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Abstract

This paper presents a detailed analysis of the heat kernel on an (N x N)-parameter family of compact
metric measure spaces which do not satisfy the volume doubling property. In particular, uniform bounds
of the heat kernel, its Lipschitz continuity and the continuity of the corresponding heat semigroup are
studied; a specific example is presented revealing a logarithmic correction. The estimates are applied to
derive functional inequalities of interest in describing the convergence to equilibrium of the diffusion
process.
© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

The present paper investigates the behavior of intrinsic heat diffusion processes in general-
ized diamond fractals through the study of their associated heat kernel. These fractals constitute
a parametric family of compact metric measure spaces that arises as a generalization of a
hierarchical lattice model appearing in the physics and geometry literature [1,23,33]. With a
structure reminiscent of the scale irregular fractals treated in [11], they present some additional
non-standard geometric features that make them a relevant object of study. Specially because
diamond fractals happen to admit a heat kernel with a rather explicit expression [2], they are
most suitable to analyze non-standard model behaviors.

Due to their wide range of applications, there is an extensive literature concerning the
investigation of heat kernels from different points of view [19,20,22]. In this paper, special
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attention is paid to the rich interplay between analysis, probability and geometry that comes to
light through the study of functional inequalities and estimates related to them, see e.g. [7,31]
and references therein. One of the main reasons to investigate this type of question in the
particular setting of generalized diamond fractals is that these spaces, which may be described
via inverse limits of metric measure graphs, see Fig. 1, lack regularity properties such as volume
doubling or uniformly bounded degree, that are often assumed in the literature [9,16,17].

One of the aims of the paper is thus to set the starting point of a larger research program,
where diamond fractals may be considered as model spaces towards a classification of inverse
limit spaces in terms of their heat semigroup properties. On the one hand, this would contribute
to the existing research carried out by Cheeger—Kleiner from a more purely geometric point
of view in [15,16]. On the other hand, some of this analysis may transfer to direct limits of
metric measure graphs, so-called fractal quantum graphs [4].

In order to investigate how the measure-geometric properties of diamond fractals are
reflected in the analysis of the diffusion process, the Lipschitz continuity of the heat kernel
p, and the heat semigroup {P};>0 play a central role in this paper. Heat kernel estimates
were discussed in [23, Section 4] for a particular class of diamond fractals, however Lipschitz
estimates remained unexplored. Dealing with this rather non-standard setting makes much
of the general abstract theory not directly applicable, and being able to work with explicit
expressions becomes crucial to approach its analysis. As an example, on a (regular) diamond
fractal with parameters n and j, Corollary 4.2 provides the estimate
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with a constant C,, ; that can be explicitly bounded. Continuity estimates of the heat semigroup
are deeply connected to the geometry of the underlying space, displayed for instance in so-
called Bakry—Emery type curvature conditions. In the classical setting of a complete and
connected Riemmanian manifold, such a condition can be expressed as an inequality involving
the gradient of the semigroup that is known to be equivalent to a bound of the Ricci curvature
of the space [6,28,30]. In recent years, a significant amount of research has been carried out
to characterize curvature bounds in the context of Dirichlet spaces with sub-Gaussian heat
kernel estimates or not strictly local by means of weak versions of the original Bakry—Emery
condition, see e.g. [5,29,32].

This type of connection with curvature is approached in the present setting by investigating
the regularity of the heat semigroup and its relation to the so-called weak Barky—Emery
nonnegative curvature condition recently introduced in the framework of Dirichlet spaces with
sub-Gaussian heat kernel bounds [3]. The most concrete computable case presented in this
paper, see Theorem 5.6, reveals a logarithmic correction term
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which reflects the inhomogeneous nature of diamond fractals that allows the measure to be
very different at different points. This type of phenomenon is observed in diffusion processes
with multifractal structures, see e.g. [12].

The paper is organized as follows: Section 2 briefly reviews of the construction of general-
ized diamond fractals as inverse limits carried out in [2] and gives some basic metric properties.
Section 3 investigates potential theoretical aspects of the diffusion process and its relation with
the inverse limit structure in terms of the infinitesimal generator and the Dirichlet form. The
main results of the paper are concentrated in Sections 4 and 5. Theorem 4.1 provides a general
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Fig. 1. Approximations of a diamond fractal with j; =n| =3, j» =2,n =3.

uniform estimate of the heat kernel, whereas Theorems 4.3 and 5.1 deal with the Lipschitz
continuity of the heat kernel and the heat semigroup, respectively. To better illustrate their
time-dependence, the results are applied to a class of diamond fractals for which computations
become more tractable, cf. Theorem 5.6. Section 6 outlines further applications of the estimates
to study logarithmic Sobolev, ultracontractivity and Poincaré inequalities. It is noteworthy to
point out that generalized diamond fractals do not satisfy the elliptic Harnack inequality. This
was proved in [23] for a (self-similar) diamond fractal and is in general a direct consequence
of the fact these spaces are not metric doubling, see the recent result [13, Theorem 3.11] and
references therein.

2. Generalized diamond fractals

This section summarizes the construction and some key results concerning the natural
diffusion process associated with a generalized diamond fractal. We refer to [2] for more details.
Lemma 2.3 and Theorem 2.4 restate crucial facts about the heat semigroup and the heat kernel
that are essential to the analysis carried out subsequently.

2.1. Inverse limit construction

A diamond fractal arises from a sequence of metric measure graphs and is characterized
by two parameter sequences J = {j;}i>0 and N' = {n;};>0 that describe its construction, see
Fig. 1. Each sequence indicates, respectively, the number of new vertices added from one graph
to its next generation, and the number of additional edges given to each vertex.

Definition 2.1. Let 7 = {ji}¢0, N = {n¢}e>0 be sequences with jo = 1 = ng and j,, ng > 2
for all £ > 1. Set Jy = Ny = 1 and define for any 0 < k <i

i i
Jei =[] es Nei =[] ne-
=k =k
In particular, we write J; := Jy; and N; := Ny ;.

The inverse system associated with a diamond fractal is built upon a sequence of metric
measure spaces (F;, d;, jt;) that can be defined inductively in the following manner.
Definition 2.2. Let F denote the unit circle and ¥y := {0, 7w}, By := 9. For each i > 1, set
Y = {”J—k |0 <k <2J;, kmod j; 7-é0} and

Bi == Bi_1 U@ x [m]x---x[ni—1]) i>2,
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Fig. 2. Projective system structure.

where [n;] = '{l, co, ) ar_ld By = By U 9. For each i > 1, define the quotient F; :=
F_ x[n]/ ~, where xw ~ x’w’ if and only if x, x" € B;.

The set B; contains the identification (branching, junction) points that yield F; and satisfies
B; C F;_;, see marked dots in Fig. 1. As a metric measure graph, each F; can be regarded
as the union of branches (i-cells) isomorphic to intervals of length 7 /J; that suitably connect
the vertices in B;_;. The measure p; is obtained by redistributing the mass of each branch in
the previous level uniformly between its “successors”’. The corresponding (geodesic) distance
d; on F; coincides with the Euclidean metric on each branch.

Definition 2.2 can be used to produce a family of measurable mappings ¢i: F; — Fg,
0 < k <, such that the sequence {(F;, i;, {¢ix}r<i)}i>0 defines an inverse (projective) system
of measure spaces. We refer to [2, Section 2] for a detailed construction, summarized in Fig. 2.

A generalized diamond fractal of parameters J and N arises as the inverse (projective)
limit of the above-mentioned inverse system. The limit space (Fx, Uoo) 1S equipped with
measurable “projection mappings”, ®;: Fo, — Fj, that play a major role in the construction of
the associated diffusion process. To fully realize a diamond fractal as a metric measure space,
we discuss briefly the metric that naturally comes along with the inverse limit construction.

2.2. Metric remarks

By definition, the graphs F; are equipped with the geodesic metric d; induced by the
Euclidean on each edge. The following observation describes how metrics in different levels
are related by means of the mappings ¢;; and justifies the definition of the metric on the limit
space Fo,. For the ease of the notation, we write ¢; = ¢;i_1): F; — F;_ for each i > 1.

Lemma 2.1. Foranyi >1and x,y € F;,

(i) di—1(¢i(x), i (y)) < di(x, y) < di—1(¢i(x), p: (V) + 27/ Ji;

(i) di(Pik(x), dir(y)) < di(x, y) for any 0 < k < i;

(iii) there exist zy, ..., Zmy, € Bi with 1 < myy, < J; and such that
myy—1

di(x, y) = di(x, )+ Y di(ze, 2e41) + di(Emyy.» ¥).

=1

Proof. The length of a branch in level i is 7 /J;, hence (i) and (iii) follow by construction.
Applying the left hand side of (i) repeatedly and using the fact that ¢z = ¢@pr10---o;
proves (ii). O

As a direct consequence of Lemma 2.1, for any x, y € Fy, the sequence {d;(®;(x), $:(y))}i>o0
converges uniformly and we may thus consider

doo(x, y) := lim di(2i(x), P (y)) ey

as the natural metric that carries the inverse limit structure of Fi.
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Definition 2.3. Let J = {je}¢>0 and N' = {n,}s>0 be sequences with jo = nyp = 1 and
je.ne > 2. The generalized diamond fractal F, of parameters J and N is the inverse limit
of the system {(F;, d;, i, {@ik}k<i)}i>o. If je = j and ny = n for some j,n > 2 and all £ > 1,
we say that F, is regular.

Observe that (i) together with the fact that the mappings @; are surjective readily implies
the convergence in the pointed measured Gromov—Hausdorff sense of the inverse system; cf.
[16, Proposition 2.17].

Proposition 2.2. A generalized diamond fractal (Fy, doo, ILeo) IS the inverse limit and the limit
in the pointed measured Gromov—Hausdorff sense of {(F;, d;, [ti)}i>o0-

2.3. Diffusion process and heat kernel

This paragraph summarizes the results obtained in [2] whose application in the analysis of
the process and its heat kernel are the main object of study in the present paper. In order to
provide later on estimates that are expressible in a “classical” form, the parameter sequences
N = {n;}i>0 and J = {j;}i>o under consideration will satisfy the following weak condition.

2
Assumption 1. For any fixed k¥ > O, elim ng jge_JkHvH = 0. In particular, the series
—00
2
Y ook Nie Jk,gefjkﬂ-l converges and is bounded uniformly on k > 0.

The latter assumption is readily satisfied for regular sequences, see Corollary 4.2. Although
weaker conditions such as
lim N;e’jizt < 00 forO0<t<t, <1 2)
1—>00
provide the existence of a jointly continuous heat kernel [2, Remark 3] and general estimates
in terms of series, little about the convergence of those series can be obtained without further
assumptions, see Remark 4.1.
Several results in the subsequent sections will involve the L?-semigroup associated with the

diffusion processes on F;, i = 1,2, ..., 00, which we denote by {PtFi }i>0. These are related
to the mappings
BF: LA(Fj, i) — L*(Foos fhoo) 3)

f —  fo&;,
through the following intertwining property that is applied later on crucially.
Lemma 2.3 (/2, Lemma 3, Corollary 4]). The family of operators {P,FO"},ZQ is a strongly con-

tinuous Markov semigroup on L*(Fu, [so) that satisfies the strong Feller property. Moreover;
forany i >0,

Pregrf = Pl f @
holds for any f € L*(F;, u;).

The heat kernel associated with {P,Fi }i>0 turns out to be expressible in terms of the heat
kernel on the circle and on intervals [0, /J;] with Dirichlet boundary conditions, denoted
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by p,F O respectively p,[o‘”/ 1> Some standard estimates and facts about these are recorded

in Appendix B.

Theorem 2.4. The heat kernel associated with {P,Fm}lzo is given by

ixy

Pl y) = p( o), (1) + D Suy(r)Ne—y pl* ™" (B (x), Bo(y)) ©)
(=1

for any x,y € Fy, where iy, := max;>o{ D;(x), §;(y) belong to the same bundle} and

80 (1) n—1 if & (x), (y) same branch,
xy\) = ’
y —1 if @,-X)_ (%), @,-X_V (y) same bundle, different branch.

Proof. The recursive formula in [2, Theorem 2] can be rewritten as

Pl y) = pro(dio(x), dio())

+ 23 ONe 1 (P 3, (810000, $10(0) =P 3, ($1000), —gi0(2)),

=1
where iy, = maxo<;<;{¢ix(x), $ix(y) belong to the same bundle} and Si’g(n) is as d,,(n) with
Biiyy instead of @,-xy. Using (B.3) to rewrite pjgt in terms of p}o’”/ Jilp [2, Theorem 3] gives (5)
after noting ¢y (P;(x)) = P (x). O ‘

The results presented can be extended to further natural generalizations, however setting up
formulas may result in a fairly long exercise.

3. Infinitesimal generator and Dirichlet form

As a strongly continuous Markov semigroup on L*(F;, ;), each {PtFi b0, i =1,...,00
has an associated infinitesimal generator and a Dirichlet form, which we denote by Lr, and
(&Fi, FFi). In particular the Dirichlet form will appear in the functional inequalities discussed
in the last section.

3.1. Liftings and projections

The mappings that provided the intertwining relation between the semigroups {PtF°c }r>0 and
{P,F[ }t>0 from Lemma 2.3 will play a major role in the subsequent discussion. Their definition
readily implies the following useful properties, see e.g. [2, Proposition 2].

Proposition 3.1. Leti > 0 and 9} : L*(F;, i) = L*(Fs, thoo) be defined as in (3).

(i) For each i > 0, &7 is an isometry.
(ii) The space Cy = UizO D*C(F;) is dense in L*(Fos, hoo).

While & may be understood as a “lifting”, its left inverse is in fact a projection mapping.

Proposition 3.2. For any i > 0 let IT;: L>(Fao, fteo) — L*(F;, w;) denote the left inverse of
or. For any f € L*(Fso, fhoo),
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@ ML fl2er, uy < WP L20F o)

.. T )
(11) ”f”Lz(Foo,/,Loo) - lllfgo ||I]lf||L2(F,,;L,)

Proof. Apply Cauchy—Schwartz and Proposition 3.1. [J

In particular, (ii) in the latter proposition implies the convergence of {L>(F;, u;)}is0 to
L?*(Fs, 1too) in the sense of [26, Definition 2.5].

We finish this paragraph by analyzing the combined action of the lifting &}, the semigroup
{P,Fi }t>0 and the projection II; through the operator @;‘P,FIIY,-: L*(Fso, thoo) = L2(Fso, thoo).
This will be useful later, in particular to derive the Mosco convergence of the associated
Dirichlet forms.

Lemma 3.3. For any t > 0, the sequence of bounded operators { P} P,Fi]Yi},-Zo converges
strongly in L*(Fss, fhoo) 10 PIF“’. In particular, the convergence is uniform in any finite time
interval.

Proof. Convergence (independent of ) follows from Lemma 2.3, the contraction property of
P,F°° and Proposition 3.2. [

3.2. Infinitesimal generator

Since the finite approximations F; are metric graphs, for finite i > O the operator Ly, with
domain Dp, corresponds with the standard Laplacian studied in quantum graphs/cable systems;
see e.g. [8,14]. We now focus on properties of the generator L, and its domain Dy, that can
be obtained from the previous paragraph.

Theorem 3.4. For each i > 0, let Df, denote the domain of infinitesimal generator Ly,. The
space Do := ;> 9} Dy, is a core for (Lg,,, Dr,).
Proof. Let f € Dy. Then, f = &/h for some h € D, and i > 0. By Lemma 2.3,

P f = P gth = & P/'h € $'Dp. € Dy (6)

hence P,F°°: Dy — Dy. Proposition 3.1 implies that UiZl DFC*(F;), and therefore Dy, is
dense in L*(F, itoo). By virtue of [21, Section 1, Proposition 3.3] Dy is a core for the
infinitesimal generator of P,F“. ]

Applying Lemma 3.3 to [25, Theorem 2.5] one finds the relation between the lifting and
projection maps and the infinitesimal generator.

Corollary 3.5. For each f € Dy, there exists { f;}i=o with fi € Dr, such that
o f S and  BLpfi S L f
hold in L*(Fso, [hoo).

Remark 3.1. By [25, Theorem 2.5], the latter result or Lemma 3.3 yields an analogous
statement for the resolvent that appears in [10, Theorem 4.3].
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3.3. Dirichlet form

The Dirichlet form associated with {P,F *};>0 1s given by

!
EF(f, )= lll_f)l(l) ?(f — P £, F) 12 o)
FFe = {f € L*(Fuo, ltoo) | E7°(f, f) exists and is finite},

see e. g. [7, Definition 1.7.1]. In this paragraph we prove the generalized Mosco convergence
of the finite level Dirichlet forms to (£, F¥>). For a definition of this convergence we refer
the reader e.g. to [26, Definition 2.11].

Theorem 3.6. For the Dirichlet form (7, FF<) associated with {P,Fw},zo it holds that

(i) (Efee, FFe) is the generalized Mosco limit of {(E"i, FFi)}i=o,

(ii) Dy is a core for (EF=, FF).

(iii) For any i > 1 and h € D,, E™(®}h, & h) = EFi(h, h);

(iv) For any f € F> there is {fi}i=o C Do such that EF=(f, f) = lim; o E (fi, fi);
(v) (EFee, FFY is local and regular.

Proof. (i) follows from Lemma 3.3 and [25, Theorem 2.5] while (ii) from Theorem 3.4. Since
9*h € Dy, Lemma 2.3 implies

1 1 .

BT PSS B D) 2y = (= PR ) 2
and letting t — 0 we obtain (iii). By density, (i) and (ii) yield (iv) and since Cy € FFNC(F,),
the regularity of (£, FF=) follows from (ii). The form is also local because all (£Fi, FFi)
are. [

4. Estimates for the heat kernel

The expression of the heat kernel in (5) will allow to obtain global estimates of the
heat kernel and explicit bounds for its Lipschitz continuity. The estimates obtained in
[23, Theorem 4.7] for regular diamonds with n = j = 2 exploited the self-similarity of the
space, which we avoid here. Although the (joint) continuity of p,F * may be derived using
indirect arguments [2,23], the new estimates in Theorems 4.1 and 4.3 give a direct proof and
also information about the dependence of the bounds on the parameters.

4.1. Uniform heat kernel bounds

The following estimates will be applied in later sections to study related functional
inequalities.

Theorem 4.1. There exists Cpr,7 > 0 such that for any t > 0,

1 1 "
b2 4 Cp g f%(1+d(z,))’ %)

2r  a4x

-1/2 F
——=1""2 < |Ip/*
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log N _
where d(£}) = l(c))gglji 11 and £} = inf{f > 1: J[z < t}. In particular,
-
712 < pl e < Cng 72 for 1 e (0, 1), ®

Vamr
The exponent on the right hand side of (8) can be identified in the regular case with

the spectral dimension of F, cf. Corollary 4.2, which classically describes the short-time
asymptotic behavior of the trace of the heat semigroup.

Proof of Theorem 4.1. Fix ¢+ > 0. With the convention Ny = 1, the expression in (5),
Lemmas B.1 and B.2 yield
2 )
pI= (e, y) < pl(Bo@). Bo(y)) + —= ZNZ min{ 1, e ei) ©

for any x, y € Fs. An upper bound of the series in (9) is
o1

00 _12
= (10)
J_; J—me = S
where ¢ :=inf{¢ > 1: J[z < t}. For the first term, one can bound S; by
=2 o0
Ng;f_1<1 + 5 ng --n;;}_l) < Np Y 25 =2Npg . (11)
=1 k=0

For the second term in (10), using the notation from Definition 2.1, and the fact that J[*z
t

t < J3% ., we have

=1
72
_ 0 g2
I 72 Jl*t 00 2
§ : 4 o § : £ +1,e
Ng *_1 5 1 f N[*_] Ng* € L (12)
Ne* 1 et )1/2 ! 2

o=t e=eF

The latter series converges and can be bounded independently of ¢+ by Assumption 1. Thus,
there is Car, 7 > O such that

>
Si+ 8 =CngNg1 =Cn gy, | 2D < Cpp 124D,

log N,
where d(£}) = ]Zgg JZ‘*". The last inequality follows from the choice of £;. Applying
Lemma B.3 to the ﬁrstt term of (9) and the previous estimates to the second term yield the

upper bound in (7). The lower bound readily follows from the expression (5) and (B.1). U

Remark 4.1. Replacing Assumption 1 by (2), one concludes from (10) estimates of the type
Sy <€D and Sy < G 24D

for some C; > 0 that bounds the series in (12). In the same way as before, these would now
provide

I T , )
<0, y) < T «/E + (CL; +CC),

without further information about the dependence on ¢ of the constant C;.
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Regular diamond fractals

Since n; = n and j; = j for all i > 1, Assumption | can be checked in this case by a direct
computation (here we use mathematica). For any k& > 0,

> n o n 1 1 logn
an_kHjl_ke_jZ(LM <- +/ nsjée_jzsdé =—-+ .F(—(l + i)),
— e 0 e 2logj \2 log j

where for the latter integral one does the change of variables n = j¢. Similarly, we can compute
explicitly the bound in (12) to get

> n o 2 n

_ _j20e—k) _ 26
E:nlkﬂej §_+/ née de = — +
=k 0

1 F(logn>
e e 2logj \2logj/

Since 11°g—N‘3 = 198" for all £ > 1, Theorem 4.1 provides the following global estimate of the
og Jy log j
sup-norm.

Corollary 4.2. On a regular diamond fractal with parameters n, j > 2 there exists C, ; > 0
such that

1 1 1 1 logn
T 2 P < o 2 Gy TR, (13)
T

2r  4x

Note that dg =1 + igi’; is the spectral dimension of F, [24, Theorem A.2] and coincides

with the Hausdorff dimension dy, in agreement with the observation that the walk dimension

of a diamond fractal is d,, = 25—5” =2.

4.2. Continuity estimates

The recursive nature of the underlying space is also reflected in the proof of the continuity of
the heat kernel. In particular, the case i = 1 serves both as guideline and as first induction step.
The different pair-point configurations for that level, summarized in Fig. 3, will be analyzed
by means of standard estimates recorded in Appendix B.

Theorem 4.3. For anyt > 0, the heat kernel p,F ®: FooX Fso — [0, 00) is Lipschitz continuous
in (Foo, ds) and satisfies for any x, yi, y2 € Foo

1 *
IpF>(x, y1) = pf>(x, y2)l < Ct7' 729D d o (1, y2), (14)
log Ny
where d(£}) = fy%’ £ =1inf{{ > 1: J[z < t} and some constant C > 0 depending on

the parameter sequences N, J.

Note that, for short times, the estimate (14) is better than what could be obtained from the
continuity of the semigroup proved in Theorem 5.1, and the uniform bound from Theorem 2.4.

Proof. Since p,Fi (x, y) converges uniformly to p,F *(x,y), see [2, Remark 8], the latter is
continuous and its Lipschitz constant Cp(¢#) may be bounded by taking the limit i — oo in
Proposition 4.4, which leads to

2 & 1 2
c,i) <= N(ﬂ —) =8 15
L<)_M§@ Pt (15)
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(I

) y1 and y belong to bundles (b) y1 and y2 belong different
dlfferent than the one of x. branches in the bundle of x.

£

) Both y; and ys belong to the (d) y1 and ya belong to different bun-
same branch as . dles, and y9 to the bundle of x.

.

VAN
F.0
S

Fig. 3. Pair-point configurations.

To estimate this series, we decompose (15) into

-1

1 1
ZNZ(]52+ 2t) e i +ZN5(JZ + 2t) el =8+ 5.

)‘
Analogous computations to those in (11) allow us to bound the first term by

-1 -1 -1

It 3 3

+! er—t-1
§Nzeé <—Nz*1§ E+,€*152Nz*152( ) < N(Z*l

For the second, using J3? <t< Jelz_l we get
t t

S <2 3 NJ2te P < 2N 3 Nes o J% o i (16)
2_2IZ eJple =3 e;*—lz el g€ .
o=t =t}
N * _
The latter series is bounded independently of # by Assumption 1. Setting d({}) = loi th L
-1

the two previous estimates yield (14). U

Proposition 4.4. For any t > 0O, the heat kernel p,Fi is Lipschitz continuous in (F;, d;) and

, . 2 o 1\ _p
Ip{ ey = PGyl = = Y N9+ 5 )e P i, v (a7)
£=0
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This result is proved by induction. To ease the notation and to remain consistent with [2],

we set 0, = ¢;o(x) for x € F; and 6, := Pp(x) for x € Fuo.

Proposition 4.5. For each t > 0, the heat kernel p,F Uis Lipschitz continuous in (Fy, d,) and

2 1\ _ . I\ _2
Pl = pl ol = Z[ (14 5 )e +m (G + 5 )e T i .

Proof. By virtue of Lemma 2.1(iii) and the triangle inequality, it is enough to analyze the
basic cases shown in Figs. 3(a) through 3(c).
(a) In view of the expression of ptF '(x, ¥), Lemmas B.1 and 2.1 we have (recall 8, := ¢;o(x))

1

o0
2
1P, 1) = pi @, )l = 1926y, 6y) — P06y, 6,,)] < - > e k|, — Oy,
k=1

1 o0
< —(e_’ —i—/ ée‘gz’dé)dﬂ)’h)’z)
s 1

1 1
- (1 —) ~d\(y1, y2).
n( + 5 )¢ 1(y1, ¥2)
(b) In this case, writing
P @y = oG, )| < 1P 0r, 0y,) — 0O, 6y,)]
+ 1pi PO, 0,) = PP (O, 0y,)]
we can estimate the first term as in (i), and the second by

sn(“700) (10| < (22 gkeszff)do(asl(yl), #1020

00 K22
2 R
JR— e 1
Ly

k

2/, _2 ® a0 2/, 2 )
< ;(lee "’+/l Jjike 5’1’d€)d|(y1,yz)= ;(lee e ’”)dl(yl,yz).

(c) Fig. 3(c) reduces to the previous case with an extra factor (n; — 1) in the second
summand. [

Proposition 4.5 serves both as proof schema and first step to show the corresponding estimate
for the Lipschitz constant in a generic finite level.

Proof of Proposition 4.4. By induction, the case i = 1 is Proposition 4.5. By virtue of the
triangle inequality it suffices to prove (17) for any fixed t > 0, x € F; and y;, y» such that
(x, y1) and (x, y2) have the same pair-point configuration. Otherwise, decompose the path y; to
y2 as in Fig. 3(d). Let us thus assume that the Lipschitz constant for the (i — 1)approximation,
Cg_l)(t), admits the bound (17).

(1) If (x,y;) and (x, y;) are both as in Fig. 3(a), the expression of the heat kernel and
Lemma 2.1 yield

1Pl e, y) = pl e, vl = Ipr = (i), di(v)) — pr (i (%), Bi ()]
< Y V)di (g, 9i(2)) < CY V()i (o, o).
@ii) If (x, y1) and (x, y,) are as in Fig. 3(b), then

1P, y0) = pi e, vl < 1pr N (i), di(0)) — i (i (x), i ()]
+ Ny | plEP @6, 0,) — pi®tiIP 6, 6,,)].



P. Alonso Ruiz / Stochastic Processes and their Applications 131 (2021) 51-72 63

The first term can be estimated as in (i). For the second term, following the proof of
Proposition 4.5 (substituting L, by L;) and Lemma 2.1 yield

) ) 2 2 1
P10, 6,) = IO 0] = = (e 4 e )dion. 3.

(iii) The case (x, y;) and (x, y;) both as in Fig. 3(c) reduces to the previous one with an extra
factor (n; — 1).
Putting all estimates together and using the induction hypothesis we obtain

: : i 2 2 1 »
1P, yi) = piix, yo)l < (CE D) + ;Ni(-]ize s 2¢ Ii [)>di(y1, ¥2)
2 ¢ 1 >
= (— Z Ng(Jl2 + —)eijﬁt>di(y1, ). O
= 2t

Remark 4.2. The Lipschitz constant of Theorem 4.3 is bounded by the series (15), which
converges under the weaker condition (2). However, at this level of generality little can be said
about its behavior as a function of ¢.

5. Continuity estimates of the heat semigroup

The aim of this section is to study the regularity of the heat semigroup {P,FOO }i>0 as a means
to describe the geometry of Fo, along the lines of the weak Barky—Emery curvature condition
from [3]. This condition reads

doo(x, y)©
(B 0 — B fool = €2 g (18)

for all f € L°(Feo, [too), Where k > 0 denotes a (curvature) parameter and d,, > 0
the walk dimension of the space. We refer to [3] for further details and functional analytic
consequences in the context of Dirichlet spaces with sub-Gaussian heat kernel estimates.
Proposition 5.5 shows that the condition (18) is satisfied in each approximation level with
k = 1 and d,, = 2. While the latter is expected because each F; is a one-dimensional object, the
situation in the limit is less clear. The estimate in Theorem 5.1 reveals in concrete computations,
cf. Theorem 5.6, a logarithmic correction that is also observed in diffusion processes with
multifractal structures, see e.g. [12]. Whether this time dependence is optimal remains an open
question.

Theorem 5.1. For any t > 0, there exists a constant C > 0 such that

C
|Pf> f(x) — P[> f(y)l < _t(l +£7) doo(x, Y) 1 f lloo> (19)
forany f € L®(Fy, lhoo) and x,y € Fu, where £ = inf{f > 1: J[z <t}

The proof of Theorem 5.1 is presented in detail at the end of the section. Here, the
“chain property” from Lemma 2.1(iii) turns out crucial to reduce the analysis of pair-point
configurations to the case of pairs that belong to the same branch. We continue using the
notation 6, = ¢;o(x) for any x € F;, i > 1 and 6, := Py(x) for x € F.

Remark 5.1. In view of the estimate (28), the constant C seems to be independent of the
parameter sequence A that gives the number of copies (“parallel universes”, as named in [10])
of a level that give rise to the next.
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5.1. Key lemma

The following estimate is applied several times throughout the steps that yield the main
result. To be consistent with the notation in [2], we write L; := 7 /J;.

Lemma 5.2. Leti > 0. Forany x,y € F; and t > 0,

Li 2 1 2
FO g : . —Jil _
/O Ji Ip Jip, Jibx) — Jizt(J,p, Ji0)ldp < mm{\/H (J + 1) ) }|9x Oyl.

(20)
In view of (B.3), Lemma 5.2 readily implies another useful inequality.
Corollary 5.3. Leti > 1. For any f € L®(F;),

L;
/ (P (0, 6,) — pi*H 1P (p, 6,)) f(0)l dp
0

2 (g4 ) 6, — 6
N Gy 7 Gl LT MO

Proof of Lemma 5.2. The strategy consists in estimating the left hand side of (20) using both
representations of the heat kernel p,F (x, y) given in (B.1).

< 2min{

(a) Using the first representation in (B.1), the triangle inequality yields

(J; p—J;0x —27k)? _ (ip—Jify—2mk)?

2, 2
Vamtl ::/ ’ E ( i —e it )‘dp
keZ
(J; p—J;6x —2mk)?  (jp=diby =27k

Li - 2 2
S/ }:’e 42 _e a1t )d,o
0

keZ
fLi
0
(Jj p—JiOx —2mk) Uip—Jiby 2mk)

 Uip=di0)? Uip=di0y)*
Li 2 2
+/ § ‘e 4Jl.z —e 4Jl.t ‘d,O
0

2 2
e wiooo 42 ‘d,o
k>1

L (J; p—J;Ox +27k)2 (J; p—J; 0y +27k)?
- 2 - 2
+/ E ‘e it —e it ‘dp::11+12+13.
0 k=1

Without loss of generality, let us assume that 6, < 6,. Then,

ip—J; e

0 _ 0
Y Jip = Jip J,p Y / / lo — pl —top?
dp (d < dpd
_/ ]/0 A plac= [ | pdp
Oy 0} _ a2
6 s 2
Oy Li—p*N\
=/ <1—e 4t)d,o+/ (1—e* @ )dp§2|9y—9x|.
Oy Ox
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Moreover, recall that 6, 6, € [0, L;) for any x, y € F;. Hence, for any k > 1, p € [0, 6,] and
o € [0, L;), the quantity p — p — 2kL; < L; — 2kL; is nonpositive. Thus,

Jip—=Jip— an)

I < / / 2(Jip — Jip — Zﬂk)e_Tdﬁ’dp
o, 4J;t
ov i — T,
S/ / lp — an/Jl (p=p=2r k/ 3 djdp
o, 21

k>1

6, o0 ~ _ 2 0 L; 2
Y —p— (p=p=£1" 1 o[ b)

5/ / / _pzpzs Se‘pfh dpdp = — / = dpdp
. Jo Jo 2t L;i Jo, Jo

=< |9x - eyl

Analogously, because p — p +2kL; > L; +2kL; > 0 for any k > 1, we obtain

Oy 2kL L m)
b= // P p+ S A dp < 10, — 6.
Ox

Adding up these estimates leads to I < \/4;?(11 + L+ L) = J%Wx —0,l.
(b) Using the second representation of er °(x,y)in (B.1) and L; = 7/ J;,

— _f )Z I (cos(k Jy (B — p)) — cos(kJi(B, —p)))‘

k>1

< —/ 3 e costk (B, — p) — cos(kJi(6, — p))ldp

k>1
5—/ D e —K2I2 116, —9|d,0——|9 0,1y eIy,
k>1 k>1

IA

1
6. — 6,1 (Jie ™ + / Jge g ) = e (g + )16, — 6yl
1 2J;t

The assertion now follows from (a) and (b). [

5.2. First approximation level

The weak Bakry—Emery condition (18) with k = 1 and d,, = 2 is obtained on each finite
approximation F; by an inductive argument and this paragraph is devoted to the first induction
step. Any notation appearing in the proof for the first time follows [2] and is briefly recalled
in Appendix A.

Proposition 5.4. Foranyt >0, f € L*(F)) and x,y € F},
1P/ F ) — PP Ol < CLt) di (2, ) f oo 1)

where

Cl(t)fz(min \/i_t,(ur%)ef}jumin{\/i_t (,1+%) *f'ff}). (22)
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Proof. By virtue of the triangle inequality and [2, Proposition 3], see also (A.3), we have
(recall 0, = ¢;p(x))

1P 0 — PP OO < 1P )60 — PO )6,
+ PP @ ), 00) — PP @ )1, 0y)]
= Dy + D;. (23)

A

Let us assume first that x, y € F; belong to the same branch , in particular o, = ct,. Applying
Lemma 5.2 with Ly =27 and Jy =1,

D,

IA

Lo F
||Ilf||oo/ P70, 6,) — p(0.6,) do
0

2 1
i (14 5 )e il = 61
min{ ——. (145, )¢ I Il = 6]
By virtue of Corollary 5.3,

Dy = | PP L £y (60 — PP F) NI, 6))

IA

L,
< f L o O] 1P E2(0, 6,) — pOL12(9, 6, do
0

1 2
(74 377 )¢ NP Flclo =0

< 2min

< 2min

Na
= (n+ g ) i,

Putting both estimates together and noticing that d(x,y) = do(¢1(x), $1(y)) = 160, — 0]
because x and y belong to the same branch yields (21) with C;(¢) as in (21). If x and y
belong to different branches, there exists by construction a sequence xi,...,zy € B; with
1 < N < J; such that di(x,y) = di(x,z1) + Z?’:_ll di(x¢, x¢+1) + di(zn, ¥). Each pair of
points in the summands belongs to the same branch, hence applying the triangle inequality
and estimating each term as in the previous case proves again (21). U

5.3. Generic approximation level

The recursive nature of the construction of F; also underlies the proof of the weak
Bakry—Emery condition for an arbitrary level.

Proposition 5.5. Leti > 1. Foranyt >0, f € L*(F;) and x,y € F;,

F _ phi o L\ o
P f) - P, f(y)lfzgmm{ )¢ i I 24)

vl

Proof. Let i > 2. With the notation from (A.2), applying [2, Proposition 3], see also (A.2),
and the triangle inequality we have

P o) =PI FOI < 1P @ f)@i () — PN F )i ()
+| PP @), <9x) = PP )y, (0))]
= D;1+ D;j>. (25)

A
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To estimate these terms, assume first that x, y € F; belong to the same branch. By hypothesis
of induction, there is C;_(t) > 0 such that

Di1 < CioiO flloo di—1(@i(x), ¢i(¥)) = Ci—1(®) di (x, Y| f lloo>

where the last equality is due to the fact that for points in the same branch
di(x, y) = di—1(9i(x), $i(y)) = |6 — 6, (26)
In addition, also o, = o, hence Corollary 5.3 and (26) yield

= [P"HI0 P )] 00 — PRI @ £ 0))]

Ly
< f I(PL o P26, 6,) — pl>* 17260, 6,)] db
0

Ji—t (% +%) 1 loedi(x, ).

Putting both estimates together we obtain for x and y in the same branch

25;) o t])”f”ood (x, ). (27)

< 2min{

Plifx)— Pl < (Ci, t 2m1n{ (
[P f(x) AAG)] 1)+ \/_

If x, y € F; belong to different branches, we find z;, ...,z Nyy € Bi that connect both branches
so that di(x,y) = di(x,z1) + di(z1,22) + -+ + di(zn,,, ), cf. Lemma 2.1(iii). Regarding
points in each pair as belonging to the same branch, the triangle inequality and the previous
computations for each of the terms ield (27). Finally, (24) is obtained by solving the recursive

inequality C;(1) < C;—1(1) + 2 min -, (J + 2,l) ’fzf} with Cy(r) as in (22). O
5.4. Continuity estimates in the limit. proof of Theorem 5.1

We are now ready to apply Proposition 5.5 to obtain the estimate (19). Once more we see the
important role that the intertwining property (4) plays in order to “pass to the limit”. By virtue
of Theorem 3.6, it suffices to prove the statement for f € Cp = ;.o ¢/ C(F;), i.e. f = ho®;
for some i > 1 and h € C(F;). Let x, y € Fy. By virtue of Lemma 2.3 and Proposition 5.5,

|PF= f(x) — PI* f(y)| = |PF* &Fh(x) — PF> &7h(y)| = |8} P h(x) — & P h(y)|
= [P h(®,(x)) — PITR(B;(y)| < Ci(1) di(Bi(x), Bi(»)) 1 lloo-
Letting i — oo, cf. (1), yields | P> f(x) — Pf* f(y)| < C(t) ds(x, ¥) || flloo With

cw) < 2§min{\/%, (Je n %ﬂ)e"@z’]. (28)

To estimate the series on the right hand side, we notice that J[*z <t< J[f_
. . t t
series into the three terms
-1

, and split the

2 20% 1 1
Jte 't + Jit = L 4§+ —8,. (29
5wt fz R L e s e @

t=t;

For the first series, analogous arguments as (16) give

2 & 2 72 > , =X > , =i
S| = Jg[,_lx/;e 4 E Jp et < E Jpe G < E NesJ 5 e e
1. . r YLy,

0=tf 0=tf o=0F
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which is uniformly bounded and independent of ¢ by Assumption 1. The second series is
Ik e » . . .

bounded by Zie;‘ e “*1t which is finite by definition of J, and in particular independent

of t. The claim now follows from (28) and (29).

5.5. Regular case

As far as computations allow for regular diamond fractals, the estimates obtained in
Proposition 5.5 and Theorem 5.1 provide local continuity estimates with a logarithmic
correction.

Theorem 5.6. For a regular diamond fractal Fy, with parameters n, j > 2, there exists
C; > 0 such that

C:
[P ) = P> f(y)l < 71;(1 + [log t)dso(x, Y flloo (30)

forany f € L®°(Fy), x,y € Fsoand 0 <t < 1.

Proof. To simplify constants which do not de{end on J;,, Ny, or t, we will estimate the

quantity appearing in (28) by 222:0 min{%, Jo + L)e”éz’}. Since J; = j¢ we have

Jot

JTH <t < jTAED and £ — 1 < |l

< |35 | < ¢;. Thus,
og j

o0 [e.¢]
. ae-ti- 4 a2
Si<) jote 1)§1+j+f e =14+ (1/2)
0

J :
e=e 2log j
and
> DO —p* 1 ) © 00 .
Sy e T = R pe 1Y e §3+/ e Fag <34 Y
=t k=2 I jlogj

From (29) we conclude the bound C(t) < %(1 + |logt]). O

6. Applications in functional inequalities. overview

The estimates obtained in previous sections allow to analyze other functional inequalities to
further investigate the properties of the diffusion process on a generalized diamond fractal. In
this section we formulate some of these and outline the main ideas to prove them.

6.1. Ultracontractivity

Among the many formulations of this property that can be found in the literature we
consider here that of [18, Chapter 2]: the semigroup {P,F *};>0 18 contractive if it is a bounded
operator from L2(Fx, floo) to L®(Fy,) for all £ > 0. A direct application of the estimate from
Theorem 4.1 for short times leads to the desired statement.

Theorem 6.1. There exists Cpr,7 > 0 such that
1P llarse < o £~ #0F4ED) 31)

forany 0 <t < 1.
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Similarly, Corollary 4.2 can be applied to deduce the result in the regular case, that reads

1 logn
PPy e < Cjt ¥ Tox)

logn
log j
Since by symmetry || P,F s = P,F o ||%_)OO, we recover [23, Proposition 4.9] without using

Poincaré inequality.

with an explicit constant. Again, the spectral dimension dg = 1+ appears in the exponent.

6.2. Poincaré inequality

The ultracontractivity proved in Theorem 6.1 can be applied to adapt the argument from
[23, Proposition 4.8] and prove a global Poincaré inequality in the present general (non self-
similar) framework. Further inequalities of this type that require a notion of gradient, as for
instance the weak (1-1) Poincaré inequality studied in [27], are left to be the subject of future
investigations.

Theorem 6.2. A diamond fractal Fy, with parameters J and N satisfies the uniform global
Poincaré inequality

/F 1f = Flduss < E(F. f) (32)

for any f € FF=, where f = %IFOQ fdis.

Since the space (F,ds) iS compact and has finite measure, ultracontractivity implies
compactness of the semigroup P on LP(Fy, pteo) for any 1 < p < oo andt > 0 (see e.g.
[18, Theorem 2.1.5]). This can be used to deduce the existence of spectral gap [7, Theo-
rem A.6.4] and follow [23, Proposition 4.8] to obtain (32), where the constant one is the
inverse of the lowest non-zero eigenvalue. The latter eigenvalue coincides with the lowest
eigenvalue of the infinitesimal operator Lp,, that is the Laplacian on the circle Fp; see e.g.
[26, Proposition 2.5].

6.3. Logarithmic Sobolev inequality

This inequality provides information about the (exponential) convergence to the equilibrium
of the diffusion process in terms of the entropy, given by the expression on the left hand side
of (33).

Theorem 6.3. For any non-negative f € FF~ N LW (Fy, ttoo) N L®(Fx) it holds that
f2log f € L' (Fuo, ltoo) and there exists Myr 7 > 0 such that

/F 08 Pdpns— [ Pustog( [ Fdns) < Mag E( 1), (33)

The estimate in Theorem 4.1 and classical arguments [18, Theorem 2.2.3] provide a
defective Sobolev inequality as e.g. [7, Proposition 5.1.3], which by virtue of Theorem 6.2
implies the logarithmic Sobolev inequality.
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Appendix A

For completeness, this section briefly summarizes several facts from [2] that are mentioned
in some of the proofs, especially in that of Theorem 5.1. For each i > 0, the space of square
integrable functions on F; is decomposed into

LA(Fi, 1) = Ly (Fiy 1) @ L2 1 (Fiy o),

where L2, (F;, u;) denotes the invariant subspace of L?(F;, u;) under the action of the sym-

sym
metric group S(n;)?/i. The projection operator P;: C(F;) — L2,_(F;, ;) N C(F;) is defined as

sym
m Zf(qbi(x)w) ifxeF\ B,

w=1

f(x) if x € B;

and its orthogonal complement operator, Pi-: C(F;) — LfymL(Fi, wi) N C(F;) by P f(x) =
f(x) — P; f(x). Analogous formal definitions of these operators apply to bounded Borel
functions. The projection P; is related to the so-called integration over fibers in [16],
Ip,: C(F;) — C(F;_) which in this case has the expression

Pif(x) = (A.])

1
L f(x) =1Ip, f(x) = P Z Sxw). (A2)

Thus, for any f € C(F;), Pi f(x) = ¢/ f(x). With this notation, the semigroups {P,Fi hi>0
admit the decomposition
P f(x) = P/UT @i () + PHP R, (Gi0), (A3)

where I, denotes the branch in F; where x belongs to.

Appendix B. Useful equalities and inequalities

We record the following identities relating the heat kernel on an interval and on the circle.
Explicit computations can be fairly reproduced with a mathematical computing software.

Lemma B.1. The heat kernel on the unit circle admits the representations

(0=f-21k) 2nm2 1

=t Ze*k " cos(k(d — 0)). (B.1)
keZ k>1

P2, 6) =

For any L > 0, the heat kernel on the interval [0, L] with Dirichlet boundary conditions admits
the representation

piHP6,6) = Ze LZ’ sm( ne)sin(l%é) (B.2)

Both heat kernels are related through the identity

0,L ~ T F 47 7'1.'@~ F b 47 JTé
P g, §) = Z( 3,/Lz( == ) - pﬂgl/m(T, _T>)‘ (B.3)
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Lemma B.2. For any a > 0,

o0

1
Ze‘”kz < min{ Nl R —e_“}.
— 2Ja’ a

Proof. The series can be estimated in two different ways. On the one hand,

Zefa]ﬂ < /oo —at? déj 2‘{/_7[_

k=1 0

On the other hand, since ak? > 2ak > a + ak for any k > 1,

a

00 00 00 1
—ak? _ _ _ _ _
Zeak ge“Ze”kSe"f e ¥de =e—. O

k=1 k=1 0

Lemma B.3. For any 6, e [0,27) and t > O,

1
«/4nt

1
P00, 0) < — -+

In particular, |ptF°(9, 0~)| < \/% fort € (0, 1).

Proof. In view of the second expression in (B.1),

k2 1 o 7$2t 1 1
1pF0©,0)] < ot Z +; e SldE = — + . O
0

k>1 2z At

Lemma B.4. For any a > 0,

|
e e = —e — T Erfe(a).

a § a
Moreover,

% s 32 A8 J

e td ———«/ t——F+ — — —— 4+ 0O(t t— 0.

= d Ptat— =t~ T O@)  as
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