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Abstract

This paper presents a detailed analysis of the heat kernel on an (N×N)-parameter family of compact
metric measure spaces which do not satisfy the volume doubling property. In particular, uniform bounds
of the heat kernel, its Lipschitz continuity and the continuity of the corresponding heat semigroup are
studied; a specific example is presented revealing a logarithmic correction. The estimates are applied to
derive functional inequalities of interest in describing the convergence to equilibrium of the diffusion
process.
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

The present paper investigates the behavior of intrinsic heat diffusion processes in general-
ized diamond fractals through the study of their associated heat kernel. These fractals constitute
a parametric family of compact metric measure spaces that arises as a generalization of a
hierarchical lattice model appearing in the physics and geometry literature [1,23,33]. With a
structure reminiscent of the scale irregular fractals treated in [11], they present some additional
non-standard geometric features that make them a relevant object of study. Specially because
diamond fractals happen to admit a heat kernel with a rather explicit expression [2], they are
most suitable to analyze non-standard model behaviors.

Due to their wide range of applications, there is an extensive literature concerning the
investigation of heat kernels from different points of view [19,20,22]. In this paper, special
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attention is paid to the rich interplay between analysis, probability and geometry that comes to
light through the study of functional inequalities and estimates related to them, see e.g. [7,31]
and references therein. One of the main reasons to investigate this type of question in the
particular setting of generalized diamond fractals is that these spaces, which may be described
via inverse limits of metric measure graphs, see Fig. 1, lack regularity properties such as volume
doubling or uniformly bounded degree, that are often assumed in the literature [9,16,17].

One of the aims of the paper is thus to set the starting point of a larger research program,
where diamond fractals may be considered as model spaces towards a classification of inverse
limit spaces in terms of their heat semigroup properties. On the one hand, this would contribute
to the existing research carried out by Cheeger–Kleiner from a more purely geometric point
of view in [15,16]. On the other hand, some of this analysis may transfer to direct limits of
metric measure graphs, so-called fractal quantum graphs [4].

In order to investigate how the measure-geometric properties of diamond fractals are
reflected in the analysis of the diffusion process, the Lipschitz continuity of the heat kernel
pt and the heat semigroup {Pt }t≥0 play a central role in this paper. Heat kernel estimates
were discussed in [23, Section 4] for a particular class of diamond fractals, however Lipschitz
estimates remained unexplored. Dealing with this rather non-standard setting makes much
of the general abstract theory not directly applicable, and being able to work with explicit
expressions becomes crucial to approach its analysis. As an example, on a (regular) diamond
fractal with parameters n and j , Corollary 4.2 provides the estimate

1
√

4π
t−1/2

≤ ∥pt∥∞ ≤
1

2π
+

1
√

4π
t−1/2

+ Cn, j t−
1
2

(
1+

log n
log j

)
ith a constant Cn, j that can be explicitly bounded. Continuity estimates of the heat semigroup

re deeply connected to the geometry of the underlying space, displayed for instance in so-
alled Bakry–Émery type curvature conditions. In the classical setting of a complete and
onnected Riemmanian manifold, such a condition can be expressed as an inequality involving
he gradient of the semigroup that is known to be equivalent to a bound of the Ricci curvature
f the space [6,28,30]. In recent years, a significant amount of research has been carried out
o characterize curvature bounds in the context of Dirichlet spaces with sub-Gaussian heat
ernel estimates or not strictly local by means of weak versions of the original Bakry–Émery
ondition, see e.g. [5,29,32].

This type of connection with curvature is approached in the present setting by investigating
he regularity of the heat semigroup and its relation to the so-called weak Barky–Émery
onnegative curvature condition recently introduced in the framework of Dirichlet spaces with
ub-Gaussian heat kernel bounds [3]. The most concrete computable case presented in this
aper, see Theorem 5.6, reveals a logarithmic correction term

|Pt f (x) − Pt f (y)| ≤ C
| log t |

√
t

d(x, y)∥ f ∥∞, 0 < t < 1,

hich reflects the inhomogeneous nature of diamond fractals that allows the measure to be
ery different at different points. This type of phenomenon is observed in diffusion processes
ith multifractal structures, see e.g. [12].
The paper is organized as follows: Section 2 briefly reviews of the construction of general-

zed diamond fractals as inverse limits carried out in [2] and gives some basic metric properties.
ection 3 investigates potential theoretical aspects of the diffusion process and its relation with

he inverse limit structure in terms of the infinitesimal generator and the Dirichlet form. The
ain results of the paper are concentrated in Sections 4 and 5. Theorem 4.1 provides a general
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Fig. 1. Approximations of a diamond fractal with j1 = n1 = 3, j2 = 2, n2 = 3.

niform estimate of the heat kernel, whereas Theorems 4.3 and 5.1 deal with the Lipschitz
ontinuity of the heat kernel and the heat semigroup, respectively. To better illustrate their
ime-dependence, the results are applied to a class of diamond fractals for which computations
ecome more tractable, cf. Theorem 5.6. Section 6 outlines further applications of the estimates
o study logarithmic Sobolev, ultracontractivity and Poincaré inequalities. It is noteworthy to
oint out that generalized diamond fractals do not satisfy the elliptic Harnack inequality. This
as proved in [23] for a (self-similar) diamond fractal and is in general a direct consequence
f the fact these spaces are not metric doubling, see the recent result [13, Theorem 3.11] and
eferences therein.

. Generalized diamond fractals

This section summarizes the construction and some key results concerning the natural
iffusion process associated with a generalized diamond fractal. We refer to [2] for more details.
emma 2.3 and Theorem 2.4 restate crucial facts about the heat semigroup and the heat kernel

hat are essential to the analysis carried out subsequently.

.1. Inverse limit construction

A diamond fractal arises from a sequence of metric measure graphs and is characterized
y two parameter sequences J = { ji }i≥0 and N = {ni }i≥0 that describe its construction, see
ig. 1. Each sequence indicates, respectively, the number of new vertices added from one graph

o its next generation, and the number of additional edges given to each vertex.

efinition 2.1. Let J = { jℓ}ℓ≥0, N = {nℓ}ℓ≥0 be sequences with j0 = 1 = n0 and jℓ, nℓ ≥ 2
or all ℓ ≥ 1. Set J0 = N0 = 1 and define for any 0 ≤ k ≤ i

Jk,i :=

i∏
ℓ=k

jℓ, Nk,i :=

i∏
ℓ=k

nℓ.

n particular, we write Ji := J0,i and Ni := N0,i .

The inverse system associated with a diamond fractal is built upon a sequence of metric
easure spaces (Fi , di , µi ) that can be defined inductively in the following manner.

efinition 2.2. Let F0 denote the unit circle and ϑ0 := {0, π}, B0 := ϑ0. For each i ≥ 1, set
i :=

{
πk
Ji

| 0 < k < 2Ji , k mod ji ̸≡ 0
}

and

B := B ∪ (ϑ × [n ] × · · · × [n ]) i ≥ 2,
i i−1 i 1 i−1



54 P. Alonso Ruiz / Stochastic Processes and their Applications 131 (2021) 51–72

a
t
t
d

0

t
w

2

s

L

(
(
(

P
A
p

c

a

Fig. 2. Projective system structure.

where [nk] = {1, . . . , nk} and B1 := B0 ∪ ϑ1. For each i ≥ 1, define the quotient Fi :=

Fi−1 × [ni ] /
i
∼, where xw

i
∼ x ′w′ if and only if x, x ′

∈ Bi .

The set Bi contains the identification (branching, junction) points that yield Fi and satisfies
Bi ⊆ Fi−1, see marked dots in Fig. 1. As a metric measure graph, each Fi can be regarded
s the union of branches (i-cells) isomorphic to intervals of length π/Ji that suitably connect
he vertices in Bi−1. The measure µi is obtained by redistributing the mass of each branch in
he previous level uniformly between its “successors”. The corresponding (geodesic) distance
i on Fi coincides with the Euclidean metric on each branch.

Definition 2.2 can be used to produce a family of measurable mappings φik : Fi → Fk ,
≤ k ≤ i , such that the sequence {(Fi , µi , {φik}k≤i )}i≥0 defines an inverse (projective) system

of measure spaces. We refer to [2, Section 2] for a detailed construction, summarized in Fig. 2.
A generalized diamond fractal of parameters J and N arises as the inverse (projective)

limit of the above-mentioned inverse system. The limit space (F∞, µ∞) is equipped with
measurable “projection mappings”, Φi : F∞ → Fi , that play a major role in the construction of
he associated diffusion process. To fully realize a diamond fractal as a metric measure space,
e discuss briefly the metric that naturally comes along with the inverse limit construction.

.2. Metric remarks

By definition, the graphs Fi are equipped with the geodesic metric di induced by the
Euclidean on each edge. The following observation describes how metrics in different levels
are related by means of the mappings φik and justifies the definition of the metric on the limit
pace F∞. For the ease of the notation, we write φi := φi(i−1) : Fi → Fi−1 for each i ≥ 1.

emma 2.1. For any i ≥ 1 and x, y ∈ Fi ,

i) di−1(φi (x), φi (y)) ≤ di (x, y) ≤ di−1(φi (x), φi (y)) + 2π/Ji ;
ii) dk(φik(x), φik(y)) ≤ di (x, y) for any 0 ≤ k ≤ i ;
iii) there exist z1, . . . , zmxy ∈ Bi with 1 ≤ mxy ≤ Ji and such that

di (x, y) = di (x, z1) +

mxy−1∑
ℓ=1

di (zℓ, zℓ+1) + di (zmxy , y).

roof. The length of a branch in level i is π/Ji , hence (i) and (iii) follow by construction.
pplying the left hand side of (i) repeatedly and using the fact that φik = φk+1◦ · · · ◦φi
roves (ii). □

As a direct consequence of Lemma 2.1, for any x, y ∈ F∞ the sequence {di (Φi (x),Φi (y))}i≥0
onverges uniformly and we may thus consider

d∞(x, y) := lim
i→∞

di (Φi (x),Φi (y)) (1)

s the natural metric that carries the inverse limit structure of F .
∞
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Definition 2.3. Let J = { jℓ}ℓ≥0 and N = {nℓ}ℓ≥0 be sequences with j0 = n0 = 1 and
jℓ, nℓ ≥ 2. The generalized diamond fractal F∞ of parameters J and N is the inverse limit
f the system {(Fi , di , µi , {φik}k≤i )}i≥0. If jℓ = j and nℓ = n for some j, n ≥ 2 and all ℓ ≥ 1,
e say that F∞ is regular.

Observe that (i) together with the fact that the mappings Φi are surjective readily implies
he convergence in the pointed measured Gromov–Hausdorff sense of the inverse system; cf.
16, Proposition 2.17].

roposition 2.2. A generalized diamond fractal (F∞, d∞, µ∞) is the inverse limit and the limit
n the pointed measured Gromov–Hausdorff sense of {(Fi , di , µi )}i≥0.

.3. Diffusion process and heat kernel

This paragraph summarizes the results obtained in [2] whose application in the analysis of
he process and its heat kernel are the main object of study in the present paper. In order to
rovide later on estimates that are expressible in a “classical” form, the parameter sequences

= {ni }i≥0 and J = { ji }i≥0 under consideration will satisfy the following weak condition.

ssumption 1. For any fixed k ≥ 0, lim
ℓ→∞

nℓ jℓe−J 2
k+1,ℓ−1 = 0. In particular, the series

∞

ℓ=k Nk,ℓ Jk,ℓe−J 2
k+1,ℓ converges and is bounded uniformly on k ≥ 0.

The latter assumption is readily satisfied for regular sequences, see Corollary 4.2. Although
eaker conditions such as

lim
i→∞

Ni e−J 2
i t < ∞ for 0 < t < t∗ < 1 (2)

rovide the existence of a jointly continuous heat kernel [2, Remark 3] and general estimates
n terms of series, little about the convergence of those series can be obtained without further
ssumptions, see Remark 4.1.

Several results in the subsequent sections will involve the L2-semigroup associated with the
iffusion processes on Fi , i = 1, 2, . . . ,∞, which we denote by {P Fi

t }t≥0. These are related
o the mappings

Φ∗

i : L2(Fi , µi ) −→ L2(F∞, µ∞) (3)

f ↦−→ f ◦ Φi ,

hrough the following intertwining property that is applied later on crucially.

emma 2.3 ([2, Lemma 3, Corollary 4]). The family of operators {P F∞

t }t≥0 is a strongly con-
inuous Markov semigroup on L2(F∞, µ∞) that satisfies the strong Feller property. Moreover,
or any i ≥ 0,

P F∞

t Φ∗

i f = Φ∗

i P Fi
t f (4)

olds for any f ∈ L2(Fi , µi ).

The heat kernel associated with {P Fi
t }t≥0 turns out to be expressible in terms of the heat

ernel on the circle and on intervals [0, π/J ] with Dirichlet boundary conditions, denoted
i
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by pF0
t , respectively p[0,π/Ji ]D

t . Some standard estimates and facts about these are recorded
n Appendix B.

heorem 2.4. The heat kernel associated with {P F∞

t }t≥0 is given by

pF∞

t (x, y) = pF0
t

(
Φ0(x),Φ0(y)

)
+

ixy∑
ℓ=1

δxy(nℓ)Nℓ−1 p[0,π/Jℓ]D
t (Φ0(x),Φ0(y)) (5)

or any x, y ∈ F∞, where ixy := maxi≥0{Φi (x),Φi (y) belong to the same bundle} and

δxy(n) =

{
n − 1 if Φixy (x),Φixy (y) same branch,
−1 if Φixy (x),Φixy (y) same bundle, different branch.

Proof. The recursive formula in [2, Theorem 2] can be rewritten as

pFi
t (x, y) = pF0

t
(
φi0(x), φi0(y)

)
+

ixy∑
ℓ=1

δxy(nℓ)Nℓ−1 Jℓ

(
pF0

J 2
ℓ

t

(
φi0(x), φi0(y)

)
−pF0

J 2
ℓ

t

(
φi0(x), −φi0(y)

))
,

here ixy := max0≤k≤i {φik(x), φik(y) belong to the same bundle} and δ(i)
xy(n) is as δxy(n) with

i,ixy instead of Φixy . Using (B.3) to rewrite pF0
J 2
ℓ

t
in terms of p[0,π/Ji ]D

t [2, Theorem 3] gives (5)
fter noting φik(Φi (x)) = Φk(x). □

The results presented can be extended to further natural generalizations, however setting up
ormulas may result in a fairly long exercise.

. Infinitesimal generator and Dirichlet form

As a strongly continuous Markov semigroup on L2(Fi , µi ), each {P Fi
t }t≥0, i = 1, . . . ,∞

as an associated infinitesimal generator and a Dirichlet form, which we denote by L Fi and
E Fi ,F Fi ). In particular the Dirichlet form will appear in the functional inequalities discussed
n the last section.

.1. Liftings and projections

The mappings that provided the intertwining relation between the semigroups {P F∞

t }t≥0 and
P Fi

t }t≥0 from Lemma 2.3 will play a major role in the subsequent discussion. Their definition
eadily implies the following useful properties, see e.g. [2, Proposition 2].

roposition 3.1. Let i ≥ 0 and Φ∗

i : L2(Fi , µi ) → L2(F∞, µ∞) be defined as in (3).

i) For each i ≥ 0, Φ∗

i is an isometry.
ii) The space C0 :=

⋃
i≥0 Φ

∗

i C(Fi ) is dense in L2(F∞, µ∞).

While Φ∗

i may be understood as a “lifting”, its left inverse is in fact a projection mapping.

roposition 3.2. For any i ≥ 0 let Πi : L2(F∞, µ∞) → L2(Fi , µi ) denote the left inverse of
∗ 2

i . For any f ∈ L (F∞, µ∞),
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(i) ∥Πi f ∥L2(Fi ,µi ) ≤ ∥ f ∥L2(F∞,µ∞);

(ii) ∥ f ∥L2(F∞,µ∞) = lim
i→∞

∥Πi f ∥
2
L2(Fi ,µi ).

Proof. Apply Cauchy–Schwartz and Proposition 3.1. □

In particular, (ii) in the latter proposition implies the convergence of {L2(Fi , µi )}i≥0 to
L2(F∞, µ∞) in the sense of [26, Definition 2.5].

We finish this paragraph by analyzing the combined action of the lifting Φ∗

i , the semigroup
{P Fi

t }t≥0 and the projection Πi through the operator Φ∗

i P Fi
t Πi : L2(F∞, µ∞) → L2(F∞, µ∞).

This will be useful later, in particular to derive the Mosco convergence of the associated
Dirichlet forms.

Lemma 3.3. For any t ≥ 0, the sequence of bounded operators {Φ∗

i P Fi
t Πi }i≥0 converges

strongly in L2(F∞, µ∞) to P F∞

t . In particular, the convergence is uniform in any finite time
interval.

Proof. Convergence (independent of t) follows from Lemma 2.3, the contraction property of
P F∞

t and Proposition 3.2. □

3.2. Infinitesimal generator

Since the finite approximations Fi are metric graphs, for finite i ≥ 0 the operator L Fi with
domain DFi corresponds with the standard Laplacian studied in quantum graphs/cable systems;
see e.g. [8,14]. We now focus on properties of the generator L F∞

and its domain DF∞
that can

be obtained from the previous paragraph.

Theorem 3.4. For each i ≥ 0, let DFi denote the domain of infinitesimal generator L Fi . The
space D0 :=

⋃
i≥1 Φ

∗

i DFi is a core for (L F∞
,DF∞

).

Proof. Let f ∈ D0. Then, f = Φ∗

i h for some h ∈ DFi and i ≥ 0. By Lemma 2.3,

P F∞

t f = P F∞

t Φ∗

i h = Φ∗

i P Fi
t h ∈ Φ∗

i DFi ⊆ D0 (6)

hence P F∞

t : D0 → D0. Proposition 3.1 implies that
⋃

i≥1 Φ
∗

i C∞(Fi ), and therefore D0, is
dense in L2(F∞, µ∞). By virtue of [21, Section 1, Proposition 3.3] D0 is a core for the
infinitesimal generator of P F∞

t . □

Applying Lemma 3.3 to [25, Theorem 2.5] one finds the relation between the lifting and
projection maps and the infinitesimal generator.

Corollary 3.5. For each f ∈ D0, there exists { fi }i≥0 with fi ∈ DFi such that

Φ∗

i fi
i→∞
−−−→ f and Φ∗

i L Fi fi
i→∞
−−−→ L F∞

f

hold in L2(F∞, µ∞).

Remark 3.1. By [25, Theorem 2.5], the latter result or Lemma 3.3 yields an analogous
statement for the resolvent that appears in [10, Theorem 4.3].
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3.3. Dirichlet form

The Dirichlet form associated with {P F∞

t }t≥0 is given by

E F∞ ( f, f ) = lim
t→0

1
t
⟨ f − P F∞

t f, f ⟩L2(F∞,µ∞)

F F∞ = { f ∈ L2(F∞, µ∞) | E F∞ ( f, f ) exists and is finite},

ee e. g. [7, Definition 1.7.1]. In this paragraph we prove the generalized Mosco convergence
f the finite level Dirichlet forms to (E F∞ ,F F∞ ). For a definition of this convergence we refer
he reader e.g. to [26, Definition 2.11].

heorem 3.6. For the Dirichlet form (E F∞ ,F F∞ ) associated with {P F∞

t }t≥0 it holds that

i) (E F∞ ,F F∞ ) is the generalized Mosco limit of {(E Fi ,F Fi )}i≥0,
ii) D0 is a core for (E F∞ ,F F∞ ).
iii) For any i ≥ 1 and h ∈ DFi , E

F∞ (Φ∗

i h,Φ∗

i h) = E Fi (h, h);
iv) For any f ∈ F F∞ there is { fi }i≥0 ⊂ D0 such that E F∞ ( f, f ) = limi→∞ E Fi ( fi , fi );
v) (E F∞ ,F F∞ ) is local and regular.

roof. (i) follows from Lemma 3.3 and [25, Theorem 2.5] while (ii) from Theorem 3.4. Since
∗

i h ∈ D0, Lemma 2.3 implies

1
t
⟨Φ∗

i h − P F∞

t Φ∗

i h,Φ∗

i h⟩L2(F,µ) =
1
t
⟨h − P Fi

t h, h⟩L2(Fi ,µi )

nd letting t → 0 we obtain (iii). By density, (i) and (ii) yield (iv) and since C0 ⊆ F F∞∩C(F∞),
the regularity of (E F∞ ,F F∞ ) follows from (ii). The form is also local because all (E Fi ,F Fi )
are. □

4. Estimates for the heat kernel

The expression of the heat kernel in (5) will allow to obtain global estimates of the
heat kernel and explicit bounds for its Lipschitz continuity. The estimates obtained in
[23, Theorem 4.7] for regular diamonds with n = j = 2 exploited the self-similarity of the
space, which we avoid here. Although the (joint) continuity of pF∞

t may be derived using
indirect arguments [2,23], the new estimates in Theorems 4.1 and 4.3 give a direct proof and
also information about the dependence of the bounds on the parameters.

4.1. Uniform heat kernel bounds

The following estimates will be applied in later sections to study related functional
inequalities.

Theorem 4.1. There exists CN ,J > 0 such that for any t > 0,

1
√ t−1/2

≤ ∥pF∞

t ∥∞ ≤
1

+
1

√ t−1/2
+ CN ,J t−

1
2 (1+d(ℓ∗

t )), (7)

4π 2π 4π
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L

w

F
t

where d(ℓ∗
t ) =

log Nℓ∗t −1

log Jℓ∗t −1
and ℓ∗

t := inf{ℓ ≥ 1 : J−2
ℓ ≤ t}. In particular,

1
√

4π
t−1/2

≤ ∥pF∞

t ∥∞ ≤ CN ,J t−
1
2 (1+d(ℓ∗

t )) for t ∈ (0, 1). (8)

The exponent on the right hand side of (8) can be identified in the regular case with
the spectral dimension of F∞, cf. Corollary 4.2, which classically describes the short-time
asymptotic behavior of the trace of the heat semigroup.

Proof of Theorem 4.1. Fix t > 0. With the convention N0 = 1, the expression in (5),
emmas B.1 and B.2 yield

pF∞

t (x, y) ≤ pF0
t (Φ0(x),Φ0(y)) +

1
√

π t

∞∑
ℓ=1

Nℓ min
{

1,
2

(π J 2
ℓ t)1/2

e−J 2
ℓ

t
}

(9)

for any x, y ∈ F∞. An upper bound of the series in (9) is

1
√

π t

ℓ∗
t −1∑
ℓ=1

Nℓ +
2

√
π t

∞∑
ℓ=ℓ∗

t

Nℓ

(J 2
ℓ t)1/2

e−J 2
ℓ

t
=:

1
√

π t
S1 +

2
√

π t
S2, (10)

here ℓ∗
t := inf{ℓ ≥ 1 : J−2

ℓ ≤ t}. For the first term, one can bound S1 by

Nℓ∗
t −1

(
1 +

ℓ∗
t −2∑
ℓ=1

n−1
ℓ+1 · · · n−1

ℓ∗
t −1

)
≤ Nℓ∗

t −1

∞∑
k=0

2−k
= 2Nℓ∗

t −1. (11)

or the second term in (10), using the notation from Definition 2.1, and the fact that J−2
ℓ∗

t
≤

< J−2
ℓ∗

t −1, we have

S2 = Nℓ∗
t −1

∞∑
ℓ=ℓ∗

t

Nℓ

Nℓ∗
t −1

Jℓ∗
t

Jℓ(J 2
ℓ∗

t
t)1/2

e
−

J2
ℓ

J2
ℓ∗t

J 2
ℓ∗t

t

≤ Nℓ∗
t −1

∞∑
ℓ=ℓ∗

t

Nℓ∗
t ,ℓe

−J 2
ℓ∗t +1,ℓ . (12)

The latter series converges and can be bounded independently of t by Assumption 1. Thus,
there is CN ,J > 0 such that

S1 + S2 ≤ CN ,J Nℓ∗
t −1 = CN ,J (J 2

ℓt∗−1
)

1
2 d(ℓ∗

t )
≤ CN ,J t−

1
2 d(ℓ∗

t ),

where d(ℓ∗
t ) :=

log Nℓt∗−1
log Jℓt∗−1

. The last inequality follows from the choice of ℓ∗
t . Applying

Lemma B.3 to the first term of (9) and the previous estimates to the second term yield the
upper bound in (7). The lower bound readily follows from the expression (5) and (B.1). □

Remark 4.1. Replacing Assumption 1 by (2), one concludes from (10) estimates of the type

S1 ≤ ℓ∗

t t−
1
2 d(ℓ∗

t ) and S2 ≤ Ct t−
1
2 d(ℓ∗

t )

for some Ct > 0 that bounds the series in (12). In the same way as before, these would now
provide

pF∞

t (x, y) ≤
1

2π
+

1
√

4π
t−1/2

+ t−
1
2 (1+d(ℓ∗

t ))(Cℓ∗

t + C̃Ct ),

without further information about the dependence on t of the constant Ct .
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Regular diamond fractals

Since ni = n and ji = j for all i ≥ 1, Assumption 1 can be checked in this case by a direct
computation (here we use mathematica). For any k ≥ 0,

∞∑
ℓ=k

nℓ−k+1 jℓ−ke− j2(ℓ−k)
≤

n
e

+

∫
∞

0
nξ j ξ e− j2ξ

dξ =
n
e

+
1

2 log j
Γ

(1
2

(
1 +

log n
log j

))
,

where for the latter integral one does the change of variables η = j ξ . Similarly, we can compute
explicitly the bound in (12) to get

∞∑
ℓ=k

nℓ−k+1e− j2(ℓ−k)
≤

n
e

+

∫
∞

0
nξ e− j2ξ

dξ =
n
e

+
1

2 log j
Γ

( log n
2 log j

)
.

ince log Nℓ

log Jℓ
=

log n
log j for all ℓ ≥ 1, Theorem 4.1 provides the following global estimate of the

sup-norm.

Corollary 4.2. On a regular diamond fractal with parameters n, j ≥ 2 there exists Cn, j > 0
uch that

1
√

4π
t−1/2

≤ ∥pF∞

t ∥∞ ≤
1

2π
+

1
√

4π
t−1/2

+ Cn, j t−
1
2

(
1+

log n
log j

)
. (13)

Note that dS = 1 +
log n
log j is the spectral dimension of F∞ [24, Theorem A.2] and coincides

with the Hausdorff dimension dH , in agreement with the observation that the walk dimension
of a diamond fractal is dw =

2dH
dS

= 2.

.2. Continuity estimates

The recursive nature of the underlying space is also reflected in the proof of the continuity of
he heat kernel. In particular, the case i = 1 serves both as guideline and as first induction step.
he different pair-point configurations for that level, summarized in Fig. 3, will be analyzed
y means of standard estimates recorded in Appendix B.

heorem 4.3. For any t > 0, the heat kernel pF∞

t : F∞×F∞ → [0, ∞) is Lipschitz continuous
n (F∞, d∞) and satisfies for any x, y1, y2 ∈ F∞

|pF∞

t (x, y1) − pF∞

t (x, y2)| ≤ Ct−1−
1
2 d(ℓ∗

t )d∞(y1, y2), (14)

here d(ℓ∗
t ) =

log Nℓ∗∗−1
log Jℓ∗∗−1

, ℓ∗
t := inf{ℓ ≥ 1 : J−2

ℓ ≤ t} and some constant C > 0 depending on
he parameter sequences N , J .

Note that, for short times, the estimate (14) is better than what could be obtained from the
ontinuity of the semigroup proved in Theorem 5.1, and the uniform bound from Theorem 2.4.

roof. Since pFi
t (x, y) converges uniformly to pF∞

t (x, y), see [2, Remark 8], the latter is
ontinuous and its Lipschitz constant CL (t) may be bounded by taking the limit i → ∞ in
roposition 4.4, which leads to

CL (t) ≤
2
π

∞∑
Nℓ

(
J 2
ℓ +

1
2t

)
e−J 2

ℓ
t . (15)
ℓ=0
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Fig. 3. Pair-point configurations.

o estimate this series, we decompose (15) into

ℓ∗
t −1∑
ℓ=0

Nℓ

(
J 2
ℓ +

1
2t

)
e−J 2

ℓ
t
+

∞∑
ℓ=ℓ∗

t

Nℓ

(
J 2
ℓ +

1
2t

)
e−J 2

ℓ
t
=: S1 + S2.

nalogous computations to those in (11) allow us to bound the first term by

3
2t

ℓ∗
t −1∑
ℓ=0

Nℓe
−J 2

ℓ∗t
t
≤

3
2t

Nℓ∗
t −1

ℓ∗
t −1∑
ℓ=0

N−1
ℓ+1,ℓ∗

t −1 ≤
3
2t

Nℓ∗
t −1

ℓ∗
t −1∑
ℓ=0

2−(ℓ∗
t −ℓ−1)

≤
3
t

Nℓ∗
t −1.

or the second, using J−2
ℓ∗

t
≤ t < J−2

ℓ∗
t −1 we get

S2 ≤
3
2t

∞∑
ℓ=ℓ∗

t

Nℓ J 2
ℓ te−J 2

ℓ
t
≤

3
2t

Nℓ∗
t −1

∞∑
ℓ=ℓ∗

t

Nℓ∗
t ,ℓ J 2

ℓ∗
t ,ℓe

−J 2
ℓ∗t +1,ℓ . (16)

The latter series is bounded independently of t by Assumption 1. Setting d(ℓ∗
t ) :=

log Nℓt∗−1
log Jℓt∗−1

,
the two previous estimates yield (14). □

Proposition 4.4. For any t > 0, the heat kernel pFi
t is Lipschitz continuous in (Fi , di ) and

|pFi
t (x, y1) − pFi

t (x, y2)| ≤
2
π

i∑
Nℓ

(
J 2
ℓ +

1
2t

)
e−J 2

ℓ
t di (y1, y2). (17)
ℓ=0
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This result is proved by induction. To ease the notation and to remain consistent with [2],
e set θx := φi0(x) for x ∈ Fi and θx := Φ0(x) for x ∈ F∞.

Proposition 4.5. For each t > 0, the heat kernel pF1
t is Lipschitz continuous in (F1, d1) and

|pF1
t (x, y1) − pF1

t (x, y2)| ≤
2
π

[(
1 +

1
2t

)
e−t

+ n1

(
j2
1 +

1
2t

)
e− j2

1 t
]
d1(y1, y2).

roof. By virtue of Lemma 2.1(iii) and the triangle inequality, it is enough to analyze the
asic cases shown in Figs. 3(a) through 3(c).

(a) In view of the expression of pF1
t (x, y), Lemmas B.1 and 2.1 we have (recall θx := φi0(x))

|pF1
t (x, y1) − pF1

t (x, y2)| = |pF0
t (θx , θy1 ) − pF0

t (θx , θy2 )| ≤
1
π

∞∑
k=1

e−k2t k|θy1 − θy2 |

≤
1
π

(
e−t

+

∫
∞

1
ξe−ξ2t dξ

)
d1(y1, y2)

=
1
π

(
1 +

1
2t

)
e−t d1(y1, y2).

b) In this case, writing

|pF1
t (x, y1) − pF1

t (x, y2)| ≤ |pF0
t (θx , θy1 ) − pF0

t (θx , θy2 )|

+ |p[0,L1]D
t (θx , θy1 ) − p[0,L1]D

t (θx , θy2 )|

e can estimate the first term as in (i), and the second by

2
L1

∞∑
k=1

e
−

k2π2

L2
1

t ⏐⏐⏐ sin
(kπθy1

L1

)
− sin

(kπθy2

L1

)⏐⏐⏐ ≤

(2 j2
1

π

∞∑
k=1

ke−k2 j2
1 t

)
d0(φ1(y1), φ1(y2))

≤
2
π

(
j2
1 e− j2

1 t
+

∫
∞

1
j2
1 ξe−ξ2 j2

1 t dξ
)

d1(y1, y2) =
2
π

(
j2
1 e− j2

1 t
+

1
2t

e− j2
1 t

)
d1(y1, y2).

(c) Fig. 3(c) reduces to the previous case with an extra factor (n1 − 1) in the second
ummand. □

Proposition 4.5 serves both as proof schema and first step to show the corresponding estimate
or the Lipschitz constant in a generic finite level.

roof of Proposition 4.4. By induction, the case i = 1 is Proposition 4.5. By virtue of the
riangle inequality it suffices to prove (17) for any fixed t > 0, x ∈ Fi and y1, y2 such that
x, y1) and (x, y2) have the same pair-point configuration. Otherwise, decompose the path y1 to

y2 as in Fig. 3(d). Let us thus assume that the Lipschitz constant for the (i − 1)approximation,
(i−1)
L (t), admits the bound (17).
(i) If (x, y1) and (x, y2) are both as in Fig. 3(a), the expression of the heat kernel and

emma 2.1 yield

|pFi
t (x, y1) − pFi

t (x, y2)| = |pFi−1
t (φi (x), φi (y1)) − pFi−1

t (φi (x), φi (y2))|

≤ C (i−1)
L (t)di−1(φi (y1), φi (y2)) ≤ C (i−1)

L (t)di (y1, y2).

ii) If (x, y1) and (x, y2) are as in Fig. 3(b), then

|pFi
t (x, y1) − pFi

t (x, y2)| ≤ |pFi−1
t (φi (x), φi (y1)) − pFi−1

t (φi (x), φi (y2))|
+ Ni−1|p[0,L i ]D
t (θx , θy1 ) − p[0,L i ]D

t (θx , θy2 )|.
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The first term can be estimated as in (i). For the second term, following the proof of
Proposition 4.5 (substituting L1 by L i ) and Lemma 2.1 yield

|p[0,L i ]D
t (θx , θy1 ) − p[0,L i ]D

t (θx , θy2 )| ≤
2
π

(
J 2

i e−J 2
i t

+
1
2t

e−J 2
i t

)
di (y1, y2).

iii) The case (x, y1) and (x, y2) both as in Fig. 3(c) reduces to the previous one with an extra
actor (ni − 1).

Putting all estimates together and using the induction hypothesis we obtain

|pFi
t (x, y1) − pFi

t (x, y2)| ≤

(
C (i−1)

L (t) +
2
π

Ni

(
J 2

i e−J 2
i t

+
1
2t

e−J 2
i t

))
di (y1, y2)

=

( 2
π

i∑
ℓ=0

Nℓ

(
J 2
ℓ +

1
2t

)
e−J 2

ℓ
t
)

di (y1, y2). □

emark 4.2. The Lipschitz constant of Theorem 4.3 is bounded by the series (15), which
onverges under the weaker condition (2). However, at this level of generality little can be said
bout its behavior as a function of t .

. Continuity estimates of the heat semigroup

The aim of this section is to study the regularity of the heat semigroup {P F∞

t }t≥0 as a means
to describe the geometry of F∞ along the lines of the weak Barky–Émery curvature condition
rom [3]. This condition reads

|P F∞

t f (x) − P F∞

t f (y)| ≤ C
d∞(x, y)κ

tκ/dw
∥ f ∥∞ (18)

for all f ∈ L∞(F∞, µ∞), where κ > 0 denotes a (curvature) parameter and dw > 0
he walk dimension of the space. We refer to [3] for further details and functional analytic
onsequences in the context of Dirichlet spaces with sub-Gaussian heat kernel estimates.
roposition 5.5 shows that the condition (18) is satisfied in each approximation level with
= 1 and dw = 2. While the latter is expected because each Fi is a one-dimensional object, the

ituation in the limit is less clear. The estimate in Theorem 5.1 reveals in concrete computations,
f. Theorem 5.6, a logarithmic correction that is also observed in diffusion processes with
ultifractal structures, see e.g. [12]. Whether this time dependence is optimal remains an open

uestion.

heorem 5.1. For any t > 0, there exists a constant C > 0 such that

|P F∞

t f (x) − P F∞

t f (y)| ≤
C
√

t
(1 + ℓ∗

t ) d∞(x, y) ∥ f ∥∞, (19)

for any f ∈ L∞(F∞, µ∞) and x, y ∈ F∞, where ℓ∗
t := inf{ℓ ≥ 1 : J−2

ℓ ≤ t}.

The proof of Theorem 5.1 is presented in detail at the end of the section. Here, the
chain property” from Lemma 2.1(iii) turns out crucial to reduce the analysis of pair-point
onfigurations to the case of pairs that belong to the same branch. We continue using the
otation θx := φi0(x) for any x ∈ Fi , i ≥ 1 and θx := Φ0(x) for x ∈ F∞.

emark 5.1. In view of the estimate (28), the constant C seems to be independent of the
arameter sequence N that gives the number of copies (“parallel universes”, as named in [10])
f a level that give rise to the next.
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5.1. Key lemma

The following estimate is applied several times throughout the steps that yield the main
esult. To be consistent with the notation in [2], we write L i := π/Ji .

Lemma 5.2. Let i ≥ 0. For any x, y ∈ Fi and t > 0,∫ L i

0
Ji |pF0

J 2
i t

(Jiρ, Jiθx ) − pF0
J 2
i t

(Jiρ, Jiθy)| dρ ≤ min
{ 2
√

π t
,
(

Ji +
1

2Ji t

)
e−J 2

i t
}
|θx − θy |.

(20)

In view of (B.3), Lemma 5.2 readily implies another useful inequality.

orollary 5.3. Let i ≥ 1. For any f ∈ L∞(Fi ),∫ L i

0
|(p[0,L i ]D

t (ρ, θx ) − p[0,L i ]D
t (ρ, θy)) f (ρ)| dρ

≤ 2 min
{ 2

√
π t

,
(

Ji +
1

2Ji t

)
e−J 2

i t
}
∥ f ∥∞|θx − θy |.

roof of Lemma 5.2. The strategy consists in estimating the left hand side of (20) using both
epresentations of the heat kernel pF0

t (x, y) given in (B.1).

a) Using the first representation in (B.1), the triangle inequality yields

√
4π t I :=

∫ L i

0

⏐⏐⏐ ∑
k∈Z

(
e
−

(Ji ρ−Ji θx −2πk)2

4J2
i t

− e
−

(Ji ρ−Ji θy−2πk)2

4J2
i t

)⏐⏐⏐ dρ

≤

∫ L i

0

∑
k∈Z

⏐⏐⏐e−
(Ji ρ−Ji θx −2πk)2

4J2
i t

− e
−

(Ji ρ−Ji θy−2πk)2

4J2
i t

⏐⏐⏐ dρ

=

∫ L i

0

⏐⏐⏐e−
(Ji ρ−Ji θx )2

4J2
i t

− e
−

(Ji ρ−Ji θy )2

4J2
i t

⏐⏐⏐ dρ

+

∫ L i

0

∑
k≥1

⏐⏐⏐e−
(Ji ρ−Ji θx −2πk)2

4J2
i t

− e
−

(Ji ρ−Ji θy−2πk)2

4J2
i t

⏐⏐⏐ dρ

+

∫ L i

0

∑
k≥1

⏐⏐⏐e−
(Ji ρ−Ji θx +2πk)2

4J2
i t

− e
−

(Ji ρ−Ji θy+2πk)2

4J2
i t

⏐⏐⏐ dρ =: I1 + I2 + I3.

ithout loss of generality, let us assume that θx ≤ θy . Then,

I1 ≤

∫ L i

0

⏐⏐⏐ ∫ θy

θx

Jiρ − Ji ρ̃

2Ji t
e
−

(Ji ρ−Ji ρ̃)2

4J2
i t dρ̃

⏐⏐⏐ dρ ≤

∫ L i

0

∫ θy

θx

|ρ − ρ̃|

2t
e−

(ρ−ρ̃)2
4t dρ̃ dρ

=

∫ θy

θx

∫ ρ̃

0
−

ρ − ρ̃

2t
e−

(ρ−ρ̃)2
4t dρ dρ̃ +

∫ θy

θx

∫ L i

ρ̃

ρ − ρ̃

2t
e−

(ρ−ρ̃)2
4t dρ dρ̃

=

∫ θy

θx

(
1 − e−

ρ̃2
4t

)
dρ̃ +

∫ θy

θx

(
1 − e−

(Li −ρ̃)2

4t

)
dρ̃ ≤ 2|θy − θx |.
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Moreover, recall that θx , θy ∈ [0, L i ) for any x, y ∈ Fi . Hence, for any k ≥ 1, ρ ∈ [θx , θy] and
˜ ∈ [0, L i ), the quantity ρ − ρ̃ − 2kL i ≤ L i − 2kL i is nonpositive. Thus,

I2 ≤

∫ L i

0

∑
k≥1

⏐⏐⏐ ∫ θy

θx

2(Jiρ − Ji ρ̃ − 2πk)
4Ji t

e
−

(Ji ρ−Ji ρ̃−2πk)2

4J2
i t dρ̃

⏐⏐⏐ dρ

≤

∫ θy

θx

∑
k≥1

∫ L i

0

|ρ − ρ̃ − 2πk/Ji |

2t
e−

(ρ−ρ̃−2πk/Ji )2

4t dρ̃ dρ

≤

∫ θy

θx

∫ L i

0

∫
∞

0
−

ρ − ρ̃ − ξ

2t
e−

(ρ−ρ̃−ξ )2
4t dρ̃ dρ =

1
L i

∫ θy

θx

∫ L i

0
e−

(ρ−ρ̃)2
4t dρ̃ dρ

≤ |θx − θy |

Analogously, because ρ − ρ̃ + 2kL i ≥ L i + 2kL i > 0 for any k ≥ 1, we obtain

I3 ≤

∫ θy

θx

∫ L i

0

∑
k≥1

ρ − ρ̃ + 2kL i

2t
e−

(ρ−ρ̃+2kLi )2

4t dρ̃ dρ ≤ |θx − θy |.

dding up these estimates leads to I ≤
1

√
4π t

(I1 + I2 + I3) =
2

√
π t

|θx − θy |.

b) Using the second representation of pF0
t (x, y) in (B.1) and L i = π/Ji ,

I :=
Ji

π

∫ L i

0

⏐⏐⏐ ∑
k≥1

e−k2 J 2
i t(cos(k Ji (θx − ρ)) − cos(k Ji (θy − ρ))

)⏐⏐⏐ dρ

≤
Ji

π

∫ L i

0

∑
k≥1

e−k2 J 2
i t

| cos(k Ji (θx − ρ)) − cos(k Ji (θy − ρ))| dρ

≤
Ji

π

∫ L i

0

∑
k≥1

e−k2 J 2
i t k Ji |θx − θy | dρ =

Ji L i

π
|θx − θy |

∑
k≥1

e−k2 J 2
i t k Ji

≤ |θx − θy |

(
Ji e−J 2

i t
+

∫
∞

1
Jiξe−ξ2 J 2

i t dξ
)

= e−J 2
i t

(
Ji +

1
2Ji t

)
|θx − θy |.

he assertion now follows from (a) and (b). □

.2. First approximation level

The weak Bakry–Émery condition (18) with κ = 1 and dw = 2 is obtained on each finite
pproximation Fi by an inductive argument and this paragraph is devoted to the first induction
tep. Any notation appearing in the proof for the first time follows [2] and is briefly recalled
n Appendix A.

roposition 5.4. For any t > 0, f ∈ L∞(F1) and x, y ∈ F1,

|P F1
t f (x) − P F1

t f (y)| ≤ C1(t) d1(x, y)∥ f ∥∞, (21)

here

C1(t) ≤ 2
(

min
{ 2

√
π t

,
(

1 +
1
2t

)
e−t

}
+ min

{ 2
√

π t
,
(

j1 +
1

2 j1t

)
e− j2

1 t
})

. (22)
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Proof. By virtue of the triangle inequality and [2, Proposition 3], see also (A.3), we have
(recall θx := φi0(x))

|P F1
t f (x) − P F1

t f (y)| ≤ |P F0
t (I1 f )(θx ) − P F0

t (I1 f )(θy)|

+ |P [0,L1]D
t (P⊥

1 f )|Iαx (θx ) − P [0,L1]D
t (P⊥

1 f )|Iαy (θy)|

= D1 + D2. (23)

et us assume first that x, y ∈ F1 belong to the same branch , in particular αx = αy . Applying
emma 5.2 with L0 = 2π and J0 = 1,

D1 ≤ ∥I1 f ∥∞

∫ L0

0
|pF0

t (θ, θx ) − pF0
t (θ, θy)| dθ

≤ min
{ 2

√
π t

,
(

1 +
1
2t

)
e−t

}
∥ f ∥∞|θx − θy |.

By virtue of Corollary 5.3,

D2 = |P [0,L1]D
t (P⊥

1 f )αx (θx ) − P [0,L1]D
t (P⊥

1 f ) ∥Iαx (θy)|

≤

∫ L1

0
|(P⊥

1 f )αx (θ )||p[0,L1]D
t (θ, θx ) − p[0,L1]D

t (θ, θy)| dθ

≤ 2 min
{ 2

√
π t

,
(

J1 +
1

2J1t

)
e−J 2

1 t
}
∥ P⊥

1 f ∥∞|θx − θy |

≤ 2 min
{ 2

√
π t

,
(

J1 +
1

2J1t

)
e−J 2

1 t
}
∥ f ∥∞d1(x, y).

utting both estimates together and noticing that d1(x, y) = d0(φ1(x), φ1(y)) = |θx − θy |

ecause x and y belong to the same branch yields (21) with C1(t) as in (21). If x and y
elong to different branches, there exists by construction a sequence x1, . . . , zN ∈ B1 with
≤ N ≤ J1 such that d1(x, y) = d1(x, z1) +

∑N−1
ℓ=1 d1(xℓ, xℓ+1) + d1(zN , y). Each pair of

oints in the summands belongs to the same branch, hence applying the triangle inequality
nd estimating each term as in the previous case proves again (21). □

.3. Generic approximation level

The recursive nature of the construction of Fi also underlies the proof of the weak
akry–Émery condition for an arbitrary level.

roposition 5.5. Let i ≥ 1. For any t > 0, f ∈ L∞(Fi ) and x, y ∈ Fi ,

|P Fi
t f (x) − P Fi

t f (y)| ≤ 2
i∑

ℓ=0

min
{ 2

√
π t

,
(

Jℓ +
1

2Jℓt

)
e−J 2

ℓ
t
}

di (x, y)∥ f ∥∞. (24)

roof. Let i ≥ 2. With the notation from (A.2), applying [2, Proposition 3], see also (A.2),
nd the triangle inequality we have

|P Fi
t f (x) − P Fi

t f (y)| ≤ |P Fi−1
t (Ii f )(φi (x)) − P Fi−1

t (Ii f )(φi (y))|

+ |P [0,L i ]D
t (P⊥

i f )|Iαx (θx ) − P [0,L i ]D
t (P⊥

i f )Iαy (θy)|
= Di,1 + Di,2. (25)
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To estimate these terms, assume first that x, y ∈ Fi belong to the same branch. By hypothesis
f induction, there is Ci−1(t) > 0 such that

Di,1 ≤ Ci−1(t)∥ f ∥∞ di−1(φi (x), φi (y)) = Ci−1(t) di (x, y)∥ f ∥∞,

here the last equality is due to the fact that for points in the same branch

di (x, y) = di−1(φi (x), φi (y)) = |θx − θy |. (26)

n addition, also αx = αy hence Corollary 5.3 and (26) yield

Di,2 = |P [0,L i ]D
t (P⊥

i f )|Iαx (θx ) − P [0,L i ]D
t (P⊥

i f )|Iαx (θy)|

≤

∫ L1

0
|(P⊥

i f )αx (θ )||p[0,L i ]D
t (θ, θx ) − p[0,L i ]D

t (θ, θy)| dθ

≤ 2 min
{ 2

√
π t

,
(

Ji +
1

2Ji t

)
e−J 2

i t
}
∥ f ∥∞di (x, y).

utting both estimates together we obtain for x and y in the same branch

|P Fi
t f (x) − P Fi

t f (y)| ≤

(
Ci−1(t)+2 min

{ 2
√

π t
,
(

Ji +
1

2Ji t

)
e−J 2

i t
})

∥ f ∥∞di (x, y). (27)

If x, y ∈ Fi belong to different branches, we find z1, . . . , zNxy ∈ Bi that connect both branches
so that di (x, y) = di (x, z1) + di (z1, z2) + · · · + di (zNxy , y), cf. Lemma 2.1(iii). Regarding
points in each pair as belonging to the same branch, the triangle inequality and the previous
computations for each of the terms yield (27). Finally, (24) is obtained by solving the recursive
inequality Ci (t) ≤ Ci−1(t) + 2 min

{
2

√
π t

,
(

Ji +
1

2Ji t

)
e−J 2

i t
}

with C1(t) as in (22). □

.4. Continuity estimates in the limit. proof of Theorem 5.1

We are now ready to apply Proposition 5.5 to obtain the estimate (19). Once more we see the
mportant role that the intertwining property (4) plays in order to “pass to the limit”. By virtue
f Theorem 3.6, it suffices to prove the statement for f ∈ C0 =

⋃
i≥0 Φ

∗

i C(Fi ), i.e. f = h◦Φi
for some i ≥ 1 and h ∈ C(Fi ). Let x, y ∈ F∞. By virtue of Lemma 2.3 and Proposition 5.5,

|P F∞

t f (x) − P F∞

t f (y)| = |P F∞

t Φ∗

i h(x) − P F∞

t Φ∗

i h(y)| = |Φ∗

i P Fi
t h(x) − Φ∗

i P Fi
t h(y)|

= |P Fi
t h(Φi (x)) − P Fi

t h(Φi (y))| ≤ Ci (t) di (Φi (x),Φi (y)) ∥h∥∞.

Letting i → ∞, cf. (1), yields |P F∞

t f (x) − P F∞

t f (y)| ≤ C(t) d∞(x, y) ∥ f ∥∞ with

C(t) ≤ 2
∞∑

ℓ=0

min
{ 2

√
π t

,
(

Jℓ +
1

2Jℓt

)
e−J 2

ℓ
t
}
. (28)

To estimate the series on the right hand side, we notice that J−2
ℓ∗

t
≤ t < J−2

ℓ∗
t −1 and split the

series into the three terms
ℓ∗

t −1∑
ℓ=0

2
√

π t
+

1
√

t

∞∑
ℓ=ℓ∗

t

Jℓ

√
te−J 2

ℓ
t
+

1
√

t

∞∑
ℓ=ℓ∗

t

1
Jℓ

√
t
e−J 2

ℓ
t
=:

2ℓ∗
t

√
π t

+
1

√
t

S1 +
1

√
t

S2. (29)

For the first series, analogous arguments as (16) give

S1 = Jℓt∗−1

√
te

−J 2
ℓ∗t

t
∞∑

∗

J 2
ℓ∗

t ,ℓe−J 2
ℓ

t
≤

∞∑
∗

J 2
ℓ∗

t ,ℓe
−J 2

ℓ∗t +1,ℓ ≤

∞∑
∗

Nℓ∗
t

J 2
ℓ∗

t ,ℓe
−J 2

ℓ∗t +1,ℓ
ℓ=ℓt ℓ=ℓt ℓ=ℓt
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which is uniformly bounded and independent of t by Assumption 1. The second series is

ounded by
∑

∞

ℓ=ℓ∗
t

e
−J 2

ℓ∗t +1,ℓ , which is finite by definition of Jℓ and in particular independent
f t . The claim now follows from (28) and (29).

.5. Regular case

As far as computations allow for regular diamond fractals, the estimates obtained in
roposition 5.5 and Theorem 5.1 provide local continuity estimates with a logarithmic
orrection.

heorem 5.6. For a regular diamond fractal F∞ with parameters n, j ≥ 2, there exists
j > 0 such that

|P F∞

t f (x) − P F∞

t f (y)| ≤
C j
√

t
(1 + | log t |)d∞(x, y)∥ f ∥∞ (30)

for any f ∈ L∞(F∞), x, y ∈ F∞ and 0 < t < 1.

Proof. To simplify constants which do not depend on Jℓ, Nℓ or t , we will estimate the
quantity appearing in (28) by 2

∑i
ℓ=0 min

{
1

√
t
,
(

Jℓ +
1

Jℓt

)
e−J 2

ℓ
t
}

. Since Jℓ = jℓ, we have

j−2ℓ∗
t ≤ t < j−2(ℓ∗

t −1) and ℓ∗
t − 1 ≤

⏐⏐⏐⏐ log
√

t
log j

⏐⏐⏐⏐ < ℓ∗
t . Thus,

S1 ≤

∞∑
ℓ=ℓ∗

t

jℓ−ℓ∗
t e− j2(ℓ−ℓ∗t −1)

≤ 1 + j +

∫
∞

0
j ξ e− j2ξ

= 1 + j +
Γ (1/2)
2 log j

and

S2 ≤

∞∑
ℓ=ℓ∗

t

e− j2(ℓ−ℓ∗t −1)
= e

−
1
j2

+ 1 + e− j2
+

∞∑
k=2

e
−

1
j2

≤ 3 +

∫
∞

1
e− j2ξ

dξ ≤ 3 +

√
π

j log j
.

rom (29) we conclude the bound C(t) ≤
C j
√

t
(1 + | log t |). □

. Applications in functional inequalities. overview

The estimates obtained in previous sections allow to analyze other functional inequalities to
urther investigate the properties of the diffusion process on a generalized diamond fractal. In
his section we formulate some of these and outline the main ideas to prove them.

.1. Ultracontractivity

Among the many formulations of this property that can be found in the literature we
onsider here that of [18, Chapter 2]: the semigroup {P F∞

t }t≥0 is contractive if it is a bounded
operator from L2(F∞, µ∞) to L∞(F∞) for all t > 0. A direct application of the estimate from

heorem 4.1 for short times leads to the desired statement.

heorem 6.1. There exists CN ,J > 0 such that

∥P F∞

t ∥2→∞ ≤ CN ,J t−
1
4 (1+d(ℓ∗

t )) (31)

for any 0 < t < 1.
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Similarly, Corollary 4.2 can be applied to deduce the result in the regular case, that reads

∥P F∞

t ∥2→∞ ≤ C j,n t−
1
4 (1+

log n
log j )

ith an explicit constant. Again, the spectral dimension dS = 1+
log n
log j appears in the exponent.

ince by symmetry ∥P F∞

t ∥1→∞ ≤ ∥P F∞

t ∥
2
2→∞

, we recover [23, Proposition 4.9] without using
Poincaré inequality.

6.2. Poincaré inequality

The ultracontractivity proved in Theorem 6.1 can be applied to adapt the argument from
[23, Proposition 4.8] and prove a global Poincaré inequality in the present general (non self-
similar) framework. Further inequalities of this type that require a notion of gradient, as for
instance the weak (1–1) Poincaré inequality studied in [27], are left to be the subject of future
investigations.

Theorem 6.2. A diamond fractal F∞ with parameters J and N satisfies the uniform global
Poincaré inequality∫

F∞

| f − f |
2

dµ∞ ≤ E F∞ ( f, f ) (32)

for any f ∈ F F∞ , where f =
1

2π

∫
F∞

f dµ∞.

Since the space (F∞, d∞) is compact and has finite measure, ultracontractivity implies
compactness of the semigroup P F∞

t on L p(F∞, µ∞) for any 1 ≤ p ≤ ∞ and t > 0 (see e.g.
[18, Theorem 2.1.5]). This can be used to deduce the existence of spectral gap [7, Theo-
rem A.6.4] and follow [23, Proposition 4.8] to obtain (32), where the constant one is the
inverse of the lowest non-zero eigenvalue. The latter eigenvalue coincides with the lowest
eigenvalue of the infinitesimal operator L F0 , that is the Laplacian on the circle F0; see e.g.
[26, Proposition 2.5].

6.3. Logarithmic Sobolev inequality

This inequality provides information about the (exponential) convergence to the equilibrium
of the diffusion process in terms of the entropy, given by the expression on the left hand side
of (33).

Theorem 6.3. For any non-negative f ∈ F F∞ ∩ L1(F∞, µ∞) ∩ L∞(F∞) it holds that
f 2 log f ∈ L1(F∞, µ∞) and there exists MN,J > 0 such that∫

F∞

f 2 log f 2 dµ∞ −

∫
F∞

f 2 dµ∞ log
(∫

F∞

f dµ∞

)
≤ MN,J E F∞ ( f, f ). (33)

The estimate in Theorem 4.1 and classical arguments [18, Theorem 2.2.3] provide a
defective Sobolev inequality as e.g. [7, Proposition 5.1.3], which by virtue of Theorem 6.2
implies the logarithmic Sobolev inequality.
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ppendix A

For completeness, this section briefly summarizes several facts from [2] that are mentioned
n some of the proofs, especially in that of Theorem 5.1. For each i ≥ 0, the space of square
ntegrable functions on Fi is decomposed into

L2(Fi , µi ) = L2
sym(Fi , µi ) ⊕ L2

sym⊥ (Fi , µi ),

here L2
sym(Fi , µi ) denotes the invariant subspace of L2(Fi , µi ) under the action of the sym-

metric group S(ni )2 ji . The projection operator Pi : C(Fi ) → L2
sym(Fi , µi ) ∩ C(Fi ) is defined as

Pi f (x) =

⎧⎪⎨⎪⎩
1
ni

ni∑
w=1

f (φi (x)w) if x ∈ Fi \ Bi ,

f (x) if x ∈ Bi

(A.1)

nd its orthogonal complement operator, P⊥

i : C(Fi ) → L2
sym⊥ (Fi , µi ) ∩ C(Fi ) by P⊥

i f (x) =

f (x) − Pi f (x). Analogous formal definitions of these operators apply to bounded Borel
functions. The projection Pi is related to the so-called integration over fibers in [16],
IDi : C(Fi ) → C(Fi−1) which in this case has the expression

Ii f (x) := IDi f (x) =
1
ni

ni∑
w=1

f (xw). (A.2)

hus, for any f ∈ C(Fi ), Pi f (x) = φ∗

i Ii f (x). With this notation, the semigroups {P Fi
t }t≥0

admit the decomposition

P Fi
t f (x) = P Fi−1

t (Ii f )(φi (x)) + P [0,L i ]D
t (P⊥

i f )|Iαx (φi0(x)), (A.3)

where Iαx denotes the branch in Fi where x belongs to.

ppendix B. Useful equalities and inequalities

We record the following identities relating the heat kernel on an interval and on the circle.
xplicit computations can be fairly reproduced with a mathematical computing software.

emma B.1. The heat kernel on the unit circle admits the representations

pF0
t (θ, θ̃ ) =

1
√

4π t

∑
k∈Z

e−
(θ−θ̃−2πk)2

4t =
1

2π
+

1
π

∑
k≥1

e−k2t cos(k(θ̃ − θ )). (B.1)

For any L > 0, the heat kernel on the interval [0, L] with Dirichlet boundary conditions admits
the representation

p[0,L]D
t (θ, θ̃ ) =

2
L

∞∑
k=1

e−
k2π2t

L2 sin
(kπθ

L

)
sin

(kπθ̃

L

)
. (B.2)

Both heat kernels are related through the identity

p[0,L]D
t (θ, θ̃ ) =

π

L

(
pF0

π2t/L2

(πθ

L
,
πθ̃

L

)
− pF0

π2t/L2

(πθ

L
, −

πθ̃

L

))
. (B.3)
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Lemma B.2. For any a > 0,
∞∑

k=1

e−ak2
≤ min

{ √
π

2
√

a
,

1
a

e−a
}
.

Proof. The series can be estimated in two different ways. On the one hand,
∞∑

k=1

e−ak2
≤

∫
∞

0
e−aξ2

dξ =

√
π

2
√

a
.

On the other hand, since ak2
≥ 2ak ≥ a + ak for any k ≥ 1,

∞∑
k=1

e−ak2
≤ e−a

∞∑
k=1

e−ak
≤ e−a

∫
∞

0
e−aξ dξ = e−a 1

a
. □

emma B.3. For any θ, θ̃ ∈ [0, 2π ) and t > 0,

|pF0
t (θ, θ̃ )| ≤

1
2π

+
1

√
4π t

.

In particular, |pF0
t (θ, θ̃ )| ≤

1
√

π t
for t ∈ (0, 1).

roof. In view of the second expression in (B.1),

|pF0
t (θ, θ̃ )| ≤

1
2π

+
1
π

∑
k≥1

e−k2t
≤

1
2π

+
1
π

∫
∞

0
e−ξ2t dξ =

1
2π

+
1

√
4π t

. □

emma B.4. For any a > 0,∫
∞

a

1
ξ 2 e−ξ2t dξ =

1
a

e−a2
−

√
π Erfc(a).

Moreover,∫
∞

a

1
ξ 2 e−ξ2t dξ =

1
a

−
√

π t + a · t −
a3t2

6
+

a5t3

30
−

a7t4

168
+ O(t5) as t → 0.
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