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H I G H L I G H T S    

• Implementation of a new method for calculating the Bethe logarithm.  

• The method is applicable to systems with an arbitrary number of electrons.  

• The approach employs all-electron explicitly correlated Gaussian functions.  

• The method enables to obtain more accurate predictions of atomic and molecular spectra.  

• The first calculation of the Bethe logarithm for the LiH molecule was done.  

A B S T R A C T   

An algorithm for calculating the Bethe logarithm, which is a part of the leading quantum electrodynamics energy correction, for the ground states of light molecules with an 
arbitrary number of electrons is derived and tested. The tests concern small atoms and one- and two-electron dihydrogen molecular systems. All-electron explicitly 
correlated Gaussian functions are used in the calculations. Next, the approach is employed to calculate the Bethe logarithm for the LiH molecule. These are the first 
calculations of the logarithm for a four-electron system. The method developed in this work allows to extend the Bethe-logarithm calculations to a wider range of molecules.  

1. Introduction 

In the description of an atomic system using the quantum-electro
dynamics (QED) theory, charged particles emit and absorb photons. In 
quantum-mechanical calculations, these effects are included in the form 
of radiation corrections that provide the leading QED contribution to the 
energy. This contribution is of the order of 3 (where is the fine- 
structure constant). The first estimate of the atomic QED effects was done 
by Bethe [1] for the hydrogen atom. More complete calculations of these 
effects were subsequently performed by French and Weisskopf [2] and by 
Kroll and Lamb [3]. In high-precision calculations of multi-particle sys
tems, besides the effects due to vacuum polarization, electron self-en
ergy, and anomaly of the electron magnetic moment (the effect called the 
radiative correction), the 3effect due the photon exchange has to be also 
included in the calculation. The correction that accounts for these latter 
effects is called the Salpeter correction [4,5]. This correction is small 
when the difference between the masses of the interacting particles is 
large. Thus, it can be neglected in the calculations of bound states of the 
hydrogen atom. The subsequent works, where the effect was calculated, 

pertained to the helium atom. Among the works one should, in parti
cular, mention the works of Araki [6] and Sucher [7]. Most calculations 
concerning atoms with more than two electrons employ a generalized 
version of the procedure introduced by these authors. 

The total contribution of one- and two-particle QED corrections of 
the order of 3 to the Hamiltonian of multi-electron atoms and mole
cules can be derived based on the non-relativistic QED (NRQED) [8]. 
The contribution derived this way can be expressed as a sum of two 
parts. Both parts are of the order of 3. The first part includes an 
average value of some effective potential and the second part includes 
the Bethe logarithm kln 0 defined as: 

=k E Ej j
j j

ln | (H ) ln|2(H )| |
| | [ , [H , ]] | |

,0
0 0 0 0 0 0

1
2 0 0 0 (1) 

where H0 is the non-relativistic Hamiltonian of the system, E0 is the 
ground state energy and 0 is the ground state wave function. In the 
above equation = += =j i
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is the operator representing 
the currents of the electrons and the nuclei. Within the Born-Oppen
heimer approximation, we can assume that = =j i

ne
m
p

1
i
e
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units used in this work =j p, where = =p pi
ne

i1 is a sum over the linear 
momenta of the electrons. 

Numerical calculations of the Bethe logarithm are only straightfor
ward for the hydrogen atom because the complete spectrum of states is 
known. For larger atomic and molecular systems, the calculations of the 
Bethe logarithm present on a larger challenge. The difficulty is due to 
the infinite sum over excited states that appears in the expression for . 
The level of difficulty of the calculation is exemplified by the fact that 
the value of the Bethe logarithm calculated for the ground state of the 
helium atom by Schwartz [9] in 1961 had remained unchallenged for 
over 30 years. In late 1990 there were some groundbreaking works on 
increasing the accuracy of the calculation of the Bethe logarithm. Three 
groups working independently used three different approaches to per
formed calculations of the logarithm that exceeded the previously 
achieved accuracy by three to five orders of magnitude [10–12]. 

Two methods are currently the most frequently used to calculate the 
Bethe logarithm. The first method, so-called integral representation 
technique, was introduced by Schwartz [9] and the second method was 
introduced by Drake and Goldman [11]. 

Numerical calculation of the Bethe logarithm for the smallest multi- 
electron atom, the helium atom, has remained for a very long time a 
difficult problem [12,13]. The problem has been solved relatively re
cently by introduction of new procedures [10,11,14]. The recent pro
gress has been so remarkable that the value of the Bethe logarithm is 
now calculated for the helium atom with an accuracy of 14 significant 
digits (by Korobov in Ref. [15]). It should be also noted that recently a 
promising method for calculating the Bethe logarithm using B-spline 
functions was developed Yang et al. [16] and Tang et al. [17]. 

In the case of the lithium atom, the calculations of the Bethe loga
rithm are much less accurate compared to hydrogen or helium. The 
reason for this is the lack of complete results for higher QED corrections 
and not so accurate results for the corrections in the order of 3. The most 
precise estimation of the Bethe logarithm for the lithium atom was made 
by Pachucki and Komasa [18] and Yan and Drake [19]. The former 
authors used explicitly-correlated Gaussian basis functions and achieved 
an accuracy of six significant digits in the value of the logarithm. 

Recently the most accurate Bethe-logarithm result for the ground 
state of the beryllium atom was obtained by Puchalski, Komasa, and 
Pachucki [20]. Also recently the first calculations of the QED corrections 
containing the Bethe logarithm for the boron atom were done by the 
same group [21]. The Bethe logarithm was also calculated for other 
atomic systems: antiprotonic helium atom [22], hydrogen-like atoms  
[23], helium-like atoms (i.e. Li+, Be2+, Ne+8, Ps−, and H−) [11,14,24]. 

In the case of molecules, the values of the Bethe logarithm are only 
known for the hydrogen molecular ions, HD+ and +H2 [25–28] and for 
the hydrogen molecule [29]. The molecular calculations are more 
complicated than the atomic calculation. 

2. The method 

The Bethe logarithm is calculated in the present work using an 
approach which is a generalization of the method introduce by Stanke 
et al. for the hydrogen atom [30]. The main contribution of the present 
work is the extension of the method to calculate the logarithm to 
multielectron atoms and diatomic molecules with more than two elec
trons. The extension involves a transformation of the numerator in the 

algorithm to a form that is more convenient for a numerical im
plementation. The transformation involves three steps. In the first step 
numerator is written in terms of a function of an operator. Next, the 
numerator is expressed in terms of a spectral identity. In the last step, 
an expression for a matrix representation of kln 0 is presented in the 
form of an expectation value. 

The method employs a procedure to calculate an arbitrary function 
of a Hermitian operator, f(A). Matrix elements of operator f(A), 

|f(A)| , are expressed in terms of eigenvalues of operator A. These 
matrix elements are calculated in the basis set of wave functions 

representing excited states. The matrix elements are then included in 
the numerator of the expression for the Bethe logarithm, , by inserting 
the spectral identity in the expression. 

The starting point for developing the algorithm to calculate the kln 0
expectation value is the theorem for calculating a function of an op
erator. If the eigenvalue problem for operator A is solved: 

= aA | | ,a a (2) 

where a and | a are the eigenvalues and the corresponding eigen
functions of operator A, respectively, an arbitrary analytical function of 
A satisfies the following eigenvalue equation: 

= af(A) | f( ) | .a a (3) 

In this work, the total Hamiltonian, H, consists of nonrelativistic 
Schrödinger Hamiltonian, H0, and a perturbation H (in the present case 
this operator is an operator consisting of terms of the order of 2 and 3) 
that provides a small contribution to the energy of the system. 

We assume that the eigenvalue problem for H0: 

= EH | | ,0 0 0 0

is solved. The ground-state energy of the perturbed Hamiltonian is 
written as: 

= +E E E,0 (4) 

where, to the first order, 

=E | H | .0 0 (5) 

Now, recalling the theorem of a function of an operator, the expression 
that appears in the numerator of kln 0 is represented as a function of H0: 

E Ef(H ) (H )ln |2(H )|.0 0 0 0 0 (6) 

We now determine the expectation values of the above operator func
tion. The expectation value of f(H )0 is determined for the ground state 
wave function, 0. We assume that the special part of 0, which is an 
eigenfunction of H0, can be represented as a linear combination of basis 
functions { }i as: 

=
=

c| | ,
m

n

m m0
1

1
(7) 

where cm1 are linear expansion coefficients. The sum in (7) runs over 
basis functions used to expand the ground-state wave function. Let the 
number of the basis functions be n. Assuming that the basis set is 
complete, the matrix form of the eigenvalue problem for the un
perturbed Hamiltonian, (II), is found from the following equation: 

=

=

= =

=
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E S c

| H | | | | ,

(H ) 0.
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i
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1
0 0

1
0 0

1
0 0 1

(8) 

In the matrix notation, the above equation can be written as: 

=H C S C E ,0 0 (9) 

where S and H0 are the overlap and nonrelativistic-Hamiltonian ma
trices, respectively, determined in the basis set of the { }i functions, E0
is the diagonal matrix of the eigenvalues of H0, and C is the matrix of 
the linear expansion coefficients of the eigenfunctions in terms of the 
basis functions. 

In the next step we transform Eq. (9) to obtain an expression for the 
matrix of Hamiltonian H0: 

=H S C E C C C( ) .0 0
† † 1 (10) 

In the resulting equation, (10), we replace C C( )† 1 using the overlap 
matrix. To do that we use the expression resulting from the normal
ization condition for the eigenfunctions of H0: 

=C C 1.† (11) 
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From that we get: 

= =C C C C( ) ( ) .† 1 1 † 1 (12) 

Using the above, (10) is written as: 

=H S C E C ,0 0
† (13) 

where = C C( )† 1(this notation is used to simplify the expression and 
to emphasize that overlap matrices S and do not need to be identical). 
The expansion coefficients, C, are obtained by solving the eigenvalue 
problem. 

The resulting equation, Eq. (13), allows us to write the function of 
operator H0 in a matrix form as: 

= =H S C E C S C E Cf( ) f( ) f( ) ,0 0
†

0
† (14) 

where Ef( )0 is a diagonal matrix with the diagonal elements equal to the 
energies obtained from solving the eigenvalue equation for operator H0. 
Expression (14), according to Eq. (6), is equivalent to the following 
equation: 

= E EH S H H Cf( ) ( )ln |2( )| .0 0 0 0 0
† (15)  

2.1. Basis functions 

The spatial part of the atomic ground-state wave function with the S 
symmetry is represented as a linear combination of the following one- 
center all-electron explicitly correlated Gaussian functions: 

=r r A r( ) exp[ ],k
T

k
(0) (16) 

and the spatial part of the molecular ground-state wave function is 
represented as a linear combination of the following all-electron ex
plicitly correlated Gaussian functions with shifted centers: 

=r r s A r s( ) exp[ ( ) ( )],k k
T

k k
(0) (17) 

where skis a n3 e-long vector of the shifts of the Gaussian centers and Ak
is a positive-definite real symmetric square matrix with the dimensions 

×n n3 3e e (where ne is the number of the electrons in the system). The 
Cartesian coordinates of the electrons form n3 e-dimensional vector r
given as: 

= =

x
y
z

x
y
z

r

r
r

r
.

n
n

n

n

1
2

1
1
1

e
e

e

e (18) 

Matrix Ak is rotationally invariant and can be written as a Kronecker 
product of ×n ne e-dimensional symmetric matrix Ak with a unit ×3 3
matrix, I3: =A A Ik k 3, where denotes the Kronecker product. To 
ensure square integrability of function k

(0), matrix Ak must also be 
positive definite. This happens automatically if Ak is represented in the 
following Cholesky factored form as: =A L Lk k k

T , where Lk is an ×n ne e, 
rank ne, lower triangular matrix. k is automatically square-integrable 
for the Lk matrix elements being any real numbers. Elements of the shift 
vector, sk, and the matrix elements of Lk are optimized in the calcu
lations using the variational method. 

The proper permutational symmetry consistent with the permuta
tional symmetry of the state of the system considered in the calculation 
has to be implemented through an appropriate symmetry projection 
represented by a linear combination of operators involving permuta
tions of electron indices. Let P be the permutation matrix with di
mension ×n n3 3e e that represents the permutation operator P. The 
following convention is used to represent the kl matrix element of an 
arbitrary operator O: 

= =P | O | P | P OP | | O | P .k l k l k l
† (19) 

By acting with the permutation operator P on basis functions ,l l
x(0) ( ), 

and l
z( ) we get: 

= = =

=

r s A r s Pr s A Pr s

r s A r s

P Pexp[ ( ) ( )] exp[ ( ) ( )]

exp[ ( ) ( )] ,
l

T
l l l

T
l l

l
T

l l l

(0)

(0)
(20) 

where =A P A Pl
T

l and =s P sl l
1 . 

2.2. Spectral identity 

The next important transformation used in the present approach is 
the inclusion of a spectral identity, I, into the expression for the Bethe 
logarithm. I is constructed using a set of eigenfunctions. The selection 
of the basis functions for expanding the eigenfunctions used to con
struct I depends on the spatial symmetry of the considered state of the 
system (see further discussion). 

The spectral identity, I, is inserted in two places in the expression 
for function f(H )0 of operator H0: 

= | I f(H ) I | .r r0 0 0 (21) 

From (21) it is clear that operator I has to be constructed using excited- 
state wave functions orthogonal to the wave function of the state under 
consideration (e.g. the ground-state in the present work) that have non- 
zero coupling matrix-elements with this wave function through op
erator r. 

2.2.1. Atomic case 
In the atomic case, if the ground-state wave function has S sym

metry, the wave functions of excited states used in I have to have the P 
symmetry (denoted as { }p ). According to the procedure introduced in 
Ref. [30], basis functions { }p can be formed from basis functions { }, 
which are employed to expand the wave function of the ground state, 
by multiplying them by the z coordinate (z1 in the one-electron case and 

= …z i n, 1, ,i e in the ne electron case). Due to the spherical symmetry of 
the S ground-state wave function, one only needs to use basis functions 
z{ } in calculating the exited-state wave functions to be used in con
structing the identity: 

z{ }, where { } representing the ground state.p (22) 

Let us denote by np the number of the p functions. This number is 
equal to: 

=n n n· ,p e

where n in the number of the basis functions used to expand the wave 
function of the ground state and ne in the number of electrons in the 
system. 

The spectral identity constructed using the { }p functions is denoted 
as Ip and it has the following form: 

= = =
= = = = =

C C C

C

I | | | | |

|,

p

a

n

a
p

a
p

a

n n

a
p p

a
p p

a

n n
p

a
p

a
p p

1 1 , 1 1 , 1

†

p p p p p

(23) 

where a
p are eigenfunctions of H0 with the P symmetry and Ca

p are the 
linear expansion coefficients of these eigenfunctions in terms of the p

basis functions. 

2.2.2. Molecular case 
In the case of diatomic molecules, the construction of the identity is 

more complicated. The basis functions used to construct the spectral 
identities used in kln 0 depend on the molecular symmetry. If the bond 
axis of the molecule is the z axis, OZ, the symmetry group is . The 
molecule can have a h symmetry plane, an infinite number of 2 axes 
(in the case of a homonuclear molecule) and a v plane. What follows is 
that the excited states that couple with the ground state can have 
either or symmetry: 
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• z{ },  
• +x y{ }. 

The numbers of functions and are denoted as n and n , re
spectively. These numbers are:  

• =n n n· 1e ,  
• =n n n2 · e, 

where n is the number of basis functions used for expanding the wave 
function for the ground state and ne is the number of electrons in the 
system. The reduction of the basis set by one is due to removal of the 
ground-state wave function. The size of the basis set is n n· e since the 
contributions from the x and y functions are the same, we only need 
to calculate one of them. 

Thus, the spectral identity in this case is a sum of the and 
identities: 

= +I I I , (24) 

where 

= = =
= = = = =

C C C CI | | | | | |
a

n

a a
a

n n

a a l
a

n n

a a
1 1 1 1 1

†

(25) 

and 

= = =
= = = = =

C C C CI | | | | | |.
a

n

a a
a

n n

a a l
a

n n

a a
1 1 1 1 1

†

(26)  

2.3. Matrix form 

2.3.1. Atomic case 
The spectral identity, I, is introduced to expression in the algo

rithm for the Bethe logarithm: 

= | I f(H ) I | .r r0 0 0 (27) 

The ground-state wave function, 0, is now expanded in terms of basis 
functions according to (14): 

= =
= =

C C C

C C C

| I f(H ) I | |

| f(H ) | | .
l d

n

l d

n

l l
p

a
p

a
p

p p
b
p

b
p p

d d

r r r

r

0 0 0
, 1 , , , , , 1

1
† †

0
†

1

p

(28) 

The matrix elements of operator function f(H )0 is calculated as: 

= =

=

S C E E C

S C E C

| f(H ) | [ (H ) ln 2(H ) ]

f( ) ,

p p p p p p

q t w r

n

q
p

qt
p p

tw wr
p

r
p

0 0 0 0 0
†

, , , 1
0

†
p

(29) 

where Cp is the matrix of the linear expansion coefficients of the P ei
genvectors, E0 is a diagonal matrix with all diagonal elements equal to 
the ground-state energy, E0, and Ep

0 is a diagonal matrix with the diag
onal elements being differences between the energies of the exited states 
used to construct the spectral identity, Ip, and the ground-state energy. 

The expression for the numerator of the Bethe logarithm can be now 
written in a matrix form as: 

= C X S C E C S X Cf( ) ,T pT p p p p p p p1 0
† 1 (30) 

where matrix elements of X p are defined as: 

=X | .ab
p

a br (31)  

The way the spectral identity is constructed in the present approach 
is different than it was done by Drake and Goldman [11]. While in the 
present work the identity is formed based on functions used to expand 
the ground-state wave function, in the approach of Drake and Goldman 

the identity was formed only with functions that provide good re
presentation of high excited states. According to these authors, such 
states should contribute the most to the value of the Bethe logarithm. 

The difference in the way the wave functions for the p states are 
constructed in the Drake and Goldman and Stanke et al. approaches rests 
in limiting the powers of r in the latter approach to 0 and 2, while in the 
former approach the number of different powers is equal to 1. Drake 
and Goldman [11] argued that it is important for their p basis set to in
clude functions with multipliers z

r
that guarantee fast convergence of the 

kln 0 value. In Ref. [30] some test calculations were performed with dif
ferent p basis functions to show which functions are capable of reprodu
cing very well the accurate value of kln 0 for the hydrogen atom when 
similar number of the basis functions as used by Drake and Goldman is 
employed. The calculations showed that the condition of Drake and 
Goldman for faster convergence of the calculations may not be strictly 
applicable to the Gaussian functions. Naturally, the Gaussian calculations 
are not as accurate as the calculations of Drake and Goldman, as the 
Gaussians do not fulfill the Kato cusp condition at the nucleus and their 
long-range behavior is also deficient. In Ref [30] a simple alternative way 
for constructing p functions for the Bethe logarithm calculations was 
proposed. It involves multiplying the basis functions variationally opti
mized for the ground-state wave function of the hydrogen atom by the z 
coordinate. According to the authors of Ref. [30], the p basis set con
structed this way should be sufficient to reproduce a few significant figures 
of the accurate value of kln 0 for larger atoms and molecules. 

2.3.2. Molecular case 
To construct the matrix form of the expression to calculate kln 0 for a 

molecule we use an analogical procedure as that used for atoms. 
However, as atomic symmetries are different from molecular symme
tries, different basis functions need to be used in the calculations. For a 
diatomic molecule there are two types of the r operators (i.e. the de
rivative can be calculated wither with respect to either parallel or 
perpendicular coordinate relative to the bond axis): 

= + .r r r (32) 

These operators acting on 0 generate functions and which are 
mutually orthogonal: 

,
,

r

r

0

0 (33) 

placing them in the numerator of kln 0 gives rise to two independent 
contributions: 

= = + + =
= +

| I f(H ) I | ( ) | I f(H ) I | ( )
| I f(H ) I | | I f(H ) I | .

r r r r r r

r r r r

0 0 0 0 0 0

0 0 0 0 0 0

(34) 

The spectral identities corresponding to the and symmetries are 
constructed using basis functions { } and { }, respectively. The linear 
expansion coefficients of the excited-state wave functions in terms of 
basis functions are obtained by solving the corresponding eigenvalue 
problems for H0. Now, expanding the ground-state wave function, 0, 
using basis functions l we obtain: 

=

+

+

= =

= =

C C C

C C C

C C C

C C C

| | f(H ) |

|

| | f(H ) |

| ,

l d

n

a b

n

l l a a

b b d d

l d

n

a b

n

l l a a

b b d d

r

r

r

r

, 1 , , , , 1
1
† †

0

†
1

, 1 , , , , , 1
1
† †

0

†
1 (35) 

where the summation over the functions used to construct the spectral 
identity runs only over the functions. 

The expectation value of the function of operator H0 is calculated 
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according to (14) as a sum of two parts: 

=

=

=

=

S C C S

S C C S

E

E

| f(H ) | f( ) ,

| f(H ) | f( ) .

q t w r

n

q qt tw wr r

q t w r

n

q qt tw wr r

0
, , , 1

0
†

0
, , , 1

0
†

(36) 

Analogically to the atomic case, expression for diatomic molecules 
with the ground-state wave functions with symmetry can be written 
in the matrix form as: 

= +
+
C X S C E C S X C

C X S C E C S X C
f( )

f( ) ,

T T

T T

1 0
† 1

1 0
† 1 (37) 

where C is the vector of the linear expansion coefficients of the ground- 
state wave function in terms of the basis functions. C and C are the 
matrices of the corresponding expansion coefficients obtained for ex
cited-state wave functions by solving the eigenvalue problem in the 
and basis sets, respectively. 

The matrix elements of matrices X and X are: 

=
=

X
X

| ,
| .

ab a b

ab a b

r

r (38)  

3. Basis set reduction 

In this section we describe a method for reducing the size of the 
basis set of excited-state wave functions used for constructing the 
spectral identity. The reduction is necessary in order to carry out kln 0
calculations for larger systems. 

Due to long computational time required to calculate the expecta
tion value of the Bethe logarithm when a large basis set describing 
excited states is used, a method has been developed for reducing the 
number of p ( and for diatomic molecules) basis functions. For ex
ample, in the case of the beryllium atom, a good-quality wave function 
for the ground state requires the use of at least 5000 explicitly corre
lated Gaussian functions. This number of functions, when multiplied by 

= …z i, 1, ,4i , gives 20,000 functions (minus the functions eliminated 
due to linear dependencies) for constructing the wave functions of the p 
excited states. Diagonalization of the Hamiltonian matrix calculated for 
the basis set of 20,000 functions, which is needed to obtain all p ei
genvalues and eigenfunctions, is not currently possible within the CPU 
time and memory allocations available to us at present time. 

The goal of limiting the number of the p basis functions is to gen
erate a subset of these functions which is manageable and relatively 
small yet gives values of the Bethe logarithm with an acceptable ac
curacy. Two approaches to perform the reduction of the set of the p 
basis functions are considered in this work (we describe the approaches 
using the atomic case; the approach for molecules is analogical). Both of 
the approaches use parameter as the cutoff parameter for truncating 
the basis set. In each method the contribution of a single function (more 
precisely, of the set of p functions generated from a single s function) to 
the value of the Bethe logarithm is calculated and compared with to 
determine if the function should be included in the p-function basis set. 

To determine the contribution of a particular p basis function to the 
Bethe logarithm in the first method, the value of k kln ( ; )0 0 is calculated 
using the complete ground-state wave function, 0, but with the spectral 
identity constructed only using ne functions k

p( ) obtained by multiplying 
function k

(0) by = …z i n, 1, ,i e. In the second method, the value of the 
Bethe logarithm is calculated with the ground-state wave function ex
panded only in terms of one function, i.e. function k

(0), and with the p 
functions used to expand the spectral identity being the same as in the 
first method. Whether the p( )k functions generated based on the k

(0)

function include or not included in the p basis set is determined by 
comparing the absolute value of the Bethe logarithm obtained with each 
method (i.e. the k kln ( , )0 0 value in the first method and the k kln ( )0 in 

the second method) with the cutoff value, . If the absolute value of the 
Bethe-logarithm is greater than the cutoff, the functions are included in 
the p subset. The choice of the most optimal value of is still an open 
problem that is investigated. However, the analysis performed so far has 
resulted in working out an effective way of how this value can be selected. 

Our calculations of the Bethe logarithm performed so far confirm the 
conclusion reached by Drake and Goldman [11] that the largest contribu
tions to the logarithm come from basis functions representing high-excited 
states. However, in order to obtain a very accurate logarithm value, one 
needs to also include more diffuse Gaussian functions with small exponents. 
In the analysis of the contributions of individual functions to the Bethe 
logarithms, it is established that Gaussians with small exponents are func
tions for which the individual k kln ( ; )0 0 or k kln ( )0 contributions are 
usually small. In accepting or rejecting a particular subset of functions k

p( )

generated from the k
(0) function to the p basis set, which is subsequently 

used to construct the spectral identity, the following criterion is used: 

>k k|ln ( ; )|0 0 (39) 

and 

>k k|ln ( )|0 (40) 

in the first and the second method, respectively. 

4. Results 

The above-described reduction methods do not allow to obtain a 
value of the Bethe logarithm accurate to many significant digits, but is 
provides a relatively simple and efficient way to construct a compact 
basis set for expanding excited-state wave functions used in the spectral 
identity in the expression for the Bethe logarithm. The methods allow to 
extended the calculations of the Bethe algorithm, at a low cost, to larger 
atomic and molecular systems. 

Both methods for reducing the basis-set size lead to similar results for 
the Bethe logarithm. However, due to the significant amount of time 
needed to solve the ground-state eigenvalue problem in the full basis set 
in the first method, the second method is more practical and significantly 
faster. We have also considered a method where the basis functions used 
for expanding the wave functions of excited states are selected based on 
the magnitude of their contributions to the wave function of the ground 
state. However, that approach was deemed inadequate because it re
sulted in significant decrease of the accuracy of the ground-state energy 
and, consequently, to much lower accuracy of the Bethe logarithm. 

The results for excite-state basis sets with large number of functions, for 
which the calculations of kln 0 for the complete basis sets, are obtained by 
extrapolating the results obtained with reduced basis sets. The curves ob
tained for ground-state basis sets with different lengths as functions of dif
ferent values on are nearly parallel (i.e. shifted with respect to each other 
by a constant value). Thus, having a few values of k kln ( )0 or k kln ( , )0 0
one can estimate the value of the logarithm for the whole basis set. 

The purpose of performing atomic calculations in this work is to test 
the performance of the proposed approach vis-a-vis the results pre
sented in the literature and calculated with methods more accurate than 
the present method. The comparison will show how many significant 
figures in the value of the Bethe logarithm calculated with the present 
method can be considered reliable. 

4.1. Hydrogen atom 

For the hydrogen atom it is possible to directly determine which basis 
functions provide more significant contributions to the value of the Bethe 
logarithm. Both reduction methods give consistent results showing that 
Gaussians with small exponents always contribute little to the logarithm, 
but the contributions of the Gaussians with large exponents may be either 
relatively large or small. In the case of the first reduction method, where a 
contribution of a given basis function is calculated using the ground-state 
wave function expanded using all functions in the basis set, more 
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Gaussians with larger exponents remain in the basis set than when the 
second method is used. In the case of the second method, the contributions 
of the Gaussians with moderate and large exponents are similar. The re
sults for the hydrogen atom are presented in Table 1. Interestingly, they 
are somewhat better than those obtained by Stanke et al. [30] in quad
ruple precision (in this work we used the double precision). 

It is shown that in order to reproduce three significant figures of the 
reference values, one can reduce the basis set for expending the excited 
states by about 30 percent, when the first reduction method is used, and 
by about a half, when the second reduction method is used. The values 
of k kln ( ; )0 0 and k kln ( )0 for different values of the cut-off parameter, , 
for the hydrogen atom are shown in Table 2. 

4.2. Helium atom 

The results obtained in analogical calculations performed for the 
helium atom are presented in Tables 3 and 4. The results in Table 3 are 
compared with the original results of Schartz [9], Bhatia and Drachman  
[24], and Korobov [14], as well as with the most recent results of Kor
obov [15] and Yang et al. [16] (who had used the B-spline functions). 

For the helium atom, we also show a comparison of the results 
obtained in the basis set of 2000 functions with the results obtained by 
extrapolating the values obtained employing the second reduction 
method in the calculations where the basis set for expanding the P 
excited states is reduced to 1300, 1600, and 2000 functions. All these 
values are shown in Table 4. 

Calculations are also performed for the Bethe logarithm for the 
lowest nine 1S states of the helium atom. The value of 4.37 a.u. ob
tained in the calculations (within the estimated accuracy of the calcu
lations of three significant figures) agree for the lowest seven states 
with the results of Korobov [15]. 

4.3. Lithium atom 

For atoms with more than two electrons i.e. for the lithium and 
beryllium atoms, as well as for the boron atom that will be considered 
in future calculations, it is impossible to perform calculations using the 
full basis set for expanding the wave functions of excited states used to 
construct the spectral identity. The results marked with e denote values 
obtained using extrapolation in terms of the parameter of the results 
obtained using smaller basis sets. The procedure described earlier in 

this work is used in the extrapolation. In Table 5 one can find two 
extrapolated values for the basis sets of 5000 and 6000 functions. 

The values for 5000 and 6000 basis functions are estimated based 
on the curve obtained for smaller basis sets; among them there are those 
taken from Table 7. The second reduction method is employed for 
generating the data for the extrapolation. This method is used because 
it allows for a more significant reduction of the size of the basis set used 
for constructing of the excited-state spectral identity than the first 
method (as it is evident from the results shown in Table 6). 

In the case of the lithium and beryllium atoms, our approach re
produces only two significant digits of the reference results, but the 
calculations are performed with the excited-state basis sets very sig
nificantly reduced in comparison used in the reference calculations. 

4.4. Beryllium atom 

Tables 8 and 9 present the results obtained in the present work for 
the beryllium atom. Here also, only two significant digits of the re
ference results are reproduced. 

4.5. +H2 and H2 molecules 

The calculations of the Bethe logarithm for molecules are important 
because the accuracy of determining energies of molecular ground and 
excited states for small systems is primarily limited by the uncertainty 

Table 1 
The convergence of the ground-state energy E0 and the first P excited state of the hydrogen atom with the number (n) of Gaussians in the basis set. The values of the 
Bethe logarithm, kln 0, and a comparison with the most precise previous calculations are shown. All values are given in a.u.        

kln 0 n kln 0 E0 Ep1

2.811 769 883(28) [13] 30 2.98198 −0.49999999999021074 −0.12421530728341865 
2.984 128 555 765 498 [31] 35 2.98342 −0.49999999999996865 −0.12499892298399225 
2.984 125 555 765 497 6107 [14] 40 2.98369 −0.49999999999999554 −0.12490299272327426 
2.984 003 384 0 [30] 45 2.98400 −0.49999999999999861 −0.12499788897296360   

50 2.98410 −0.49999999999999874 −0.12499999901708187 

Table 2 
The Bethe logarithm calculations for the ground state of the hydrogen atom 
obtained in the reduced excited states basis sets made from the full base of 50 
Gaussians ( = 0.0). All values are given in a.u.        

n k kln ( ; )0 n k kln ( )0

0.1 30 3.08641 1000.0 18 3.04931 
0.5 34 3.00400 50.0 27 2.98491 
0.01 38 2.98338 10.0 32 2.98350 
0.05 40 2.98368 2.0 36 2.98532 
0.001 46 2.98402 1.0 40 2.98505 
0.0001 48 2.98407 0.5 46 2.98438  

0.0 50 2.98410 0.0 50 2.98410 

Table 3 
The Bethe-logarithm ( kln 0) calculations and the value of the non-relativistic 
energy, Enr , for the ground-state of the helium atom with the number n of 
Gaussians in the basis. All values are given in a.u.       

n Enr kln 0 kln 0

600 −2.90372437699588586 4.390 4.370(4) [9] 
1200 −2.90372437703296022 4.385 4.370 159(2) [12] 
1400 −2.90372437703410139 4.376 4.370 160 218(3) [11] 
1600 −2.90372437703410776 4.373 4.370 160 223 06(2) [14] 
1800 −2.90372437703411172 4.373 4.370 160 022(5) [16] 
2000 −2.90372437703411408 4.373 4.370 160 223 0703(3) [15]      

[10] −2.90372437703411959    

Table 4 
The Bethe logarithm calculations for the ground state of the helium atom ob
tained in the reduced excited-state basis sets obtained from the base of 2000 
Gaussians ( = 0.0). All values are given in a.u.           

n k kln ( ; )0 0 n k kln ( )0 n k kln ( )0

160.0 556 4.452 2.0 355 5.138 2.0 265 5.426 
155.0 622 4.391 1.0 670 4.394 1.0 507 4.418 
150.0 700 4.389 0.5 925 4.388 0.5 696 4.389 
100.0 861 4.387 0.4 1001 4.367 0.4 743 4.376 

5.0 1948 4.373 0.1 1383 4.367 0.1 989 4.369 
4.0 1959 4.373 0.05 1513 4.370 0.05 1063 4.372 
3.0 1968 4.373 0.01 1712 4.372 0.01 1169 4.371          

0.0 2000 4.373 0.0 2000 4.373 0.0 1300 4.375        
2000 4.369e 
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of the values of the leading QED corrections, in particular, the correc
tion involving the logarithm. As mentioned, there only two molecular 
systems for which the Bethe-logarithm values were determined with 
high accuracy. These systems are ions of diatomic hydrogen, +H2 and 
HD+ [25–27], and the hydrogen molecule, H2. Probably the first cal
culations of the Bethe logarithm for H2 were done by Wolniewicz [34] 
using the approximate method introduced by Garcia [35] and by Bishop 
and Cheung [36]. More accurate results were presented in 2009 by 
Piszczatowski et al. [29]. Their approach employed the adiabatic ap
proximation to the expression for kln 0 and took advantage the in
tegration method of Schwartz. The approach applied to the +H2 ion 
produced results that agreed very well with the very accurate results of 
Korobov. 

Our results for kln 0 for +H2 and H2 obtained with the approach de
scribed in this work are shown in the left column in Table 10. The 
results for +H2 are compared with the results of Korobov [27] and, as 
one can see, the agreement is very good (of the order of 3–5 permilles). 
The results for the H2 molecule presented in Table 10 are compared 
with the results of Piszczatowski [29]. 

A comparison of the kln 0 results for the +H2 ion with the results of 
Korobov is also shown in Fig. 1. As one can see, the deviation of the 
results for the internuclear distances shorter than the equilibrium dis
tance of =R 2.0 a.u. is about 3 permilles, but increases to about 5 

permilles for distances larger than the equilibrium distance. The dis
crepancy can be related to an uneven quality of the basis sets optimized 
for different points on the potential energy curve. In the case of the 
hydrogen molecule, H2, the relative error is larger and, while it is about 3 
permille for large internuclear distance ( =R 6.0 a.u. and larger), it in
creases to above 2 percent near the equilibrium distance of =R 1.4 a.u. 

4.6. LiH molecule 

In Table 11 the results obtained for the Bethe logarithm employing 
the present approach for the LiH molecule are shown. The calculations 
are done is the basis set of 2400 explicitly correlated Gaussians. The 
Gaussians are taken from our previous calculations where the non-re
lativistic energies and the leading relativistic corrections were de
termined for the whole LiH potential energy curve [37,38]. We estimate 
that the Bethe-logarithm results shown in Table 11 are accurate to three 
significant digits. This may not sound impressive, but these are the first 
ever kln 0 calculations performed for the LiH molecule. 

Table 5 
The Bethe-logarithm ( kln 0) calculations and the value of the non-relativistic 
energy, Enr , for the ground state of the lithium atom with the number of 
Gaussians in the basis, n. All values are given in a.u.     

n kln 0 Enr

1000 5.261 −7.4780528771 
2000 5.258 −7.4780592852 
5000 5.239e −7.4780600463 
6000 5.236e −7.4780603072    

[32] 5.176 82  
[19] 5.178 15(3)  
[18] 5.178 17(3)  

Table 6 
The Bethe-logarithm calculations for the ground state of the lithium atom ob
tained in the reduced excited-state basis sets made from the full base of 2000 
Gaussians ( = 0.0). All values are given in a.u.        

n k kln ( ; )0 0 n k kln ( )0

2.0 338 5.627 6.0 208 5.202 
1.0 675 5.245 4.0 215 5.203 
0.5 948 5.226 3.0 241 5.225 
0.3 1137 5.239 2.0 300 5.227 
0.2 1256 5.239 1.0 323 5.242 
0.1 1452 5.250 0.5 795 5.258       

0.0 2000 5.258 0.0 2000 5.258 

Table 7 
The Bethe logarithm calculations for the ground state of the lithium atom ob
tained in the reduced excited-state basis sets generated from the full base of 
1000, 2000 or 5000 Gaussians ( = 0.0). All values are given in a.u.           

n k kln ( )0 n k kln ( )0 n k kln ( )0

6.0 208 5.211 6.0 208 5.202 6.0 2016 5.197 
4.0 215 5.215 4.0 215 5.203 4.0 214 5.193 
3.0 259 5.232 3.0 241 5.225 3.0 242 5.220 
2.0 303 5.232 2.0 300 5.227 2.0 299 5.219 
1.0 339 5.249 1.0 323 5.242 1.0 323 5.233 
0.5 642 5.259 0.5 795 5.258 0.5 1489 5.251          

0.0 1000 5.261 0.0 2000 5.258 0.0 5000 5.239e 

Table 8 
The Bethe-logarithm ( kln 0) calculations and the value of the non-relativistic 
energy, Enr , for the ground state of the beryllium atom with the number of 
Gaussians in the basis, n. All values are given in a.u.     

n kln 0 Enr

100 5.85 −14.64919377 
1000 5.84 −14.66649481 
2000 5.83 −14.66716806 
3000 5.83 −14.66724877 
5000 5.81e  

6500 5.79e     

[33] 5.75 034(3) −14.667355627 
[20] 5.75 046(2) −14.667356498(3) 

Table 9 
The Bethe-logarithm calculations for the ground state of the beryllium atom 
performed in the reduced excited-state basis sets obtained from the full base of 
1000, 2000, and 5000 Gaussians (the full basis set result corresponds to 
= 0.0). All values are given in a.u.           

n k kln ( )0 n k kln ( )0 n k kln ( )0

4.0 66 6.35 4.0 82 6.09 3.5 35 6.52 
3.5 163 5.98 3.5 186 5.84 3.0 138 5.83 
3.0 252 5.84 3.0 253 5.82 2.5 252 5.82 
2.5 329 5.83 2.5 351 5.82 2.4 281 5.80 
2.3 372 5.83 2.2 462 5.81 2.3 307 5.80 
2.0 496 5.85 2.0 710 5.84 2.2 327 5.79 
1.8 699 5.84 1.8 1069 5.83 2.1 347 5.80 
1.5 885 5.84 1.5 1667 5.83 2.0 496 5.83          

0.0 1000 5.84 0.0 2000 5.83 0.0 5000 5.81e 

Table 10 
The Bethe-logarithm ( kln 0) calculations for the ground state of +H2 and H2
molecules as a function of internuclear distance R. All values are given in a.u.        

+H2 H2

R kln 0 kln 0 [27] R kln 0 kln 0 [29]  

0.5 3.2071 3.215803070 0.6 3.157 3.15960 
1.0 3.0541 3.062912414 0.8 3.070 3.09331 
1.5 3.0137 3.023052703 1.0 3.013 3.05490 
2.0 3.0008 3.012508830 1.2 2.975 3.03215 
2.5 2.9922 3.009486203 1.4 2.958 3.01855 
3.0 2.9904 3.007520064 1.6 2.943 3.01040 
4.0 2.9845 3.001853814 2.0 2.943 3.00240 
5.0 2.9778 2.995328425 5.0 2.973 2.98848 
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5. Summary 

The aim of the present work is the development of a method for 
calculating the Bethe logarithm for molecules. The method is tested in 
the calculations of the logarithm performed for atoms from hydrogen to 
beryllium and for the +H2 and H2 molecules. Explicitly correlated all- 
electron Gaussian functions are used in the calculations. As an example 
of the application of the method, we perform calculations for the 
ground state of the LiH molecule. The derived algorithm for calculating 
the Bethe logarithm is implemented using Fortran90 and the MPI pro
tocol. The algorithm involves a spectral identity generated using ex
cited-state wave functions that have non-zero matrix elements with the 
wave function of the ground state for which the Bethe logarithm is 
calculated. For atoms with S ground states, these wave functions have P 
symmetry. For diatomic molecules with ground-states, the excited- 
state wave functions have either or symmetry. It is shown that an 
effective basis set for expanding the excited-state spectral identity for 
atoms with S ground states can be generated by multiplying the S 
Gaussians used for expanding the ground-state wave function by the zi
coordinate, where index i varies from one to the number of electrons in 
the system. For diatomic molecules with ground states, an effective 
basis set for expanding the excited-state spectral identity can be gen
erated my multiplying the Gaussians of the ground-state basis set by 
( )z si zi and ( )x si xi or ( )y si yi , where s s,x yi i, and szi are coordinates of the 
Gaussian shifts. The results obtained for the Bethe logarithm presented 
here are not as precise as those obtained by Schwarz or by Drake and 
Goldman, but they agree with those results to 2–4 significant digits. In 
this work we also describe an approach that can be used to reduce the 
basis set for expanding excited-state wave functions employed gen
erating the spectral identity in the calculation of the Bethe-logarithm. 
The reduction is used to generate relatively small basis sets that shorten 
the calculations of the Bethe logarithm and enables consideration of 

larger and more complex atomic and molecular systems. An example of 
such a system is the LiH molecule. Bethe-logarithm calculations for this 
system have not been done before. 

A question can be asked how to increase the accuracy of the present 
approach. There are two possible reasons for the not-so-impressive 
accuracy of the present results, particularly for atoms with more than 
two electrons. The first reason is related to the known deficiencies of 
the Gaussian functions in representing the cusp and tail behavior of 
wave functions of atomic bound states. The second reason is related to 
the construction of the spectral identity that is being inserted into the 
algorithm used to calculate the Bethe logarithm. This spectral identity is 
constructed using excited-state wave functions that have non-zero 
matrix elements with the wave function of the considered state of the 
system. The matrix elements involve a -containing operator that ap
pears in the expression for the logarithm. The basis set used to generate 
the excited states is formed by taking the basis functions variationally 
optimized for the ground state and multiplying them by electron co
ordinates. The spectral identity constructed this way is likely not op
timal for calculating the Bethe logarithm, as it is not optimized for this 
use. Perhaps, a functional can be constructed to perform optimization of 
the basis functions used in the spectral identity. We will consider con
structing such a functional in future work. 
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Fig. 1. Comparison between the two curves of the Bethe logarithm values (in a.u.) for +H2 (left figure) and H2 (right figure) molecules obtained using the presented 
method (blue curves) and calculated in [27] for +H2 and in [29] for H2 (orange curves). (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Table 11 
The Bethe-logarithm ( kln 0) calculations and the value of the non-relativistic 
energy, Enr , for the ground state of the LiH molecule with 2400 Gaussians. All 
values are given in a.u.     

R Enr kln 0

2.0 −8.0007611686 5.29 
2.5 −8.0582624519 5.30 
3.0 −8.0705406298 5.30 
3.5 −8.0647231889 5.31 
4.0 −8.0522494037 5.31 
5.0 −8.0244067293 5.30 
6.0 −8.0019762699 5.29 
10.0 −7.9785051124 5.24 
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