
Enhancing Blind Interference Alignment with
Reinforcement Learning

Simon Begashaw, Danh H. Nguyen, and Kapil R. Dandekar
Drexel University, Philadelphia, PA. Email: {sgb42, dnguyen, dandekar}@drexel.edu

Abstract—Blind interference alignment (IA) is a signaling
scheme that suppresses interference in multi-user systems, with-
out the knowledge of channel state information at the transmitter
(CSIT). The key to performing IA without CSIT is the use
of reconfigurable antennas (RA) that are capable of dynami-
cally switching among a fixed number of radiation patterns to
introduce artificial fluctuations in the channel. The radiation
patterns used to realize blind IA have significant impacts on the
overall performance of the system. Hence, an intelligent antenna
pattern selection strategy is a crucial component of any practical
RA-based blind IA implementation. In this work, we propose
two reinforcement learning algorithms for selecting the optimal
antenna configuration for blind IA. Furthermore, we evaluate
the performance of these antenna mode selection techniques
using over the air measurements on our software defined radio
implementation of blind IA using a Reconfigurable Alford Loop
Antenna that is capable of generating multiple radiation patterns.
We quantify the performance of the algorithms in terms of
received signal to interference and noise ratio (SINR) and show
that our learning-based mode selection strategies are capable of
choosing the highest performing mode 90% of the time and attain
over 2 dB gain in SINR over other selection approaches.

I. INTRODUCTION

Due to the increasing size and density of modern wireless
networks, interference has become a crucial problem that
limits the capacity of multi-user systems. First proposed in
[1], interference alignment (IA) has emerged as a promising
technique for mitigating multi-user interference and achieving
significant increase in capacity over traditional orthogonal
schemes. Although the capacity benefits of IA are substantial,
the assumption of accurate, and sometimes global, channel state
information at the transmitter (CSIT) fails in practice due to
feedback delay and large overhead requirements [2].

To overcome these challenges, blind interference alignment,
which does not require CSIT, was first proposed in [3] and later
expanded upon in [4]. The blind IA scheme proposed in this
paper exploits the staggered block fading nature of the wireless
channel for each link to perform alignment. In [5], [6], staggered
antenna state switching with reconfigurable antennas (RA) was
proposed as a way to artificially create temporal correlations,
enabling blind interference alignment. Since the RA-based
blind IA scheme was first proposed, a number of papers have
come out to validate and expand upon the scheme. However,
most of these papers have been theoretical or simulation
based and there are only a few experimental evaluations [7]–
[10] of blind IA schemes in the literature. The first practical
implementation of blind IA, described in [7], compares the
achieved throughput and BER performance to TDMA for a

two user X channel. Another experimental evaluation that
compares a blind IA scheme against Linear Zero Forcing
Beamforming (LZBF) is presented in [8]. Both of these studies
simulate the behavior of RA using two spatially separated
conventional antennas rather than actually employing RA in
their experiments. In [9], the performance of blind IA using
ESPAR antennas is investigated and the authors show improved
performance in terms of ergodic sum rate and BER. This work
also relies on simulation of the antenna and not measurements
obtained using the ESPAR antenna. Furthermore, the authors
do not address how the beams are selected in their system.
In our previous work [10], we provided the first experimental
evaluation of a RA system for blind IA.
Since the RA-based blind IA scheme was first proposed

in [3], [5], the focus has been on using RA to generate channel
fluctuations, with no attention paid to the specific antenna
modes selected by the RA and how those modes may impact
performance. Consequently, all of the existing literature in
blind IA has followed the same model and not considered
the antenna modes that are selected but only focused on the
staggered switching pattern. While this model is acceptable
in simulation-based studies or implementations of blind IA
where multiple “dumb” antennas are used to model a RA,
it is an inadequate model for practical implementations of
blind IA with RA. In RA-based blind IA implementations,
the specific antenna configurations used to create the artificial
channel fluctuations have to be intelligently selected because
they can impact the performance of the system or determine
if interference alignment can be achieved at all. In this work,
we consider the problem of how to select modes to enhance
the performance of practical implementations of blind IA. The
main contributions of this paper are as follows:

• two reinforcement learning techniques for selecting an-
tenna modes to enhance the performance of RA-based
blind IA systems.

• performance evaluation of the antenna mode selection
strategies using over-the-air (OTA) measurements under
different channel conditions.

The rest of this paper is organized as follows. In the next
section, we present the system model and RA-based blind
IA scheme. Section III provides a discussion of the proposed
antenna selection techniques, while Section IV describes our
implementation. The performance evaluation and discussion of
results is presented in Section V and concluding remarks are
provided in Section VI.
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TABLE I: Blind IA for two user 2×1 MISO-BC

II. BACKGROUND

A. Signal Model

Consider a system model for a N = 2 user multiple-input-
single-output broadcast channel (MISO-BC) scenario where
the base station is equipped with M traditional antennas, and
the N users are each equipped with a single RA that can
switch among S antenna states. Unlike most other blind IA
research that assumes that S=M, we assume S>M because
it is more representative of modern RAs and motivates the
need for antenna state selection. Let hn(s) ∈ C2×1 denote the
1×M channel vector associated with the s-th state of user n’s
RA. In developing the system model, the blind IA literature
typically assumed that the channel vectors are generic [3], [5],
drawn from a continuous distribution, so that any M of them
are linearly independent almost surely. In reality, the number of
linearly independent channel vectors depends on factors such
as the amount of scattering and reflection in the multipath
environment and the radiation patterns of the antennas.

With an RA-based blind IA scheme, the receivers switch be-
tween their antenna configurations in a predetermined pattern.
At time t, the antenna state selected by receiver n is represented
by sn(t) and the corresponding channel for the user is denoted
hn(sn(t)). Under this model, if the signal vector x(t) ∈ CM×1

is sent from the transmitter, the received signal at user n is

yn(t) = hn(sn(t))x(t)+ zn(t) (1)

where zn(t) represents additive white Gaussian noise with zero
mean and unit variance. The channel input is subject to an
average power constraint E

[
||x||2

]
≤ P. We assume that the

transmitter does not have knowledge of the channel coefficients
or the antenna modes selected by the receiver. However, we
do assume that the antenna switching pattern is known to the
transmitter, since they are predetermined by design.

B. Blind IA With Reconfigurable Antennas

In this section, we review the RA-based blind IA scheme
first proposed in [5] and experimentally validated recently
in [10]. The objective in blind IA is to construct signals
intended for K different users, such that at each receiver,
the signals intended for that user remain distinct while the
interference (the signals intended for the remaining users) is
aligned to an orthogonal dimension. The key to achieving this
goal with RA is the design of the antenna switching pattern,
the corresponding beamforming strategy at the transmitter, and
the intelligent selection of antenna modes at the receiver. The
antenna switching pattern and the symbol extension period
over which this switching occurs is commonly referred to as
a supersymbol structure in the blind IA literature. Using the
N =M= 2 MISO-BC scenario, we now show the design of the

supersymbol structure, and the transmit beamforming strategy.
The antenna mode selection strategies will be presented in
Section III. For the two user 2× 1 MISO-BC, the goal is to
achieve two degrees of freedom (DoF) for each user over three
symbol extensions. To achieve this goal, the transmitter sends
two independent signal streams, each carrying one DoF to
each user over a supersymbol. The receivers use a staggered
antenna switching pattern in receiving each of the symbols in
the supersymbol. We assume that the coherence times of the
channels are long enough so that the channels stay constant
across a supersymbol. This assumption was verified through
extensive experimental measurements in [7], [10]. For one
supersymbol, Table I shows the transmitted signal vectors, the
selected Rx antenna states and the received signals for both
users.
To obtain an interference free signal, receiver 1 can use the

interference received in the third slot and subtract it from the
first slot as shown below:[

y1(1)− y1(3)
y1(2)

]
=

[
h11(s

1
i ) h12(s

1
i )

h11(s
1
j) h12(s

1
j)

][
u11
u12

]
+

[
z1(1)− z1(3)

z1(2)

]
(2)

where hnm(sk) represents the coefficient associated with the
channel from the m-th antenna of the transmitter to receiver
n when the antenna state sk of the RA is selected. Based on
our earlier assumption about the channel vectors being linearly
independent, user 1 is able to access a full rank channel matrix
and therefore can resolve the symbols intended for it and achieve
2 DoF as shown in (2). By symmetry, user 2 can follow a similar
procedure and cancel out its interference received in the second
slot to also achieve 2 DoF, so that a total of 4 DoF are achieved
over 3 symbol extensions.

III. ANTENNA MODE SELECTION

Recent advances in antenna technologies have increased the
offerings of compact smart antennas with large numbers of
available radiation patterns [11]. To realize blind IA using
modern RAs, the receiver needs to select suitable modes, a
subset of antenna states out of all possible combinations of the
available radiation patterns, that exhibit high performance. For
the K =M = 2 MISO BC scenario described in the previous
section, each user needs to independently select antenna state
pair (si,s j), out of

(S
2

)
combinations. The sheer size of the

possible antenna mode search space for blind IA, coupled with
potential performance degradation caused by imperfect CSIR,
renders exhaustive search prohibitive and motivates the need for
more tractable solutions. The performance of any antenna mode
is governed by the wireless channel. Changes in the channel due
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to the mobility of devices or surrounding objects is certain to
affect the relative performance of the radiation patterns used for
blind IA. In addition, as the number of network nodes increases,
the nature of co-channel interference is less predictable and
more varied, rendering previously favorable modes suboptimal
over time. It is, therefore, essential that any practical antenna
mode selection approach for blind IA can quickly identify
favorable modes with minimal training overhead and rapidly
adapt if other modes show superior performance.

We present a sequential learning framework to achieve
adaptive selection of high-performing Rx antenna modes for
blind IA with minimal training overhead. We pose the Rx
antenna mode selection process for blind IA as a multi-
arm bandit (MAB) problem and propose two well-known
approaches to solving it based on reinforcement learning:Upper
Confidence Bound (UCB) [12] and adaptive pursuit (AP) [13].
For a more extensive analysis of the same learning framework
for antenna state selection under different scenarios, we refer
the reader to prior studies by Gulati et al. [14] (using UCB
for MIMO transmission) and Nguyen et al. [15] (using AP for
directional cognitive networking).

A. Multi-Armed Bandit Approach

In the classic multi-armed bandit formulation [16], the blind
IA receiver operates in an environment with incomplete CSIR
for all possible state pairs. For each supersymbol in a sequence
of trials, the receiver is repeatedly faced with

(S
2

)
= K arms or

choices {ai}, i= 1, · · · ,K, each representing a possible antenna
state pair to be used for blind IA. At each supersymbol time
index t, the receiver selects to play an arm and receives a
stochastic reward R(t), which in this work we identify as the
post-processing signal to interference and noise ratio (SINRp)
(see Sec. IV-C). The receiver’s goal is to maximize the sum of
collected rewards at the end of T rounds, ∑T

t=1R(t). Note that
the nature of the random reward for each antenna state pair is
unknown to the blind IA receiver a priori.

Besides the cumulative reward, a MAB selection policy can
also be evaluated in terms of regret [17], defined as the policy’s
expected loss in reward compared to the best possible outcome.
Formally, the regret of a policy after l supersymbols is defined
as

θ(l) = µ∗ · l−
K

∑
i=1

µiE [ni(l)] (3)

where µi is the mean reward for state pair (arm) ai; µ∗ = max
1≤i≤K

µi
is the optimal mean reward; and ni(l) is the number of times
arm ai has been played up to supersymbol slot l. E [·] is the
expectation operator.

The Upper Confidence Bound (UCB) selection policy, first
proposed by Auer et al. [12] and adapted for antenna state
selection in [14], has been shown to achieve the optimal regret
growth rate, which is logarithmically bounded over time [17].
This selection policy has multiple variants, and we have chosen
to implement two of them, UCB1 and UCB1-Tuned [12] for
practical implementation purposes in blind IA. Both of these
policies use deterministic arm selection rules to bound the

regret growth rate. Specifically, the UCB1 policy selects, for
the current time step, the arm ai that maximizes the quantity

µ̄i(l)+

√
2 ln l
ni(l)

(4)

where µ̄i is the sample mean of all observed rewards for arm
ai up to supersymbol index l.
The UCB-1 Tuned policy adapts UCB-1 for practical imple-

mentations by replacing the upper confidence bound (second
term in Eq. 4) with a different bound to account for the
variance of the reward distributions. Under UCB-1 Tuned, the
maximization quantity becomes

µ̄i(l)+

√
ln l
ni(l)

min
{
1
4
,Vi(l)

}
(5)

whereVi(l) denotes the observed variance of the reward samples
µik(l) for arm i after l supersymbols:

Vi(l) =

(
1

ni(l)

ni(l)

∑
k=1

µ2ik(l)

)
− µ̄2i (l)+

√
2 ln l
ni(l)

While UCB-1 Tuned has been shown to work well in practice,
no mathematical proof for its regret bound exists in the
literature. Nevertheless, we include it in this work for a complete
coverage of the practical UCB policies.

B. Adaptive Pursuit Approach

Prior work in applying MAB techniques to optimize an-
tenna state selection [14], [18] often overlook the issue of
non-stationary environments, wherein the reward distributions
change their properties over time. For the non-stationary bandit
problem, pursuit methods have been shown to be well-suited
to track environmental changes while remaining susceptible to
fine-tuning to improve performance [16].
The adaptive pursuit (AP) strategy, originally proposed

for learning automata [13] and adapted for antenna state
selection in [15], is a probabilistic selection policy. This method
identifies at each supersymbol time step t the suitable selection
probability Pi(t) for every antenna mode (arm) ai to be used
for interference alignment, with the objective to maximize the
expected cumulative reward at the end of the run. The arms’
selection probabilities are specified in an operator probability
vector

P(t) = [Pi(t)] , i= 1, · · · ,K

where 0≤ Pi(t)≤ 1 and ∑K
i=1Pi(t) = 1. For its operations, the

adaptive pursuit algorithm maintains an operator quality vector

Q(t) = [Qi(t)] , i= 1, · · · ,K

that keeps a running estimate of the reward Qi(t) for each
arm. Whenever an antenna state pair ai is selected, its current
reward estimate is updated with the corresponding received
reward from the environment R(t), using a weighted averaging
mechanism:

Qi(t+1) = (1−α)Qi(t)+αR(t)
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where the adaptation rate α, 0≤ α ≤ 1, controls the memory
of past reward estimates.

At each supersymbol time index t, the AP method pursues
the arm ai∗ that currently has the maximum estimated reward
Qi∗(t) by favoring its selection probability over others in the
next supersymbol time step:

Pi∗(t+1) = Pi∗(t)+β [Pmax−Pi∗(t)] (6)

where parameter β determines the convergence rate toward
the maximum exploitation percentage Pmax. Meanwhile, the
algorithm also maintains a minimum selection probability Pmin
for all other arms to enforce mandatory exploration and agility
to environmental changes. The operation selection probabilities
for all other arms are updated for the next time slot as follows:

Pi(t+1) = Pi(t)+β [Pmin−Pi(t)] , ∀i ̸= i∗ (7)

Finally, to ensure that all selection probabilities add up to 1,
the following constraint is enforced:

Pmax = 1− (K−1)Pmin

The AP algorithm is a highly versatile solution that can adapt
well to changing reward environments, which can be more
suitable for dynamic wireless networks.

C. Pattern Correlation Approach

One additional approach to antenna mode selection is to use
the spatial correlation between the different radiation patterns
of the antenna. The conventional wisdom is that uncorrelated
radiation patterns lead to uncorrelated channels in rich multi-
path environments [19]. The pattern correlation coefficient
(PCC) provides a measure of antenna diversity performance.
The PCC ρ between radiation patterns corresponding to antenna
states i and j is defined in [19] as:

ρi, j =

∫
4πE j(Ω)dΩE†

i (Ω)√∫
4π |Ei(Ω)|2dΩ

∫
4π |E j(Ω)|2dΩ

(8)

where Ei(Ω) is the radiation pattern of the ith state and † denotes
a Hermitian transpose. After calculating the pattern correlation
coefficients for each pair of antenna states, the selection strategy
would be to choose antenna state pairs (si,s j) corresponding
to the minimum correlation coefficient ρi, j.

D. Periodic Exhaustive Search

For completeness in our evaluations of antenna state selection
methods, we consider an impractical approach wherein the
performance outcomes of all antenna states are periodically
measured to guide selection. In the periodic exhaustive search
(PES) scheme, our measurement procedure sweeps through
all available state pairs to determine their performance during
their training phase. Then, the optimal mode is selected for use
until the next training round. The granularity of training during
operations determines a PES scheme’s agility to environmental
changes. In our implementation of PES, we used a training
interval T = 300, which means a round of training was carried
out every 300 packets.
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Fig. 1: Four directional radiation patterns of the RALA

State 1 State 2 State 3 State 4

State 1 1 0.24 0.30 0.28

State 2 0.24 1 0.31 0.26

State 3 0.30 0.31 1 0.32

State 4 0.28 0.26 0.32 1

TABLE II: Pattern correlation coefficients between different
states of RALA

IV. IMPLEMENTATION

A. Reconfigurable Alford Loop Antenna

The antenna employed in this work, the Reconfigurable
Alford Loop Antenna (RALA) [20], is capable of generating
both directional and omni-directional radiation patterns by
switching between the radiating elements. The layout of the
antenna consists of four pairs of 90 degree microstrip elements
arranged symmetrically between the top and bottom layer of
a standard FR-4 substrate. Each of the four pairs of branches
are connected to the central feed port with PIN diodes. When
all branches are connected to the feed port, the antenna
exhibits an omni-directional radiation pattern with horizontal
polarization. Alternatively, four directional radiation patterns
with 90 degree spacing can be achieved by connecting just
one pair of branches. Additional directional and bi-directional
beams could be obtained by exciting different combinations of
elements and, altogether, this antenna is capable of generating
eleven different radiation patterns. In our study, we only focus
on the four directional radiation patterns displayed in Fig. 1,
giving each receiver

(4
2

)
= 6 possible combinations to choose

from. The pattern correlation coefficients for the four antenna
states used in our study, depicted in Fig. 1, are calculated using
(8) and listed in Table II.

B. RALA-Based Blind IA Implementation on WARP

We now provide a brief description of our implementation
of the blind IA scheme using the RALA for the two user 2×1
MISO-BC case. A detailed explanation of this implementation
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can be found in our prior work [10]. Our earlier blind IA
implementation did not include an antenna state selection
strategy. For the experiments carried out in that work, extensive
channel measurements were performed over all the possible
antenna states to determine which modes would be suitable for
blind IA in each experiment configuration/location, whereas in
this paper we consider the performance of practical antenna
state selection techniques.

Our implementationwas carried out using theWARPLab [21]
framework and the WARP v3 [22] SDR platform. The system
had anOFDMbased physical layer with a bandwidth of 20MHz
using 64 subcarriers, with 48 subcarriers used for payload. For
symbol-level alignment, antenna switching needed to occur in
real-time at the OFDM symbol level. To enable WARPLab
to carry out low-latency operations, such as switching an-
tenna states in the middle of packet reception, we augmented
WARPLab’s sample buffer system with custom FPGA signal
processing. In our blind IA implementation, the transmission
scheme follows the procedures shown in Table I. By default,
both user 1 and user 2 have the omni-directional state of their
antenna selected to facilitate packet detection. Upon detecting a
packet, user 1 will select directional states (s1i ,s

1
j ,s

1
i ) to receive

the 3 OFDM payload symbols that constitute a supersymbol.
User 2, on the other hand, receives the first 2 symbols in
antenna state s2i and switches to state s2j for the third slot. The
radiation patterns si and s j are selected independently for each
user by the algorithms described in Section III. The receivers
then performs OFDM demodulation, interference cancellation,
and aligned symbol detection.

C. Reward Metrics

The goal of antenna mode selection in blind IA is to improve
the overall system performance and the reward metric used for
learning the optimal mode should be an accurate measure of the
overall system performance. Additionally, this reward metric
should be obtained easily, without significant computation
and processing delay, to allow real-time implementation in
wireless networks. The authors in [14] have identified post-
processing signal to interference and noise ratio (SINRp) as
a quality metric that satisfies the aforementioned criteria.
SINRp is an approximation of SINR using the inverse of the
average error vector magnitude squared. In our OFDM-based
implementation where two signal vectors are sent to each
receiver, the instantaneous reward Ri is the average SINRp
over all subcarriers and signal vectors and is calculated as:

Ri =
2

∑
i=1

F

∑
f=1

1
E[|u f [i]− û f [i]|2]

(9)

where u f [i] and û f [i] represent the received and idealized
symbols of the i-th stream at subcarrier index f .

V. RESULTS AND ANALYSIS

To evaluate the performance of the antenna mode selection
techniques, we collected OTA measurements using our exper-
imental setup cycling through all the antenna modes and ran
the algorithms offline. There are two significant advantages of

using this offline approach. First, since we have the data for all
antenna modes, we know the optimal modes at a given time
and the corresponding rewards, which allows us to establish
an upper bound on the mode selection performance, compute
the percentage of time the optimal mode was selected and
accurately calculate regret. This approach also allows us to
fairly compare the performance of the various algorithms over
the same channels, which would not be possible with any
other approach since the wireless channel is time-varying.
Throughout this section, we use the term “optimal” to refer
to the antenna mode with the highest instantaneous average
reward (SINRp). We study the performance of the antenna
mode selection strategies under two experimental scenarios:
Scenario 1: The optimal antenna mode stays constant for the
runtime of the experiment.
Scenario 2: The optimal mode changes (i.e. another antenna
mode becomes optimal) halfway through experiment. This
scenario was achieved by physically rotating (horizontally) the
Rx antenna by 90◦, while maintaining the same Tx-Rx distance.

For the two scenarios, the various antenna mode selection
techniques are evaluated in terms of three performance metrics.
The first evaluation metric is percent of time (measured in
number of packets) that the mode with the maximum SINRp
or within an error margin (0.5 dB) of the best SINRp is
selected over the last 200 received packets. Secondly, the reward
performance of the selection techniques is evaluated through the
empirical cumulative distribution function (CDF) of the SINRp
that each selection scheme achieves. Finally, we evaluate the
mode selection strategies with respect to regret, which is defined
in (3) and quantifies the accrued cost of selecting a non-optimal
mode over time.

A. Experimental Scenario 1

OptimalMode Selection Percentage: It is interesting to note
that PCC-based selection performs poorly in both scenarios, due
to the fact that the antenna pattern correlations do not capture
the effects of the channel. Random selection also has poor
performance, which validates our assertion that the intelligent
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Fig. 2: Optimal Mode Selection Percentage for Scenario 1
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antenna state selection strategies are needed to enhance blind IA
performance. The learning-based selection techniques (UCB-1,
UCB-1 Tuned, AP and PES) all show a growth in the percentage
of time the best mode is selected as seen in Fig. 2. The best
performance is achieved by UCB-1 Tuned and PES in this
scenario, as they both show an optimal mode selection rate
greater than 95% after only 100 packets. UCB-1 is able to attain
the same performance after about 225 packets. Because the
AP algorithm implementations have a maximum exploitation
probability Pmax = 0.9, they only select the best mode with
a rate of 90%. Note that when the learning and adaptation
parameter are set to lower values (α = β = 0.3), the algorithm
selects the best mode with approximately 90% probability after
about 100 packets. When α = β = 0.8, the algorithm spends
more time exploring other antenna modes than in the previous
case, and therefore does not get close to 90% optimal mode
selection probability until 450 packets.

Reward: The reward distributions, shown in Fig. 3, match
the results observed in the earlier section. The UCB policies and
PES exhibit reward distributions very close to the upper bound.

The AP algorithms attain a reward performance within 0.5 dB
of the upper bound for most of the distribution. Both random
and PCC-based selection achieve much worse performance in
reward, approximately 2-3 dB degradation in SINRp, compared
to the learning-based schemes.
Regret: The superior performance of UCB policies, when

the optimal mode is constant, is most evident in their regret
performance shown in Fig. 4. It is observed that the regret
growth is logarithmically bounded over time for the two UCB
policies. While PES had very similar performance to UCB
in terms of optimal mode selection percentage and reward
distribution, it does not match the regret growth of UCB.

B. Experimental Scenario 2

Optimal Mode Selection Percentage: In the second exper-
iment, the optimal antenna mode changes and a different mode
becomes optimal at approximately 1000 packets. Initially, the
UCB policies show, in Fig. 5, improved performance in optimal
mode selection percentage over the other techniques. Once the
best mode changes, UCB policies do not adapt and continue
to select the formerly optimal mode. The AP algorithms, in
contrast, adapt to the change in optimal mode, selecting the new
optimal mode with 90% probability. When the adaptation and
learning parameters are set to 0.8, the AP algorithm selects the
new optimal mode with 90% probability within 200 packets
of the change taking place. With α = β = 0.3, it takes the
algorithm an additional 400 packets to select the new optimal
mode with 90% probability. Because the change in optimal
mode happens in the middle of the training period for PES, it
takes significantly longer to adapt.
Reward: Fig. 6 shows that the AP algorithms once again

display the best performance when the best mode is not
constant. While the AP algorithms are within 1 dB of the
upper bound for 90% of the distribution, the UCB algorithms
suffer a SINRp degradation exceeding 2 dB for over 40% of
their distribution.
Regret: The regret performances, in Fig. 7, agree with the

previous two results for this experimental scenario. UCB regret
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grows with a logarithmic rate for the first 1000 packets but
begins to grow with a steep linear slope once the optimal mode
changes. The regret growth for the AP algorithm with higher α
and β parameters shows a smaller slope than the implementation
with lower values, showing that these parameters should be
carefully chosen.

VI. CONCLUSION

Despite all the attention that blind IA has attracted, most of
the literature has focused on theoretical and simulated-based
studies. Both the theoretical and experimental studies ignore
the impact that the specific radiation patterns of the RA can
have on the performance of the blind IA system. In this paper,
we proposed two different reinforcement learning approaches
to optimal antenna mode selection for blind IA. Using ex-
perimental measurements and suitable metrics, we evaluated
the performance of a antenna mode selection techniques under
two different experimental scenarios. While the UCB-1 and
UCB-1 Tuned policy showed superior performances when the
optimal antenna mode stays constant, the AP algorithm is
able to adjust to changes and select the optimal antenna mode
with high probability. This ability to adapt to changes in the
wireless channel makes AP more suitable for practical blind
IA implementation in wireless networks.
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