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Fluorinated oligomeric polyester (FOP) with significantly different molecular weight distributions were syn-
thesized for use as surface-active additives to alter the wettability of polyester films. Specifically, FOPs had
different weight average molecular weight (My) of 5.4 and 10 kDA. The addition of FOPs in polyethylene
terephthalate (PET) in different concentrations results in reducing the surface energy of PET/FOPs films. The
PET/FOP film surfaces enriched with FOPs exhibited high water and oil repellency. It is found that not only
concentration of FOPs in blends but also their My, influences wettability of PET/FOP film surfaces. The highest

values of water and oil repellency were obtained when we used either low concentrations of low My fluorinated
polyesters that migrated to the surface easily, thus higher surface coverage were obtained, or high concentrations
of higher Mypolyesters in the blends.

1. Introduction

Perfluoropolyether-based polymers (PFPEs) are considered safe
materials since they contain units, such as -[CFyCFs]-, -CF(CF3)CFo,
-CFg-, or -CFoCFyCFo- between the ether linkages as compared to
perfluoroalkyl-based (PFA) materials (C,Fon 1 with n > 7) which are
recognized as persistent toxic materials [1-4]. In addition, they have
attracted great research interest due to their low volatility,
non-flammability, good thermal stability, high chemical resistance, and
low friction coefficients [5-7]. Since PFPEs have low surface energy
(18-22 mN/m), they have been attracted much attention for diverse
applications, such as membranes, solar cells, optics, textiles, antifouling,
and self-cleaning surfaces [8-15].

Altering the surface wettability of films is important for many ap-
plications, including antifouling, anti-fogging/corrosion, oil and water
separation, self-cleaning coatings, microfluidics, and batteries [16-32].
It is well known that the orientation of fluoro carbon groups in the
polymer chains and their compositions on the surface influence the
surface wettability of films. The difference between the bulk and surface
compositions of PFPE-blended films depends on the molecular weights
and miscibility of PET an PFPE components and their surface energies.
[33-36]. In addition, diffusion rate of PFPE chains to the top of the film

surface is higher than PET. In general, the main reason of additive sur-
face migration is that the components possess different surface energy
[37-39]. Low surface energy materials migrate more to the surface than
higher ones.

Migration of polymer chains and their surface segregation in the
films also depend on the molecular weight differences of components in
blends [40-45]. It is assumed that a limited number of polymer chains
penetrate through the film and reach the air—polymer interface when
chains are compressed in the normal direction to the surface. This
restricted conformation of polymer chains at the surface decreased their
conformational entropy more than bulk chains, thus, it caused a
conformational entropy penalty. (Fig. 1) [40]. Briefly, conformational
entropy penalty is significantly dependent on the molecular weight of
the components [40]. Several studies reported that higher molecular
weightcomponents in the blend experience a larger entropy penalty at
the surface than do lower molecular weight components [40,46-48].
Therefore, it is better to use short macromolecules in blends to reduce
surface energy of films [37,49-51]. Ralf Mason et al. synthesized fluo-
rinated polystyrene with different My (5, 11, 25 and 145 kDA) and
blended them with original polystyrene (PS). They obtained highest
surface enrichment of fluorinated carbon groups on the film surfaces
when they used fluorinated polystyrene polymers with lower My, [37].
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Furthermore, even for polymer blended films with high surface energy,
similar observations have been reported. For instance, Keiji et al.
investigated the wettability of PS polymer when it was blended with
either low surface energy material (high molecular weightpolystyrene
(HM—PS)) or high surface energy material (low molecular weight poly
(methyl methacrylate) (LM-PMMA)). They demonstrated that surfaces
were fully covered with LM-PMMA even their surface energy was higher
than that of HM—PS [40]. Jung et al. also obtained similar results as
they blended HM—PS with low molecular weight poly(L-lactic acid)
(LM-PLLA) polymers [51]. Again, LM-PLLA with higher surface energy
covered all HS—PS surface. As a conclusion, molecular weight related
entropy effect overcomes the effect of surface energy on migration of
components [51].

To this end, we investigate the effects of the molecular weight dis-
tribution of FOPs on the wettability of PET/FOP. In a previous study, we
found that FOPs with two C4F9- PFPE-O tails exhibited high water and
oil repellency [52]. In this work, the same polymers with different
weight average molecular weight (My)of 5.4 and 10 kDA were syn-
thesized and blended with PET at various concentrations to reduce their
wettability. The morphology and the wettability of the films were
characterized using atomic force microscopy (AFM) and contact angle
measurements, respectively.

2. Experimental section
2.1. Materials

For the synthesis of FOPs with different My (for FOP-5k My, = 5 kDa
and for FOP-10k My, = 10 kDa), fluorinated ether alcohols such as
1H,1H,11H,11H-fluorinated-3,6,9-trioxaundecane-111-diol (PFPE-diol)
and 1H,1H-fluorinated-3,6,9-trioxatridecan-1-ol (C4Fo-PFPE—OH) were
purchased from Synquest Laboratories. Isophthaloyl chloride (IsoCl),
triethylamine (EtsN) and methyl ethyl ketone (MEK) are purchased from
Sigma Aldrich. All monomers are used as received. In addition,)
commercial-grade PET, and its solvent 1,1,1,3,3,3-Hexafluoro-2-propa-
nol (HFIP) were purchased from Unifi and Oakwood Products, Inc.
respectively.

2.2. Synthesis of FOPs and PET/FOP film preparation

FOPs with different molecular weight distributionswere synthesized
following the procedure reported elsewhere [52]. Synthesis was con-
ducted in two steps, (i) pre-polymerization in solution and (ii) melt poly-
merization. Experimental details of FOPs polymerization are given in the
online Supporting Information (S1). After synthesis of FOPs, Si wafers
were dip coated from PET/FOP blends in HIPF solution. Film prepara-
tion method is also detailed in S2.

2.3. Characterization methods

Molecular weight distributions of FOP polymers were determined
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using the gel permeation chromatography (GPC, Waters, Breeze). For
the GPC calibration, polystyrene standards were employed. Chemical
structures of FOPs were characterized by ATR-FTIR and '°F NMR using
the Thermo Nicolet 6700 FTIR spectrometer and the 300 MHz Bruker
Avance II NMR, respectively. In addition, a Perkin Elmer TGA was used
to determine decomposition temperature (Td) of FOPs. Their glass
transition (T,) and melting (T;,) temperatures are obtained with using a
DSC 2920 (TA Instruments). Atomic force microscopy (AFM, Digital
Instruments, Inc.) was conducted to analyze the surface morphology of
PET/FOP film surfaces. Contact angle measurements were performed
using a drop-shape analysis instrument (DSA10, Kruss, Germany).

3. Results and discussions

It is well known that polyethylene terephthalate is generally syn-
thesized through direct polycondensation or transesterification poly-
merization at high temperatures (>200 °C) to achieve high conversion
[53,55]. Herein, we synthesized FOPs in two steps. First, a
low-temperature (70 °C) process was carried out due to the fact that
perfluoroether alcohols used in the synthesis possess low boiling points
[52,55]. Later, high temperature (150-200 °C) process was performed.
Finally, FOP polyesters were obtained.

According to our previous study, we found that oligomeric polyesters
with lower molecular weight migrate easily to the PET film surface
because of their high chain mobility. Thus, the migration of fluorinated
carbon groups (-CFy, -CF3) to the surface results in higher oil and water
repellency [52]. Moreover, FOPs with two C4Fo-PFPE-O tails exhibited
the highest hydrophobicity and oleophobicity[52]. In this study, we
synthesized this best FOP again with My of 5.4 kDa (FOP-5k) and 10 kDa
(FOP-10k) and blend them with PET to investigate how My of the FOPs
influence the wettability PET/FOP surfaces. A general schematic of FOP
polyester synthesis is shown in Fig. 2. We used C4Fo-PFPE—OH in excess
(CL:OH 1:1.05) in the synthesis to terminate with C4Fo-PFPE-O-segments
on both ends of FOP polymers (Fig. 2).

The FOP synthesis procedure is detailed in S1. Interestingly, we
obtained FOP polyesters with two different Myeven using the same
amounts of monomers during synthesis. This was because we used
different batches or stocks of monomers without purification. Thus,
monomer purity was inconsistent. We claim that the level of impurity in
the monomers affects the polymerization rate. Therefore, we obtained
different My.

For the practical reasons it is important to understand how molecular
weight distribution influences efficiency of low-surface energy addi-
tives. According to GPC results shown in Table 1, oligomers with My, of
5000-10,000 g/mole and PDI of 10-11 were synthesized. It is found that
the presence of ~25% of lower molecular weight oligomers in polymers
results in a high PDI (as shown in S3). Indeed, the presence of low
molecular weightfractions causes quite asymmetric distribution in the
molecular weight of FOPs (SIFig. S2 and Fig. S3). The peak value of the
distribution (indicating molecular weight for the major FOP fraction) is
very close to My and, thus, the number average molecular weight (Mp,)

Surface
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Fig. 1. Scheme of the surface arrangement of FOP-5k and FOP-10k. Their entropy changes between the surface and bulk.
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Fig. 2. General schematics for synthesis of FOP polyester.

Table 1
Major characteristics of FOPs.
FOP My PDI T, T AHg Crystallinity
(g/mole) ()] ({9 78 (%)
FOP-5k 5438 10.4 —25 48 29.7 30.0
FOP-10k 10,000 10 —16 51 25.9 26.1

represents mostly the low molecular weight fraction. Therefore, My is
used to determine the number of repeating polyester units. According to
the chemical structure, the molecular weight of C4Fo-PFPE-O- end-
segment and a repeat unit of fluorinated polyester are 547 g/mole,
and 540 g/mole, respectively. With these values, the numbers of
repeating units in the FOP-5k and FOP-10k polyesters are found as ~8
and ~16, respectively. Therefore, FOP-10k contained a significantly
greater number of non-fluorinated isophthalate units in its structure
than did FOP-5k. The weight percentages of the repeating polyester
units in the oligomeric chains were 80% and 89.1% for FOP-5k and FOP-
10Kk, respectively. The polydispersion index (PDI) for both polymers are
almost similar (Table 1)

3.1. Structural characterization of FOPs

ATR-FTIR and '°F NMR experiments were carried out to identify the
FOP polyesters. The results of ATR-FTIR and '°F NMR were detailed in
S4 and S5, respectively. Spectral databases of organic compounds were
used for the analysis [56]. Briefly, the spectrum of FOPs revealed —OC =
O stretching and -C-O-C- stretching vibrations at 1749 cm ™! and 1269
em ™}, respectively due to the reaction of perfluoro alcohols with iso-
phthoyl acid chlorides (SI Fig. S4). In addition, -CFs- and -CF3 bands
appeared at 1200-1100 cm’1[57,58]. 19 NMR results shows that
fluorine atoms in -O-CF,—CHy-O—CO- repeat units were detected from
-77.30 ppm to -77.70 ppm ((a) peak shown in Fig. S5 and Fig. S6). In
addition, fluorine atoms present in the -CF3 group, the -CFoCFy-group
and -CFo- group of FOP tail (CF3-CF,CF5-CF5-0O-) appeared at -81.92 ppm
(d), at -127.22 ppm (f) and -84.16 ppm (e), respectively.

3.2. Thermal transitions of FOP polyester

DSC experiments were carried out to determine thermal properties of

FOPs. It is found that FOPs are semi-crystalline materials because they
have both Ty and Ty,. The midpoint Ty values of FOP-5k and FOP-10k
range from -25 °C to—16 °C, while their Ty, range from 48 °C to 51 °C
(Table 1). In addition, it is found that the higher My, FOP-10k polyester
had higher Tg and Ty, compared to the lower My, FOP-5k polyester (Fig.
S7 in $6). The increase of Ty and Ty, with molecular weight is a well-
established phenomenon [54,59-62].

DSC data was used to calculate the percentages of crystallinity of the
FOPs using heat of fusion (AHy) in SI Eq. S1 (S7). The AH; values of
FOP-5kand FOP-10k were found to be 29.7 J/g and 25.9 J/g, respec-
tively. In the previous study, the AHQ},S values of the FOP were estimated
to be 96.3 J/g [60]. Therefore, the total degrees of crystallinity of the
FOPs were 26-30%.

3.3. Morphology of PET/FOP films

Atomic force microscopy was conducted to characterize the surface
morphology of PET/FOP films. Figs. 3 and 4 show smooth polyester
films with FOP-5k and FOP-10k contents, respectively. Dark domains of
FOPs and a bright domain of PET matrix are formed due to the immis-
cibility of PET and FOPs components [52]. Thus, the size of dark do-
mains increases with increasing the concentration of FOPs in blends

The average sizes of the FOP-5k and FOP-10k domains in the AFM
topographical and phase images (shown in Fig. S8 and Fig. S9 in S8,
respectively) were calculated using the bearing ratio analysis (Abbott-
Firestone curve). The results are summarized in Tables S1 and TableS2
in 88. The size of the fluorinated domains and the total FOP surface
coverage depends on the concentration of FOP in blends. As increasing
the FOP concentration, both of them are increased. When more than 40
wt.% FOP was used in PET, film surface was completely covered with
FOP chains. This was expected because the X-ray photoelectron spec-
troscopy results of the fluorinated polyesters obtained in our previous
study revealed that the —CFy and —CF3 groups covered whole PET/FOPs
film surfaces, even when the films had only 33 wt.% FOPs [52].

When the PET/FOP-5k and PET/FOP-10k films were annealed at
different temperatures (140 °C or 250 °C), their morphologies were
significantly changed (PET/FOP-5k in Fig. S10 and PET/FOP-10k in Fig.
S11 in S8). Annealed pure PET samples are also used as a control sample.
The PET crystal domains within pure PET and the PET/FOPs films were
formed during annealing at 140 °C. On the other hand, spherulites are
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Fig. 3. AFM image of PET/ FOP-5k blended films. a) pure PET, RMS = 1 nm; b)5% FOP-5k, RMS = 25 nm; ¢)10% FOP-5k, RMS = 10 nm; d)20% FOP-5k, RMS = 15
nm; e)40% FOP-5k, RMS = 32 nm; f)80% FOP-5k, RMS = 33 nm.

Fig. 4. AFM image of PET/FOP-10k blended films. a) pure PET, RMS = 1 nm; b);5% FOP-10k, RMS = 1 nm; ¢)10% FOP-10k, RMS = 2 nm; d)20% FOP-10k, RMS = 2
nm; €)40% FOP-10k RMS = 2 nm; £)80% FOP-10k, RMS = 20 nm.
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obtained when films were annealed at 250 °C which is a melting tem-
perature of PET. These structures became visible as the concentration of
the fluorinated polymer increased (Fig. S10 and Fig. S11 (o-p,s-t) in
S8).

3.4. Surface wettability of PET/FOP films

The contact angle measurements were conducted to determine water
and oil repellent properties of PET/FOPs films. The contact angle of
water (WCA) and hexadecane (HCA) measurements are shown in Fig. 5.
It is known that hexadecane wets PET completely (HCA < 5°), but it is
patially wettable with water (WCA ~ 58°). In our previous study, it was
found that the incorporation of FOP with different end groups into the
PET films significantly increased their hydrophobicity and oleopho-
bicity [52]. The data obtained in this research confirmed the results of
the previous study even when the My of the FOPs were altered. Again, it
was found that that the addition of only 5% FOP polyester to PET
increased WCA and HCA to the level of 70-80°and the level of 40-50°,
respectively. Although HCA did not change significantly even as the
concentration of FOP was increased up to 80%, WCA further increased
to the level of 80-90°.

The effect of Myon wettability of films was investigated as well. As
can be seen in Fig. 6, film containing FOP-5k at low concentrations
possess higher WCA than FOP-10k since short polymer chains migrate
easily to through PET to enrich the surface. This was expected since
short polymer chains on the surface exhibit reduced conformational
entropy penalties compared to longer ones. By contrast, for high-
concentration PET/FOP films, WCA increased as the My increased
because the FOP-10k polymer exhibited higher surface enrichment of
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Fig. 5. Contact angle of hexadecane (a) and water (b) on PET/ FOP films.
(black)PET/FOP-5k films, (gray) PET/FOP-10k films. Contact angles for PET
and PTFE are given for comparison.
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Fig. 6. WCA and HCA as predicted by the Cassie — Baxter model along with the
experimentally measured contact angles for PET/FOP films. Fraction of the film
covered with FOP is determined from the AFM phase images.

the —CF3 groups, leading to reduce surface energy. Therefore, we
conclude that end groups (-C4F9-PFPE-O) of FOPs dominantly affected
WCA instead of their My when FOPs were used at high concentrations.

The Cassie-Baxter model (Eq. 1) is used for determining the effects of
FOP contents in the blends on contact angles measurements. The
apparent contact angle of a liquid 6cg on PET/FOP surface was found
using the Eq. 1[67]:

coslcg = frorcosOy_rop + fpercosOy_per (€))

where Ocp is the Cassie-Baxter apparent contact angle, Oy.pgr and Oy.rop
are the Young contact angles of solvents on homogeneous, smooth and
bare PET and FOP surfaces, respectively, and their surface area fractions
are shown fpgr and frop, as well

The frop and fpgr of the component surfaces are obtained from AFM
phase images (SI Table S1 and Table S2). We could not measure 6y.rop
on bare FOP films since they dewet. Therefore, we assumed that the
maximum CA value (0y_gop) is the same for both fluorinated polyesters
(FOP-5k and FOP-10k) as described before [52] and did calculations
accordingly. The highest reported HCA and WCA values for PFPE in the
literature are ~70° for and ~110°, respectively [68,69]. The apparent
contact angle (0¢p) of hexadecane and water for all films were calculated
using the Eq. 1. The apparent contact angles with increasing the surface
fractional area of FOP is illustrated in Fig. 6. The experimental data were
also compared with data obtained from the model. It is found that
although the measured HCA and WCA did not vary significantly with
increasing the FOPs content, whereas 0¢p linearly increases. Specifically,
HCA did not change with FOP content, but it was significantly higher
than the value predicted at lower FOP concentrations.

We also studied the influence of annealing on WCA and HCA (Fig. 7).
Herein, two annealing conditions, 140 °C for 3 h and 250 °C for 30 min,
were employed. The former temperature (140 °C) was selected because
it is higher than the Tg of both FOP polyesters and PET (70-80 °C [65,
66]) but lower than the Ty, of PET (250-260 °C [65,66]). It was found
that as the temperature increased, the migration of FOPs increased,
leading to full coverage on PET. The comparison between the wettability
of the PET/FOP-5k and PET/FOP-10k films annealed at 140 °C revealed
that up to 40% FOP in blends, PET/P3—5k exhibited stronger water
repellency than PET/FOP-10k. For more than 40% FOP content,
PET/FOP-10k films exhibited the highest repellency. Again, conforma-
tional entropy influences the observed behavior. During annealing all
chains become more mobile in the blends. However, at low concentra-
tions, high My, mobile polymer chains incurred large entropy penalties
during migration to the surface. Therefore, surfaces are covered by low
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are given for comparison.

My chains that decrease the surface energy of films. At high concen-
trations, the surfaces were enriched with FOP-10k polymers, leading to
strong water repellency. In addition, the shrinkage of PET that occurred
upon crystallization from the melt increases the migration of FOP
chains. Moreover, the shrinkage (at 250 °C) could be more than that
upon annealing at 140 °C. Therefore, at low concentrations, samples
annealed at 250 °C exhibited the highest water repellency.

3.5. Surface energy of PET/FOP films

Contact angle measurements were used to calculate the surface en-
ergy (o) of films with the Owens-Wendt method (S8) [73]. As shown in
Fig. 8, although bare PET films have high surface energy (46 mN/m), the
addition of FOPs in to PET reduced its surface energy. Even at low
oligomer concentrations, significant reduction in surface energy is ob-
tained. For only 5% FOP addition, the surface energy was 34.6 mN/m
and 34.3 mN/m for FOP-5k and FOP-10k, respectively. Notably, the
surface energy of PET/FOPs films with 5% additives was just 20% higher
than that of Teflon™ (18.5 mN/m). In addition, the maximum reduction
in surface energy was obtained when 80% FOP was loaded (6pop.sk = 22
mN/m and 6pop.10x = 18.6 mN/m). Fig. 8shows that annealed surface
possess lower surface energy than non-annealed ones. It is expected
since the surfaces ere enriched with fluorinated chains Especially, at
high concentrations, annealed PET/FOP surfaces had lower surface en-
ergy than PTFE.

As a comparison of the surface energy values of the PET/FOP-5k and
PET/ FOP-10k films, it is found that generally the PET/FOP-10k films
had higher surface energy than PET/FOP-5k films when they were used
at low concentration. Specifically, among the annealed samples (140
°C), the PET/FOP-10k films had higher surface energy at all composi-
tions than the lower My, FOP films. This was expected because the high
My polymer has entropy penalty compared to the FOP-5k. When the
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system temperature increased further, most of the FOP-5k chains
migrated to the surface easily.

4. Conclusion

FOP polyesters, especially the ones terminated with fluorinated
carbon groups (CF3), were employed as low-surface-energy additives in
PET coatings. FOPs having two C4F9— PFPE-O tails with different weight
average molecular weights (5.4k and 10k) were synthesized via poly-
condensation polymerization. When they were blended with PET films,
FOPs migrated to the film surface, and reduce the surface wettability. It
is found that concentration of fluorinated polyesters in the films influ-
enced more on wettability of PET/FOP films than My of the fluorinated
polyester. However, the highest values of water and oil repellency were
obtained when we used either low concentrations of low Myy fluorinated
polyesters that migrated to the surface easily, or high concentrations of
higher Mypolyesters in the blends.
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