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Abstract

®

CrossMark

Highly accurate calculations are reported for the eleven lowest states of the 2P Rydberg series
(1s2np1 ,n=2,...,12) of the lithium atom. The nonrelativistic wave functions of the states
are expanded in terms of up to 16 000 all-electron explicitly correlated Gaussian (ECG) basis
functions. The ECG exponential parameters are variationally optimized using a method that
employs the analytical energy gradient determined for the parameters. The finite-nuclear-mass
effects of the °Li and "Li isotopes are explicitly included in the nonrelativistic variational
calculations. The results also include the leading relativistic and quantum electrodynamics
energy corrections computed using the framework of perturbation theory. The calculated
interstate transition energies are compared with the available experimental data. The ®Li—"Li

isotope shifts of the transition energies are determined.

Keywords: all-electron explicitly correlated Gaussian function, relativistic corrections for

few-electron atoms, Rydberg spectrum of lithium atom

(Some figures may appear in colour only in the online journal)

1. Introduction

Since the beginning of quantum mechanics, quantitative stud-
ies of atomic energy levels have contributed many important
results to the atomic physics and, in particular, atomic Rydberg
systems [1]. The data obtained have enhanced our understand-
ing of the atomic electronic structure and of other atomic prop-
erties. With the advancement of computational approaches, it
has been possible to develop more accurate theoretical mod-
els for the electronic structure of atoms. Through experimental
and theoretical studies, it has been shown that highly excited
Rydberg atoms possess some unusual properties that can be
controlled by state selection and the application of external

* Author to whom any correspondence should be addressed.

0953-4075/21/085003+16$33.00

electromagnetic fields [2]. With the discovery of these prop-
erties in recent decades, new and interesting applications have
been proposed for Rydberg atoms [3].

Back in 1982, Richard Feynman postulated that in order
to accurately simulate the behavior of a quantum system in
a reasonable amount of time, a new generation of computers
called quantum computers needed to be built [4]. In recent
decades, superconductors, trapped ions, quantum dots, neu-
tral atoms, photons, and spins in solid-state hosts have been
examined for use in quantum information processing [5, 6].
The use of neutral Rydberg atoms as qubits boasts several
interesting characteristics. Atoms of a particular isotope of an
element are quantum systems that can be readily prepared in
well-defined, stable, and identical quantum states. Although
the application of atoms is limited by the tunability of their
properties, Rydberg atoms offer strong and tunable atomic

© 2021 IOP Publishing Ltd  Printed in the UK
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interactions that can be adjusted by selecting states with dif-
ferent principal quantum numbers or orbital angular momenta.
These features make Rydberg atoms highly desirable can-
didates for the development of memory units for quantum
computers [5—7].

The accuracy of the results obtained using theoretical mod-
els is influenced by two key factors. The first is related to
the use of the Born—Oppenheimer (BO) approximation in the
calculations. Due to the dependence of the properties of Ryd-
berg atoms on the mass of the nucleus, the coupling of the
motions of the nucleus and the electrons should be accounted
for in high-accuracy calculations (see reference [6]), i.e. the
BO approximation should not be assumed at the start of the
calculations. To our knowledge, such non-BO high-accuracy
atomic calculations have only been performed by our group
[8,9]. The second key factor in achieving high-accuracy results
from atomic calculations is the selection of an appropriate
basis function for expanding the wave function of the stud-
ied states of the system. Explicitly correlated basis functions
are likely to be the best choice for performing atomic ground-
and excited-state calculations. As such functions explicitly
depend on inter-electron distances, they allow for a very accu-
rate description of the electronic correlation effects. Hylleraas-
type (Hy) functions and explicitly correlated Gaussian (ECG)
functions have been the most popular correlated basis func-
tions used in high-accuracy atomic calculations. However,
the former functions, despite their superb accuracy, cannot
easily be extended to calculate the states of atomic systems
with more than three electrons. The Gaussian functions do
not have these limitations, but they are not as efficient as
the Hy functions in describing the behavior of the wave
function near the particle coalescence points, and have less
favourable long range behavior. The deficiency of the Gaus-
sian functions, that they do not fulfill the so-called Kato cusp
conditions, can be remedied by using larger expansions of
the wave function in terms of these functions. Employing a
larger number of well-optimized basis functions to calculate
the ground and excited atomic states not only improves the
accuracy of the total atomic energy but also the accuracy of
the expectation values of other important atomic properties.
However, properties represented by operators with singulari-
ties may still show considerably worse convergence than that
of the total energy. This, for example, applies to operators
involving one- and two-electron Dirac delta functions, & (ri j),
and the operators describing the relativistic correction to the
kinetic energy, which contain the fourth power of the linear
momenta. The convergence rate of the expectation values of
such operators with the number of basis functions may be
significantly slower than the convergence of the expectation
value of the Hamiltonian. In some cases, this slow convergence
can be overcome by adopting regularization techniques that
employ expectation value identities that allow a more accu-
rate determination of the expectation values for the eigenstates
of the Hamiltonian.

One of the aims of this work is to implement expecta-
tion value identities involving singular operators that appear
in the calculation of the leading relativistic corrections for

atomic P states. As mentioned above, the operator regulariza-
tion approach accelerates the convergence of the expectation
values of singular operators in terms of the number of basis
functions. Thus, one can use an expansion of the wave func-
tion that already provides satisfactory convergence for the total
energy, but not yet for the expectation value of a singular oper-
ator, to calculate its expectation value using an identity. That
may be particularly important for highly excited states, where
the basis set convergence usually becomes notably worse than
for the lower-energy states.

Although some P states of the lithium atom have been
previously studied using explicitly correlated methods by
other groups [10-28], those works have been limited to
just a couple of the lowest states. There are only two
works where highly excited P states have been consid-
ered, one by the present authors [27] and one by Wang
et al [29]. It is important to note that the use of the non-
BO approach from the start (i.e. non-perturbatively) in the
present calculations sets the present work apart from previ-
ous calculations by other groups, where the non-relativistic
wave function and the corresponding energy were gener-
ally obtained by assuming an infinite mass of the nucleus,
while the corrections due to the finite nuclear mass were cal-
culated using perturbation theory. The use of the non-BO
nonrelativistic wave function also facilitates the automatic
inclusion of recoil effects when the relativistic corrections are
computed.

2. Method

The basic all-electron ECG basis functions used to construct
the P-state wave functions in the present work have the fol-
lowing form (for more information see references [30, 31]):

¢k =z, exp [-r (A @ ) 1], (1)

where r is a 3n vector column of the electron coordinates
(referenced to the nucleus),

z;, 18 the z-coordinate of the ith electron, i is an adjustable
integer parameter (specific to each basis function k), A; is
an n x n real symmetric matrix, ® is the Kronecker prod-
uct, and /3 is a 3 x 3 identity matrix. The prime symbol
denotes the matrix/vector transpose. The Gaussian basis func-
tion (1) is square integrable if matrix Ay is positive defi-
nite. To assure this requirement, A; is represented by the
Cholesky-factored form, Ay = LiL;, where Ly is a lower trian-
gular matrix. The A; matrix given in this form is always posi-
tive definite, regardless of the values of the L; matrix elements.
Thus, the elements of L; can be varied without any constraints
from oo to —oo.

In the present calculations, we use the spin-free for-
malism to ensure the correct permutational symmetry
properties. For this purpose, an appropriate permutational
symmetry projector is constructed and applied to each
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basis function (1). In constructing the symmetry projector,
the standard procedure involving Young operators (see
references [32, 33]) is used. In the case of the %P states of
lithium, the permutation operator can be chosen in the form
Y = (1 + P12)(1 — P23), where P;; denotes the permutation
of the spatial coordinates of the ith and jth electrons (particle
0 is the nucleus). More details about the generation of the
wave function and its variational optimization can be found in
references [27, 31].

In the nonrelativistic (nr) variational calculations, the
Hamiltonian is obtained by separating the atom’s center-
of-mass motion from the nonrelativistic laboratory-frame
Hamiltonian. This separation is rigorous and reduces the four-
particle problem of the Li atom to a three pseudoparticle
problem represented by the following ‘internal’ Hamiltonian,
expressed in terms of r;’s (atomic units are assumed through-
out):

3
He=-3 (Y lu ey Loy
i=1 ™

tlj;kz

Z‘Io% +ZZCI% )

i=1 j<i

Here, g, = 3 is charge of the nucleus, ¢, = —1 (i =1, 2, 3) are
the electron charges, my is the nuclear mass (1, = 12 786.3933
for "Li and mo = 10961.898 for SLi), j1; = mom;/(mg + m;) is
the reduced mass of the electron i (m; = m, = m3 = 1), and
rij = |r; — r;| are the distances between the (pseudo)electrons.
The calculations involving the nonrelativistic Hamiltonian H*
can be carried out for both finite and infinite masses of the Li
nucleus. They yield the nonrelativistic ground- and excited-
state energies (E,;) and the corresponding wave functions.
Both the energy and the wave function depend on the mass
of the nucleus. In this work, we report both the finite-mass
and infinite-mass results. The Hamiltonian (2) can also be
conveniently written in a compact matrix form [8] as:

H:;l = VMV, + Z q04i + Z Z thj 3)

i=1 j<i

where

Vi,
Vi,
Vi,

is a nine-component gradient vector and M = M ® I3 is the
Kronecker product of a 3 x 3 matrix M and the 3 x 3 iden-
tity matrix /3. The matrix M has diagonal elements 1/(2p,),
1/(2u,), and 1/(2u5), while all the off-diagonal elements are
equal to 1/(2my).

The nonrelativistic energy, even obtained using a very
accurate, well optimized wave function, is insufficient to
calculate the total and transition energies of the atomic
ground and excited states with an accuracy comparable to the
available experimental results. The relativistic and quantum
electrodynamics (QED) effects must also be included in the
calculations. The approach that is the most practical and most

Vi =

frquently used to account for the relativistic and QED effects
in light atoms is to expand the total energy in powers of the
fine-structure constant, « [34, 35]:

Ewt = En + EQ + PEQyy + * Eep + ... (@)

where E,; is the nonrelativistic energy of the state being con-
sidered, the second term, a?E"%) represents the leading rel-

rel »
ativistic corrections, the third term, a3E(Q3%D, represents the

leading QED corrections, and the fourth term, a4E§_f()2ED, rep-
resent the higher-order QED corrections. Each of these terms
is evaluated as an expectation value of some effective oper-
ator that represents the calculated term. E§e1 is calculated as
the expectation value of the Dirac—Breit Hamiltonian in the
Pauli approximation, Hy [36, 37]. In this study, the relativistic
correction for the P-states, H.j, contains the following terms:

Hy = Hwy + Hp + Hoo + Hss, )

where Hviv, Hp, Hoo, and Hgs are operators that are com-
monly interpreted as the mass—velocity, Darwin, orbit—orbit,
and spin—spin corrections, respectively. The explicit form of
these operators in the internal coordinates can be found in our
previous works [38, 39]. It should be mentioned that, due to
the use of a finite nuclear mass in the nonrelativistic Hamil-
tonian, the recoil effects are directly included in the calcula-
tions of the relativistic correction. In general, for non-singlet
states of atoms, H, should also contain a term describing
the spin—orbit interaction. In this work, however, it was not
included. The experimental data show that the fine-structured
splits for the lithium atom are small. In fact, for the excited nP
states (n > 2) they get progressively smaller (a few hundredths
of a wavenumber) and essentially vanish in the limit of high n.
As we are primarily concerned with the energy levels and tran-
sitions between Rydberg states, the missing contribution due
to the spin—orbit term is not expected to have a particularly
notable effect on the accuracy of our calculations.

The ES%D term in (4) represents the leading QED correc-
tion. For an atomic system, it takes into account the two-
photon exchange, the vacuum polarization, and the electron
self-energy effects. The explicit form of the operator is:

3
164 14 7 1
HQEDZZ [(1—54‘?1 a)(S(rij)—aP (F)]

i,j=1 L
J>i

D3

i=1

(— —2Ina—1In k0> 4%5@,-), (6)

where the first sum represents the Araki—Sucher term [11,
40-43], while the principal value P (1/r};) is defined as:

<7) <7‘13>> = }lglol <7‘13@ (r,-j—a) +4m(y+1In a)d (rij)> .
ij ij
(7)

In the last expression, ©(. . .) is the Heaviside step function and
v = 0.577215 ... is the Euler—Mascheroni constant.

The dominant part of the electron self-energy is the so-
called Bethe logarithm, In k(, which appears in expression (6).
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Table 1. Comparison of the convergence of the expectation values of some singular operators for three selected Rydberg states of *°Li
computed using the regularization technique (marked with a tilde) and using direct calculations (no tilde). All values are in atomic units.

State Basis (Hwv) (Hwmv) (0(ry) (0(ry)) (o(r:j)) (0(r:j))

1S22p1 6000 —77.505 654 —77.503 986 4558732346 4.558 617001 0.177 424 699 0.177 432409
7000 —77.505 640 —77.504 338 4.558 732 348 4.558 643 190 0.177 424700 0.177429516
8000 —77.505 630 —77.505072 4558732350 4.558693976 0.177 424 700 0.177427 586
9000 —77.505 624 —77.505 244 4558732350 4.558 705279 0.177 424 700 0.177 426 306

Ref. [28] 33600 —77.50561673(9) 4.55873235019(2) 0.177 424 6999(1)

1S27p1 9000 —77.634 311 —77.626752 4.567779 196 4.567246971 0.177 896 659 0.177961 446
10000 —77.634 174 —77.628 321 4.567779 250 4.567 365 639 0.177 896 676 0.177934 245
11000 —77.634 056 —77.630790 4.567779 286 4.567550718 0.177 896 682 0.177911 928
12000 —77.634043 —77.631901 4.567779 296 4.567 625944 0.177 896 683 0.177907 462

152 12p' 13000 —77.637 128 —77.593 046 4.567955 622 4.564 247289 0.177904 856 0.178 139915
14 000 —77.636 807 —77.595 332 4.56795 6970 4.564 559712 0.177905 063 0.178 068 158
15000 —77.636775 —77.603 093 4.567 958 235 4565213610 0.177905 145 0.178 047 780
16 000 —77.636757 —77.608 466 4.567 959 099 4.565 627 984 0.177905 199 0.178 037 245

The main difficulty in computing the QED term for a multi-
electron atomic system is to accurately calculate In kp. It is
known that the dominant contribution to Inky comes from
the inner shell electrons. Therefore, at the lowest level of the
approximation, the value of the Bethe logarithm determined
for the 15°2p' state of the Li atom may be used to calculate
the QED corrections for the higher states of this system. The
Bethe logarithm for the Li 1s?2p' state was calculated by Yan
et al [21] and is adopted in our current calculations for all the
P states considered.

The Ef_‘[%ED term in expansion (4) is computed as an expec-
tation value of the following approximate operator derived by
Pachucki and Komasa [44, 45]:

427 :
Hyoep = 743 <96 —21n 2) > 5. 8)
i=1

EEI%ED includes the dominant electron—nucleus one-loop
radiative correction. The two-loop radiative, electron—electron
radiative, and higher-order relativistic corrections are
neglected. The above expression only provides a raw estimate
of ES&ED. It seems that, based on the available data for smaller
atoms, one can expect that it should capture the bulk of the
higher-order QED effects with an overall error that is likely to
be less than 50%.

It should be noted that the expectation values of both the
H oep and Hyoep Hamiltonians are calculated in this work with
the infinite-nuclear-mass wave functions, because the corre-
sponding formalism was developed under the assumption of a
clamped nucleus [44, 45]. Hence, no recoil effects are included
in the ES%D and Ef_‘[%ED computed in this work.

Some of the aforementioned operators include singular
terms. For instance, Hyy contains the terms proportional to
Vf.l_ and Hp, Hss, Hoep, and Hygep include singular one-
and two-electron Dirac delta functions, é(r;) and 6(r;;) (note
that d(r;) = 0(x;)(y;)0(z;)). The expectation values of these
operators usually converge rather slowly with the number of
the basis functions used to expand the wave function. While

there are multiple factors that contribute to the slow conver-
gence, the main reason for this deficiency is related to the
fact that with these operators, the expectation values sam-
ple the wave function locally (e.g. in the subspace where
r; = 0) rather than globally in the entire coordinate space.
The approximate nonrelativistic wave function may have a
local error that is considerably more significant than the global
error in the energy expectation value, which largely cancels
out due to the nature of the variational method (this behav-
ior is general and occurs for any basis set employed). There
have been studies that aimed to transform the singular oper-
ators to more global operators to accelerate the convergence
of the expectation values calculated with those operators with
the number of basis functions [46-51]. A rather practical
approach was proposed by Drachman [51] based on the work
of Trivedi [50]. The Drachman approach has been adopted
in quite a few works in recent decades; it makes use of
an expectation value identity. For exact eigenfunctions, the
approach gives the same expectation values as when the sin-
gular (non-global) operator is used. At the same time, for
approximate wave functions, as the studies performed so far
have demonstrated, the use of the expectation value identity
facilitates a considerable improvement of the convergence of
the expectation values of the singular operators that appear in
the operators representing the leading relativistic corrections
[39, 52].

The use of the Drachman method [51] (which may be
referred to as a regularization technique) has been very effec-
tive not only for Gaussian basis functions but also for other
types of function [20, 28]. However, due to the improper
behavior of the Gaussian functions (1) in the vicinity of particle
coalescence points and due to the fact that they do not satisfy
the Kato cusp conditions [53], improving the convergence of
the expectation values of singular operators calculated using
Gaussians is particularly important. Even though the poor con-
vergence can be remedied to some degree by simply using
larger Gaussian basis sets, adopting the regularization tech-
nique clearly brings great benefits [51, 52].



Table 2. Convergence of the nonrelativistic variational energy (E,,), the mass—velocity correction (Hyyy), and the expectation values of the one- and two-electron Dirac §-functions
with the number of basis functions for the lowest twelve 2P states of the lithium atom. The numbers in parentheses are estimated uncertainties due to the basis truncation. All
values are in atomic units. In references [28, 29] the variational calculations were performed using the Hy-type basis functions.

State Isotope Basis Epn (Hwv) (5(rp)) (6(r:j) (Hoo) (P (l/rfj)> Eor
1s22p! "Li 6000 —7.409 557 758 65 —77.480954 4.557 646 046 0.177 384 817 —0.406 154 192 —7.410071 85621
7000 —7.409 557758 81 —77.480 940 4.557 646 048 0.177 384 818 —0.406 154 190 —7.410071 85577
8000 —7.409 557 758 95 —77.480931 4.557 646 050 0.177384 818 —0.406 154 189 —7.410071 85552
9000 —7.409 557 759 00 —77.480925 4.557 646 051 0.177 384 818 —0.406 154 189 —7.410071 85527
00 —7.409 557 7592(1) —7.410071 8550(2)
9000 —7.409458 11056 —77.476 815 4.557 465 283 0.177378 181 —0.407 772 896 —7.409972213 63
6Li 00 —7.409458 1108(1) —7.409 972 2133(2)
L 9000 —7.410 156 532 63 —77.505 624 4.558 732350 0.177 424 700 —0.396425741 9.63211 —7.410670 588 37
00 —7.410 156 5329(1) —7.4106705881(2)
Ref. [28] 33600 —7.41015653265241(3) —77.50561673(9) 4.55873235019(2) 0.177 424 6999(1)
1523]7l TLi 6000 —7.336556363 16 —77.574 185 4.564 054 035 0.177726 312 —0.427812412 —7.33707141337
7000 —7.336556363 59 —77.574 143 4.564 054043 0.177726313 —0.427 812401 —7.337071 41200
8000 —7.336556363 63 —77.574 121 4.564 054 045 0.177726314 —0.427 812399 —7.33707141107
9000 —7.336556363 69 —77.574 120 4.564 054 045 0.177726314 —0.427 812399 —7.33707141108
00 —7.336 556 3639(1) —7.337071 4095(8)
oLi 9000 —7.33645728572 —77.570013 4.563 873525 0.177719 697 —0.429 434 639 —7.336972339 19
00 —7.336457 2859(1) —7.3369723374(9)
L 9000 —7.337 151708 58 —77.598 803 4.565 138 855 0.177766 074 —0.418062732 6.98868 —7.337 666 714 60
00 —7.337 151 7088(1) —7.337 666 7130(8)
1524]7l "Li 7000 —7.311295101 02 —77.596 593 4.565703912 0.177 808 781 —0.433 510657 —7.31181032077
8000 —7.311295101 52 —77.596 524 4.565703 924 0.177 808 784 —0.433510637 —7.31181031825
9000 —7.311295101 57 —77.596 505 4.565703 926 0.177 808 784 —0.433510635 —7.31181031748
10000 —7.311295101 64 —77.596 502 4.565703 927 0.177 808 784 —0.433510635 —7.31181031735
00 —7.3112951021(2) —7.3118103162(6)
Ref. [29] so  —7.3112951016176(2)
oLi 10000 —7.311 196254 24 —77.592 395 4.565 523453 0.177802 172 —0.435133712 —7.31171147692
00 —7.311196 2547(2) —7.3117114758(6)
Ref. [29] 00 —7.311 196 254 2635(2)
*Li 10000 —7.311 88906073 —77.621 182 4.566 788 460 0.177 848 521 —0.423755946  6.36358 —7.312404 234 87
00 —7.3118890612(2) —7.312404 2338(6)
Ref. [29] 22302 —7.311 889060 758 55
Ref. [29] 00 —7.311 889060 7587(2)
1525]7l "Li 7000 —7.299 694 902 00 —77.604 314 4.566 297 869 0.177 837 805 —0.435573 946 —7.300210 16590
8000 —7.299 694902 21 —77.604 304 4.566 297 883 0.177 837 806 —0.435573942 —7.300210 165 68
9000 —7.299 694 902 27 —77.604 296 4.566 297 884 0.177 837 806 —0.435573942 —7.300210 165 38
10000 —7.299 694 902 35 —77.604 290 4.566 297 885 0.177 837 806 —0.435573941 —7.30021016518
00 —7.299 694 9026(1) —7.300210 1658(3)

£00580 (1202) ¥S 'sAud 1dO "lo v :g sAud

[e 19 LISeN S



Table 2. Continue

Ref. [29] 00 —7.299 694 902 339 30(6)
°Li 10000 —7.299596 170 62 —77.600 184 4566117425 0.177831195 —0.437 197305 —7.300 11144044
00 —7.299596 1709(1) —7.3001114399(4)
Ref. [29] 00 —7.299 596 170 660 65(5)
*Li 10000 —7.300288 166 22 —77.628970 4.567382335 0.177877536 —0.425817528 6.10829  —7.300803 38741
00 —7.300288 1665(2) —7.300 803 3880(3)
Ref. [29] 22302 —7.300288 166 265 05
Ref. [29] 00 —7.300288 1662651(1)
15%6p! Li 8000 —7.293427 18742 —77.607658 4.566561030 0.177850526 —0.436490373 —7.293 942 466 83
9000 —7.29342718761 —=77.607653 4.566561044 0.177850527 —0.436490366 —7.293 942 466 96
10000 —7.293427 187 68 =77.607649 4.566561047 0.177850527 —0.436490365 —7.293 942 466 89
11 000 —7.29342718778 —77.607648 4.566561049 0.177850527 —0.436490365 —7.293 942 466 90
00 —7.293 427 1880(1) —7.293 942 4673(2)
Ref. [29] 00 —7.293427 187 8104(4)
°Li 11000 —7.293 32852201 —77.603542 4566380594 0.177843917 —0.438113 854 —7.293 843808 12
00 —7.293 328 5223(1) —7.293 843 8076(2)
Ref. [29] 00 —7.293328 522 0817(4)
*Li 11000 —7.294 020 055 29 —77.632327 4567645466 0.177890254 —0.426733210 6.03559  —7.294 53529275
00 —7.294 020 0556(1) —7.2945352931(2)
Ref. [29] 22302 —7.294 020 055 377 65
Ref. [29] 00 —7.294 020 055 3779(3)
1527p! Li 9000 —7.289 662289 12 —77.609632 4566694794 0.177856934 —0.436957 281 —7.290 17758878
10 000 —7.289 66229125 —77.609495 4.566694848 0.177856950 —0.436957 145 —7.290 177 584 62
11000 —7.289 662291 66 —=77.609377 4.566694886 0.177856957 —0.436957092 —7.29017757971
12000 —7.289 662291 86 —77.609364 4.566694895 0.177856958 —0.436957 083 —7.290 177579 36
00 —7.289 662 2932(7) —7.290 177 5775(9)
Ref. [29] 00 —7.289 662291 990(2)
°Li 12000 —7.289563 667 15 —77.605257 4.566514443 0.177850347 —0.438580632 —7.290078 961 64
00 —7.289 563 6686(7) —7.290078 9598(9)
Ref. [29] 00 —7.289563 667 321(2)
*Li 12000 —7.290254912 62 —77.634043 4567779296 0.177896683 —0.427199558 591039  —7.290770 158 44
00 —7.290254 9140(7) —7.290770 1566(9)
Ref. [29] 22302 —7.290254912797 16
Ref. [29] 00 —7.290254912799(2)
15°8p! Li 11000 —7.28722561901 —77.610699 4.566769796 0.177860503 —0.437219592 —7.28774092822
12000 —7.28722562018 —77.610694 4566769821 0.177860505 —0.437219563 —7.287740929 16
13000 —7.287225 622 80 —77.610554 4.566769948 0.177860533 —0.437219301 —7.287740 92524
14 000 —7.28722562327 —77.610345 4.566769963 0.177860551 —0.437219 125 —7.28774091624
00 —7.2872256241(4) —7.287 740 9146(8)
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Ref. [29] 00 —7.287 225 623 6354(6)
°Li 14000 —7.287 12702581 —77.606239 4566589512 0.177853941  —0.438 842709 —7.28764232578
00 —7.287 127 0266(4) —7.2876423241(8)
Ref. [29] 00 —7.287 127 026 2255(6)
*Li 14000 —7.287 818080 19 —77.635024 4.567854357 0.177900275 —0.427461394 5.78497  —7.28833333149
00 —7.287 818 0810(4) —7.2883333298(8)
Ref. [29] 22302 —7.28781808061515
Ref. [29] 00 —7.287 818 080 6158(6)
1529p! Li 12000 —7.28555867173 —77.611430 4.566814785 0.177862604 —0.437378387 —7.286073 990 66
13000 —7.285558 67494 —77.611297 4566814876 0.177862633 —0.437378126 —7.286073 987 62
14 000 —7.285558 67657 =77.611276 4566814921 0.177862643 —0.437378059 —7.286073 98828
15000 —7.285558 68328 —77.611200 4.566815206 0.177862671 —0.437377805 —7.286073 991 30
00 —7.285558 6849(8) —7.286 073 9930(9)
Ref. [29] 00 —7.285 558 685 6755(5)
°Li 15000 —7.285460 104 83 —77.607093 4.566634756 0.177856061 —0.439001410 —7.28597541984
00 —7.285460 1027(9) —7.2859754216(9)
Ref. [29] 00 —7.285460 107 2730(5)
*Li 15000 —7.286 15102597 —77.635879 4567899596 0.177902395 —0.427619948 5.16860  —7.286 66629231
00 —7.286 151 0277(8) —7.286 666 2940(9)
Ref. [29] 22302 —7.286 15102842333
Ref. [29] 00 —7.286 151 028 4238(5)
15%10p! Li 13000 —7.284 368 378 68 —77.611863 4.566843800 0.177863950 —0.437479803 —7.284 88370235
14 000 —7.284 368 383 66 —77.611544 4566843959 0.177864051 —0.437478855 —7.284 883 69252
15000 —7.284368 386 15 =77.611471 4566844073 0.177864068 —0.437478715 —7.284 883 69157
16 000 —7.284 368 389 00 —77.611425 4566844119 0.177864079 —0.437478 637 —7.284 883 69233
00 —7.284368 391(1) —7.284 883 6934(5)
Ref. [29] 00 —7.284 368 393 1451(9)
°Li 16000 —7.284 269 824 32 —77.607318 4.566663669 0.177857468 —0.439102257 —7.284 785 134 65
00 —7.284 269 827(1) —7.284 785 1336(5)
Ref. [29] 00 —7.284 269 828 5171(9)
*Li 16000 —7.284960 648 91 —77.636104 4.567928509 0.177903802 —0.427720693 543184  —7.28547591055
00 —7.284960 651(1) —7.2854759088(9)
Ref. [29] 22302 —7.284 960653 108 64
Ref. [29] 00 —7.284 960 653 1095(9)
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—7.284004 217 67

—0.437549412

0.177 864 612

4.566 861 197

—77.612374

—7.283488 879 34

Li 13000
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—7.28333604931
—7.283336083 44
—7.283336 13(3)
—7.283237543 96
—7.283 237 60(3)
—7.283928 19228
—7.283 928 24(3)

—0.437593 890
—0.437593 832

0.177 865 421
0.177 865 475

4.566 873 828

—77.612 096
—77.612078

—7.28282073097
—7.282 820766 49
—7.28282083(3)
—7.28272222002
—7.28272229(3)
—7.28341291703
—7.28341298(3)

15000
16 000

4.566 874 695

4.566 694 242 0.177 858 865 —0.439217485

—77.607971

16 000

SLi

4.567 959 099 0.177 905 199 —0.427 835690 4.78042

—77.636757

16 000

*Li

In this work, in the calculation of the expectation val-
ues of the delta functions expressed in terms of the internal
coordinates, we employ the following Drachman identities:

‘w> <vr¢Mvrw>],
©)
‘w> <vrw vrw>].
(i0)

In the above expressions, 1;; = m;m;/(m; + m;) is the reduced
mass, V is the potential energy operator, and E is the varia-
tional energy of the state under consideration (the expectation
value of H"). Due to the absence of singular operators on the
right-hand sides of expressions (9) and (10), the convergence
of these expectation values is considerably faster.

A slow convergence rate with respect to the number of basis
function also takes place for Hyy. In internal coordinates, this
operator can be written in the following matrix form:

Wsly) = [<w‘

(Wl ) = 1 M

ij

3

Hw = —(Vi6odVe) =3 (VigdaVe)’, (D)

i=1

where [y =1/v/8mj, B;=1/\/8m}, J=0URD), Ji=
Jii ® 15, J is a 3 x 3 matrix with all its elements equal to 1,
and J;; is a 3 x 3 matrix that has only one nonzero element,
(Ji)i = 1. In the calculations of the expectation value of Hyyy,
we adopted the following identity that is applicable to systems
with arbitrary masses of constituent particles:

(W|Huv|p) = =N (P|(E — V)*[)
— N (@E=V) (VBV,) [¢))
+ (0| (VM V) [4)
+ N[ (ViMVy) (ViBV,) [¢)

Zﬁ, (W (ViTaVe) ).

i=1

— Bo(w|(VLIV:)®

12)

The parameter A and the matrix B =B ® I3 in the above
formula are chosen in such a way that the element(s) of
the diagonal matrix B corresponding to the lightest parti-
cle(s) in the system vanish. For instance, if particle k is the
lightest in the system (e.g. the particle is an electron) then
we have

B + B
N= 0k (13)
(Mg
and the diagonal elements of B are;
B + B
B i = — (M i~ 14
Bi = Gaps — 0D (14)

When the difference between the mass of the lightest particle
(my) and the masses of the other particles in the system (1 in
the present case) is significant, the right-hand side of expres-
sion (12) converges to the exact limit considerably faster upon
increasing the size of the basis. This will be demonstrated by
the data given in the next section.
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Table 3. The convergence of the total nonrelativistic energies of the
lowest 2P state of °Li, 'Li, and *Li with the number of ECG basis
functions. All energies are in a.u.

Isotope Basis E.:

°Lj 10 000 —7.409458 110568 84
11 000 —7.409458 11057031
12 000 —7.409458 11057204
12 500 —7.409458 110572 84
13 000 —7.409458 11057349
13500 —7.409458 11057397

"Li 10 000 —7.409557759011 66
11 000 —7.409557759013 13
12 000 —17.409 557759014 87
12500 —7.409 557759015 66
13 000 —17.409 557759 016 30
13500 —7.409 557759016 86

>Li 10 000 —7.410156 532 64247
11 000 —7.410156 532 643 98
12 000 —7.410156 532 64574
12 500 —7.410156 532 646 55
13 000 —7.410156 532 647 20
13500 —7.410156 532 647 70
13500* —7.410156 532 647 90

Ref. [28]° 33600 —7.410156 532652 41(3)

“The variational optimization of the ECG nonlinear parameters is performed
for the infinite nuclear mass.
®Variational calculations are performed with Hy-type basis functions.

3. Results

The ground state (1s>2p') of the lithium atom has been stud-
ied extensively by various groups over the last two decades
[10-28]. Most of these studies reported results concerning
only one or a few of the lowest P states, however. Within
an explicitly correlated approach, the higher excited states of
lithium were studied by the present authors (up to the 1s>10p'
state) [27] and Wang et al (up to the 1s210p1 state) [29]. In the
present calculations of the 2P states of lithium, the number of
ECG basis functions for each state is significantly increased,
compared to those used in the previous calculations [27]. Fur-
thermore, the number of computed 2P states of lithium that
we consider is extended to eleven (up to the state 1s>12p").
Importantly, in this work, we implemented and used a reg-
ularization method for calculating the expectation values of
singular operators.

The calculations performed using the regularization method
allow the estimation of its efficiency. Two aspects related
to the efficiency can be examined. First, the higher excited
states normally require the use of more basis functions in
the calculations in order to describe the increasing number of
radial nodes of the wave function. However, there are practi-
cal limits to the number of basis functions one can include in
the calculations, which are constrained by the available com-
putational resources. Therefore, the accuracy of the results
achieved for the lower states is usually somewhat better than
for the higher states, even if more basis functions are used in
the calculation of the latter states. This decrease in the accuracy
affects the expectation values of such global operators as the
Hamiltonian less than the quantities represented by singular

operators. When no regularization is employed, the number of
converged significant figures in the expectation values of such
singular operators is roughly half (or even less) of the num-
ber of converged figures in the expectation values of operators
representing global quantities.

In table 1, we show the computed expectation values of
Hwy, 4(r;), and d(r;;) for three arbitrarily selected states,
(1s’np' with n = 2, 7, 12), along with the highly accurate
results of Wang et al [28] obtained for the lowest of these
states. In this and other tables, as well as in the text, the tilde
sign over an operator indicates that the regularization approach
was used in the calculation of the expectation value. Let us take
a closer look at the results shown in the table. For example, in
the expectation value (Hyy), six significant figures are con-
verged, while in the expectation value (Hyy) the number of
converged figures is only four (or even three), in spite of using a
very large basis set. The improvement is even more noticeable
for the expectation values of the delta functions. The num-
bers of converged significant figures in the expectation values
(3(r;)) and (5(r;;)) are ten and nine, respectively, while for
(0(r;;)) and (d(r;))), only five significant figures are converged.
Similar behavior can be expected for the expectation values of
more excited states. For example, in the case of the 1s212p1
state, the highest considered in this work, <H My ) is converged
to six significant figures.

A comparison of the converged significant figures of the
calculated expectation values for the ground and excited states
reveals two interesting points about the calculations. First, the
results show that the regularization technique employed in
this work very effectively increases the convergence rate of
the expectation values of singular operators, even for highly-
excited states. Second, the number of basis functions used in
the excited-state calculations suffices to obtain accurate expec-
tation values, although it is clear that larger basis sets are
required to compute the (d(r;)) and (d(r;;)) expectation values
more accurately.

In table 2, we show the nonrelativistic total energy, E,;,
which is the total energy including the leading relativis-
tic, QED, and HQED corrections, Ey, and some other key
expectation values obtained for the lowest eleven P states
of the lithium atom. The expectation values include the
mass—velocity correction (fJMV>, the Dirac delta functions
(8(r)), the orbit—orbit correction (Hoo), and the Araki—Sucher
distribution (P (1/r},)).

The nonrelativistic energies of the lowest 15?2p' state and
some of the higher excited states (lsznpln =4,...,10) can
be compared with the values reported by Wang et al [28, 29].
For the 15?2p' state, the value obtained in a basis of 33 600
Hy functions and then extrapolated to an infinite number of
functions is —7.410 156 532 652 41(3) hartree. Our energy of
—7.410 156 532 63 hartree obtained in the present work using
only 9000 ECG basis functions agrees with that value to 11
decimal figures and lies slightly higher. Also, for the same
number of basis functions, the computed nonrelativistic ener-
gies in this work are nearly as accurate as their results. For
instance, the —7.410156532647 379 hartree value for the
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Table 4. 2 2P < n 2P transition energies of °Li and "Li computed using the infinite-nuclear-mass (i) nonrelativistic energies and then
gradually corrected by including finite-nuclear-mass effects (f), relativistic corrections, and the QED and HQED corrections. As the QED
and HQED Hamiltonians are only valid for an infinite nuclear mass, the corresponding energy corrections are computed using the wave
functions obtained in infinite nuclear mass calculations. All values are in cm™!.

Isotope AE 22P+32p 22P47%p 22P+5°%P 22P+62P 22P+172P
OLi nr(i) 16022.704 558(1)  21567.214090(2) 24113.315772(3) 25489.006911(4)  26315.360093(2)
nr(f) 16021.826832(1) 21565.981611(2) 24111.905323(2) 25487.494996(4)  26313.78501(2)

nr(f) 4 rel(f)
nr(f) 4 rel(f)
+ QED()

16021.581 04(6)
16021.617 21(7)

21565.68913(2)
21565.734 58(5)

24111.599 032(6)
24 111.647 854(5)

25487.183 63(3)
25487.23391(3)

26313.47096(2)
26313.522061(1)

nr(f) + rel(f) 16021.61824(7)  21565.73589(1)  24111.649252(5) 25487.23535(3) 26313.523 52(1)
+ QED(i) + HQED()
Experiment [54]2 16021.57(1) 21565.74(1) 24111.75(2) 25487.03(1) 26313.54(1)
Experiment [55]° 16021.6203(20)°  21565.7323(30)¢ 24 111.6376(40)°  25487.1987(200)f

"Li nr(i) 16022.704 558(1)  21567.214090(2) 24113.315772(3) 25489.006911(4)  26315.360093(2)
nr(f) 16021.952035(1)  21566.157419(3) 24 112.106520(5) 25487.710667(6) 26 314.009 69(3)
nr(f) + rel(f) 16021.706 08(4)  21565.86498(2)  24111.800269(6) 25487.399 34(3) 26313.695 68(3)
nr(f) + rel(f) 16021.74231(3)  21565.91048(1)  24111.849 145(5) 25487.449674(3)  26313.74684(1)
+ QED()
nr(f) + rel(f) 16021.74329(3)  21565.91173(1)  24111.85049(5)  25487.45106(3) 26313.748 25(1)
+ QED(i) + HQED()
Experiment [54]2 16021.57(1) 21565.74(1) 24111.75(2) 25487.03(1) 26313.54(1)
Experiment [56] 16021.726 21565.884 24111.804 25487.404 26313.674
Experiment [55]¢ 16021.725 67(20)" 21 566.884 64(30) 24 111.81499(40)  25487.392 67(200)*

Isotope AE 22P+872P 22P+92p 22P+10°%P 22P+11%P 2?P+12?%P

OLi nr(i) 26850.182914(4) 27216.0590(7) 27477.3165(3)  27670.3501(1) 27 817.004(4)
nr(f) 26848.56589(5)  27214.4127(7) 27475.6490(3)  27668.667(1)  27815.309(4)
nr(f) + rel(f) 26 848.2501(1) 27214.0928(3) 27475.33026(7) 27668.347(1) 27 814.986(4)
nr(f) + rel(f) + QED(i) 26 848.302(1) 27214.1452(4) 27475.3826(1)  27668.400(1)  27815.039(4)
nr(f) + rel(f) + QED() + HQED(i) 26 848.303(1) 27214.1467(4) 27475.3841(1)  27668.401(1)  27815.041(4)
Experiment [54]* 26 847.82(2) 27214.46(2) 27475.35(2) 27 668.56 27815.33(2)

"Li nr(i) 26850.182914(4) 27216.0590(7) 27477.3165(3)  27670.3501(1) 27 817.004(4)
nr(f) 26848.79656(9)  27214.648(1)  27475.8869(6)  27668.907(3)  27815.551(8)
nr(f) + rel(f) 26 848.481(1) 27214.328(3)  27475.568 15(7) 27668.587(1) 27 815.228(4)
nr(f) + rel(f) + QED(i) 26 848.532(1) 27214.3802(4) 27475.6206(1)  27668.640(1) 27 815.281(4)
nr(f) + rel(f) + QED() + HQED(i) 26 848.534(1) 27214.3816(4) 27475.6220(1)  27668.641(1) 27 815.283(4)
Experiment [54]* 26 847.82(2) 27214.46(2) 27475.35(2) 27 668.56(2) 27815.33(2)
Experiment [57] 26 848.749(21) 27214.601(22) 27668.861(23) 27815.488(24)

Experiment [58]

27475.850(23)

The reported values are for the naturally occurring mixture of °Li and "Li isotopes.
"Values of 14903.520341(41) cm ™" are used for the gravity centers of 22P, , and 22Ps, with energies of 14 903.296 792(23) and 14 903.632 116(18) cm ' in

the transition energy calculations.

“The gravity centers of 2P, , and >P;, with energies of 16 021.7796(10) and 16 021.8760(10) cm ™', respectively.
dThe gravity centers of >P|, and ?Ps ), with energies of 21 565.9291(15) and 21565.9692(15) cm™!, respectively.
“The gravity centers of 2P, , and >P;, with energies of 24 111.8471(20) and 24 111.8681(20) cm ™', respectively.

"The gravity centers of 2Py > and 2P3, with energies of 25 487.4142(100) and

25487.4262(100) cm™!, respectively.

£Values of 14 903.871 689(41) cm ™' are used for the gravity centers of 22P1/2 and 22P3/2 with energies of 14 903.648 130(23) and 14 903.983 468(18) cm ™! in

the transition energy calculations.

"The gravity centers of 2P, and 2P3 > with energies of 16021.904 870(10) and 16 022.001 270(10) cm™", respectively.
iThe gravity centers of 2Py, and 2Py, with energies of 21 566.106 070(15) and 21 566.146 170(15) cm™!, respectively.
iThe gravity centers of 2Py /> and 2P3, with energies of 24 112.050 670(20) and 24 112.071 770(20) cm ™', respectively.
¥The gravity centers of >P; /> and 2P, with energies of 25 487.634 870(100) and 25 487.646 870(100) cm ', respectively.

total infinite-nuclear-mass energy computed by Wang et al
[26] using 9170 basis functions and the —7.410156 53263
hartree value obtained in this work using 9000 ECG basis func-
tions have errors of nearly the same magnitude when compared
to the more accurate extrapolated result.

In order to evaluate the efficiency of the ECG basis, addi-
tional calculations are performed for the lowest 2P state.
They involved gradually increasing the number of basis func-

tions from 10000 to 13500 ECGs for "Li and calculating
the nonrelativistic energies of °Li and *Li. Table 3 shows
the energies obtained from these calculations. As expected,
when the basis size increases, the energy continues to
decrease. We estimate that, if we had the capability to include
30000+ ECG basis functions in our basis set and optimize
them thoroughly, the convergence of the energy would have
been similar to that achieved by Wang et al using Hy-type
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Figure 1. The difference (AE = AEcuculaed — AEExperimental) between the transition energies computed in this work and experimental
transitions. For both isotopes, the 2 2P < n*P,n = 2, ..., 6 experimental transition energies are taken from reference [55]. The experimental
transition energies, of 2 2P+ n?P,n =38,...,12 of "Li are taken from references [57, 58]. The calculated transition energies are taken from

table 4. The small error bars at the top of each column represent estimated uncertainties in the experimental data. The gravity centers of

2Py, and %P5, have been used for all states.

basis functions. However, this would have required an quan-
tity of computational resources that would have exceeded the
amount we were able to allocate for this work. The con-
vergence of the energies in table 3 also demonstrates the
importance of optimizing the nonlinear variational parame-
ters of the Gaussian functions. In table 2, we show the ener-
gies obtained from our calculations along with the values
reported by Wang et al in [29]. The values obtained in this
work for higher states using more compact wave functions
are nearly as accurate as those reported in reference [29],
where large Hy-type basis sets of up to 22302 terms were
employed.

Table 4 presents transition energy values calculated using
the infinite-nuclear-mass and finite-nuclear-mass nonrelativis-
tic energies, and with energies that include the relativistic,
QED, and HQED corrections. The transition energies are cal-
culated with respect to the 15?2p' state. In addition to the cal-
culated values, some of the relevant experimental results are
also shown in the table. These include the measurements of
the 31 lowest 2P states reported by France back in 1930 [54]
and the results taken from the following more recent exper-
imental works. We start with the 1959 work of Johansson
[56]; in that work, Johansson made some refinements to the
energies reported by France. In 1995, Radziemski et al [55]
made further improvements and reported the transition ener-
gies of the SLi and "Li isotopes. In 2010, Oxley and Collins
[57, 58] reported very accurate measurements of eight >P states
(1s’np',n =8, ..., 15) of the "Li isotope.

The following observations can be made upon examin-
ing the results, including experimental and theoretical data,
presented in table 4:

1

e The transition energies for the lower states reported by
Johansson [56], Radziemski et al [55], and Oxley and
Collins [57, 58] are relatively close to each other. How-
ever, the differences between the measured values are
larger than the reported uncertainties. Also, the differ-
ences between the values reported by France [54] and
the values from more recent papers [55-58] are relatively
large (about 0.25 cm™'). The results of the four former
studies [55-58] are more compatible with each other,
thus, as it seems, more reliable, and they are used for
comparison with the calculated transition energies in the
present work.

e As one can see in the table, the differences between
the experimental and nonrelativistic infinite-nuclear-mass
computed transition energies (nr(i)) are relatively large
and range from 0.5 to 1.25 cm~!. A significant improve-
ment to the results is obtained when the finite mass of the
nucleus replaces the infinite mass in the calculations. The
replacement causes the difference between the calculated
and experimental values to decrease significantly and to

range between —0.3 and 0.3 cm ™.

e For °Li, the only available quality experimental data
were reported by Radziemski et al [55]. The differences
between the calculated transition energies obtained using
E,: and the experimental values are relatively large and
range from 0.2 to 0.3 cm~!. With the inclusion of the
relativistic, QED, and HQED corrections, the differences
decrease to 0.045, 0.011, and 0.011 cm™', respectively.
The comparison between the calculated and experimental
values is shown in figure 1.
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Table 5. Isotope transition-energy shifts of °Li with respect to "Li. All values are
-1

given in cm
Transition Basis (nr) (nr 4 rel) Exp. [55]
22P ¢+ 3°P 6000 —0.1252030 —0.1252333 —0.1253(10)
7000 —0.1252030 —0.1252334
8000 —0.1252030 —0.1252334
9000 —0.1252030(1) —0.1252334(1)
22P +— 4°P 7000 —0.175 8085 —0.175 8461 —0.1770(30)
8000 —0.175 8086 —0.175 8462
9000 —0.175 8086 —0.175 8462
10000 —0.1758086(1) —0.175 8462(1)
22P + 5°P 7000 —0.201 1964 —0.201 2366 —0.2036(40)
8000 —0.201 1965 —0.201 2366
9000 —0.201 1965 —0.201 2366
10000 —0.201 1965(1) —0.2012366(1)
22P+ 6P 8000 —0.215 6708 —0.2157121 —0.2207(200)
9000 —0.2156708 —0.2157121
10000 —0.2156708 —0.2157121
11000 —0.2156709(1) —0.2157121(1)
22P <« 7?P 9000 —0.224 6817 —0.224 7233
10000 —0.224 6819 —0.2247237
11000 —0.224 6820 —0.224 7238
12000 —0.2246820(1) —0.2247239(1)
22p <« 8P 11000 —0.230 6645 —0.2307063
12000 —0.230 6645 —0.2307063
13000 —0.230 6646 —0.230 7065
14 000 —0.2306647(1) —0.2307068(2)
22P < 9’P 12000 —0.234 8361 —0.234 8780
13 000 —0.234 8361 —0.234 8781
14 000 —0.234 8361 —0.234 8781
15000 —0.2348362(1) —0.2348782(1)
22P <« 10°P 13000 —0.237 8592 —0.2379012
14 000 —0.237 8592 —0.2379015
15000 —0.237 8593 —0.2379015
16 000 —0.2378593(1) —0.2379016(1)
22P <« 11°P 13000 —0.2401193 —0.240 1615
14 000 —0.2401192 —0.2401618
15000 —0.240 1193 —0.240 1619
16 000 —0.2401194(1) —0.2401619(1)
22P <« 12°P 13000 —0.241 8518 —0.241 8942
14 000 —0.241 8522 —0.241 8950
15000 —0.241 8523 —0.241 8951
16 000 —0.2418525(1) —0.241 8952(1)
e In the case of the less energetic states of ’Li, there Radziemski et al [55] are in full agreement with each
have been four experimental reports [55-58]. For the less other and with the computed values obtained in this work.

excited states, the values reported by Johansson [56] and The calculated differences are very similar to those of
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Figure 2. Isotope transition-energy shifts of °Li with respect to "Li. The (nr(f) + rel(f)) transition values have been used in the isotope shift
calculations. All values are given in cm~'. The experimental isotope shifts are taken from reference [55].

°Li. The inclusion of the relativistic, QED, and HQED
corrections significantly improves the agreement with the
experimental data and the differences decrease to less
than 0.03 cm~!. For the more excited states, the only
available values are those reported by Oxley and Collins
[57, 58]. Because the two former works [55, 56] have
no data in common with the two latter ones, it is not
possible to compare the accuracy of the reported data.
However, the differences between the transition energies
computed in this work and the values reported by Oxley
and Collins show a trend that seems contradictory in
comparison to the previous papers. For example, the dif-
ferences between the calculated transition energies using
E,: and the experimental values are relatively small (less
than 0.09 cm™!). At the same time, inclusion of the
relativistic, QED, and HQED corrections significantly
increases the differences. Based on the calculated tran-
sitions in the present work and on the comparison made
above, we believe that the actual uncertainties in the mea-
sured values are likely to be larger than the reported
uncertainties (see table 4 and figure 1).

It is worth mentioning that the main sources of error in
calculating the transition energies are the QED and HQED
corrections. To calculate the QED term, a single approx-
imate value for the Bethe logarithm (In ko) is used for all
states. This is certainly an approximation. We estimate
that the use of a more accurate logarithm value could
change the transition energies listed in table 4 by about
0.008 cm~!. The second reason for the error arises from
the approximate form of the expression used to compute
the HQED expectation value. Here, we roughly estimate
that the computed transition energies could change by
about 0.0007 cm~ ! when more accurate HQED correction
values become available.

Table 5 shows the isotope shifts in the transition energies
determined from the results of our calculations. The exper-
imental data [55] are shown for comparison. In determin-
ing the shift values, the non-relativistic (nr) and relativistic
corrected (nr + rel) frequencies are used. Comparing the com-
puted and experimental values reveals two key points. First,
the computed values, (nr) and (nr + rel), are in full agreement
with the experimental values and they are within the uncer-
tainties of the experimental data. Second, the results show that
the finite nuclear mass effect is small for less energetic states,
but it increases with the excitation level. For instance, the fre-
quency shifts for the lowest transition (2 2P <3 2P) are
0.1252030 cm™! (nr) and —0.1252334 cm™! (nr + rel) while
the corresponding values for the 2 2P < 12 2P transition are
—0.2418518 and —0.241 8952 cm™!, respectively. This is an
almost two-fold increase (figure 2).

Finally, in table 6, we show the calculated expecta-
tion values of some powers of the inter-particle distances.
As expected, both the average nucleus—electron and elec-
tron—electron distances increase rapidly with the increasing
principal quantum number. It is worth mentioning that the dis-
tances differ slightly between the °Li and "Li isotopes. The
difference originates from the different reduced masses of
the electron used in the calculations of the two isotopes. For
instance, for the most excited state, the (r,) values for the SLi
and "Li isotopes are 71.4940 and 71.4934 a.u., respectively.
The corresponding values for (re.) are 142.512 and 142.511
a.u., respectively.

4. Summary

The lowest eleven states of the 2P series (1s’np', n=
2,...,12) of the lithium atom were studied using very
accurate variational calculations employing explicitly corre-
lated all-electron Gaussian functions. The calculations yielded
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Table 6. Expectation values, (1) and (r,’;) (p = —2,...,2) evaluated with the largest basis set generated for each state in this work. All values are in atomic units.
State  Isotope (rac) (re?) (ree') (ree!) (rnc) (ree) (1) (%)
1522p! °Li  9.96514485(0) 1.42164231(0) 1.87946358(0) 0.698751993(0) 1.95723729(0) 3.47087940(0) 9.3171 1136(0)  18.685 1758(0)
TLi 9.96540948(0) 1.42167509(0) 1.87948308(0)  0.698759070(0) 1.95722074(0) 3.47085327(0) 9.31696402(0)  18.684 8879(0)
*©Li  9.96699963(0) 1.42187207(0) 1.87963532(0) 0.698801595(0) 1.95712125(0) 3.47069624(0) 9.31607855(0)  18.683 1580(0)
1523p! °Li  9.95406339(0) 1.37819289(0) 1.83018692(0) 0.599589241(0) 4.40897109(0) 8.35499208(0) 56.508 6959(0)  113.045290(0)
Li 9.95432722(0) 1.37822513(0) 1.83021115(0) 0.599595889(0)  4.40892701(0) 8.35491105(0)  56.5075879(0)  113.043 082(0)
*Li  9.95591257(0) 1.37841887(0) 1.83035677(0) 0.599635838(0) 4.40866213(0) 8.35442407(0) 56.5009292(0)  113.029 812(0)
1s%4p! °Li  9.95160312(0) 1.36787721(0) 1.81320064(0) 0.565471099(0) 7.86184137(0)  15.2545513(1)  190.909 314(0)  381.839 008(0)
Li 9.95186677(0) 1.36790930(0) 1.81322475(0) 0.565477510(0) 7.86175685(0)  15.2543894(1)  190.905244(0)  381.830 876(0)
*Li  9.95345102(0) 1.36810212(0) 1.81336958(0) 0.565516032(0) 7.86124896(0) 15.2534164(1)  190.880786(0)  381.782009(0)
1s25p! °Li  9.95075907(0) 1.36425681(0) 1.80541642(0) 0.549851804(0) 12.3149846(0)  24.1581252(1)  481.587170(1)  963.191 380(2)
Li  9.95102266(0) 1.36428884(0) 1.80544045(0) 0.549858084(0) 12.3148467(0)  24.1578564(1)  481.576430(1)  963.169 908(2)
*©Li  9.95260654(0) 1.36448132(0) 1.80558487(0) 0.549895819(0) 12.3140177(0) 24.1562414(1) 481.511890(1)  963.040 879(2)
15%6p! °Li  9.95039328(0) 1.36267111(0) 1.80121580(0) 0.541428381(0) 17.7682712(0)  35.0632747(1)  1017.61491(0)  2035.245 10(2)
Li 9.95065684(0) 1.36270311(0)  1.80123979(0) 0.541434582(0) 17.7680669(0)  35.0628733(1)  1017.59158(0)  2035.198 44(2)
©Li  9.95224055(0) 1.36289542(0) 1.80138396(0) 0.541471846(0) 17.7668395(0)  35.0604612(1)  1017.45134(0) 2034.918 02(2)
15%7p! °Li  9.95020946(2) 1.36186962(3) 1.79869471(0) 0.536375011(0) 24.2216686(3)  47.9692316(5)  1908.069 00(5)  3816.1522(1)
Wi 9.95047300(2) 1.36190161(3) 1.79871867(0) 0.536381163(0) 24.2213853(3)  47.9686721(5)  1908.024 42(5)  3816.0631(1)
©Li  9.95205664(2) 1.36209384(3) 1.79886269(0) 0.536418124(0) 24.2196828(3)  47.9653099(5) 1907.75652(5)  3815.5273(1)
15°8p! °Li  9.95010706(6)  1.3614217(1)  1.79706404(0) 0.533107428(0)  31.675167(6) 62.87596(1) 3282.030(1) 6564.073(2)
Li  9.95037059(6)  1.3614537(1) 1.79708799(0)  0.533 113545(0)  31.674793(6) 62.87495(1) 3281.952(1) 6563.918(2)
*Li  9.95195418(6)  1.3616457(1) 1.79723189(0)  0.533150299(0)  31.672 545(6) 62.87050(1) 3281.486(1) 6562.986(2)
15%9p! °Li  9.9500454(1) 1.361 1524(9) 1.79594901(0)  0.530873610(3) 40.128 78(4) 79.78255(5) 5288.59(1) 10577.193)
Li 9.9503090(1) 1.3611844(9)  1.79597294(0)  0.530879700(3) 40.12831(4) 79.781 62(5) 5288.46(1) 10576.94(3)
“Li  9.9518925(1) 1.3613766(9) 1.796 116 76(0) ~ 0.530916290(3) 40.12548(4) 79.776 00(5) 5287.71(1) 10575.44(3)
1s210p"  SLi  9.9500062(2) 1.3609802(1)  1.79515310(0)  0.529 279 407(3) 49.58248(4) 98.689 71(6) 8096.83(1) 16 193.67(3)
Li  9.9502697(2) 1.3610122(1) 1.79517702(0)  0.529285465(3) 49.58194(4) 98.688 63(6) 8096.65(1) 16 193.31(3)
©Li  9.9518533(2) 1.3612043(1)  1.79532075(0) 0.529321865(3) 49.578 68(4) 98.682 16(6) 8095.55(1) 16191.11(3)
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Table 6. Continue

23792.2(2)
23791.8(2)

11896.10(9)

119.5982(5)
119.5973(5)
119.5914(5)

60.0368(2)
60.0363(2)
60.0334(2)

0.528 102 077(8)
0.528 108 084(8)
0.528 144 176(8)

1.794 565 23(0)
1.794 589 12(0)
1.794 73270(0)

1.360 8658(1)
1.3608978(1)
1.361 0898(1)

9.949 9792(3)
9.9502428(3)
9.951 8263(3)

°Li
"Li
<L

1s*11p!

11895.88(9)
11894.55(9)

23789.1(2)

33793.2(9)
33792.6(9)
33788.8(9)

16896.6(4)
16896.3(4)

142.512(2)
142.511(2)

71.4940(8)
71.4934(8)
71.4899(8)

0.527 207 942(9)
0.527213941(9)
0.527 249 985(9)

1.794 118 71(1)
1.794 142 60(1)
1.794 286 15(1)

1.3607872(2)
1.3608192(2)
1.3610112(2)

9.949 9583(9)
9.9502219(9)

OLi
"Li
*Li

1s212p!

16894.4(4)

142.504(2)

9.951 8054(9)

nonrelativistic total energies and the corresponding wave
functions for the considered states. The wave functions
were used in perturbation-theory calculations of the leading
relativistic and QED corrections to the energies of the con-
sidered states. The transition energies for the states deter-
mined with respect to the lowest 1s°2p' state were also
calculated. The transition energies were compared with the
experimental values. The transition energies obtained using the
nonrelativistic energies of the states differed from the most
accurate experimental results by less than 0.3 cm ™. The inclu-
sion of the relativistic, QED, and HQED corrections reduced
the difference to less than 0.1 cm~!. The transition frequen-
cies determined for °Li and 7Li were used to calculate the
isotopic shifts. The calculated shifts agreed with the avail-
able experimental results within the reported experimental
uncertainties.
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