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Abstract—The paper introduces a fundamental technological 

problem with collecting high-speed eye tracking data while 

studying software engineering tasks in an integrated development 

environment.  The use of eye trackers is quickly becoming an 

important means to study software developers and how they 

comprehend source code and locate bugs.  High quality eye 

trackers can record upwards of 120 to 300 gaze points per second.  

However, it is not possible to map each of these points to a line and 

column position in a source code file (in the presence of scrolling 

and file switching) in real time at data rates over 60 gaze points 

per second without data loss.  Unfortunately, higher data rates are 

more desirable as they allow for finer granularity and more 

accurate study analyses.  To alleviate this technological problem, 

a novel method for eye tracking data collection is presented.  

Instead of performing gaze analysis in real time, all telemetry 

(keystrokes, mouse movements, and eye tracker output) data 

during a study is recorded as it happens.  Sessions are then 

replayed at a much slower speed allowing for ample time to map 

gaze point positions to the appropriate file, line, and column to 

perform additional analysis.  A description of the method and 

corresponding tool, Déjà Vu, is presented.  An evaluation of the 

method and tool is conducted using three different eye trackers 

running at four different speeds (60Hz, 120Hz, 150Hz, and 300 

Hz). This timing evaluation is performed in Visual Studio and 

Eclipse IDEs. Results show that Déjà Vu can playback 100% of 

the data recordings, correctly mapping the gaze to corresponding 

elements, making it a well-founded and suitable post processing 

step for future eye tracking studies in software engineering.  

Keywords— Eye Tracking, Empirical Studies, Program 

Comprehension, High-speed Eye Tracking 

I. INTRODUCTION  

Eye trackers are a critical research tool in understanding how 
people observe and in turn comprehend visual stimuli [1]. 
Researchers have successfully used eye tracking hardware to 

better understand how people read prose, understand diagrams, 
and process visual landscapes. Computer scientists use eye 
tracking devices to study how people interact with graphical user 
interfaces and web pages [2]. The software engineering 
community is now using eye tracking equipment to study how 
developers read and understand source code [3]. A detailed and 
practical guide on conducting eye tracking studies in software 
engineering is presented in [4].  

There are a wide range of eye tracking devices and 
technology.  The devices are made up of hardware, mainly 
specialized cameras, along with sophisticated software that 
computes the focal point of the eyes using data collected by the 
cameras.  Additional software is needed to map each of the eye 
gazes to locations on a visual stimulus (i.e., screen). Eye tracking 
devices differ greatly with regards to accuracy (of tracking eye 
movements) and the applications and environments they can be 
applied to [5]. Studying how people read and comprehend text 
or source code requires high precision (and costly) eye tracking 
hardware and software, while determining general spatial 
regions where a person is looking (left, right, up, down) only 
requires simple and lower cost hardware and software.  Low cost 
systems cannot identify the exact focus of the eyes, such as what 
word or letter someone is looking at.  They only work well on 
larger stimuli such as objects in computer games. A high quality, 
accurate, research-grade eye tracking device allows researchers 
to determine the exact xy-coordinate on the screen a person is 
examining.  The higher-end eye trackers, in a controlled setting, 
can pinpoint down to the letter being examined.  Research on 
reading prose and source code does not always require that much 
accuracy, rather accuracy to the word level is sufficient.   

Research grade eye trackers work by presenting an image or 
text (stimuli) on a computer screen and then using the data from 
cameras, determine the location (xy-coordinate) the person is 
looking at.  There are a number of limitations to this technology.  



 

The person must be forward looking at the stimuli, cannot look 
around the room and must be fairly stationary.  While these are 
not serious limitations for conducting scientific studies there is 
one underlying limitation that poses a substantial road block for 
studying how programmers understand large, real-world 
software.  Accurate research-grade eye trackers only work on 
fixed stimuli (i.e., an image or text block) that fits on the 
computer screen.  Changes to the stimuli (screen), such as 
scrolling or switching files, present a very complex problem.  In 
order to deal with this problem, iTrace was introduced to the 
research community [6], [7]. iTrace allows a software 
engineering researcher to conduct eye tracking studies directly 
in an integrated development environment (IDE) such as Visual 
Studio or Eclipse.  It supports the tracking of eye gaze in the 
presence of scrolling and context switching. As such, 
researchers can study developers in a real-world environment 
and on large realistic software systems.  iTrace does this by 
hooking up to the IDE via a plugin architecture and invoking 
application and system calls to map the screen xy-coordinate to 
a line and column in the file in real time. This is then used in a 
post processing phase to determine the source code token being 
examined by the study participant. 

Eye trackers sample eye gazes x-times every second denoted 
by the frame rate. For example, a 120 Hz eye tracker generates 
120 samples per second of raw eye gaze coordinates that needs 
to be looked up in real time to map to the line, column 
underlying beneath it. This lookup time is limited to the time it 
takes for the system calls to return.  If the response time of this 
system call is too long it is not possible to map all gazes coming 
in accurately to the correct file location.  Through use of the 
iTrace infrastructure we determined that the maximum frame 
rate at which this can be done in real time is approximately 60Hz 
(for both Visual Studio and Eclipse).  This means that anything 
above 60Hz will cause the tracker in iTrace to incorrectly map 
data or drop gaze points altogether.  While having a faster 
computer may help a little, getting to 120Hz, 300Hz or even 
1000Hz (at which reading studies are typically done in 
psychology) is currently impossible with real time mapping. 

The work presented here addresses this limitation of the 
current iTrace architecture by taking all the processing offline.  
While the IDE API function call response time is fixed, our 
technique allows for all events to be recorded and replayed back 
at any given data rate. This allows for mapping gaze data to 
source code locations with very high-speed eye trackers.  The 
technique is implemented in Déjà Vu, a novel tool that leverages 
the iTrace infrastructure.  The technique and details of Déjà Vu’s 
implementation are presented. The main contributions presented 
in this paper are: 

• Formalization. We introduce a fundamental problem in 
performing eye tracking studies in practical developer 
environments with high-speed eye trackers.  

• Technique. We present a novel technique to solve the 
technological problem presented using automated 
recording and semantics-aware replaying of eye tracking 
and  interaction data to support cognitive studies of software 
engineering tasks. 

• Tool. The novel technique is designed and implemented in 
a practical tool, Déjà Vu, that leverages the iTrace eye 

tracking infrastructure. The tool and usage documentation 
is available at: https://zenodo.org/record/3976520. 

• Evaluation. An evaluation of the fundamental problem 
with collecting high-speed eye tracking data with and 
without Déjà Vu is presented in the context of two 
integrated development environments (Eclipse and Visual 
Studio) with a sample task.  

The paper is organized as follows.  Section II presents related 
work in interaction monitoring.  Section III formally presents the 
problem and motivation for Déjà Vu. Section IV discusses 
details of the Déjà Vu architecture, design decisions, and how 
Déjà Vu integrates with iTrace. Section V discusses 
implementation details of the recording and replaying stages 
including the challenges faced and how they were mitigated or 
need managed. Section VI provides an evaluation on the impact 
of data output rates from eye tracking devices on real-time 
analysis of eye tracking data on source code with respect to the 
iTrace framework [6], [7]. Section VII presents conclusions and 
future work on Déjà Vu’s method and implementation. 

II. RELATED WORK 

Capturing user interaction data for analysis is a common 
approach in a variety of computational research studies. In [8]–
[10] Minelli et al. record mouse, keyboard, and IDE interaction 
data. Fine grain interactions are grouped into broad categories 
such as comprehension, editing, navigating, etc. to observe 
developer behavioral during typical tasks. Findings about what 
activities consume the most developer time, the proportion of 
development time is dedicated to program comprehension, and 
the IDE navigational efficiency of developers are presented. The 
Blackbox project [11] has collected programming interactions 
within the BlueJ Java IDE for over five years. This dataset has 
been aimed at providing raw data for research analysis towards 
better understanding software development behaviors of novice 
developers. Mylar [12], now known as Mylyn for the Eclipse 
IDE, allows a developer to track IDE usage activity related to 
defined tasks.  These task contexts can be easily switched in 
order for developers to multitask without the need to manually 
relocate artifacts upon returning to a previous task activity. Déjà 
Vu drastically differs from Mylyn in that Déjà Vu is intended to 
store interactions along with cognitive information (eye tracking 
data) for the purpose of replay and subsequent analysis while 
Mylyn is an active development productivity tool.   

ActivitySpace [13] stores mouse and keyboard events 
related to applications used by software developers to 
accomplish daily tasks. Event information is logged to a 
database as an “action record” to create a historical profile of 
developer interactions. Action records are grouped by a user 
defined time window and can be queried to help remind 
developers of resources used and actions taken while working 
on a given task to improve productivity. Interaction data from 
ActivitySpace has also been used with machine learning 
techniques are compared to classify developer activity into 
higher level categories such as coding, debugging, testing, 
navigation, web browsing, and documentation [14]. 

In addition to the capture user interactions, running 
simulated interactions is a popular solution for software testing 
research. Sikuli is used in [15] to construct synthetic macro 



 

scripts that are application agnostic based on common keyboard 
and mouse usage. User interactions are supplemented with 
desktop screenshots and image processing to determine the 
targets of the actions and automate GUI testing. Specific 
environments such as websites [16], [17] and Android 
applications [18], [19] have also been instrumented to record 
and replay user interactions for the purpose of testing and 
evaluating web or GUI based applications.  

Capture and replay approaches also benefit general purpose 
automation techniques. The Online Synchronous Education 
Platform (OSEP) records and abstracts user interactions with 
websites allowing for editable interactions scripts to be run as 
pre-recorded or synchronous demonstrations to support 
educational environments [20]. Using the same framework, an 
system for automating common or lengthy website interactions 
is also proposed to improve user productivity [21]. Recent works 
by Ramler et al. [22] and Bernal-Cárdenas et al [23] take a 
different approach to capturing and replaying user interaction. 
Instead of instrumenting applications or recording interactions 
at an OS level, recorded video of an activity is broken down into 
individual still frames which are post processed to reverse 
engineer user interactions shown in the video. 

While Déjà Vu makes use of existing recording and 
replaying techniques, it differs from the state of the art by 
recreating an eye tracking study in its entirety. User interactions 
with mouse and keyboard and gaze locations are all replayed to 
simulate a prior eye tracking study while allowing ample time 
for more detailed analysis that is not feasible to perform in real-
time using high speed eye tracking equipment. Additionally, 
Déjà Vu affords researchers an opportunity to replicate a study 
any number of times while analyzing the study in different ways 
each time to greatly increase the value of participant recording 
sessions. This is a novel contribution to the current state of the 
art and provides the eye tracking software research community 
added incentive to use eye tracking equipment in their studies. 
The additional advantage of supporting high-speed trackers 
above 60 Hz (most research grade trackers are 120 Hz or higher) 
without data loss enables many different types of cognitive 
analyses (outlined in the next section) that were unable to be 
done before because of the engineering problem described. 

III. PROBLEM FORMALIZATION 

Eye trackers have been used for decades to study how people 
comprehend visual stimuli [1].  Modern eye trackers collect a 
person’s eye gaze data on the visual display (referred to as the 
stimulus) in an unobtrusive way while the subject is performing 
a given task. This eye movement data can provide very valuable 
insight into comprehension strategies [24] as to how and why 
people arrive at a certain solution. Eye movements are essential 
to cognitive processes because they focus a subject’s visual 
attention to the parts of a visual stimulus that are processed by 
the brain. Visual attention triggers cognitive processes that are 
required to perform such things as comprehension. Eye 
movement is also a proxy for cognitive effort [1] and allows us 
to determine what parts of a visual stimuli are difficult to 
understand.   

 

Fig. 1. Gaze plot of a developer’s fixations on code. 

The underlying basis of an eye tracker is to capture various 
types of eye movements that occur while humans physically 
gaze at an object of interest.  Fixations and saccades are the two 
types of eye movements.   A fixation is the stabilization of eyes 
on an object of interest for a certain period of time.  Saccades 
are quick movements that move the eyes from one location to 
the next (i.e., re-fixates).  Dwell time is defined as the sum of all 
fixations in a dwell (one visit to an area of interest from entry to 
exit) [25]. An area of interest is defined by the researcher as any 
part of the stimulus that is of interest for analysis.  For example, 
in source code, it could be a token or a line. A scan path is a 
directed path formed by saccades between fixations.  The 
general consensus in the eye tracking research community is that 
the processing of visualized information occurs during fixations, 
whereas, no such processing occurs during saccades [26].  The 
visual focus of the eyes on a particular location triggers certain 
mental processes in order to solve a given task [27]. Modern eye 
trackers are accurate to 0.5 degrees (0.25 in. dia.) on the screen. 
In Fig. 1, we see eye gazes on source code (some areas having a 
much higher density of fixations than others). The fixations are 
shown as circles on the diagram.  The radius of the circle 
represents the duration of the fixation.  The bigger the radius, the 
more time was spent looking at that particular point.  Each 
fixation has a number displayed in the center of the circle, which 
indicates the order in which the fixation occurred.  

It is important to note that not all eye trackers are made 
equal. Generally, eye trackers range from low-cost consumer-
grade to more expensive research-grade tracking equipment. 
Research-grade eye trackers are thoroughly tested for accuracy, 
quality, and reliability compared to low-cost models. Low-cost 
eye trackers costing approximately $200 USD are for consumer 
use (mainly gaming). Low-cost eye trackers miss the subtle 
differences in how humans read and navigate text. Another 
difference is the frame rate.  Low-cost eye trackers capture gazes 
at a slower rate compared to the research-grade ones.  More 
gazes captured per second give more detailed insight into how 
people read and analyze software artifacts. 

The current generation of eye tracking devices offer a wide 
range of data rates [5]. Older and entry level devices tend to 
operate at 60 Hz meaning that 60 data points are provided within 
one second. When performing real-time analysis with received 
gaze data, analysis tools would be left with approximately 17 
milliseconds (ms) for any analysis before a subsequent new data 
point will be received from a tracker. This window narrows as 



 

modern trackers are capable of supporting anywhere from 120 
Hz to over 2000 Hz. 

Eye tracking of source code within an integrated 
development environment (IDE) is a serious challenge 
compared to the traditional approach of using static images or 
text that fit completely on a single screen. In the case of a static 
stimulus, the position of the image or the source text has little to 
no variance. The gaze data recorded while the stimulus is visible 
can be mapped down to the pixel on an image-based 
representation of the data on the display. In contrast, while using 
an IDE, users may manipulate the view of the source code in any 
number of ways such as scrolling, file switching, or even editing. 
These actions require that the gaze data recorded is contextually 
informed of state of the IDE with respect to the positioning of 
the source code text and interface elements at a specific moment 
in time. For example, if a user is scrolling through a source code 
file looking for a specific identifier, the user's eye positioning 
may remain fixed within a limited region of the display as the 
text scrolls past. The issue is that location of the stimulus is 
changed drastically due to scrolling and it is no longer possible 
to easily map the screen location of a gaze to the stimulus. 

In the case of the iTrace infrastructure [6], [7] (or other 
similar gaze analysis infrastructures), IDE plugins map gaze 
locations to interface elements and source code text. The high 
latency of IDE plugin environment API calls  significantly limits 
the feasibility of deep real-time gaze and textual analysis at the 
data sampling rate of high-speed trackers.  Currently, solving 
this problem requires serious tradeoffs. One option is to drop 
gaze points received while the plugin is busy performing gaze 
mapping operations causing valuable data points to be lost. 
Another choice is to buffer all gazes to prevent data loss, but this 
causes the mapping process to steadily fall behind as the 
mapping process is a real-time operation and relies on the 
context of the current state of the IDE when the gaze data is 
received. This ultimately leads to a desynchronization of the 
gaze data and the IDE state and renders the data invalid. 

Enabling support for high speed trackers allows researchers 
to collect data for software engineering tasks and better enable 
them to come to conclusions similar to cognitive psychology 
reading studies that typically use 1000-2000Hz trackers.  We 
now enumerate several benefits of having support for high-
speed trackers implemented in Déjà Vu by extending current eye 
tracking community infrastructure. 

Running realistic studies using the community infrastructure 
such as iTrace on a tracker greater than 60Hz is now possible as 
Déjà Vu takes full advantage of the faster frame rate.  Most 
affordable eye trackers are at least 120Hz. This enables 
researchers to take advantage of the higher frame rate available 
to them. The higher the sampling rate, the greater the precision 
of the eye in space causing less error on dwell time [25] at any 
given point on the stimulus.  This relates directly to the accuracy 
of the eye tracker.  Accuracy is important when drilling down to 
specific token the developer is examining.  Tokens are of 
varying length (e.g., short variable names, data types (int) or 
even opening and closing braces) and accurate dwell time is 
important for a study.  With higher precision we can much more 
accurately map the eyes to the parts of the stimuli with more 
realistically sized fonts.  Currently, to overcome this limitation, 

researchers use a larger font, however, this is not very realistic 
as developers do not normally program in very large fonts. With 
a 60Hz tracker, the window of error is about 32 ms (once every 
16 ms in either direction) [5].  

There are known attentional effects such as attentional cuing 
[28], inhibition of return [29]–[31], distractor inhibition [32], 
and flanker effects [33], to name a few, that are highly 
significant but often quite small and range between 10-15 ms in 
response and in dwell time. It is impossible to capture these 
effects with low-precision eye trackers. Many of these effects 
are highly relevant to software engineering studies.  But none of 
the current studies analyze such effects as there is currently no 
support to do this in current infrastructure.  Note that this is still 
possible to do with high speed trackers if using short code 
snippets that fit on the screen, however it has been shown that 
the results from short snippets do not necessarily translate to 
realistic tasks [34]. Researchers have studied how eye curvature 
affects a task. These characteristics can only be discerned at a 
high sampling rate requiring the use of high-speed tracking. For 
example, the eye can be attracted to or repelled from a distractor 
as a function of temporal relationship between a target and a 
distractor [32]. We have yet to determine if these issues impact 
real world programming behavior.   

Researchers can generally extract a lot more information 
from high precision data such as pupillary activity [35], [36] and 
velocity measures that can help with saccade [37] and 
microsaccade analysis [38]–[40].  Microsaccades are miniature 
eye movements along with tremor and drift that are made during 
a fixation.  They are typically found 1-2 times per second and 
have an amplitude of between 1’-25’ (arcminute). 
Microsaccades have regained popularity recently and are being 
studied by eye tracking researchers to learn about the cognitive 
load [41] and task difficulty [42]. However, to correctly do 
microsaccade analysis, a 300Hz or higher (500Hz 
recommended) tracker is necessary to be confident in the 
velocity measures.  Typically, oversampling of the data is used 
as an alternative but this is not recommended due to the artificial 
nature of the generated samples.  Finally, with the introduction 
of multiple data collection streams such as studies that 
incorporate fMRI [43], fNIRS [44], EEG, or GSR with eye 
tracking, it is recommended to have high speed precision to align 
timing data. 

In summary, we have only begun to start studying 
developers and cognition in software engineering using eye 
trackers, however we have yet a lot to learn from cognitive 
psychology and one of the ways to do this correctly is to have 
support for high-speed trackers in order to start collecting data 
correctly and making meaningful conclusions. 

IV. THE DÉJÀ VU APPROACH 

Calculating all the necessary mappings of eye positions to 
elements on the stimulus in real time is not feasible in the context 
of high-speed eye trackers (as previously noted). To address this 
problem, it is possible to calculate the mappings after the eye 
tracking session, as a post-processing step.  We record all 
telemetry data (e.g., keyboard, mouse), along with eye tracker 
data, and time stamps.  This allows us to replay the session in 
slow motion and calculate mappings as necessary.  Hence, we 



 

are no longer is constrained by real-time performance 
requirements.  

One method of implementing this is capturing the entire 
operating system after receiving each gaze during an eye 
tracking study session. After the study, each operating system 
state is loaded and all mappings are calculated. This is entirely 
accurate, however is not practical. It has very poor performance 
due to requiring copying the entirety of RAM to disk and may 
require introducing the complexity of a hypervisor.  

Déjà Vu takes an alternative approach. Only actions that get 
the environment to each state are recorded and stored. 
Practically, these are mainly human-computer interaction events 
– mouse movements and keyboard key state data. Other vital 
information includes the operating system state history, such as 
the exact position where a window pops up (in Windows, it 
depends on where it was previously opened). In these cases, a 
Déjà Vu style approach needs to take measures to address this 
and ensure that replays are deterministic. This paper discusses 
the measures taken by the Déjà Vu tool to address this problem.  

In the Déjà Vu approach, the execution process is split into 
two steps.  First, during an eye tracking study, this computer 
interaction data is collected in real time. After the eye tracking 
study session is completed, all the computer interactions can be 
replayed at some later time.  This involves replaying the session 
on the same machine but at a slower frame rate.  Since all data 
is timestamped this can be done without loss and in an accurate 
manner.  Thus, the system/application calls to calculate the line, 
column in the file can be run without concern and in-depth 
analysis (of almost any type) can be performed during the 
replay. Déjà Vu leverages the iTrace infrastructure [6], [7] to 
capture mouse and keyboard activity during an eye tracking 
study.  To understand the role of Déjà Vu it is necessary to be 
familiar with the basics of iTrace. 

A. iTrace 

iTrace is an eye tracking infrastructure to enable research 
studies within multiple types of software development 
environments.  The infrastructure design is modular featuring 
three key components, iTrace Core, iTrace Plugins, and an 
offline post processing application for gaze analysis (see Fig. 2). 

The Core provides a unified interface for managing 
supported eye tracking devices.  Through this application eye 
trackers can be set to calibrate or begin and end eye tracking data 
recording.  All data generated by the eye trackers is first received 
by the Core which then makes quick decisions based on validity 
indicators whether the data is acceptable for use by other iTrace 
infrastructure applications.  The Core also provides socket and 
websocket servers to allow for iTrace Plugins to connect to the 
Core and receive gaze data for additional processing.  In addition 
to gaze data, the socket communication also coordinates the start 
and stop of a recording session and subsequent Plugin data 
processing as well as any output file storage locations for 
organizational purposes. 

Plugins for iTrace support applications such as Eclipse, 
Visual Studio, and the Google Chrome web browser allow study 
participants to engage with standard development tools instead 
of simulated proxies.  This allows for data collection to occur in 

a natural and realistic development environment.  Plugins 
receive the screen coordinate location of a gaze via socket or 
websocket communication as well as a unique identifier from 
the Core.  Using this information, each plugin performs real-
time analysis to map a gaze to contextual information within the 
IDE or web browsing window.  This mapping constitutes line 
and column positions within a visible source code editing 
window, IDE interface widgets, or HTML elements (with 
respect to Google Chrome) that fall under a participant’s gaze.  
These contextual mappings are essential as study participants 
are free to manipulate the stimulus environment through 
scrolling, resizing, switching files or pages, searching, and many 
other activities.  Without any kind of context to associate with a 
gaze, combined with the volatile nature of the stimulus 
environment, it would be impossible to correctly determine what 
elements of the stimulus are actually viewed at a given moment 
in time. 

 
Fig. 2. The architecture of iTrace 

All data collected from each eye tracking recording session 
is stored in XML files.  The Core stores participant and study 
metadata, calibration information, details about the specific 
tracker used to record the data, and all the raw gaze data points 
(valid or invalid) received from the eye tracking device during 
the session.  Each plugin records valid gaze points received by 
the Core and contextual information about the gaze location with 
the IDE or web browser environment.  When a study is 
complete, the custom offline post processing application 
provided by the iTrace infrastructure aggregates the data from 
all XML files.  All study metadata and gaze data is collected into 
a unified Sqlite database where raw gaze data and plugin context 
information is joined using the aforementioned unique 
identifiers.  Once all of the data is aggregated into the Sqlite 
database it can be queried using standard SQL commands or 
further analyzed using the post processing application. 

The post processing application provided by the iTrace 
infrastructure is capable of performing two key analysis 
methods on the collected study data.  The first allows for deeper 
analysis on all source code context information.  Using srcML 
[45] in conjunction with the line and column information 
provided by the iTrace IDE Plugins, all textual tokens and the 
syntactic context of each token within a source code document 
can be recovered and stored within the database for later 
querying.  Finally, the iTrace post processing application 
supports three different fixation filtering algorithms (Basic [46], 



 

I-VT, and I-DT) each with adjustable parameters [47]. All 
fixations identified are stored within the database and each 
fixation references the raw gaze collection that it represents. 

The contextual information that iTrace provides is of great 
value.  However, the overhead incurred by collecting this 
information in real time becomes problematic as the speed at 
which eye tracking devices are capable of transmitting data 
increases.  To alleviate this issue and fully support high speed 
eye tracking while still collecting contextual stimulus 
environment information a new approach is required. 

B. Usage Scenario 

As far as we are aware, this is the first attempt at supporting 
high-speed trackers for software engineering-based studies that 
work on complex artifacts that are tracked within an IDE. We 
expect Déjà Vu to be used in the following way.  A researcher 
wants to understand how developers understand class 
hierarchies using a high-speed 1000Hz eye tracker. Before the 
study, the researcher chooses a suitable real-world code base and 
the questions a study participant must answer. The code base is 
imported into a project file in an IDE that has iTrace plugin 
support (such as Visual Studio). The layout is saved. During the 
study, a participant is invited in. The eye tracker is calibrated for 
the participant. The IDE is opened, and the layout is restored. 
Eye tracking is started in iTrace-Core. Déjà Vu Record is 
opened, connected to the core, and recording is enabled. At this 
point, the study participant performs the assigned task. They 
have the freedom to interact with the IDE, OS, and any 
applications if they so desire (for example, opening a web 
browser to access StackOverflow).  Once the participant is 
finished, iTrace-Core and Déjà Vu Record are stopped. The 
Recording phase is finished. Later, the replay phase begins. Déjà 
Vu Replay is opened. Analysis plugins are enabled in the IDE 
and are connected to Déjà Vu Replay. The IDE layout is restored 
again. Replay is started in Déjà Vu. Everything that happened 
during the study is now replayed slowly on the computer. 
Analysis is being performed in the background. Once it is 
finished, the researcher can collect the data from the plugins and 
analyze it in any statistical package.  

V. DÉJÀ VU IMPLEMENTATION 

Déjà Vu augments iTrace to allow all gaze analysis that 
occurs in real-time to be deferred to an offline post processing 
phase. This requires Déjà Vu to record all user interactions. A 
subsequent replay phase is used to synchronize each user action 
with respect to recorded gaze data. 

A. Recording Stage 

During the recording phase (see Fig. 3), Déjà Vu captures 
human-computer interaction data by recording mouse, and 
keyboard, along with the eye tracking gaze data. Mouse and 
keyboard events are captured using Win32 hooks. Hooking into 
operating system events is a feature of the Windows API and is 
done through the SetWindowsHookEx function. By using this 
function to hook into low level mouse and keyboard events, Déjà 
Vu can capture these events before they are added into the input 
queue.  If a study participant is typing code in an IDE, Déjà Vu 
captures and saves each keystroke before the IDE even receives 

it. This capturing and saving step happens imperceptibly fast. 
Performing the capture this way allows for perfect accuracy and 
replays. Gaze data is collected by listening for broadcasted event 
data from iTrace-Core.  

As this data is collected, it is saved to disk in a CSV format. 
A sample of the recorded data is shown in Fig. 4.  Each row is 
in the following format: event type, a 64-bit integer specifying 
the system time, and any data related to the event. This format 
contains all data necessary for replaying the user’s computer 
interaction. Every event type recorded is shown in Fig. 5 in its 
CSV format. KeyDown and KeyUp is used to represent keyboard 
key state changes. A Windows virtual key code (which is the 
size of a byte) can store any keyboard key, including modifier 
keys such as shift or control.  

Each of the mouse buttons are explicitly stated as an event 
type.  Forward and back refers to the buttons on the left side 
of a mouse (generally used for webpage navigation).  
MouseMove specifies the new absolute position on screen after 
the mouse has been moved. MouseWheel stores any scroll that 
happens with a value that specifies how much the mouse is 
scrolled. This event also collects touchpad scrolling on laptops.  

The gaze, session_start, and session_end events are 
directly retrieved from iTrace Core.  Gaze events store the x and 
y screen coordinate the participant’s gaze at that time including 
validity codes, pupil diameter, and distance to screen.  
session_start and session_end events are used by iTrace 
to mark the beginning and end of a study. These are primarily 
used to synchronize iTrace Core state with plugins.  

 
Fig. 3. Recording stage of Déjà Vu. The original steps from iTrace are 

shaded. The new steps that Déjà Vu adds have white backgrounds. 

 

gaze,132277258033906585,314,769 

KeyDown,132277258035886613,72 

gaze,132277258037224389,336,790 

gaze,132277258037601928,333,791 

KeyDown,132277258037645064,73 

gaze,132277258037758814,323,786 

gaze,132277258037914237,333,794 

gaze,132277258039069772,270,767 

KeyUp,132277258039085245,72 

KeyUp,132277258039090178,73 

gaze,132277258039225920,276,771 

gaze,132277258039755087,316,804 

MouseMove,132277258055005185,391,823 

MouseMove,132277258055085137,388,823 

Fig. 4. Example of data collected during the recording phase. Some gazes 
omitted for brevity. 



 

B. Replaying Stage 

During the replaying phase (see Fig 6), Déjà Vu reads in the 
CSV data produced during the recording stage and replays each 
event by creating mouse and keyboard events using the 
Windows API. Specifically, the mouse_event and 
keyboard_event functions are used to synthesize button 
presses, mouse motions, and mouse scrolls. In addition, Déjà Vu 
also replays all gazes and emulates the communications protocol 
used by iTrace Core.  This allows existing iTrace plugins to 
connect to Déjà Vu to receive gaze data and perform analysis 
during the replay.  In essence, Déjà Vu works as proxy for the 
iTrace Core. 

Event Type Format Description 

Keyboard 

KeyDown Virtual key code 

KeyUp Virtual key code 

Mouse 

LeftMouseDown Mouse button 

LeftMouseUp Mouse button 

RightMouseDown Mouse button 

RightMouseUp Mouse button 

MiddleMouseDown Mouse button 

MiddleMouseUp Mouse button 

ForwardMouseDown Mouse button 

ForwardMouseUp Mouse button 

BackMouseDown Mouse button 

BackMouseUp Mouse button 

MouseMove (x,y) coordinates 

MouseWheel 
Mouse scroll amount (positive for 
an upward scroll and negative for 

a downward) 

Eye Tracker 

Raw Gaze – for both left and 
right eyes 

Raw (x,y) coordinates, pupil 
diameter, validity codes, distance 
to screen. 

Study Session 

session_start 
The time when the study session 
starts.  

session_end 
The time when the study session 
ends.  

Fig. 5. Timestamped CSV format for all events from the mouse, keyboard, 
and eye tracker in a study session. Each of the event types is timestamped. 
The format description includes the main components of each event type.  

All events are replayed synchronously. To slow down the 
replay, Déjà Vu pauses in between events it produces. This 
pause provides time for connected plugins to process received 
gaze data. Therefore, time in between events must be carefully 
considered to give ample time for each connected plugin to 
perform its analysis.  There are multiple possible algorithms for 
choosing the time to wait in between replaying each event.  Déjà 
Vu implements three such methods so researchers can choose 
whichever fits their needs the best. 

1) Fixed Pause Delay 
The time waited after each event is a fixed amount of time 

based on the type of the event.  Plugin processing time for each 
type of event received will vary depending on the type of 
analysis performed.  Generally, most processing is done after 
gaze events. Other events, such as mouse movements, may not 
need any analysis (depending on the researcher’s needs). In 
these cases, processing-heavy events (such as gazes) can be set 

to have a greater pause time than processing-light events (such 
as mouse movements).  

The primary drawback to this mode is that choosing a good 
pause length is difficult. Gaze processing latencies are not 
necessarily easy to predict and outliers are possible.  However, 
via some trial runs a suitable duration could be determined and 
used.  If the experiment is short and fairly simple the fixed 
paused approach should work well. 

2) Proportional Delay 
The time after each event is proportional to what it is during 

the recording. For example, Déjà Vu can set to replay everything 
at exactly half the speed of recording. This mode is useful for 
visualizations.  Screen recordings performed during the replay 
stage can easily be sped up by the same factor as the replay is 
slowed down.  Using this method, the sped-up recording of the 
replay is identical to a recording of the session.  

The drawback to this mode is that it is impossible to set a 
minimum time between events.  If processing is to happen after 
each keypress, nothing stops events from being generated during 
replay at a very high frequency.  During recording, the user can 
have press several keys on the keyboard, generating key presses 
nearly simultaneously.  It is possible that one might want to do 
some analysis after each keystroke. If the analysis takes 20 ms, 
it is impossible to set a minimum pause after each keystroke. 
Even if slowed down by a factor of 10, when a user presses two 
keys within less than 2 ms, there is not have enough time for 
analysis. However, this is not an issue for gaze data as eye 
trackers typically generate readings quite uniformly, making it 
possible to reinforce a minimum pause time in between gaze 
events.  

 
Fig. 6. The Replay stage of Déjà Vu. The original steps from iTrace are 

shaded. The new steps that Déjà Vu adds have white backgrounds. 

3) Bidirectional Delay 
In the third method, after gaze events, Déjà Vu waits 

indefinitely for a reply/acknowledgement from each connected 
plugin. This reply marks that the plugin is finished doing 
processing and is ready to process more data. Communication 
between Déjà Vu and plugins happens bidirectionally. Events 
that do not need to be waited on are followed by a short fixed-
length pause. From a technical point of view, this is the best 
pausing method. The difficulty of choosing a good fixed-pause 
length is alleviated.  Pauses after gaze events are always correct.  
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