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ABSTRACT

Hyperdimensional (HD) computing holds promise for
classifying two groups of data. This paper explores
seizure detection from electroencephalogram (EEG)
from subjects with epilepsy using HD computing based
on power spectral density (PSD) features. Publicly avail-
able intra-cranial EEG (iEEG) data collected from 4
dogs and 8 human patients in the Kaggle seizure detec-
tion contest are used in this paper. This paper explores
two methods for classification. First, few ranked PSD
features from small number of channels from a prior
classification are used in the context of HD classification.
Second, all PSD features extracted from all channels are
used as features for HD classification. It is shown that for
about half the subjects small number features outperform
all features in the context of HD classification, and for
the other half, all features outperform small number of
features. HD classification achieves above 95% accuracy
for six of the 12 subjects, and between 85-95% accuracy
for 4 subjects. For two subjects, the classification ac-
curacy using HD computing is not as good as classical
approaches such as support vector machine classifiers.

Index Terms— Hyperdimensional (HD) computing,
power spectral density (PSD), and seizure detection.

1. INTRODUCTION
The hyperdimensional computing (HD) has its potential
not only in addressing cognitive tasks [1, 2] such as ana-
lytical reasoning, but also in solving classification prob-
lems [3], e.g., language recognition, speech recognition,
image classification, etc. In general, HD computing ma-
nipulates its unique datatype—hypervectors, which have
their dimensionality d to be in the thousands, e.g., d =
10, 000. Their components can be binary, integer, real
or complex [4]; however, from a hardware-friendly per-
spective, this paper mainly focuses on binary hypervec-
tors where the bit value is either 0 or 1.
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As an alternative for deep learning, HD computing
is more hardware efficient in some applications such as
speech recognition [5]. Power spectral density (PSD)
features, relative band power and ratios of band power
features have been used for seizure prediction [6–8] and
for detection [9]. Moreover, it has been shown that small
number of PSD features obtained from a feature rank-
ing approach can achieve high accuracy using a support
vector machine (SVM) classifier [9]. This paper ex-
plores seizure detection with HD computing using PSD
features. The core of using HD computing lies in how
to encode the PSD features and channel information
by hypervectors, and how to generate class hypervec-
tors. Therefore, three distinct encoding approaches are
explored for seizure detection from the PSD features.
These include: concatenating feature hypervectors to
generate long class hypervectors, using multiple classi-
fiers where each feature is used to train a single classifier
and then the outputs of multiple classifiers are processed
to generate the classification result, and training a single
classifier using all feature hypervectors. All three ap-
proaches are applied to selected PSD features as well as
all PSD features.

The remainder of this paper is organized as follows.
Section 2 presents a review of HD computing and an
overview of HD classification. Both small number of
PSD features and all PSD features using HD computing
are explored with three encoding approaches in Section
3, respectively. Finally, Section 4 concludes the paper.

2. PRELIMINARIES
2.1. IEEG Dataset
Table 1 lists the information of the Kaggle iEEG dataset
[10]. Twelve subjects’ iEEG recordings are analyzed for
detecting seizures. The sampling frequency, fs, of these
recordings is 400 Hz for 4 dogs, and is 500 Hz or 5000
Hz for 8 human patients.
2.2. HD Computing
Performed among hypervectors, two basic mathemati-
cal operations—addition and multiplication—are used in



Table 1: Dataset Information
Patient #ictal #interictal #test #channel fs (Hz)
Dog 1 178 418 3181 16 400
Dog 2 172 1148 2997 16 400
Dog 3 480 4760 4450 16 400
Dog 4 257 2790 3013 16 400
Patient 1 70 104 2050 68 500
Patient 2 151 2990 3894 16 5000
Patient 3 327 714 1281 55 5000
Patient 4 20 190 543 72 5000
Patient 5 135 2610 2986 64 5000
Patient 6 225 2772 2997 30 5000
Patient 7 282 3239 3601 36 5000
Patient 8 180 1710 1922 16 5000

this paper for HD computing. The result of HD com-
puting is measured by similarity. In terms of binary HD
computing, the addition is typically associated with ma-
jority rule to ensure the output hypervector is binary. If
the number of addends is even, then the tie is broken by
adding an extra random hypervector to reduce the bias.
The multiplication is exactly XOR operation and denoted
as ⊕. Hamming distance is the similarity measurement
metric as computed in Eq. (1), where d is the dimension-
ality of the hypervectors. For example, Ham(A,B) = 0
indicates the hypervectors A and B are identical, while
Ham(A,B) = 0.5 means they are orthogonal or dissim-
ilar. Thus, the closer the Ham(A,B) is to 0, the more
similar are A and B. Interested readers are referred to
[3] for more details on HD computing and classification.

Ham(A,B) =
1

d

d∑
i=1

1A(i) 6=B(i) (1)

2.2.1. Classification Overview with HD Computing

1). During learning phase, class hypervectors are trained
and stored in the associative memory (AM) by encoding
the training data with the hypervectors, which are pre-
stored in the item memory (IM) or continuous item mem-
ory (CiM). More details for these two types of memories
are described later. 2). During inference phase, query
hypervectors are generated based on the testing data in a
similar encoding way, and then fed into AM to perform a
similarity measurement with all pre-trained class hyper-
vectors. The label indicated by the highest similarity is
assigned as the final predicted result.

2.2.2. IM and CiM

Encoders may consider two types of hypervectors, which
are generated in two different ways and then stored in IM
and CiM, respectively.

IM: Statistics shows that the randomly generated hy-
pervectors are nearly all dissimilar to each other. As
shown in Fig. 1(a), the similarity is described in a heat-
map, which indicates that five randomly generated hy-
pervectors are orthogonal to each other.

CiM: Sometimes similarity should be retained when
encoding the data. For example, to encode a feature vec-
tor, whose values are in a fixed range, hypervectors are
assumed to preserve some correlation. In such a case,
three steps are required: 1). Quantize the given range
into q levels; thus in total q level hypervectors are needed
to be generated. 2). Since adjacent values show greater
correlation, the CiM starts with a randomly generated hy-
pervector L1 with dimensionality d, which represents the
smallest value of the quantized range, and is used to gen-
erate the final hypervector Lq . Hypervector L1 is dissim-
ilar with Lq , which means half the bits are different. To
realize this, we can randomly choose d/2 components of
L1 and then split them into (q − 1) groups. The other
hypervectors are generated from L1 by flipping compo-
nents from one group to another. Similarity among five
hypervectors in CiM is displayed in Fig. 1(b), which re-
flects adjacent hypervectors show more correlations.

(a) Item memory. (b) Continuous item memory.

Fig. 1: Similarity among hypervectors in IM and CiM.
3. PSD METHOD

Based on [9], PSD achieves high classification accuracy
on the Kaggle contest dataset using classification and re-
gression tree (CART) based feature selection and polyno-
mial SVM classifier. In this paper, we use HD comput-
ing with selected small number of PSD features as well
as using all PSD features.

All the iEEG data are preprocessed to extract band
powers and remove power line noise [9]. 1). For dog
subjects, the frequency band is split into 10 frequency
sub-bands (Hz): 3-8, 8-13, 13-30, 30-55, 55-80, 80-105,
105-130, 130-150, 150-170, 170-200. 2). For human
subjects, the frequency band is split into 13 frequency
sub-bands (Hz): 3-8, 8-13, 13-30, 30-50, 50-80, 80-100,
100-130, 130-160, 160-200, 200-250, 250-300, 300-350,
350-400. To eliminate power line hums at 60 Hz and its
harmonics, spectral powers in the band of [60i−3, 60i+3]
Hz are excluded in the PSD computation, where i∈[0, 6].

Three spectral power metrics are computed as shown
in Eq. (3), where ASPf1,f2 refers to the absolute spec-
tral power of a signal in the frequency band [f1, f2]
Hz, RSPf1,f2 refers to the relative spectral power in
band [f1, f2] Hz and Ratiof1,f2,f3,f4 represents the spec-
tral power ratio of the absolute spectral power in band
[f1, f2] Hz over that in band [f3, f4] Hz.
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Fig. 2: Diagram for PSD method with HD computing.

hvclipi
=
[[

ID1 ⊕ L̄1 + · · ·+ IDM ⊕ L̄M

]
⊕Ch1 + · · ·+

[
ID1 ⊕ L̄1 + · · ·+ IDM ⊕ L̄M

]
⊕ChK

]
(2a)

hvclass =
[
hvclip1 + hvclip2 + · · ·+ hvclipN

]
(2b)

ASPf1,f2 = log
∑

f∈[f1,f2]
PSD(f) (3a)

RSPf1,f2 = log

∑
f∈[f1,f2]

PSD(f)∑
all f PSD(f)

(3b)

Ratiof1,f2,f3,f4 = ASPf1,f2 − ASPf3,f4 (3c)

3.1. Small Number of PSD Features

This paper used the same PSD features selected in [9] us-
ing CART (see Table I of [9]). These features are scaled
into the range [0, 1]. This scaling step facilitates the en-
coding process for HD computing. Now the problem is
how to generate a class hypervector hvclass based on N
clips with M PSD features.

3.1.1. Approach 1

Before training, quantize the range [0, 1] into q lev-
els, then for each subject, in total q level hypervectors
{L1,L2, · · · ,Lq} are generated in the CiM. As shown in
Fig. 2, clip i corresponds to a data point and then should
be represented by a clip hypervector hvclipi

based on
its quantized level, where hvclipi

∈ {L1,L2, · · · ,Lq}
and i ∈ [1, N ]. As shown in Eq. (4), In total M feature
hypervectors hvfeaturej

should be trained by adding all
corresponding clip hypervectors, where j ∈ [1,M ]. The
final class hypervector is generated by concatenating all
feature hypervectors. For example, Dog 1 requires 3 fea-
tures as [9]. Since each feature hypervector hvfeaturej

has its dimensionality d = 10, 000, the dimensionality
for hvclass becomes 30, 000.

hvfeaturej
=
[
hvclip1 + · · ·+ hvclipN

]
, (4a)

hvclass = (hvfeature1 , · · · ,hvfeatureM
). (4b)

3.1.2. Approach 2

Approach 2 uses M feature hypervectors hvfeaturej
to

represent a class, where j ∈ [1,M ]. This is different
from Approach 1 which employs a single class hypervec-
tor hvclass. Therefore, a given test segment will produce
M query hypervectors. Similarity measurement should
be performed for each query hypervector. We obtain the
label results from M classifiers. The final label is deter-
mined by a majority vote of all label results. For exam-
ple, Patient 3 needs 4 features to determine the label. In
this case, 4 feature hypervectors are trained. If the label
0 for interictal class is assigned 3 times, and 1 for ictal
class is assigned once, then the final label should be clas-
sified as 0, namely the interictal segment. If the number
of labels is even and half the labels correspond to each
class, the tie is broken in favor of detection.

3.1.3. Approach 3

Instead of concatenating the feature hypervectors, the
hypervector hvclass in Approach 3 is generated by Eq.
(5), where the hypervectors’ index (ID) values are pre-
generated in IM, whose total number is the same as
selective features.

hvclipi
∈ {L1,L2, · · · ,Lq}, where i ∈ [1, N ], (5a)

hvfeaturej
=
[
hvclip1 + · · ·+ hvclipN

]
, (5b)

hvclass =
[
hvfeature1 ⊕ ID1 + · · ·

dkddddddd+ hvfeatureM
⊕ IDM

]
(5c)

3.2. All PSD Features
We also take all features into consideration, which means
all the three spectral power metrics over all sub-bands
are computed. Therefore, 1). for dog subjects who have



Table 2: Simulation Results for Selective Features with Quantization Level q = 21

Patient Approach 1 Approach 2 Approach 3
Atrain (%) Atest (%) Atrain (%) Atest (%) Atrain (%) Atest (%)

Dog 1 97.9866 99.2455 97.3154 99.1198 97.3154 97.9881
Dog 2 94.7727 95.8625 94.0909 93.7604 92.8788 95.4621
Dog 3 96.8511 96.1124 97.3282 96.2247 96.9084 96.2022
Dog 4 79.0942 86.2264 77.1250 85.3966 86.1831 83.0070
Patient 1 93.6782 95.7561 74.1379 87.4634 92.5287 95.7561
Patient 2 85.1640 23.9086 66.6985 12.9173 78.4782 34.5146
Patient 3 75.0240 94.0671 76.4649 87.0414 73.5831 85.0898
Patient 4 71.4286 72.9282 69.5238 70.5341 77.6190 75.3223
Patient 5 74.6812 84.4943 83.6066 92.1969 87.9781 93.1681
Patient 6 88.4885 86.6200 84.4845 83.4168 91.3580 89.8565
Patient 7 93.5246 84.6709 55.8364 30.0750 87.5604 80.3388
Patient 8 66.7196 71.0198 9.5238 9.3652 61.6931 67.6899

Table 3: Simulation Results for All Features with Quantization Level q = 21

Patient Approach 1 Approach 2 Approach 3
Atrain (%) Atest (%) Atrain (%) Atest (%) Atrain (%) Atest (%)

Dog 1 74.8322 36.8752 72.1477 22.1000 95.8054 59.7925
Dog 2 83.4848 75.0417 75.1515 72.0387 93.5606 75.4087
Dog 3 92.1183 94.4944 78.2252 92.4270 95.8206 94.6067
Dog 4 76.5671 42.1839 66.7542 36.4089 96.0289 45.8679
Patient 1 67.2414 83.7073 66.6667 14.0488 100.0000 66.3902
Patient 2 78.4464 45.1464 76.9500 63.9188 96.3069 73.3950
Patient 3 79.8271 85.2459 78.0019 58.7041 98.7512 89.6956
Patient 4 75.2381 85.4512 74.2857 85.4512 95.7143 88.9503
Patient 5 90.6011 87.2739 76.6120 72.3041 94.9362 92.1299
Patient 6 98.4985 91.9253 97.5309 91.3247 99.3660 92.4258
Patient 7 97.0747 88.6143 42.6015 38.6282 98.8640 82.1716
Patient 8 83.9683 73.7773 78.0423 63.9438 89.7884 77.8876

10 sub-bands, a total of 65(= 10 + 10 +
(
10
2

)
) features

need to be computed. They are 10 ASP, 10 RSP and
(
10
2

)
Ratio. 2). Similarly, for human subjects with 13 sub-
bands, 104(= 13 + 13 +

(
13
2

)
) features are computed.

Similar to small number of PSD features method,
three approaches are performed for all features with HD
computing. The only difference is the generation of
hvclass hypervector in Approach 3, which is shown in
Eq. (2). The algorithm is straightforward: 1). Before
training, pre-generate K channel hypervectors Chk in
IM1, M ID hypervectors IDj in IM2, and q level hyper-
vectors {L1,L2, · · · ,Lq} in CiM, where k ∈ [1,K] and
j ∈ [1,M ]. 2). For each clip, generate the clip hyper-
vector as described in Eq. (2a), where [·] represents the
majority rule and L̄j ∈ {L1, · · · ,Lq}. The final class
hypervector is generated by adding all clip hypervectors
for the same class as shown in Eq. (2b). 3). Once the two
class hypervectors are trained, during the testing phase,
the query hypervector is generated by each clip in the
same way as shown in Eq. (2a). The label is assigned
according to the similarity measurement between the
query hypervetors and the trained two class hypervetors.

Simulation results for the PSD method with small

number of PSD features and all PSD features are shown
in Tables 2 and 3, respectively. In Table 2, the results
for Patient 2 is are poor for all approaches. Compared
to small number of features, in terms of test accuracy
shown in Table 3, the test accuracy of Patient 2 has been
improved. However, some cases like Dog 1 and Dog 4
get worse.

4. DISCUSSION AND CONCLUSION

This paper combines PSD features with HD computing
for detecting seizures. Both small number of PSD fea-
tures and all PSD features are studied. For about half of
the subjects, small number features outperform all fea-
tures in the context of HD classification, and for the other
half, all features outperform small number of features.
HD classification achieves above 95% accuracy for six
of the 12 subjects, and between 85-95% accuracy for 4
subjects. For two subjects, the classification accuracy us-
ing HD computing is not as good as classical approaches
such as SVM [9]. Future efforts will address develop-
ing feature ranking methods for HD classification. The
proposed PSD approach should be compared with other
approaches such as the local binary pattern (LBP) [11].
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