original steps from iTrace are

shaded. The new steps that Déjà Vu adds have white backgrounds.

gaze,132277258033906585,314,769

KeyDown,132277258035886613,72

gaze,132277258037224389,336,790

gaze,132277258037601928,333,791

KeyDown,132277258037645064,73

gaze,132277258037758814,323,786

gaze,132277258037914237,333,794

gaze,132277258039069772,270,767

KeyUp,132277258039085245,72

KeyUp,132277258039090178,73

gaze,132277258039225920,276,771

gaze,132277258039755087,316,804

MouseMove,132277258055005185,391,823

MouseMove,132277258055085137,388,823

Fig. 4. Example of data collected during the recording phase. Some gazes
omitted for brevity.

B. Replaying Stage

During the replaying phase (see Fig 6), Déjà Vu reads in the
CSV data produced during the recording stage and replays each
event by creating mouse and keyboard events using the
Windows API. Specifically, the mouse_event and
keyboard_event functions are used to synthesize button
presses, mouse motions, and mouse scrolls. In addition, Déjà Vu
also replays all gazes and emulates the communications protocol
used by iTrace Core. This allows existing iTrace plugins to
connect to Déjà Vu to receive gaze data and perform analysis
during the replay. In essence, Déjà Vu works as proxy for the
iTrace Core.

Event Type Format Description

Keyboard

KeyDown Virtual key code

KeyUp Virtual key code

Mouse

LeftMouseDown Mouse button

LeftMouseUp Mouse button

RightMouseDown Mouse button

RightMouseUp Mouse button

MiddleMouseDown Mouse button

MiddleMouseUp Mouse button

ForwardMouseDown Mouse button

ForwardMouseUp Mouse button

BackMouseDown Mouse button

BackMouseUp Mouse button

MouseMove (x,y) coordinates

MouseWheel
Mouse scroll amount (positive for
an upward scroll and negative for

a downward)

Eye Tracker

Raw Gaze – for both left and
right eyes

Raw (x,y) coordinates, pupil
diameter, validity codes, distance
to screen.

Study Session

session_start
The time when the study session
starts.

session_end
The time when the study session
ends.

Fig. 5. Timestamped CSV format for all events from the mouse, keyboard,
and eye tracker in a study session. Each of the event types is timestamped.
The format description includes the main components of each event type.

All events are replayed synchronously. To slow down the
replay, Déjà Vu pauses in between events it produces. This
pause provides time for connected plugins to process received
gaze data. Therefore, time in between events must be carefully
considered to give ample time for each connected plugin to
perform its analysis. There are multiple possible algorithms for
choosing the time to wait in between replaying each event. Déjà
Vu implements three such methods so researchers can choose
whichever fits their needs the best.

1) Fixed Pause Delay
The time waited after each event is a fixed amount of time

based on the type of the event. Plugin processing time for each
type of event received will vary depending on the type of
analysis performed. Generally, most processing is done after
gaze events. Other events, such as mouse movements, may not
need any analysis (depending on the researcher’s needs). In
these cases, processing-heavy events (such as gazes) can be set

to have a greater pause time than processing-light events (such
as mouse movements).

The primary drawback to this mode is that choosing a good
pause length is difficult. Gaze processing latencies are not
necessarily easy to predict and outliers are possible. However,
via some trial runs a suitable duration could be determined and
used. If the experiment is short and fairly simple the fixed
paused approach should work well.

2) Proportional Delay
The time after each event is proportional to what it is during

the recording. For example, Déjà Vu can set to replay everything
at exactly half the speed of recording. This mode is useful for
visualizations. Screen recordings performed during the replay
stage can easily be sped up by the same factor as the replay is
slowed down. Using this method, the sped-up recording of the
replay is identical to a recording of the session.

The drawback to this mode is that it is impossible to set a
minimum time between events. If processing is to happen after
each keypress, nothing stops events from being generated during
replay at a very high frequency. During recording, the user can
have press several keys on the keyboard, generating key presses
nearly simultaneously. It is possible that one might want to do
some analysis after each keystroke. If the analysis takes 20 ms,
it is impossible to set a minimum pause after each keystroke.
Even if slowed down by a factor of 10, when a user presses two
keys within less than 2 ms, there is not have enough time for
analysis. However, this is not an issue for gaze data as eye
trackers typically generate readings quite uniformly, making it
possible to reinforce a minimum pause time in between gaze
events.

Fig. 6. The Replay stage of Déjà Vu. The original steps from iTrace are

shaded. The new steps that Déjà Vu adds have white backgrounds.

3) Bidirectional Delay
In the third method, after gaze events, Déjà Vu waits

indefinitely for a reply/acknowledgement from each connected
plugin. This reply marks that the plugin is finished doing
processing and is ready to process more data. Communication
between Déjà Vu and plugins happens bidirectionally. Events
that do not need to be waited on are followed by a short fixed-
length pause. From a technical point of view, this is the best
pausing method. The difficulty of choosing a good fixed-pause
length is alleviated. Pauses after gaze events are always correct.

VIII. REFERENCES
[1] K. Rayner, “Eye movements in reading and information processing: 20

years of research,” Psychol Bull, vol. 124, no. 3, pp. 372–422, Nov. 1998,
doi: 10.1037/0033-2909.124.3.372.

[2] J. H. Goldberg, M. J. Stimson, M. Lewenstein, N. Scott, and A. M.
Wichansky, “Eye tracking in web search tasks: design implications,” in
Proceedings of the symposium on Eye tracking research & applications

- ETRA ’02, New Orleans, Louisiana, 2002, p. 51, doi:
10.1145/507072.507082.

[3] Z. Sharafi, Z. Soh, and Y.-G. Guéhéneuc, “A systematic literature review
on the usage of eye-tracking in software engineering,” Information and

Software Technology, vol. 67, pp. 79–107, Nov. 2015, doi:
10.1016/j.infsof.2015.06.008.

[4] Z. Sharafi, B. Sharif, Y.-G. Guéhéneuc, A. Begel, R. Bednarik, and M.
Crosby, “A practical guide on conducting eye tracking studies in software
engineering,” Empir Software Eng, Jun. 2020, doi: 10.1007/s10664-020-
09829-4.

[5] Holmqvist, Kenneth; Lund University, Nyström, Marcus; Lund
University, and Andersson, Richard; Lund University, “Sampling
frequency and eye-tracking measures: how speed affects durations,
latencies, and more,” 2010, doi: 10.16910/JEMR.3.3.6.

[6] D. T. Guarnera, C. A. Bryant, A. Mishra, J. I. Maletic, and B. Sharif,
“iTrace: eye tracking infrastructure for development environments,” in
10th ACM Symposium on Eye tracking Research and Applications,
Warsaw, Poland, Jun. 2018, p. 3, doi: 10.1145/3204493.3208343.

[7] Bonita Sharif and Jonathan I. Maletic, “iTrace: Overcoming the
Limitations of Short Code Examples in Eye Tracking Experiments,” Oct.
2016, pp. 647–647, doi: 10.1109/ICSME.2016.61.

[8] R. Minelli, A. Mocci, and M. Lanza, “I Know What You Did Last
Summer - An Investigation of How Developers Spend Their Time,” in
2015 IEEE 23rd International Conference on Program Comprehension,
Florence, Italy, May 2015, pp. 25–35, doi: 10.1109/ICPC.2015.12.

[9] R. Minelli, A. Mocci, M. Lanza, and T. Kobayashi, “Quantifying
Program Comprehension with Interaction Data,” in 2014 14th

International Conference on Quality Software, Oct. 2014, pp. 276–285,
doi: 10.1109/QSIC.2014.11.

[10] R. Minelli, A. Mocci, and M. Lanza, “Measuring Navigation Efficiency
in the IDE,” in 2016 7th International Workshop on Empirical Software

Engineering in Practice (IWESEP), Mar. 2016, pp. 1–6, doi:
10.1109/IWESEP.2016.11.

[11] N. C. C. Brown, A. Altadmri, S. Sentance, and M. Kölling, “Blackbox,
Five Years On: An Evaluation of a Large-scale Programming Data
Collection Project,” in Proceedings of the 2018 ACM Conference on

International Computing Education Research, Espoo, Finland, Aug.
2018, pp. 196–204, doi: 10.1145/3230977.3230991.

[12] M. Kersten and G. C. Murphy, “Using task context to improve
programmer productivity,” in Proceedings of the 14th ACM SIGSOFT

international symposium on Foundations of software engineering,
Portland, Oregon, USA, Nov. 2006, pp. 1–11, doi:
10.1145/1181775.1181777.

[13] L. Bao, D. Ye, Z. Xing, X. Xia, and X. Wang, “ActivitySpace: A
Remembrance Framework to Support Interapplication Information
Needs,” in 2015 30th IEEE/ACM International Conference on Automated

Software Engineering (ASE), Nov. 2015, pp. 864–869, doi:
10.1109/ASE.2015.90.

[14] L. Bao, Z. Xing, X. Xia, D. Lo, and A. E. Hassan, “Inference of
development activities from interaction with uninstrumented
applications,” Empirical Software Engineering, vol. 23, no. 3, pp. 1313–
1351, Jun. 2018, doi: 10.1007/s10664-017-9547-8.

[15] J. Sun, S. Zhang, S. Huang, and Z. Hui, “Design and Application of a
Sikuli Based Capture-Replay Tool,” in 2018 IEEE International

Conference on Software Quality, Reliability and Security Companion

(QRS-C), Jul. 2018, pp. 42–44, doi: 10.1109/QRS-C.2018.00021.
[16] B. Burg, R. Bailey, A. J. Ko, and M. D. Ernst, “Interactive Record/Replay

for Web Application Debugging,” in Proceedings of the 26th Annual

ACM Symposium on User Interface Software and Technology, New
York, NY, USA, 2013, pp. 473–484, doi: 10.1145/2501988.2502050.

[17] I. J. Nino, B. de la Ossa, J. A. Gil, J. Sahuquillo, and A. Pont, “CARENA:
a tool to capture and replay Web navigation sessions,” in Workshop on

End-to-End Monitoring Techniques and Services, 2005., May 2005, pp.
127–141, doi: 10.1109/E2EMON.2005.1564474.

[18] F. Yan, M. Xia, Z. Qi, and X. Liu, “Poster: Efficient and Deterministic
Replay for Web-Enabled Android Apps,” in 2018 IEEE/ACM 40th

International Conference on Software Engineering: Companion (ICSE-

Companion), May 2018, pp. 329–330.
[19] J. Guo, S. Li, J.-G. Lou, Z. Yang, and T. Liu, “Sara: Self-Replay

Augmented Record and Replay for Android in Industrial Cases,” in
Proceedings of the 28th ACM SIGSOFT International Symposium on

Software Testing and Analysis, New York, NY, USA, 2019, pp. 90–100,
doi: 10.1145/3293882.3330557.

[20] Y. Sun, D. Chen, W. Jiao, and G. Huang, “An Online Education
Approach Using Web Operation Record and Replay Techniques,” in
2014 IEEE 38th Annual Computer Software and Applications

Conference, Jul. 2014, pp. 456–465, doi: 10.1109/COMPSAC.2014.68.
[21] Y. Sun, D. Chen, C. Xin, and W. Jiao, “Automating Repetitive Tasks on

Web-Based IDEs via an Editable and Reusable Capture-Replay
Technique,” in 2015 IEEE 39th Annual Computer Software and

Applications Conference, Jul. 2015, vol. 2, pp. 666–675, doi:
10.1109/COMPSAC.2015.12.

[22] R. Ramler, M. Gattringer, and J. Pichler, “Live Replay of Screen Videos:
Automatically Executing Real Applications as Shown in Recordings,”
presented at the SANER, London, Ontario, Canada, Feb. 2020.

[23] C. Bernal-Cárdenas, N. Cooper, K. Moran, O. Chaparro, A. Marcus, and
D. Poshyvanyk, “Translating Video Recordings of Mobile App Usages
into Replayable Scenarios,” presented at the ICSE 2020, Seoul, South
Korea, May 2020.

[24] E. Soloway and K. Ehrlich, “Empirical Studies of Programming
Knowledge,” IEEE Transactions on Software Engineering, vol. 10, pp.
595–609, Sep. 1984.

[25] K. Holmqvist, M. Nyström, R. Andersson, R. Dewhurst, H. Jarodzka, and
J. Van de Weijer, Eye tracking: A comprehensive guide to methods and

measures. Oxford University Press; Reprint edition.
[26] A. T. Duchowski, “Eye tracking methodology : theory and practice,”

2017.
http://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p
=5579221.

[27] M. A. Just and P. Carpenter, “A theory of reading: from eye fixations to
comprehension.,” Psychological review, 1980, doi: 10.1037/0033-
295X.87.4.329.

[28] S. Van der Stigchel and J. Theeuwes, “The influence of attending to
multiple locations on eye movements,” Vision Research, vol. 45, no. 15,
pp. 1921–1927, Jul. 2005, doi: 10.1016/j.visres.2005.02.002.

[29] M. D. Dodd, S. V. der Stigchel, and A. Hollingworth, “Novelty Is Not
Always the Best Policy: Inhibition of Return and Facilitation of Return
as a Function of Visual Task,” Psychological Science, Mar. 2009,
Accessed: May 27, 2020. [Online]. Available:
https://journals.sagepub.com/doi/10.1111/j.1467-9280.2009.02294.x.

[30] R. M. Klein and W. J. MacInnes, “Inhibition of Return is a Foraging
Facilitator in Visual Search,” Psychol Sci, vol. 10, no. 4, pp. 346–352,
Jul. 1999, doi: 10.1111/1467-9280.00166.

[31] J. Lupiáñez, “Inhibition of Return,” in Scholarpedia, vol. 3, 2010, pp. 17–
34.

[32] S. Van der Stigchel and J. Theeuwes, “Our eyes deviate away from a
location where a distractor is expected to appear,” Exp Brain Res, vol.
169, no. 3, p. 338, Nov. 2005, doi: 10.1007/s00221-005-0147-2.

[33] C. W. Eriksen, “The flankers task and response competition: A useful tool
for investigating a variety of cognitive problems,” Visual Cognition, vol.
2, no. 2–3, pp. 101–118, Jun. 1995, doi: 10.1080/13506289508401726.

[34] N. J. Abid, B. Sharif, N. Dragan, H. Alrasheed, and J. I. Maletic,
“Developer Reading Behavior While Summarizing Java Methods: Size
and Context Matters,” in Proceedings of the 41st International

Conference on Software Engineering, Montreal, Quebec, Canada, May
2019, pp. 384–395, doi: 10.1109/ICSE.2019.00052.

[35] A. T. Duchowski, K. Krejtz, N. A. Gehrer, T. Bafna, and P. Bækgaard,
“The Low/High Index of Pupillary Activity,” in Proceedings of the 2020

CHI Conference on Human Factors in Computing Systems, Honolulu HI
USA, Apr. 2020, pp. 1–12, doi: 10.1145/3313831.3376394.

[36] A. T. Duchowski et al., “The Index of Pupillary Activity: Measuring
Cognitive Load vis-à-vis Task Difficulty with Pupil Oscillation,” in
Proceedings of the 2018 CHI Conference on Human Factors in

Computing Systems - CHI ’18, Montreal QC, Canada, 2018, pp. 1–13,
doi: 10.1145/3173574.3173856.

[37] S. Van der Stigchel, M. Mills, and M. D. Dodd, “Shift and deviate:
Saccades reveal that shifts of covert attention evoked by trained spatial
stimuli are obligatory,” Atten Percept Psychophys, vol. 72, no. 5, pp.
1244–1250, Jul. 2010, doi: 10.3758/APP.72.5.1244.

[38] R. Engbert and R. Kliegl, “Microsaccades uncover the orientation of
covert attention,” Vision Research, vol. 43, no. 9, pp. 1035–1045, Apr.
2003, doi: 10.1016/S0042-6989(03)00084-1.

[39] Z. M. Hafed and J. J. Clark, “Microsaccades as an overt measure of covert
attention shifts,” Vision Research, vol. 42, no. 22, pp. 2533–2545, Oct.
2002, doi: 10.1016/S0042-6989(02)00263-8.

[40] E. Lowet, B. Gomes, K. Srinivasan, H. Zhou, R. J. Schafer, and R.
Desimone, “Enhanced Neural Processing by Covert Attention only
during Microsaccades Directed toward the Attended Stimulus,” Neuron,
vol. 99, no. 1, pp. 207-214.e3, Jul. 2018, doi:
10.1016/j.neuron.2018.05.041.

[41] C. Kelleher and W. Hnin, “Predicting Cognitive Load in Future Code
Puzzles,” in Proceedings of the 2019 CHI Conference on Human Factors

in Computing Systems - CHI ’19, Glasgow, Scotland Uk, 2019, pp. 1–
12, doi: 10.1145/3290605.3300487.

[42] A. Duchowski, K. Krejtz, J. Zurawska, and D. House, “Using
Microsaccades to Estimate Task Difficulty During Visual Search of
Layered Surfaces,” IEEE Trans. Visual. Comput. Graphics, pp. 1–1,
2019, doi: 10.1109/TVCG.2019.2901881.

[43] B. Floyd, T. Santander, and W. Weimer, “Decoding the Representation
of Code in the Brain: An fMRI Study of Code Review and Expertise,” in

2017 IEEE/ACM 39th International Conference on Software Engineering

(ICSE), Buenos Aires, May 2017, pp. 175–186, doi:
10.1109/ICSE.2017.24.

[44] S. Fakhoury, Y. Ma, V. Arnaoudova, and O. Adesope, “The effect of poor
source code lexicon and readability on developers’ cognitive load,” in
Proceedings of the 26th Conference on Program Comprehension - ICPC

’18, Gothenburg, Sweden, 2018, pp. 286–296, doi:
10.1145/3196321.3196347.

[45] M. L. Collard, M. J. Decker, and J. I. Maletic, “srcML: An Infrastructure
for the Exploration, Analysis, and Manipulation of Source Code: A Tool
Demonstration,” in 2013 IEEE International Conference on Software

Maintenance, Eindhoven, Netherlands, Sep. 2013, pp. 516–519, doi:
10.1109/ICSM.2013.85.

[46] P. Olsson, “Real-time and Offline Filters for Eye Tracking,” Masters
Thesis, KTH Electrical Engineering, Stockholm, Sweden, 2007.

[47] R. Andersson, L. Larsson, K. Holmqvist, M. Stridh, and M. Nyström,
“One algorithm to rule them all? An evaluation and discussion of ten eye
movement event-detection algorithms,” Behav Res, vol. 49, no. 2, pp.
616–637, Apr. 2017, doi: 10.3758/s13428-016-0738-9.

[48] Microsoft, “mouse_event function (winuser.h) - Win32 apps,”
mouse_event function, Dec. 05, 2018. https://docs.microsoft.com/en-
us/windows/win32/api/winuser/nf-winuser-mouse_event (accessed Feb.
24, 2020).

