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ABSTRACT

Interactions of a stationary external magnetic field with the spin and orbital magnetic momenta of a molecule are included in the quantum mechanical model
where the Born-Oppenheimer approximation is not assumed. The model is used to calculate some of the lowest-lying internal bound states of the molecule for
various strengths of the magnetic field. All-particle explicitly correlated Gaussian functions are used in the calculations.

1. Introduction

In recent works [1-3], we have presented a quantum-mechanical
model for calculating states of a molecule in strong magnetic fields. In
the model, the Born—-Oppenheimer (BO) approximation is not assumed
and all particles forming the molecular system are treated on an equal
footing. The wave functions representing the states of the system in the
model were expanded in terms of linear combinations of explicitly cor-
related Gaussian functions (ECGs) with shifted centers. These functions
explicitly depend on the squares of the inter-particle distances through
the Gaussian exponent. Only if such functions are used in the calcu-
lation can we effectively describe the highly correlated motion of the
electrons contained in the molecule, as well as the correlated motion
of the molecule’s nuclei and the nucleus—electron correlated motion.
The non-BO Hamiltonian used in the calculations of bound internal
states of the molecule is obtained in an effective way by subtracting the
operator representing the kinetic energy of the motion of the center of
mass from the total laboratory-frame Hamiltonian of the system. This
approach is different from the conventional approach used to separate
out the center-of-mass motion, which typically involves a coordinate
transformation resulting in the total Hamiltonian rigorously separating
into a Hamiltonian representing the internal state of the system (the
so-called internal Hamiltonian) and the center-of-mass Hamiltonian,
which depends only on the laboratory-frame coordinates of the center
of mass. More discussion on the construction of the effective non-BO
Hamiltonian and on the ECGs is presented in the methodology section
of this work.

The interest in quantum-mechanical calculations of ground and ex-
cited states of molecules exposed to strong magnetic fields is related to

the significant alterations of some their chemical and physical proper-
ties in conditions where the magnetic interactions become comparable
to the Coulombic interactions between the electrons and nuclei forming
the molecules. Such conditions exist, for example, in the atmospheres of
rapidly rotating compact stellar objects—white dwarfs (up to 100 kT),
neutron stars (up to 100 MT), and magnetars (up to 100 GT) [4-6]. The
field strengths that exist on such stellar objects cannot be generated
in laboratories on Earth. Since the changes that occur in the chemical
and physical properties of molecular systems in extremally strong
magnetic fields cannot be probed experimentally, quantum-mechanical
modeling is the only possible way to elucidate this phenomenon. An
illustration of how strong magnetic fields affect chemical properties of
molecules were given in Ref. [7]. The calculations performed in that
work, using an approach based on the BO approximation and involving
the full-CI electronic-structure method, showed that, as the strength
of a perpendicularly applied magnetic field increases, the strength of
the bonding in the >} (logloy) triplet state of the H, molecule also
increases and its energy falls below that of the singlet zero-field ground
state ' =¥ (1oy).

Over the years, many non-perturbative methods have been devel-
oped to study the behavior of molecules in a strong magnetic field—see,
for example, Refs. [8-18]. However, almost all these methods are based
on the BO approximation, assuming that the much faster motion of
the electrons can be treated separately from the slower motion of the
nuclei. Although this assumption is usually sufficient for most studies of
molecules at Earth-like conditions, it may fail in conditions where the
interactions with a very strong magnetic field cause the energy levels
of the molecule to rearrange, resulting in acceleration of the nuclear
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motion and deacceleration of the electronic motion. This, in turn, may
cause the two motions to couple more significantly, necessitating a
departure from the BO approximation. We here present a method that
can address such increased electron-nucleus coupling.

In this work, we include the interactions of the magnetic field with
the spin and angular magnetic momenta of the electrons and the nuclei
in the non-BO model for a molecule in a strong stationary magnetic
field developed in our previous works [1-3]. As all particles are treated
on the same footing in non-BO calculations, the magnetic momenta
associated with the electrons appear in the calculations in the same
way as the spin and angular magnetic momenta of the nuclei.

There are two types of motion of the nuclei and electrons in
an isolated molecule that can be distinguished. The first type is the
synchronous translational motion of both nuclei and electrons of the
molecule in space, which can be quantum-mechanically represented by
a wave function dependent on the coordinates of the molecule’s center
of mass in the laboratory coordinate frame. The second type of motion
is the coupled motion of the particles forming the molecule that does
not cause the center of mass of the molecule to change its location.
We call this the internal motion of the system; it can be approximately
separated into rotational, vibrational, and electronic motions. When
the BO approximation is not assumed, the rotational motion includes
the synchronous rotation of all particles forming the molecule about
the center of mass. Thus, the quantized bound states of the molecule
corresponding to this motion, apart from including states that are con-
ventionally attributed to rotation of the nuclear frame of the molecule,
also include states corresponding to rotation of the electrons around
the stationary nuclear frame and mixed electron-nucleus rotational
states. As the total internal Hamiltonian for the molecule obtained
by subtracting the center-of-mass translational Hamiltonian from the
total laboratory-frame non-relativistic Hamiltonian commutes with the
square of the total angular-momentum operator, the calculation of the
bound states of the molecule can be separated into calculations each
performed for a different total-angular-momentum quantum number.
Each such calculation is carried out in a basis of functions that represent
a different level of the rotation excitation of the system. The functions
can describe angular excitations of different nuclei, or angular excita-
tions of the electrons, or simultaneous excitations of both electrons and
nuclei.

As showed by Schmelcher and Cederbaum [13], the separation of
the translational and internal motion cannot be rigorously performed
when a molecule is placed in a magnetic field. However, they also
showed that, with the use of the so-called pseudo-momentum, one can
perform a pseudo-separation of the two motions. The properties of
the total pseudo-momentum expressed in terms of relative coordinates
were exploited to partition the Hamiltonian operator of the system into
an electronic part and a nuclear part.

The question of the validity of the BO approximation for the hy-
drogen atom [19] and the diatomic hydrogen molecule [14,15] in a
stationary magnetic field has been analyzed. There also exist investiga-
tions where the effect of a magnetic field on the rotations and vibrations
of neutral diatomic molecules has been considered [16,20]. However,
to our knowledge, our works [1-3] provided the first practical scheme
for an effective separation of the center-of-mass motion from the inter-
nal motion in calculations of molecular systems in the presence of a
magnetic field.

2. The method

The non-Born-Oppenheimer approach used in this work was intro-
duced by Kozlowski and Adamowicz [21]. We start from the standard
total non-relativistic Hamiltonian of an isolated molecule without a
magnetic field. We use the laboratory Cartesian coordinate frame to
describe the positions of particles forming the molecule (i.e., nuclei and
electrons) in space. The position vectors are denoted as R;, / = 1, ..., N,
where N is the sum of the number of the nuclei and the number of
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the electrons in the system. In atomic units, the laboratory-frame total
Hamiltonian is the sum of the kinetic-energy operators of the particles
forming the system and the potential-energy operators describing the
Coulombic interactions between the particles:

N N

~ PN 1 ) 0,0

A=T+V=-Y —v2 4+ =1 €h)
R

T 2M, ; Ry

Here 7' and V are the kinetic-energy and potential-energy operators,

respectively, and M, and Q, are the mass and the charge, respectively,

of particle /. The distance between particle k and particle / is given by

Ry =R, —Ry|.

Next, the kinetic energy of the center-of-mass motion is written in
terms of the R;, / = 1, ..., N, coordinates. The coordinates of the center
of mass of the system are:

R _ Z[N MI R[ (2)
cm M ’

with M = Z;V M, is the total mass of the system. The operator
representing the kinetic energy of the center-of-mass motion in the
laboratory coordinate frame is given by

N
Pl g o Ly
Tem = ZMVRcm_ZMPC'“_2M(§lfp’)’ &)

where P, is the center-of-mass momentum operator and p, the
momentum of particle /. The effective laboratory-frame Hamiltonian
representing the internal energy of the system, Hj,,, called the internal
Hamiltonian, is simply the difference between the laboratory-frame
Hamiltonian and the center-of-mass kinetic-energy Hamiltonian:

ﬁint =H- 7Aﬂcm' (€]

The internal Hamiltonian is used in the present work to calculate
internal bound states of the molecule.

We note that the effective internal Hamiltonian depends on the 3N
laboratory coordinates of all particles (nuclei and electrons) forming the
system. In this respect, it differs from the usual internal non-BO Hamil-
tonian obtained by expressing the laboratory-frame total Hamiltonian
in a set of new coordinates and then separating the Hamiltonian into a
Hamiltonian representing the center-of-mass kinetic energy (dependent
only on the center-of-mass coordinates) and an internal Hamiltonian
(independent of the center-of-mass coordinates). One possible set of
coordinates in such an approach can consist of the three Cartesian
laboratory-frame coordinates of the center of mass and 3N — 3 internal
Cartesian coordinates that represent the positions of particles 2 to N
relative to a reference particle 1 (usually the heaviest nucleus) [22].
The axes of the internal coordinate system are parallel to the axes of the
laboratory coordinate system. The non-BO internal Hamiltonian then
depends only on 3N — 3 coordinates, by three less than the effective
internal Hamiltonian, Hj,,. Thus, while the wave function depends on
3N (laboratory-frame Cartesian) coordinates in the effective internal-
Hamiltonian approach taken in this work, it depends only on 3N — 3
(internal) in the approach based on the coordinate transformation.

The calculations performed in this work concern internal states of
hydrogen deuteride, HD, interacting with a stationary magnetic field
oriented along the Z-axis. We choose HD rather than H, because proton
and deuteron have different masses and different spins, making HD
more interesting than H, for non-BO calculations, especially when the
Zeeman interactions of the magnetic field with the spin and angular
magnetic momenta of the particles forming the molecule are included.

The non-BO wave functions of the bound states of the effective
internal Hamiltonian, which depend of spatial and spin coordinates
of all particles forming the molecule, must be properly symmetrized
(for bosons) and anti-symmetrized (for fermions). For the HD molecule,
each wave function is a product of a spatial function and a spin
function. As the HD non-BO wave function must be antisymmetric with
respect to the permutation of the electron labels, the spatial part of
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the wave function can either be symmetric (electronic singlet state) or
antisymmetric (electronic triplet state). In this work we consider both
types of states.

The total spatial wave functions representing singlet and triplet
states of the HD molecule can be represented as (1 + P(1,2))
E’/(Rd,RP,R] ,R,) and (1 - P, 2))5’/(Rd,RP,R,,R2), respectively, where
indices d, p, 1, and 2 denote the deuteron, the proton, and the two
electrons, respectively, and the operator P(1,2) permutes the electron
labels. These spatial functions are multiplied by the corresponding spin
wave functions, which are products of a deuteron spin function, a
proton spin function, and either antisymmetric electronic spin function
(for the singlet) or symmetric electronic spin function (for the triplet).

The most effective and accurate representation of a molecular non-
BO wave function is obtained by expanding its spatial part in terms of
functions that explicitly depend on the distances between the particles.
Here we use explicitly correlated Gaussians (ECGs) with shifted centers
of the form

& R) =exp [-R—s,)A, R -5s,)], 5)

where prime denotes vector transposition, R is a 3N vector of
laboratory-frame coordinates (for HD, concatenated from R,, Ry, Ry,
and R,), s, is a 3N vector of the Gaussian shifts, A, = A, ® I; is a
3N x 3N symmetric, positive-definite Kronecker product of the 3 x 3
identity matrix I and the N x N symmetric positive-definite matrix A,
of Gaussian exponential factors. Positive definiteness of A, is imposed
by representing it in the Cholesky-factored form A, = L,L; with L
being a lower triangular N x N matrix. The ECGs in (5) were used in
our previous works [2,3].

In the present calculations, we use the variational approach to op-
timize the non-linear parameters of the Gaussians and the coefficients
in the expansion of the spatial wave function in ECGs. The non-linear
variational parameters are the elements of the L, matrices and the
coordinates of the s, shift vectors of the Gaussians.

As shown by Lange at al. [7], the lowest-energy orientation of the
bond axis of a diatomic molecule with respect to the direction of the
magnetic field is perpendicular for the electronic triplet state and paral-
lel for the singlet state. Thus, for the Z-direction of the magnetic field,
the Gaussian shifts in the calculations for the triplet state are restricted
to the XY plane and in the calculations for the singlet state they are
restricted to the Z axis. In the first step, the Gaussians are optimized for
the lowest electronic singlet and triplet states without the Zeeman inter-
actions included in the Hamiltonian. The optimizations are carried out
for three different strengths of the magnetic field oriented along the Z
axis. For the triplet state, to approximately impose the axial symmetry
of the wave function expanded in terms of ECGs (i.e., making it approx-
imately symmetric in terms of rotations about the Z-axis), four ECGs
are contracted to form a single basis function. The L, matrices of all
four Gaussians are the same, but the s, shift vectors are different. In the
first Gaussian, only the x-coordinates of the shift vector s, are non-zero:
S = {Xé‘,0,0, X{;,0,0, X{“,O, 0, X;,0,0}. The shift vectors of the other
three Gaussians are: s;,, = {—X¥%,0,0, —XS,O, 0, —X{‘,O, 0, —X;,0,0},
sz = {0,X%,0,0, X£.,0,0, X%,0,0,X%,0}, and sy = {0,-X%,0,0, -xk,
0,0,—-X {‘ 0,0,—-X, é‘ 0}. The contraction coefficients of all four Gaussians
are equal to +1. The contracted ECG function, @,, can be written as:

Dy = i (X,0,0, X5,0,0, XF,0,0, X5,0,0)

+ Pra(=X§.0,0,~X5,0,0,-X7,0,0,-X5,0,0)

+ ¢13(0, X4, 0,0, X7,0,0, X{,0,0, X5, 0)

+ ¢ra(0,— X, 0,0, - X, 0,0, -X{,0,0, X}, 0). (6)
In the variational optimization, the elements of L, and the X*, Xrl;’ X f,
and X é‘ coordinates are optimized. No contraction is used in the basis

functions for the singlet state and, as mentioned, the basis functions
have shifts located on the Z axis:

@, = $,(0,0, 2},0,0, Z5,0,0, Z{,0,0, Z}). 7)
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Also, both parallel and antiparallel orientations of the HD bond axis
with respect to the Z axis are represented in the Gaussians used as a
starting point for the optimization. This means that, if @, (7) is included
in the starting basis set, the following Gaussian is also included as an
independent function:

@, = $,(0.0,2},0,0,Z4,0,0, Z,0,0, Z%) ®

and its parameters are optimized independently of the parameters of
.

Now, let us consider the potential generated by an external magnetic
field oriented along the Z-axis. The gauge-invariant kinetic momentum
operator for particle / is:

iy = —ihV; — Q;AR)), )

where Q, is the charge of the particle and the magnetic vector potential
A(R) represents the external magnetic field, B = V x A(R). The vector
potential for a stationary magnetic field may be written as:

AR) = IBX R, — ) 10)

where g is the gauge origin. Without the spin Zeeman interactions, the
total kinetic energy operator is then given by:

2
I

T=
2M,

M=
M=

[-1>V2 +ihQ/B - (R, — 2) X V) + O7|AR))?] /2M,.
I

(1)

The masses of the proton and the deuteron used in the present calcu-
lations are 1836.15267245m, and 3670.4829652m,, respectively. Placing
the gauge origin at the origin of the laboratory coordinate system,
g = 0, and the magnetic field vector along the z-axis B = (0,0, B,),
we can rewrite the kinetic-energy operator in the following form:

N
7 n? 2 ryorb %
T=_Z Z_MVI +HZeeman+V (12)
I=1

where the first term represents the canonical kinetic energy, the second
term the orbital Zeeman interaction of the particles with the magnetic
field, and the third term the diamagnetic interaction of the particles
with the field:

Noo N o2

qorb  _ ! i > L p2xy2 , y2

HZeeman__ZzMIBZLZI’ V_ZSMIBZ(XI +Y. ()
= i=1

Here LZ: = —in (X 1Vy, = Y;Vy, ) is the operator representing the Z

coordinate of the angular momentum of particle /. The diamagnetic
operator, V, takes the form of a quadratic (harmonic) well about the
Z-axis; it is proportional to the squared particle charge, the squared
field strength, and the inverse particle mass. It squeezes the system and
raises its energy.

The paramagnetic orbital Zeeman operator Flgge’man is linear in the
charge and the field strength and inversely proportional to the mass of
the particle; it may lower or raise the energy, reduce the symmetry of
the wave function, and split energy levels. It must be supplemented
by the spin Zeeman operator, which arises more naturally from a
relativistic treatment. The total Zeeman operator then takes the form:

N N

R . o 0, . ]

HZeeman = Hg;zman + H;Ele‘:’nan = BZ Z 2_MLZ’ - BZ Zgl”ISZ, 14
=1 I=1

where 4, is equal to minus the Bohr magneton —ug = —% for electrons
e

and to the nuclear magneton uy = % for the nuclei, while g, is the
g factor of the particle: g, = 2.0023113930436256, g = 5.5856946893,
and gq = 0.8574382338. Therefore, in atomic units, the spin Zeeman
interaction of electron / with the magnetic field oriented along the Z-
axis is BZSZI, while the proton and deuteron spin Zeeman interactions
are about three orders of magnitude smaller and of opposite sign:
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—(gp/ZmP)BZKSA'Zp and —(g4/2mp)B; S, . The possible values of the Z-
component of the spin are +% and —% for an electron and the proton,
and +1 and —1 for the deuteron.

In the calculations performed in this work, the Hamiltonian and
overlap matrices with the ECGs (5) are constructed. These matrices are
subsequently used to solve the matrix secular equation problem and
to determine the energy of the considered state and the linear expan-
sion coefficients of the ECGs in the corresponding wave function. The
algorithms for calculating the matrix elements with operators in the
diamagnetic operator were published before [2,23,24]. The algorithm
for calculating this matrix elements of the orbital Zeeman operator is
described in Appendix.

3. Illustration calculations

Our computer code is written in Fortran90 using MPI (message
passing interface) to enable multiprocessor calculations. The integral
algorithms for the Hamiltonian matrix elements are taken from our
previous work [2,3]. The code contains a module for variational op-
timization of the non-linear parameters (L, and s;) of the ECGs. The
approach is employed to perform calculations of low-energy states
of the HD molecule. The total Hamiltonian representing the internal
energy of the molecule in an external magnetic field is a sum of the
field-free internal Hamiltonian, H,, the diamagnetic Hamiltonian, V,
and the Zeeman Hamiltonian, Hyeemp,n:

H = ﬁint+17+f{2eeman' (15)

As mentioned, the illustration calculations are performed for the HD
molecule. They involved the following steps:

1. In the first step, Hamiltonian H;, + V is used in the variational
optimization of three basis sets for the triplet electronic state
and three for the singlet state. The three basis sets for each state
are generated for the following three different field strengths,
B, = 0.1B,, 0.2B,, and 0.3B,,, where B, ~ 235kT (one atomic
unit field strength). For the triple state, the basis set consists of
six contracted ECGs (6) with centers (Gaussian shifts) located in
the plane (i.e. the XY plane) perpendicular to the orientation
of the field (i.e. the Z axis). For the singlet state, the basis set
consists of twelve uncontracted ECGs with the centers located on
the Z axis. The wave functions of the singlet and triplet states
for the three field strengths are used to calculate the expectation
values of the proton-deuteron distance and its square ({r,q) and
(2.

2. Next, the electronic part of the spin Zeeman interaction FI;L:;I;I
is added to the Hamiltonian and the energy of the system is
calculated. Two electronic spin states are considered: the singlet
state with § = 0 and Mg = 0 and the triplet state in the
energetically most favorable orientation of electronic spin vector
with respect to the direction of the field, i.e. the S = 1 and
Mg = -1 state. While the spin Zeeman interaction vanishes
for the singlet, it stabilizes the chosen triplet component. The
stabilization increases with the field. The energy contribution
from the IA{;:[I:I ':n interaction has a constant value for each
electronic spin state. It only depends on states Mg value, but
is independent on the spatial wave function of the state. Thus,
no reoptimization of the basis set is needed at this stage.

3. Next, the nuclear spin Zeeman Hamiltonian, FI;::I;:;", is in-
cluded in the Hamiltonian and the energies of the singlet and
triplet states of the molecule are calculated for all possible
orientations of the spins of the proton (% and —%)) and the
deuteron (-1 and 1) with respect to the direction of the field.

4. Finally, ﬁg‘e’mm is added to the Hamiltonian and the total ener-
gies of the above described states are calculated by again solving
the secular equation (i.e., without reoptimizing the non-linear
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parameters of the Gaussians). The energies obtained in the cal-
culations now include the effect due to the interaction between
the magnetic field and the orbital momenta of the proton, the
deuteron, and the electrons. As, in this case, the Hamiltonian
matrix becomes complex Hermitian, a complex secular-equation
solver is used to obtain the energies and the corresponding wave
functions.

The basis sets are also not reoptimized in this case and the
adjustment of the wave functions and the corresponding energies
due to the inclusion of the Zeeman orbital interaction with the
field are only accounted for by the reoptimization of the (now
complex) linear expansion coefficients. We should note that the
Zeeman orbital interaction manifests itself by coupling states
with different angular momenta. For example, the zero-field
ground state, which is fully symmetric and corresponds to a
superposition of the HD ground electronic state, the ground vi-
brational state, and the ground (fully symmetric) rotational state
couples with states whose rotational components correspond to
non-zero angular momenta—for example, components of the D
symmetry. These components give non-zero off-diagonal ma-
trix elements of flgégman with the rotational component of the
ground state. The spherical symmetry of the field-free system,
whose states are eigenstates of the .2 operator, is broken by the
diamagnetic term. In a non-zero field, the symmetry becomes
cylindrical with respect to the Z-axis, which is required be-
cause the L, quantum number is a good quantum number. The
gauge origin being placed in the center of the coordinate system
ensures that the proper symmetry of the internal Hamiltonian
and the wave function is maintained. The lowest-energy wave
function obtained in the calculations is used to calculate the
expectation value of the fi‘zjggman operator in order to estimate
the Zeeman orbital interaction.

In the calculations with the complete internal Hamiltonian (in-
cluding Iflgz'e’man), the non-linear parameters of the Gaussians are
not reoptimized and only the linear expansion coefficients of
the wave function are adjusted to reflect the orbital Zeeman
interaction. To allow for the mixing of states of the different
symmetries, the contracted basis functions for the electronic
triplet state are separated into individual components (note that
contraction is not used for the singlet state). These components
are used as separate basis functions in the calculation. As each
contracted triplet Gaussian comprises four components, the size
of the basis set upon de-contraction increases from 6 to 24. The
24 x 24 matrix of the Flgggman operator constructed using the
uncontracted basis functions is Hermitian, but the off-diagonal
matrix elements are very small because of very small overlap
between any two components when their centers (shifts) are
located on different axes. This results in very small values of the
FI‘Z’;‘e’mm matrix elements and in the Zeeman orbital interaction
with the field being negligibly small for the particular case being
studied in this work.

The results of the calculations are shown in Table 1. The above-
described levels of including the Zeeman effects are shown in the table.
The results shown in the table correspond to the lowest singlet and
triplet electronic states of HD. The first set of results (level one) are
obtained with Hamiltonian that does not include the spin-dependent
effects. The difference in the energies of the singlet and triplet states
originates from the different permutational symmetries of the singlet
and triplet electronic wave functions. As expected, the energies of both
single and triplet electronic states of the system increase with the
increasing value of B, and, for all considered values of B, the singlet
has lower energy than the triplet.

Adding the Zeeman interaction of the magnetic field with the spins
of the electrons does not change the results for the singlet state, as the
Zeeman interaction in this case is zero. However, the energies obtained
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Table 1

Total internal energies of the lowest electronic singlet and triplet states (E, and E,) and
the expectation values of the proton-deuteron distances and their squares ((r,q) and
(rgd)) of the HD molecule placed in a magnetic field oriented along the Z axis with
the strengths of B, = 0.1, 0.2, and 0.3B,. For the singlet, a parallel orientation of the
HD molecule with respect to the field is assumed, while for the triplet a perpendicular
orientation is assumed. The energies are calculated for different levels of including the
Zeeman effects. At the first level, only the quadratic spin-independent Zeeman effects
are included, at the second level, the interaction of the field with the electron spins is
included, and at the third level the interaction of the field with the spins of the proton
and deuteron is included. At the latter level the total internal energy is calculated
for all possible spin orientations of the proton and the deuteron with respect to the
direction of the field. The orientations are designated by the proton and deuteron s,
quantum numbers, (s”z, sé). The Hamiltonians used in the different levels are shown
in the first column. The energies are given in hartrees and the expectation values of
the proton-deuteron distances in a.u.

Hamiltonian B, Singlet Triplet
Eg (rpa) (%) E (rpa) (r2)
Ay +V
0.1 —1.14060349 1.45 2.15 -0.95555737 4.62 21.65
0.2 —1.12887841 1.44 2.12 —-0.91543685 3.76 14.26
0.3 —1.11001969 1.42 2.06 —0.85673820 3.30 10.98
+Hg
0.1 —1.14060349 —1.05567333
0.2 —1.12887841 -1.11566871
0.3 —-1.11001969 —-1.15708609
(5%, 5%)
e
0.1 (1/2, 1) —1.14070289 —1.05577273
(1/2,0) -1.14067954 —1.05574938
(172, -1) -1.14065619 —-1.05573770
(-1/2, 1) -1.14055078 —1.05562063
(-1/2, 0) -1.14052744 —1.05559728
(-1/2, -1) -1.14050409 —1.05557393
0.2 (1/2,1) -1.12907721 —-1.11586751
(1/2,0) -1.12903051 —-1.11582081
(1/2, -1) -1.12898381 -1.11577412
(-1/2, 1) -1.12877300 —-1.11556330
(-1/2, 0) -1.12872631 —1.11551661
(-1/2, -1) -1.12867961 —1.11546991
0.3 (1/2,1) -1.11031789 —-1.15738430
(1/2, 0) —1.11024785 —1.15731425
(172, -1) -1.11017780 —1.15724420
(-1/2,1) -1.10986158 —-1.15692799
(-1/2, 0) -1.10979154 —-1.15685794
(-1/2, -1) -1.10972149 —-1.15678789

for the triplet state (we only consider the most energetically favorable
alignment of the electron spins with the field) decrease with the field
strength. At B, = 0.1B, the energy of singlet state is still lower than the
energy of the triplet, but that changes with increasing field strength.
Just above B, = 0.2B,, the triplet state becomes the ground state of
the HD molecule. This effect was observed before for the hydrogen
molecule by Detmer et al. and the Turbiner’s group [20,25,26], as well
as in our work [7]. For H,, Detmer at al. determined the single-triplet-
crossing value of the field strength to be 0.18B,. A more refined value
obtained by the Turbiner’s group is 0.178B,. The addition of the spin
Zeeman interaction that involves the spins of the proton and deuteron
lowers the energy of both states. However, the relative order of the
states remains the same — that is, just above the B, value of 0.2B,
the triplet energy dips below the energy of the singlet and the triplet
becomes the ground state.

The addition of the interaction of the spins of the proton and the
deuteron with the field splits both singlet and triplet energy levels
into four levels corresponding to the possible combinations of the 52
and s‘é quantum numbers. As expected, the splitting increases with the
increasing field strength. The splitting due to the proton is almost by
an order of magnitude larger than the splitting due to the deuteron.

The calculated average values of the proton-deuteron distance
shown in Table 1 provide an interesting insight into the interaction
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of the singlet and triplet states of the HD molecule with the field.
As expected, due to much weaker bonding, the average distance is
significantly larger for the triplet state than for the singlet for each
of the three field strengths. At B, = 0.1B, (r,q) is equal to 1.45 a.u.
for the singlet and 4.62 a.u. for the triplet. Also, for both states, the
distance decreases with increasing B,. However, while for the singlet
in going from B = 0.1B,, to B = 0.3B, (r,,q) decreases to 1.42 a.u., for
the triplet the decrease is much larger and at B, = 0.3B; (r,q) shrinks
to 3.30 a.u.

4. Summary

Our computational model for calculating bound states of molecular
systems placed in a strong static magnetic field is augmented to include
the interaction of the magnetic field with the spin and orbital mag-
netic momenta of the particles forming the system. In the model, the
Born-Oppenheimer approximation is not assumed. The Hamiltonian
representing the internal states of the molecule is obtained by subtract-
ing the operator representing the kinetic energy of the center-of-mass
motion from the laboratory-frame Hamiltonian. The wave functions of
the molecule are expanded in terms of all-particle explicitly correlated
Gaussian functions. The model is illustrated and tested in the calcu-
lations concerning the HD molecule. As noted before [7], the model
predicts that at strong fields the HD ground state switches from the
singlet state to the triplet state. Also, the calculations predict splitting
of both singlet and triplet energy levels into four sublevels resulting
from the interactions of the magnetic field with different spin states of
the proton and the deuteron. As expected, the splitting increases with
the strength of the field and it is significantly higher for the proton
than for the deuteron. The difference results from the different values
of the proton and deuteron g factors and from their different masses.
Both of these factors make the proton splitting larger than the deuteron
splitting.
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Appendix

A.1. Algorithm for calculating the sz matrix element

The integral to be calculated is:

<¢k|ALZj|¢]>
Ly = ® xp)?=-i (Rj.fvl{j - R;’Vﬁj)
(Wullz160) = =i { (BRI VE 1) = (Bl RY VY 140) |

—i { (¢ IR"MVg|¢;) — (&, IR"NVgIg;) }

If n=2and j =1 then:

X, 01 0 0 0 0
Y, 00 00 0 0
z 00 00 0 0
T _nT _ 1
RMVg =RE;, Vg = X, 0000 0 0
Y, 00 0 0 0 0
z, 00 00 0 0
Vy,
Vy,
v
=(0 X, 0 0 0 0) % [=RIVyr
Vy,
Vy,
Vz,
X, \V(0 0 0 0 0 0
Y, 1 0 00 0 0
r o | z 00 00 0 0
R'NVR =R'E, Ve = X, 00 00 00
Y, 00 00 0 0
z, 00 00 00
Vy,
Vy,
v
=(Yy, 0 0 0 0 0) - |=R'Vgx
Vx, 1
Vy,
Va,
If n=2and j =2 then
X, V(0 0 0 0 0 0
Y, 00 00 0 0
z 00 00 0 0
R"MVg =RTE, Vg =| !
—'R =45 'R X, 000 0 1 0
Y, 00 00 0 0
z, 00 0 0 0 0
Vx,
Vy,
v
=(0 0 0 0 X, 0) 7 [=RfVgr
Vx, 2
Vy,
Vz,
X Y(0 00 0 00
Y, 00 00 00
z 00 00 0 0
R'NVy =RTE_, Vg =| !
NVk =54 "R X, 00 00 0 0
Y, 00 01 0 0
z, 00 00 0 0

(16)

a7
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=(0 0 0 v 0 0)] & :R;’VR;(

Now we define some symbols used in the subsequent equations:

Ac+A = Ay a8)

Ase = ¢ 19

Ag =¢§ (20)

e, +¢€ =e (21)

—siAs, —§5TAS = —n (22)

é;lle =s (23)

eTé;lle -5 = sTékls -n=y (24)
—n =y—sTA,s (25)

The ECG with shifted centers used in the present work can be
written in the following form:

¢p =exp [-RTA R+ 2RTA;s; —s{A,s,]. (26)
Now the derivative of ¢, with respect to R is calculated:
Vroi = 0, = -2 [A, (R=5;)], b 27)
and used to calculate expression (17):
(¢ IR"MVg|d)) = =2(¢IR"MA, (R—s;) |¢;) =
= -2 |R"W (R=s)) |o),

We need integral of type (¢, |[RTW (R—s,) |¢,), where W = MA, or
W=NA:

(¢ IRTW (R=s,) |, = (| (RTW R) |¢;) — (¢, IR Ws; |} =

[s+]
= —exp[-7]d; / d°R

)

(28)

X exp [-RT (A +PW )R+2 (A5, +A5) R] 500 +

o T
—exp [—7] 3«/ d*R exp [—RTAMR+ 2 (e + %E Sn) R] lg=0 =
—00

(el { SR AGW ]+ (W s) | = (0uld) (STW ) =
= @l { 3BT AGW] + (W (s-s,)) }. @

where (¢, |¢,) is the overlap integral. This concludes the derivation.
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