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HIGHLIGHTS

Implementation of a new method for calculating the Bethe logarithm.

The method is applicable to systems with an arbitrary number of electrons.
The approach employs all-electron explicitly correlated Gaussian functions.
The method enables to obtain more accurate predictions of atomic and molecular spectra.
The first calculation of the Bethe logarithm for the LiH molecule was done.

ABSTRACT

An algorithm for calculating the Bethe logarithm, which is a part of the leading quantum electrodynamics energy correction, for the ground states of light molecules with an
arbitrary number of electrons is derived and tested. The tests concern small atoms and one- and two-electron dihydrogen molecular systems. All-electron explicitly
correlated Gaussian functions are used in the calculations. Next, the approach is employed to calculate the Bethe logarithm for the LiH molecule. These are the first
calculations of the logarithm for a four-electron system. The method developed in this work allows to extend the Bethe-logarithm calculations to a wider range of molecules.

1. Introduction

In the description of an atomic system using the quantum-electro-
dynamics (QED) theory, charged particles emit and absorb photons. In
quantum-mechanical calculations, these effects are included in the form
of radiation corrections that provide the leading QED contribution to the
energy. This contribution is of the order of a® (where « is the fine-
structure constant). The first estimate of the atomic QED effects was done
by Bethe [1] for the hydrogen atom. More complete calculations of these
effects were subsequently performed by French and Weisskopf [2] and by
Kroll and Lamb [3]. In high-precision calculations of multi-particle sys-
tems, besides the effects due to vacuum polarization, electron self-en-
ergy, and anomaly of the electron magnetic moment (the effect called the
radiative correction), the a’effect due the photon exchange has to be also
included in the calculation. The correction that accounts for these latter
effects is called the Salpeter correction [4,5]. This correction is small
when the difference between the masses of the interacting particles is
large. Thus, it can be neglected in the calculations of bound states of the
hydrogen atom. The subsequent works, where the effect was calculated,
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pertained to the helium atom. Among the works one should, in parti-
cular, mention the works of Araki [6] and Sucher [7]. Most calculations
concerning atoms with more than two electrons employ a generalized
version of the procedure introduced by these authors.

The total contribution of one- and two-particle QED corrections of
the order of a® to the Hamiltonian of multi-electron atoms and mole-
cules can be derived based on the non-relativistic QED (NRQED) [8].
The contribution derived this way can be expressed as a sum of two
parts. Both parts are of the order of . The first part includes an
average value of some effective potential and the second part includes
the Bethe logarithm Ink, defined as:

_ (¥ 1j Ho — Eo) Inl2(Hy — Ep)! j %) = L

lnko T R -
Sl [, [Ho, j111 %)l D (@)

where Hj is the non-relativistic Hamiltonian of the system, E, is the
ground state energy and ¥, is the ground state wave function. In the

above equation j = — Y, % ™ P« s the operator representing
- (4 4

a=1 m,
the currents of the electrons and the nuclei. Within the Born-Oppen-

heimer approximation, we can assume that j = — Zl"_el %. In the atomic
- e

E-mail addresses: ep@doktorant.umk.pl (E. Palikot), ms@umk.pl (M. Stanke), ludwik@email.arizona.edu (L. Adamowicz).

https://doi.org/10.1016/j.cplett.2020.137859

Received 11 May 2020; Received in revised form 14 July 2020; Accepted 5 August 2020

Available online 10 August 2020
0009-2614/ © 2020 Elsevier B.V. All rights reserved.


http://www.sciencedirect.com/science/journal/00092614
https://www.elsevier.com/locate/cplett
https://doi.org/10.1016/j.cplett.2020.137859
https://doi.org/10.1016/j.cplett.2020.137859
mailto:ep@doktorant.umk.pl
mailto:ms@umk.pl
mailto:ludwik@email.arizona.edu
https://doi.org/10.1016/j.cplett.2020.137859
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cplett.2020.137859&domain=pdf

E. Palikot, et al.

units used in this work j = p, where p = Y, p; is a sum over the linear
momenta of the electrons.

Numerical calculations of the Bethe logarithm are only straightfor-
ward for the hydrogen atom because the complete spectrum of states is
known. For larger atomic and molecular systems, the calculations of the
Bethe logarithm present on a larger challenge. The difficulty is due to
the infinite sum over excited states that appears in the expression for .
The level of difficulty of the calculation is exemplified by the fact that
the value of the Bethe logarithm calculated for the ground state of the
helium atom by Schwartz [9] in 1961 had remained unchallenged for
over 30 years. In late 1990 there were some groundbreaking works on
increasing the accuracy of the calculation of the Bethe logarithm. Three
groups working independently used three different approaches to per-
formed calculations of the logarithm that exceeded the previously
achieved accuracy by three to five orders of magnitude [10-12].

Two methods are currently the most frequently used to calculate the
Bethe logarithm. The first method, so-called integral representation
technique, was introduced by Schwartz [9] and the second method was
introduced by Drake and Goldman [11].

Numerical calculation of the Bethe logarithm for the smallest multi-
electron atom, the helium atom, has remained for a very long time a
difficult problem [12,13]. The problem has been solved relatively re-
cently by introduction of new procedures [10,11,14]. The recent pro-
gress has been so remarkable that the value of the Bethe logarithm is
now calculated for the helium atom with an accuracy of 14 significant
digits (by Korobov in Ref. [15]). It should be also noted that recently a
promising method for calculating the Bethe logarithm using B-spline
functions was developed Yang et al. [16] and Tang et al. [17].

In the case of the lithium atom, the calculations of the Bethe loga-
rithm are much less accurate compared to hydrogen or helium. The
reason for this is the lack of complete results for higher QED corrections
and not so accurate results for the corrections in the order of a®. The most
precise estimation of the Bethe logarithm for the lithium atom was made
by Pachucki and Komasa [18] and Yan and Drake [19]. The former
authors used explicitly-correlated Gaussian basis functions and achieved
an accuracy of six significant digits in the value of the logarithm.

Recently the most accurate Bethe-logarithm result for the ground
state of the beryllium atom was obtained by Puchalski, Komasa, and
Pachucki [20]. Also recently the first calculations of the QED corrections
containing the Bethe logarithm for the boron atom were done by the
same group [21]. The Bethe logarithm was also calculated for other
atomic systems: antiprotonic helium atom [22], hydrogen-like atoms
[23], helium-like atoms (i.e. Li*, Be?*, Ne™® Ps~, and H™) [11,14,24].

In the case of molecules, the values of the Bethe logarithm are only
known for the hydrogen molecular ions, HD* and Hj [25-28] and for
the hydrogen molecule [29]. The molecular calculations are more
complicated than the atomic calculation.

2. The method

The Bethe logarithm is calculated in the present work using an
approach which is a generalization of the method introduce by Stanke
et al. for the hydrogen atom [30]. The main contribution of the present
work is the extension of the method to calculate the logarithm to
multielectron atoms and diatomic molecules with more than two elec-
trons. The extension involves a transformation of the numerator in the
L algorithm to a form that is more convenient for a numerical im-
plementation. The transformation involves three steps. In the first step
numerator £ is written in terms of a function of an operator. Next, the
numerator is expressed in terms of a spectral identity. In the last step,
an expression for a matrix representation of Ink, is presented in the
form of an expectation value.

The method employs a procedure to calculate an arbitrary function
of a Hermitian operator, f(A). Matrix elements of operator f(A),
(PIf(A)I¥), are expressed in terms of eigenvalues of operator A. These
matrix elements are calculated in the basis set of wave functions
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representing excited states. The matrix elements are then included in
the numerator of the expression for the Bethe logarithm, £, by inserting
the spectral identity in the expression.

The starting point for developing the algorithm to calculate the Ink,
expectation value is the theorem for calculating a function of an op-
erator. If the eigenvalue problem for operator A is solved:

Alh) =aly,), 2

where a and Iy,) are the eigenvalues and the corresponding eigen-
functions of operator A, respectively, an arbitrary analytical function of
A satisfies the following eigenvalue equation:

f(A) Ig,) = fa) Igh,). 3

In this work, the total Hamiltonian, H, consists of nonrelativistic
Schrodinger Hamiltonian, Hy, and a perturbation H' (in the present case
this operator is an operator consisting of terms of the order of a? and a*)
that provides a small contribution to the energy of the system.

We assume that the eigenvalue problem for Hy:

Hol lyo) = EO | lpo),

is solved. The ground-state energy of the perturbed Hamiltonian is
written as:

E =E, + AE, @
where, to the first order,
AE = (¥ | H' | ¥). %)

Now, recalling the theorem of a function of an operator, the expression
that appears in the numerator of Ink, is represented as a function of Hy:

f(Hy) = (Hy — Eo)ln 12(Hy — Ep)l. (6)

We now determine the expectation values of the above operator func-
tion. The expectation value of f(H,) is determined for the ground state
wave function, ¥,. We assume that the special part of ¥,, which is an
eigenfunction of Hy, can be represented as a linear combination of basis
functions {gp}as:

n

| ¥y = Z Cm1l B)»

m=1 (7)
where c,,; are linear expansion coefficients. The sum in (7) runs over
basis functions used to expand the ground-state wave function. Let the
number of the basis functions be n. Assuming that the basis set is
complete, the matrix form of the eigenvalue problem for the un-
perturbed Hamiltonian, (II), is found from the following equation:

(@ | Ho lo ) (@ 1 %) = Y. Eo (@, | @) (e | %),

i=1

™-

n
Z (Homi — Eo Sm) e =0.
i=1 ®
In the matrix notation, the above equation can be written as:
H,C =S CE,, (C)]

where S and H, are the overlap and nonrelativistic-Hamiltonian ma-
trices, respectively, determined in the basis set of the {¢} functions, E,
is the diagonal matrix of the eigenvalues of Hy, and C is the matrix of
the linear expansion coefficients of the eigenfunctions in terms of the
basis functions.

In the next step we transform Eq. (9) to obtain an expression for the
matrix of Hamiltonian Hy:

Ho,=SCE,Ci(CChH™ 10

In the resulting equation, (10), we replace (C C")~! using the overlap
matrix. To do that we use the expression resulting from the normal-
ization condition for the eigenfunctions of Hy:

c'sc=1 an
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From that we get:

S=(CH'ct=(ch™ (12)
Using the above, (10) is written as:

Hy = SCEC' S, 13)

where S = (C C")~(this notation is used to simplify the expression and
to emphasize that overlap matrices S and S do not need to be identical).
The expansion coefficients, C, are obtained by solving the eigenvalue
problem.

The resulting equation, Eq. (13), allows us to write the function of
operator Hy in a matrix form as:

f(H,) = f(S CE, C'S) = S C{(E,) C'S, a4

where f(E) is a diagonal matrix with the diagonal elements equal to the
energies obtained from solving the eigenvalue equation for operator Hy.
Expression (14), according to Eq. (6), is equivalent to the following
equation:

f(Hp) = S_(Ho — Eo)ln 12(Hy — Ey)I C'S. (15)

2.1. Basis functions

The spatial part of the atomic ground-state wave function with the S
symmetry is represented as a linear combination of the following one-
center all-electron explicitly correlated Gaussian functions:

3 (r) = exp[—rTAr], (16)

and the spatial part of the molecular ground-state wave function is
represented as a linear combination of the following all-electron ex-
plicitly correlated Gaussian functions with shifted centers:

$” (1) = exp[—(r — s)TAL(r — 8], a7

where sis a 3n,-long vector of the shifts of the Gaussian centers and Ay
is a positive-definite real symmetric square matrix with the dimensions
3n, X 3n, (where n, is the number of the electrons in the system). The
Cartesian coordinates of the electrons form 3n.-dimensional vector r
given as:

X1
N
n 2
v} .
r=|.|=|:
: Xn,
T,
e Ve
Zne (18)

Matrix Ay is rotationally invariant and can be written as a Kronecker
product of n, X n.-dimensional symmetric matrix A, with a unit 3 x 3
matrix, I;: Ay = Ay ® L, where ® denotes the Kronecker product. To
ensure square integrability of function ¢, matrix A; must also be
positive definite. This happens automatically if A, is represented in the
following Cholesky factored form as: A; = L, L}, where L, is an n, X n,,
rank n., lower triangular matrix. ¢, is automatically square-integrable
for the L, matrix elements being any real numbers. Elements of the shift
vector, sk, and the matrix elements of Ly are optimized in the calcu-
lations using the variational method.

The proper permutational symmetry consistent with the permuta-
tional symmetry of the state of the system considered in the calculation
has to be implemented through an appropriate symmetry projection
represented by a linear combination of operators involving permuta-
tions of electron indices. Let P be the permutation matrix with di-
mension 3n, X 3n, that represents the permutation operator P. The
following convention is used to represent the kI matrix element of an
arbitrary operator O:

<P¢k 101 P¢z> = <¢k | P'OP | ¢’l> = <¢k 101 P¢’1>- 19)
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By acting with the permutation operator P on basis functions ¢f0), ¢l("),
and ¢ we get:

P©® = Pexp[—(r — s)TA;(r — s))]= exp[—(Pr — s)TA(Pr — 5))|=
=expl-r - YR -1=3", (20

where A, = PTAP and § = Pls,.
2.2. Spectral identity

The next important transformation used in the present approach is
the inclusion of a spectral identity, I, into the expression for the Bethe
logarithm. I is constructed using a set of eigenfunctions. The selection
of the basis functions for expanding the eigenfunctions used to con-
struct I depends on the spatial symmetry of the considered state of the
system (see further discussion).

The spectral identity, I, is inserted in two places in the expression
for function f(H,) of operator Hy:

From (21) it is clear that operator I has to be constructed using excited-
state wave functions orthogonal to the wave function of the state under
consideration (e.g. the ground-state in the present work) that have non-
zero coupling matrix-elements with this wave function through op-
erator V.

2.2.1. Atomic case

In the atomic case, if the ground-state wave function has S sym-
metry, the wave functions of excited states used in I have to have the P
symmetry (denoted as {¢P}). According to the procedure introduced in
Ref. [30], basis functions {¢?}can be formed from basis functions {¢},
which are employed to expand the wave function of the ground state,
by multiplying them by the z coordinate (z; in the one-electron case and
Zi, i = 1, ...,n, in the n, electron case). Due to the spherical symmetry of
the S ground-state wave function, one only needs to use basis functions
{zp} in calculating the exited-state wave functions to be used in con-
structing the identity:

#P € {zp},

Let us denote by n, the number of the ¢? functions. This number is
equal to:

where {¢} representing the ground state. 22)

Ny = N-He,

where n in the number of the basis functions used to expand the wave
function of the ground state and n, in the number of electrons in the
system.

The spectral identity constructed using the {¢*} functions is denoted
as I? and it has the following form:

ip ip ip ip p

Po= L (W =D DL ChLIGN(Cherl =D, D 1) Ch
a=1 a=1 a,fp=1 a=1 a,f=1
Ci (51, (23)

where W are eigenfunctions of Hy, with the P symmetry and CZ, are the
linear expansion coefficients of these eigenfunctions in terms of the 3?
basis functions.

2.2.2. Molecular case

In the case of diatomic molecules, the construction of the identity is
more complicated. The basis functions used to construct the spectral
identities used in Ink, depend on the molecular symmetry. If the bond
axis of the molecule is the z axis, OZ, the symmetry group is C.. The
molecule can have a 0, symmetry plane, an infinite number of C, axes
(in the case of a homonuclear molecule) and a g, plane. What follows is
that the excited states that couple with the £ ground state can have
either ¥ or IT symmetry:
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* ¢* € {z9},
o ¢ e {xp + ypl.

The numbers of functions ¢* and ¢! are denoted as ny and ny, re-
spectively. These numbers are:

® ny=nn,—1,
® 1 = 2n-n,,

where n is the number of basis functions used for expanding the wave
function for the ground state and n, is the number of electrons in the
system. The reduction of the X basis set by one is due to removal of the
ground-state wave function. The size of the I1 basis set is n-n, since the
contributions from the x¢p and yg functions are the same, we only need
to calculate one of them.

Thus, the spectral identity in this case is a sum of the £ and II
identities:

I=F+ 1, @4
where
ny ny ny, ny ny
P= 0 (T =) Coal XN Gt 1= 0 D, 182 CLChI (¢
a=1 a=1 af=1 a=1 af=1
(25)
and
ni nioong noooonn
M=) WO =3 Y Cald N Cael=2 2 14 CaCli (4.
a=1 a=1 af=1 a=1 off=1

(26)

2.3. Matrix form

2.3.1. Atomic case
The spectral identity, I, is introduced to expression £ in the algo-
rithm for the Bethe logarithm:

The ground-state wave function, ¥, is now expanded in terms of basis
functions ¢ according to (14):

n np
L= (V%I fH)IG®) = Y, >

Ld=1 Ldapyé=1

(¢ 11(Ho) 197) CRLCLT (#f | Vepy) Can. (28)

Clg (Vl‘qol |¢of7 > Co‘?a Cga#

The matrix elements of operator function f(Hy) is calculated as:

(82 1£(Ho) Ig?)  =[ 8P CP (Hy — Eo) In 2(H, — Bo) €77 87 g, =

"p
= ), Sk CLIED.Ch'Sh,
q,t,w,r=1 (29)
where C? is the matrix of the linear expansion coefficients of the P ei-
genvectors, E, is a diagonal matrix with all diagonal elements equal to
the ground-state energy, E,, and E} is a diagonal matrix with the diag-
onal elements being differences between the energies of the exited states
used to construct the spectral identity, IP, and the ground-state energy.
The expression for the numerator of the Bethe logarithm can be now
written in a matrix form as:

L = CTXrTS-1PSPCPf(E,)CP'SPS-1PXPC, (30)
where matrix elements of X? are defined as:
Xh =0, 1 Ve p)- (31)

The way the spectral identity is constructed in the present approach
is different than it was done by Drake and Goldman [11]. While in the
present work the identity is formed based on functions used to expand
the ground-state wave function, in the approach of Drake and Goldman
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the identity was formed only with functions that provide good re-
presentation of high excited states. According to these authors, such
states should contribute the most to the value of the Bethe logarithm.

The difference in the way the wave functions for the p states are
constructed in the Drake and Goldman and Stanke et al. approaches rests
in limiting the powers of r in the latter approach to 0 and 2, while in the
former approach the number of different powers is equal to Q — 1. Drake
and Goldman [11] argued that it is important for their p basis set to in-
clude functions with multipliers % that guarantee fast convergence of the
Ink, value. In Ref. [30] some test calculations were performed with dif-
ferent p basis functions to show which functions are capable of reprodu-
cing very well the accurate value of Ink, for the hydrogen atom when
similar number of the basis functions as used by Drake and Goldman is
employed. The calculations showed that the condition of Drake and
Goldman for faster convergence of the calculations may not be strictly
applicable to the Gaussian functions. Naturally, the Gaussian calculations
are not as accurate as the calculations of Drake and Goldman, as the
Gaussians do not fulfill the Kato cusp condition at the nucleus and their
long-range behavior is also deficient. In Ref [30] a simple alternative way
for constructing p functions for the Bethe logarithm calculations was
proposed. It involves multiplying the basis functions variationally opti-
mized for the ground-state wave function of the hydrogen atom by the z
coordinate. According to the authors of Ref. [30], the p basis set con-
structed this way should be sufficient to reproduce a few significant figures
of the accurate value of Ink, for larger atoms and molecules.

2.3.2. Molecular case

To construct the matrix form of the expression to calculate Ink, for a
molecule we use an analogical procedure as that used for atoms.
However, as atomic symmetries are different from molecular symme-
tries, different basis functions need to be used in the calculations. For a
diatomic molecule there are two types of the V, operators (i.e. the de-
rivative can be calculated wither with respect to either parallel or
perpendicular coordinate relative to the bond axis):

V. = V& + Vi (32)
These operators acting on ¥, generate functions ¥* and ¥!! which are
mutually orthogonal:
Vig, — 9l
Vig, —wE (33)
placing them in the numerator of Ink, gives rise to two independent
contributions:
L = (V%I Tf(H) T ¥) = (V5 + VW I TEH) T1 (V5 + VW)=
= (Vi | T f(Ho) I VEW,) 4+ (VW | = £(Hy) IE | VIF,).
(€D)]

The spectral identities corresponding to the £ and I1 symmetries are
constructed using basis functions {¢*} and {¢"}, respectively. The linear
expansion coefficients of the excited-state wave functions in terms of
basis functions are obtained by solving the corresponding eigenvalue
problems for Hy. Now, expanding the ground-state wave function, ¥,
using basis functions ¢, we obtain:

n 1O))

=% X
Ld=1 aba,By,t=1
CHCE' (87 | Vig)Car +

n ny

+ )
Ld=1 abapBy,t=1

G @1 Vig)Can 5

CilVeo 167) CouCR' (85 | f(Ho) 1)

CL(Vae, 18) Caa CALT (851 1 £(HO) 1))

where the summation over the functions used to construct the spectral
identity runs only over the = functions.
The expectation value of the function of operator Hj is calculated
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according to (14) as a sum of two parts:

(& 1 fH) g7y = )
q,t,w,r=1

>, s Cl B ClL S
q,t,w,r=1 (36)

54 Coi fEBw C37 S5,
(¢ 1{(Ho) 14"y =

Analogically to the atomic case, expression £ for diatomic molecules
with the ground-state wave functions with ¥ symmetry can be written
in the matrix form as:

L=CTXTS S (E) C¥'S™S X>C+
+ CTXIT SIS ICNT(E,) SIS X TIC, @37)

where C is the vector of the linear expansion coefficients of the ground-
state wave function in terms of the basis functions. C* and C'! are the
matrices of the corresponding expansion coefficients obtained for ex-
cited-state wave functions by solving the eigenvalue problem in the X
and II basis sets, respectively.

The matrix elements of matrices X* and X' are:

Xab = (@ | Vi &),
X = (@ 1 Vi ) (38)

3. Basis set reduction

In this section we describe a method for reducing the size of the
basis set of excited-state wave functions used for constructing the
spectral identity. The reduction is necessary in order to carry out Inkg
calculations for larger systems.

Due to long computational time required to calculate the expecta-
tion value of the Bethe logarithm when a large basis set describing
excited states is used, a method has been developed for reducing the
number of p (£ and I1 for diatomic molecules) basis functions. For ex-
ample, in the case of the beryllium atom, a good-quality wave function
for the ground state requires the use of at least 5000 explicitly corre-
lated Gaussian functions. This number of functions, when multiplied by
Zi, i =1, ...,4, gives 20,000 functions (minus the functions eliminated
due to linear dependencies) for constructing the wave functions of the p
excited states. Diagonalization of the Hamiltonian matrix calculated for
the basis set of 20,000 functions, which is needed to obtain all p ei-
genvalues and eigenfunctions, is not currently possible within the CPU
time and memory allocations available to us at present time.

The goal of limiting the number of the p basis functions is to gen-
erate a subset of these functions which is manageable and relatively
small yet gives values of the Bethe logarithm with an acceptable ac-
curacy. Two approaches to perform the reduction of the set of the p
basis functions are considered in this work (we describe the approaches
using the atomic case; the approach for molecules is analogical). Both of
the approaches use parameter 4 as the cutoff parameter for truncating
the basis set. In each method the contribution of a single function (more
precisely, of the set of p functions generated from a single s function) to
the value of the Bethe logarithm is calculated and compared with 4 to
determine if the function should be included in the p-function basis set.

To determine the contribution of a particular p basis function to the
Bethe logarithm in the first method, the value of Ink, (k;¥) is calculated
using the complete ground-state wave function, ¥, but with the spectral
identity constructed only using n, functions ¢,§") obtained by multiplying
function ¢,f°) by z;, i =1, ..,n.. In the second method, the value of the
Bethe logarithm is calculated with the ground-state wave function ex-
panded only in terms of one function, i.e. function ¢?, and with the p
functions used to expand the spectral identity being the same as in the
first method. Whether the ¢, (p) functions generated based on the ¢1§O)
function include or not included in the p basis set is determined by
comparing the absolute value of the Bethe logarithm obtained with each
method (i.e. the Ink,(k, ¥,) value in the first method and the Inky(k) in
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the second method) with the cutoff value, 1. If the absolute value of the
Bethe-logarithm is greater than the cutoff, the functions are included in
the p subset. The choice of the most optimal value of 1 is still an open
problem that is investigated. However, the analysis performed so far has
resulted in working out an effective way of how this value can be selected.
Our calculations of the Bethe logarithm performed so far confirm the
conclusion reached by Drake and Goldman [11] that the largest contribu-
tions to the logarithm come from basis functions representing high-excited
states. However, in order to obtain a very accurate logarithm value, one
needs to also include more diffuse Gaussian functions with small exponents.
In the analysis of the contributions of individual functions to the Bethe
logarithms, it is established that Gaussians with small exponents are func-
tions for which the individual Ink,(k;%¥,) or Inky(k) contributions are
usually small. In accepting or rejecting a particular subset of functions wk(p)
generated from the z,b,\fm function to the p basis set, which is subsequently
used to construct the spectral identity, the following criterion is used:

IInko (k;%) | > 24 (39)
and
lInkq (k) > A (40)

in the first and the second method, respectively.
4. Results

The above-described reduction methods do not allow to obtain a
value of the Bethe logarithm accurate to many significant digits, but is
provides a relatively simple and efficient way to construct a compact
basis set for expanding excited-state wave functions used in the spectral
identity in the expression for the Bethe logarithm. The methods allow to
extended the calculations of the Bethe algorithm, at a low cost, to larger
atomic and molecular systems.

Both methods for reducing the basis-set size lead to similar results for
the Bethe logarithm. However, due to the significant amount of time
needed to solve the ground-state eigenvalue problem in the full basis set
in the first method, the second method is more practical and significantly
faster. We have also considered a method where the basis functions used
for expanding the wave functions of excited states are selected based on
the magnitude of their contributions to the wave function of the ground
state. However, that approach was deemed inadequate because it re-
sulted in significant decrease of the accuracy of the ground-state energy
and, consequently, to much lower accuracy of the Bethe logarithm.

The results for excite-state basis sets with large number of functions, for
which the calculations of Ink, for the complete basis sets, are obtained by
extrapolating the results obtained with reduced basis sets. The curves ob-
tained for ground-state basis sets with different lengths as functions of dif-
ferent values on A are nearly parallel (i.e. shifted with respect to each other
by a constant value). Thus, having a few values of Ink, (k) or Inko (¥, k)
one can estimate the value of the logarithm for the whole basis set.

The purpose of performing atomic calculations in this work is to test
the performance of the proposed approach vis-a-vis the results pre-
sented in the literature and calculated with methods more accurate than
the present method. The comparison will show how many significant
figures in the value of the Bethe logarithm calculated with the present
method can be considered reliable.

4.1. Hydrogen atom

For the hydrogen atom it is possible to directly determine which basis
functions provide more significant contributions to the value of the Bethe
logarithm. Both reduction methods give consistent results showing that
Gaussians with small exponents always contribute little to the logarithm,
but the contributions of the Gaussians with large exponents may be either
relatively large or small. In the case of the first reduction method, where a
contribution of a given basis function is calculated using the ground-state
wave function expanded using all functions in the basis set, more
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Table 1

Chemical Physics Letters 757 (2020) 137859

The convergence of the ground-state energy E, and the first P excited state of the hydrogen atom with the number (n) of Gaussians in the basis set. The values of the
Bethe logarithm, Ink,, and a comparison with the most precise previous calculations are shown. All values are given in a.u.

Inko n Inko Ey Ep

2.811 769 883(28) [13] 30 2.98198 —0.49999999999021074 —0.12421530728341865

2.984 128 555 765 498 [31] 35 2.98342 —0.49999999999996865 —0.12499892298399225

2.984 125 555 765 497 6107 [14] 40 2.98369 —0.49999999999999554 —0.12490299272327426

2.984 003 384 0 [30] 45 2.98400 —0.49999999999999861 —0.12499788897296360
50 2.98410 —0.49999999999999874 —0.12499999901708187

Gaussians with larger exponents remain in the basis set than when the
second method is used. In the case of the second method, the contributions
of the Gaussians with moderate and large exponents are similar. The re-
sults for the hydrogen atom are presented in Table 1. Interestingly, they
are somewhat better than those obtained by Stanke et al. [30] in quad-
ruple precision (in this work we used the double precision).

It is shown that in order to reproduce three significant figures of the
reference values, one can reduce the basis set for expending the excited
states by about 30 percent, when the first reduction method is used, and
by about a half, when the second reduction method is used. The values
of Ink, (k;¥,) and Ink, (k) for different values of the cut-off parameter, 4,
for the hydrogen atom are shown in Table 2.

4.2. Helium atom

The results obtained in analogical calculations performed for the
helium atom are presented in Tables 3 and 4. The results in Table 3 are
compared with the original results of Schartz [9], Bhatia and Drachman
[24], and Korobov [14], as well as with the most recent results of Kor-
obov [15] and Yang et al. [16] (who had used the B-spline functions).

For the helium atom, we also show a comparison of the results
obtained in the basis set of 2000 functions with the results obtained by
extrapolating the values obtained employing the second reduction
method in the calculations where the basis set for expanding the P
excited states is reduced to 1300, 1600, and 2000 functions. All these
values are shown in Table 4.

Calculations are also performed for the Bethe logarithm for the
lowest nine 'S states of the helium atom. The value of 4.37 a.u. ob-
tained in the calculations (within the estimated accuracy of the calcu-
lations of three significant figures) agree for the lowest seven states
with the results of Korobov [15].

4.3. Lithium atom

For atoms with more than two electrons i.e. for the lithium and
beryllium atoms, as well as for the boron atom that will be considered
in future calculations, it is impossible to perform calculations using the
full basis set for expanding the wave functions of excited states used to
construct the spectral identity. The results marked with ¢ denote values
obtained using extrapolation in terms of the parameter 4 of the results
obtained using smaller basis sets. The procedure described earlier in

Table 2

The Bethe logarithm calculations for the ground state of the hydrogen atom
obtained in the reduced excited states basis sets made from the full base of 50
Gaussians (4 = 0.0). All values are given in a.u.

2 m Inko (k%) 1 m Inko (k)
0.1 30 3.08641 1000.0 18 3.04931
0.5 34 3.00400 50.0 27 2.98491
0.01 38 2.98338 10.0 32 2.98350
0.05 40 2.98368 2.0 36 2.98532
0.001 46 2.98402 1.0 40 2.98505
0.0001 48 2.98407 0.5 46 2.98438
0.0 50 2.98410 0.0 50 2.98410

Table 3

The Bethe-logarithm (Ink,) calculations and the value of the non-relativistic
energy, E,, for the ground-state of the helium atom with the number n of
Gaussians in the basis. All values are given in a.u.

n Enr Inkg Inkg
600 —2.90372437699588586 4.390 4.370(4) [9]
1200 —2.90372437703296022 4.385 4.370 159(2) [12]
1400 —2.90372437703410139 4.376 4.370 160 218(3) [11]
1600 —2.90372437703410776 4.373 4.370 160 223 06(2) [14]
1800 —2.90372437703411172 4.373 4.370 160 022(5) [16]
2000 —2.90372437703411408 4.373 4.370 160 223 0703(3) [15]
[10] —2.90372437703411959
Table 4

The Bethe logarithm calculations for the ground state of the helium atom ob-
tained in the reduced excited-state basis sets obtained from the base of 2000
Gaussians (1 = 0.0). All values are given in a.u.

A om Inko(¥) A m Inko(k) A m Inko(k)
160.0 556 4.452 20 355 5138 20 265 5.426
155.0 622 4.391 1.0 670 4394 1.0 507 4.418
150.0 700 4.389 05 925 4388 05 696  4.389
100.0 861 4.387 0.4 1001 4367 0.4 743 4376

50 1948 4.373 01 1383 4367 0.1 989  4.369

4.0 1959 4.373 0.05 1513 4.370 0.05 1063 4.372
3.0 1968 4.373 0.01 1712 4.372 0.01 1169 4.371

0.0 2000 4.373 0.0 2000 4.373 0.0 1300 4.375
2000  4.369°

this work is used in the extrapolation. In Table 5 one can find two
extrapolated values for the basis sets of 5000 and 6000 functions.

The values for 5000 and 6000 basis functions are estimated based
on the curve obtained for smaller basis sets; among them there are those
taken from Table 7. The second reduction method is employed for
generating the data for the extrapolation. This method is used because
it allows for a more significant reduction of the size of the basis set used
for constructing of the excited-state spectral identity than the first
method (as it is evident from the results shown in Table 6).

In the case of the lithium and beryllium atoms, our approach re-
produces only two significant digits of the reference results, but the
calculations are performed with the excited-state basis sets very sig-
nificantly reduced in comparison used in the reference calculations.

4.4. Beryllium atom

Tables 8 and 9 present the results obtained in the present work for
the beryllium atom. Here also, only two significant digits of the re-
ference results are reproduced.
4.5. H} and H, molecules

The calculations of the Bethe logarithm for molecules are important

because the accuracy of determining energies of molecular ground and
excited states for small systems is primarily limited by the uncertainty
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Table 5

The Bethe-logarithm (Ink,) calculations and the value of the non-relativistic
energy, E,,, for the ground state of the lithium atom with the number of
Gaussians in the basis, n. All values are given in a.u.

Chemical Physics Letters 757 (2020) 137859

Table 8

The Bethe-logarithm (Ink,) calculations and the value of the non-relativistic
energy, E,., for the ground state of the beryllium atom with the number of
Gaussians in the basis, n. All values are given in a.u.

n Inko Epy n Inkg Epy
1000 5.261 —7.4780528771 100 5.85 —14.64919377
2000 5.258 —7.4780592852 1000 5.84 —14.66649481
5000 5.239° —7.4780600463 2000 5.83 —14.66716806
6000 5.236° —7.4780603072 3000 5.83 —14.66724877
5000 5.81°¢
[32] 5.176 82 6500 5.79¢
[19] 5.178 15(3)
[18] 5.178 17(3) [33] 5.75 034(3) —14.667355627
[20] 5.75 046(2) —14.667356498(3)
Table 6
The Bethe-logarithm calculations for the ground state of the lithium atom ob- bl
Table 9

tained in the reduced excited-state basis sets made from the full base of 2000
Gaussians (1 = 0.0). All values are given in a.u.

A n Inko (k;%p) y n Inkq (k)
2.0 338 5.627 6.0 208 5.202
1.0 675 5.245 4.0 215 5.203
0.5 948 5.226 3.0 241 5.225
0.3 1137 5.239 2.0 300 5.227
0.2 1256 5.239 1.0 323 5.242
0.1 1452 5.250 0.5 795 5.258
0.0 2000 5.258 0.0 2000 5.258

Table 7

The Bethe logarithm calculations for the ground state of the lithium atom ob-
tained in the reduced excited-state basis sets generated from the full base of
1000, 2000 or 5000 Gaussians (1 = 0.0). All values are given in a.u.

A n Inkg (k) s n Inkq (k) s n Inkq (k)

6.0 208 5.211 6.0 208 5.202 6.0 2016 5.197
4.0 215 5.215 4.0 215 5.203 4.0 214 5.193
3.0 259 5.232 3.0 241 5.225 3.0 242 5.220
2.0 303 5.232 2.0 300 5.227 2.0 299 5.219
1.0 339 5.249 1.0 323 5.242 1.0 323 5.233
0.5 642 5.259 0.5 795 5.258 0.5 1489 5.251

0.0 1000 5.261 0.0 2000 5.258 0.0 5000 5.239°

of the values of the leading QED corrections, in particular, the correc-
tion involving the logarithm. As mentioned, there only two molecular
systems for which the Bethe-logarithm values were determined with
high accuracy. These systems are ions of diatomic hydrogen, H} and
HD™* [25-27], and the hydrogen molecule, H,. Probably the first cal-
culations of the Bethe logarithm for H, were done by Wolniewicz [34]
using the approximate method introduced by Garcia [35] and by Bishop
and Cheung [36]. More accurate results were presented in 2009 by
Piszczatowski et al. [29]. Their approach employed the adiabatic ap-
proximation to the expression for Ink, and took advantage the in-
tegration method of Schwartz. The approach applied to the HJ ion
produced results that agreed very well with the very accurate results of
Korobov.

Our results for Ink, for H} and H, obtained with the approach de-
scribed in this work are shown in the left column in Table 10. The
results for Hf are compared with the results of Korobov [27] and, as
one can see, the agreement is very good (of the order of 3-5 permilles).
The results for the H, molecule presented in Table 10 are compared
with the results of Piszczatowski [29].

A comparison of the Ink, results for the H} ion with the results of
Korobov is also shown in Fig. 1. As one can see, the deviation of the
results for the internuclear distances shorter than the equilibrium dis-
tance of R = 2.0 a.u. is about 3 permilles, but increases to about 5

The Bethe-logarithm calculations for the ground state of the beryllium atom
performed in the reduced excited-state basis sets obtained from the full base of
1000, 2000, and 5000 Gaussians (the full basis set result corresponds to
A =0.0). All values are given in a.u.

1 m Inko(k) A m, Inko (k) 1 n Inko (k)
4.0 66 6.35 4.0 82 6.09 3.5 35 6.52
35 163 5.98 35 186 5.84 3.0 138 5.83
3.0 252 5.84 3.0 253 5.82 25 252 5.82
25 329 5.83 25 351 5.82 2.4 281 5.80
23 372 5.83 22 462 5.81 23 307 5.80
20 496 5.85 20 710 5.84 22 327 5.79
1.8 699 5.84 1.8 1069 5.83 21 347 5.80
1.5 885 5.84 1.5 1667 5.83 20 496 5.83
0.0 1000 5.84 0.0 2000 5.83 0.0 5000 5.81°

permilles for distances larger than the equilibrium distance. The dis-
crepancy can be related to an uneven quality of the basis sets optimized
for different points on the potential energy curve. In the case of the
hydrogen molecule, H,, the relative error is larger and, while it is about 3
permille for large internuclear distance (R = 6.0 a.u. and larger), it in-
creases to above 2 percent near the equilibrium distance of R = 1.4 a.u.

4.6. LiH molecule

In Table 11 the results obtained for the Bethe logarithm employing
the present approach for the LiH molecule are shown. The calculations
are done is the basis set of 2400 explicitly correlated Gaussians. The
Gaussians are taken from our previous calculations where the non-re-
lativistic energies and the leading relativistic corrections were de-
termined for the whole LiH potential energy curve [37,38]. We estimate
that the Bethe-logarithm results shown in Table 11 are accurate to three
significant digits. This may not sound impressive, but these are the first
ever Ink, calculations performed for the LiH molecule.

Table 10
The Bethe-logarithm (Ink,) calculations for the ground state of H} and H,
molecules as a function of internuclear distance R. All values are given in a.u.

HY H;
R Inkg Inko [27] R Inkg Inkg [29]
0.5 3.2071 3.215803070 0.6 3.157 3.15960
1.0 3.0541 3.062912414 0.8 3.070 3.09331
1.5 3.0137 3.023052703 1.0 3.013 3.05490
2.0 3.0008 3.012508830 1.2 2.975 3.03215
2.5 2.9922 3.009486203 1.4 2.958 3.01855
3.0 2.9904 3.007520064 1.6 2.943 3.01040
4.0 2.9845 3.001853814 2.0 2.943 3.00240
5.0 2.9778 2.995328425 5.0 2.973 2.98848
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Fig. 1. Comparison between the two curves of the Bethe logarithm values (in a.u.) for H} (left figure) and H, (right figure) molecules obtained using the presented
method (blue curves) and calculated in [27] for Hf and in [29] for H, (orange curves). (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

5. Summary

The aim of the present work is the development of a method for
calculating the Bethe logarithm for molecules. The method is tested in
the calculations of the logarithm performed for atoms from hydrogen to
beryllium and for the H} and H, molecules. Explicitly correlated all-
electron Gaussian functions are used in the calculations. As an example
of the application of the method, we perform calculations for the
ground state of the LiH molecule. The derived algorithm for calculating
the Bethe logarithm is implemented using Fortran90 and the MPI pro-
tocol. The algorithm involves a spectral identity generated using ex-
cited-state wave functions that have non-zero matrix elements with the
wave function of the ground state for which the Bethe logarithm is
calculated. For atoms with S ground states, these wave functions have P
symmetry. For diatomic molecules with ¥ ground-states, the excited-
state wave functions have either £ or IT symmetry. It is shown that an
effective basis set for expanding the excited-state spectral identity for
atoms with S ground states can be generated by multiplying the S
Gaussians used for expanding the ground-state wave function by the z;
coordinate, where index i varies from one to the number of electrons in
the system. For diatomic molecules with ¥ ground states, an effective
basis set for expanding the excited-state spectral identity can be gen-
erated my multiplying the ¥ Gaussians of the ground-state basis set by
(zisy;) and (x;sy,) or (¥sy,), where sy, sy, and s;; are coordinates of the
Gaussian shifts. The results obtained for the Bethe logarithm presented
here are not as precise as those obtained by Schwarz or by Drake and
Goldman, but they agree with those results to 2—4 significant digits. In
this work we also describe an approach that can be used to reduce the
basis set for expanding excited-state wave functions employed gen-
erating the spectral identity in the calculation of the Bethe-logarithm.
The reduction is used to generate relatively small basis sets that shorten
the calculations of the Bethe logarithm and enables consideration of

Table 11

The Bethe-logarithm (Ink,) calculations and the value of the non-relativistic
energy, E,,, for the ground state of the LiH molecule with 2400 Gaussians. All
values are given in a.u.

R Epnr Inkg
2.0 —8.0007611686 5.29
2.5 —8.0582624519 5.30
3.0 —8.0705406298 5.30
3.5 —8.0647231889 5.31
4.0 —8.0522494037 5.31
5.0 —8.0244067293 5.30
6.0 —8.0019762699 5.29
10.0 —7.9785051124 5.24

larger and more complex atomic and molecular systems. An example of
such a system is the LiH molecule. Bethe-logarithm calculations for this
system have not been done before.

A question can be asked how to increase the accuracy of the present
approach. There are two possible reasons for the not-so-impressive
accuracy of the present results, particularly for atoms with more than
two electrons. The first reason is related to the known deficiencies of
the Gaussian functions in representing the cusp and tail behavior of
wave functions of atomic bound states. The second reason is related to
the construction of the spectral identity that is being inserted into the
algorithm used to calculate the Bethe logarithm. This spectral identity is
constructed using excited-state wave functions that have non-zero
matrix elements with the wave function of the considered state of the
system. The matrix elements involve a V-containing operator that ap-
pears in the expression for the logarithm. The basis set used to generate
the excited states is formed by taking the basis functions variationally
optimized for the ground state and multiplying them by electron co-
ordinates. The spectral identity constructed this way is likely not op-
timal for calculating the Bethe logarithm, as it is not optimized for this
use. Perhaps, a functional can be constructed to perform optimization of
the basis functions used in the spectral identity. We will consider con-
structing such a functional in future work.
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