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Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a class of cyclic or linear peptidic
natural products with remarkable structural and functional diversity. Recent advances in genomics and synthetic
biology, are facilitating us to discover a large number of new ribosomal natural products, including lanthi-
peptides, lasso peptides, sactipeptides, thiopeptides, microviridins, cyanobactins, linear thiazole/oxazole-con-
taining peptides and so on. In this review, we summarize bioinformatic strategies that have been developed to
identify and prioritize biosynthetic gene clusters (BGCs) encoding RiPPs, and the genome mining-guided dis-

covery of novel RiPPs. We also prospectively provide a vision of what genomics-guided discovery of RiPPs may
look like in the future, especially the discovery of RiPPs from dominant but uncultivated microbes, which will be
promoted by the combinational use of synthetic biology and metagenome mining strategies.

1. Introduction

Microbial secondary metabolites, which have been honed through
evolution to provide bacteria with competitive advantages, are a pro-
mising source for the discovery of bioactive natural products with
medicinal potential. Among them, ribosomally synthesized and post-
translationally modified peptides (RiPPs) attract extensive interest from
both academic and industrial communities due to their structural
variability and functional diversity [1,2]. The manifold chemical space
of genetically encoded RiPPs is determined by the encoding nucleotide
sequence, which links the diversity of small molecules with the varia-
bility of genes. Such a genetically-encoded nature of RiPP enables sci-
entists to readily manipulate the scaffolds of the mature peptides by
site-directed mutagenesis and efficiently screen the targets of interests
from large libraries even with the volume of 200 million [3].

The minimal components of a RiPP biosynthetic gene cluster (BGC)
generally consist of a short precursor peptide, typically includes an N-
terminal leader and a C-terminal core peptide, and post-modification
(PTM) enzymes. Various PTM enzymes, such as radical SAM enzyme
[4], cytochrome P450 [5], Diel-Alderase [6], and ATP-grasp enzyme
[71, install distinctive moiety onto the linear precursor peptide to give
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the mature scaffold, resulting in different classes of RiPPs [8]. Until
now, more than 13 representative types of classified and many other
unclassified RiPPs have been found in bacteria, fungi, archaea, and
plants (Fig. 1) [8-10]. Each class of these RiPPs represents a unique
subset of biosynthetic logic, which can be used as a biomarker in tar-
geted genome mining. With the development of new sequencing tech-
niques in the 21st century, genomes or metagenomes have been se-
quenced on large scales, providing vast opportunities for the genome-
mining-based discovery of novel natural products. Various bioinfor-
matics methods such as antiSMASH [11], RiPPMiner [12], PRISM [13],
RODEO [14,15] have been developed to predict, deduplicate, and
prioritize BGCs, guided by phylogeny closeness, or by chemocentric
searches. One classical approach is to use core biosynthetic enzymes as
a query to search genomes for homologous molecular machinery. These
classical genome mining strategies are usually based on sequence si-
milarity and are robust in finding BGCs with similar biosynthetic routes
[16]. However, these phylogeny-based strategies are unable to capture
BGCs with convergent enzymes and are easily distracted by divergent
homologs of the query.

Additionally, the structural and biosynthetic diversity of RiPPs from
bacteria make comprehensive mining in large-scale datasets and
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Fig. 1. Diversity of known RiPP BGCs. A) The network of known RiPPs BGCs from MIBIG, visualizing their diversity. The network is constructive by BiG-SCAPE with
default parameters, each node corresponds to one RiPP BGC, similar BGCs are clustered together. B) The numbers of known RiPPs at the family level from MIBiG.

targeted discovery of these molecules extremely challenging. The era of
big data mining is now in full swing, catalyzed by advances in data
processing power of bioinformatics algorithms and the development of
new artificial intelligence (AI) methods. Various deep learning-based
bioinformatics methods such as NeuRiPP [17] and DeepRipps [18] have
recently been developed to identify the precursor of RiPPs' BGCs in-
dependently of their genetic content. Al strategies that can systematize
large volumes of genetic and chemical data and connect genomic in-
formation to metabolomic in a high-throughput endeavor are pro-
moting the targeted discovery of RiPPs from large-scale omics datasets.
In this review, we recapitulate the developments of genome mining
strategies for the discovery of RiPP natural products and introduce re-
presentative genomics-guided discovery cases using these mining stra-
tegies. Since most of current mining strategies were designed based on
bacterial data, herein, we mainly cover genome mining guided dis-
covery of RiPPs from bacteria.

2. Genome mining strategies of RiPPs

In the early date, like other families of natural products, RiPPs were
discovered based on bioactivity screening of bacterial secondary me-
tabolites. As sequencing techniques have been rapidly improved, more
and more bacterial genome sequences are available and thus provide us
an unprecedented chance to study RiPPs at the genetic level. One of the
earliest strategies for mining RiPPs is using BLAST [19] to search for
certain PTM enzymes from bacterial genomes [20,21]. There were no
user-friendly genome mining tools for RiPPs until de Jong et al. de-
veloped the first web tool, named BAGEL, to mine for bacteriocin in
2006 [22]. Later on, new BAGEL versions were updated to support
mining more RiPPs classes [23,24]. In 2011, Medema et al. developed
an integrated genome mining tool antiSMASH that can mine for many
different classes of BGCs, including RiPPs, non-ribosomal peptides
(NRPS), and polyketides (PKS) [25]. Since then, several genome mining
tools have been developed for either comprehensive analysis of BGCs or
targeting specific classes of RiPPs following two major strategies (Fig. 2
and Table 1) [11,13,14,23,24,26]. One strategy mainly targeted con-
served enzymes of biosynthetic machinery while the other one em-
ployed additional algorisms to better identify precursor peptides
around PTM enzymes [14,15,23,24] that exclusively represented cor-
responding RiPPs BGCs. Recently, more sophisticated comparative ap-
proaches have been introduced to systematically identify and prioritize
BGCs of interest, enabling the targeted discovery of novel RiPPs from
the large-scale dataset. In 2017, Mitchell's group adopted a protein-wise

comparative tool Enzyme Function Initiative-Enzyme Similarity Tool
(EFI-EST) [271], to prioritize novel biosynthetic enzymes [14]. In 2020,
Medema's group developed a BGC-wise comparison tool BiG-SCAPE
[28], to prioritize novel BGCs at the BGC level. Besides, scientists
started to introduce machine learning and deep learning approaches
into genome mining of RiPPs by directly targeting precursors
[12,17,18], opening a stage of RiPP genome mining powered by arti-
ficial intelligence [29]. Over the past two decades, significant advances
in bioinformatics have allowed the rapid development of genome
mining strategies.

2.1. Classical genome mining of RiPPs: searching conserved RiPP tailoring
enzymes

Although the structural diversity of each RiPP family is vastly due to
their diverse tailoring enzymes, benchmark enzymes of some RiPPs
classes such as Ser/Thr dehydratases of lanthipeptide and radical-SAM
enzymes of sactipeptides are strikingly conserved [8]. Given these un-
ique features, the most classical and popular mining approach for RiPPs
is to focus on finding new members of known classes of RiPPs. Novel
chemical structures can be predicted and prioritized by looking for
BGCs with shared conserved biosynthetic enzymes but with enough
differences in terms of precursor peptide or other tailoring enzymes. For
example, to identify BGC of interest from genome data, conserved genes
in the RiPPs pathway are used as seed sequences to identify homologs
via sequence-based comparison software BLAST. The explosion of
genome sequence data in recent years has given rise to many dis-
tinguished in silico mining approaches based on conserved RiPPs tai-
loring enzymes. AntiSMASH [11] and PRISM [13] are two popular in-
tegrated platforms of general-propose for BGC prediction and analysis.
Powered by rule-based scoring and hidden Markov model (HMM), these
two approaches can detect RiPPs classes such as lanthipeptides and
lasso peptides, which have distinct and conserved post-modification
enzymes. Streptocollin, for instance, is one of the lanthipeptides dis-
covered by traditional genome mining with antiSMASH [16,30]. By
searching for lanthipeptides BGCs in Streptomyces collinus Tii 365, au-
thors found a class IV lanthipeptide BGC with high similarity with ve-
nezuelin BGC and isolated the product Streptocollin via heterologous
expression [30]. However, one major obstacle of classical genome
mining is that it can mainly identify RiPPs with PTM logics that are
similar to known ones, thus highly limited its ability to reveal BGCs
with novel biosynthetic logics [29,31]. In addition, conventional tools
such as the early versions of antiSMASH are highly dependent on gene
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Fig. 2. The timeline of RiPPs genome mining.

detection algorisms to identify meaningful open reading frames (ORFs)
from genome sequences. Thus, this strategy is difficult to find RiPP
precursor peptide that is too short in sequence to be identified (after
antiSMASH version 4, small ORFs detection logic from RODEO was
integrated [32]). Further studies, which take these small ORFs encoding
precursors into account, will need to be undertaken.

2.2. Mining BGCs by searching both PTM enzymes and precursors

Precursor peptides are the substrates of the RiPPs biosynthetic
machinery, the variation of which could significantly increase the
chemical space of RiPPs, even if sharing the same post-modification
enzymes. Mining new precursor peptides would be another ideal
strategy to discover new RiPPs. However, the small ORFs which encode
RiPPs precursors are often neglected by traditional gene annotation
algorisms like Prodigal [33] or Glimmer [34] because of their short
sequence lengths. Therefore, general-purpose genome mining tools
built upon gene annotations such as antiSMASH and PRISM suffer from
low accuracy in predicting precursor peptide, especially those with
substrate tolerant enzymes that function with multiple precursors
[35,36]. BAGEL [24] and RODEO [14] are two genome mining tools
designed explicitly for genome mining of RiPPs. BAGEL uses the rule-
based strategy to detect the conserved domains of post-modification
enzymes, then classified BGCs into different RiPPs classes. It predicts
RiPPs precursors by detecting small ORFs nearby core PTM enzymes
and blasts them against its core peptide database. In contrast, RODEO
adopts a more comprehensive approach that uses HMM and Pfam da-
tabase to detect RiPPs BGCs, then combines heuristic scoring and ma-
chine learning to predict RiPPs precursors. Both tools take the small
ORFs that possibly encode RiPPs precursor peptides into account. Thus,
they are more reliable for RiPPs mining than canonical genome mining
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tools. For instance, upon the prediction of precursor peptides by
RODEO, Mitchell's group successfully identified a novel lasso peptide
citrulassin and a new class of RiPPs, namely ranthipeptides [14,15].
Later on, Walker et al. applied RODEO to more than 100,000 bacterial
and archaeal genomes and found nearly 8500 lanthipeptide precursor
peptides, including many previously uncharacterized lanthipeptides
and potential antibiotics, further demonstrating the power of this
method [37]. With the concern that RODEO can only identify RiPPs of
well-studied classes, Truman, A.W.'s group developed RiPPER, which
was built upon RODEO but with a different logic of finding precursors
[38]. Instead of classifying precursors by their sequences, RiPPER finds
all small ORFs within + 8 kb distance of the PTM enzyme and scores
them by Prodigal, the top 3 scored ORFs are considered as putative
precursors. By this method, the authors revealed that the “rare”
thioamidated RiPPs were, in fact, largely unexplored and facilitated the
discovery of two novel thioamidated RiPPs from Streptomyces varso-
viensis. These findings demonstrated the power of the genome mining
approach that targets both PTM enzymes and precursors.

In current genome mining approaches, the prediction of RiPPs
structure has been automated by the use of various computational tools.
However, the identification of RiPP is usually conducted in a case-by-
case manner by genetic manipulation or heterologous expression and
thus time-consuming. Dorrestein's group developed a computational
tool RiPPquest that automated connect natural product genotypes with
their corresponding chemotypes from metabolomic data sets [39]. Si-
milar to BAGEL and RODEO, RiPPquest firstly finds the core PTMs of
RiPPs and searches for small ORFs around the enzymes. Next, RiPP-
quest generates an MS/MS peptide database of predicted products and
matches with user-provided MS/MS data of microbial extract to identify
the candidate RiPPs precursors.
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Table 1

Summary of commonly used and recently developed RiPPs genome mining tools.

et al.

Ref

Methods

Limitations

Advantages

Description

Mining tools

[11]

Rule-based,

Integration of many other bioinformatics tools.

Integrated platform for analyzing BGCs and metabolites

including RiPPs

antiSMASH 5

Hidden Markov
model (HMM)

Rule-based,

Gene context-dependent.
HMM

Able to analyze and classify more than 50 classes of BGCs.

[13]

Gene context-dependent.

Able to analyze and classify more than 20 classes of BGCs.

Integrated platform for analyzing BGCs and metabolites
including RiPPs

PRISM 3

Able to predict the natural product structures of some types of

BGCs.

[24]

Rule-based,

HMM

Direct mining is searching precursor peptides against

Able to predict both RiPPs BGCs and their precursor peptides.

Combination of direct precursor peptides mining and

indirect rule-based BGCs detection of RiPPs.

BAGEL4

Bacteriocins and RiPPs databases, unable to mine for novel RiPPs

precursor peptides.

[12]

Support vector

Prediction accuracy is poor for small classes of RiPPs (e.g.

Sactipeptides, Linaridins).

Able to classify different classes of RiPPs and predict their

Machine learning classifier to predict RiPPs structural

features based on precursor peptides

RiPPMiner

machine (SVM)

cleavage sites by precursor peptides sequences in a gene context-

independent manner.

[14]

Rule-based

The current version is limited to some RiPPs classes (e.g.

Lanthipeptides, Lasso peptides, etc.).

Gene context-dependent.

Mining for RiPPs BGCs and predicting precursor peptides Accurate prediction of RiPPs precursor peptides and their cleavage
by combination of HMM, heuristic scoring and machine  sites by context genes.

learning.

RODEO

heuristic scoring,

HMM,
SVM

[38]

Prodigal scoring,

HM

No user friendly webtool is available.

Able to identify novel precursor peptides of small RiPP class.

Family-independent identification of RiPPs precursor

peptides

RiPPER

M

Requires prior knowledge of RiPP class to set the parameters.

Gene context-dependent.

[18]

Deep neural
network

Limited training sets and thus low accuracy for small RiPP class.

Able to classify RiPPs and predict the cleavage sites by precursor
peptides sequences in a gene context-independent manner.

Deep learning-based genome mining

DeepRiPP
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2.3. Mining precursor peptides using machine learning

Classical genome mining via targeting the homology of tailoring
enzymes relies heavily on the phylogenetic closeness with the query
sequence, thus hinder their ability to target RiPPs of novel family.
Nevertheless, using precursor peptide sequences of known RiPPs as
queries to mine new RiPPs will result in analogs of known compounds
too. Thus, scientists are trying to understand the intrinsic identities of
RiPPs precursor peptides and use machine learning to grasp the feature
of a small peptide that attributes to the RiPP precursor. RiPPMiner [12]
is a machine learning classifier that is capable of differentiating RiPPs
precursors from non-precursor small peptides and predicting the clea-
vage sites of some well-studied RiPPs including lanthipeptides, lasso
peptides, and cyanopeptides. Powered by a machine learning method
named support vector machine (SVM), RiPPMiner was trained on more
than 500 experimentally verified RiPPs for prediction. Authors reported
high sensitivity and specificity of its RiPP identification (0.93 and 0.90,
respectively) and RiPP classification (0.79 and 0.98, respectively).
Nevertheless, limited by the small training dataset and the drawback of
the selected machine learning method, the cleavage site prediction was
relatively poorly performed, with a precision of only 0.69.

To tackle these problems, researchers have introduced a new arti-
ficial intelligence method named deep learning, which is based on ar-
tificial neural networks, into RiPPs mining tools. NeuRiPP [17] for in-
stance, combined two famous deep learning models, convolutional
neural network (CNN) and long short-term memory (LSTM), to predict
the probability of a short peptide as a RiPPs precursor. Another tool,
DeepRiPP [18], was recently introduced by Magarvey's group for RiPPs
identification and classification. DeepRiPP utilized an advanced
transfer-learning deep neural network method named Universal Lan-
guage Model Fine-tuning (ULMFiT), which was initially developed by
the Fastai team in 2018 [40]. The original method has shown sig-
nificant improvements in solving many problems in the field of natural
language processing. Thus, the authors of DeepRiPP tried to adopt this
method to predict precursor peptides and identify RiPPs in a gene
context-independent manner. Compared to RiPPMiner, DeepRiPP was
trained on a much larger dataset containing more than 3000 RiPPs
precursors and 3000 non-RiPPs short peptides, making the prediction
more reliable. It also took advantage of a previously developed che-
mical structure prediction algorism-GARLIC [41], to predict RiPPs
structures. Combining the metabolomic data from mass spectra, Dee-
PRiPP can automate the process of targeting novel RiPPs from bacteria
cultures. Prioritization upon this integrated platform, authors success-
fully isolated and identified three novel RiPPs from Streptomyces and
Flavobacterium [18]. It is envisioned that the integration of artificial
intelligent approaches into genome mining will shed light on the vast
unknown universe of RiPPs and advance their genomics-guided dis-
covery. However, compared to NRPS and PKS, the number of RiPPs
discovered so far is still limited, which hinders the potential of deep
learning approaches to find novel RiPPs classes. More studies in both
contexts dependent (traditional) and independent (precursor-based)
genome mining are still needed to further enhance deep learning
methods.

2.4. BGC comparison and clustering by similarity network

Upon sequence similarity-based searching, the targeted identifica-
tion of RiPPs of interest has become possible by searching for conserved
enzymes; however, usually at the cost of finding similar BGCs. To avoid
rediscovery of known RiPPs, some research groups have been actively
introducing comparative BGC analysis for the discovery of novel BGCs.
Comparative BGCs analysis is a post-processing workflow to prioritize
BGC of interest. EFI-EST is a recently developed web tool that computes
sequence similarity networks (SSNs) of proteins [27]. This tool is able
to group similar enzymes by calculating their sequence similarity to
distinguish novel RiPPs enzymes from known ones. Applying SSN
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analysis to precursor peptide identified by RODEO, Mitchell's group
significantly expanded the library of putative lasso peptides to > 1300
and characterized six new lasso peptides upon prioritization [14]. Aside
from comparing a single enzyme or precursor peptide, another ap-
proach to assess the novelty of BGCs is to evaluate their phylogenetic
distant as well as biosynthetic novelty via correlating multiple genes or
entire BGC to the known family. BiG-SCAPE [28] is a recently devised
bioinformatic tool that facilitates large-scale SSN analysis of BGCs on a
multiple-gene level. This software extends comparative analysis from a
single gene to the entire BGC, and it is also capable of analyzing mul-
tiple user-submitted BGCs together with known BGCs from the MIBiG
database [42]. Furthermore, by taking into account class-specific dif-
ferences and evolutionary relationships between and within BGCs, the
BiG-SCAPE/CORASON platform can easily classify and chart the BGC
family from a large-scale dataset. This platform provides researchers an
intuitive way of distinguishing novel BGC families from known ones.

3. Genome mining guided discovery of RiPPs

Genome mining is a process of discovering BGCs that conforms to a
given biosynthetic logic. Powered by new bioinformatics tools, the re-
cent genome mining strategies allow us to use a supercomputer to act as
a high-throughput screening platform to accelerate the discovery of
novel natural products from big genomic data. An essential rule in
mining any type of RiPP is to find a short precursor peptide (generally
less than 150 AA) adjacent to a post-modification enzyme. While for
varied RiPPs, the conserved motifs present in the tailoring enzymes or
precursors distinguish one from another. Almost all the RiPPs have
more than one hallmarks which either present in the BGCs or the ad-
jacent gene context. These biomarkers enabled the successful discovery
of RiPPs BGCs of interest using individual or integrated strategies.
Below we describe the genomics-guided discovery of novel RiPPs of the
different families using genome mining strategies mentioned above.

3.1. Lanthipeptides: a well-established prediction hallmark with high
accuracy

Lanthipeptides are a class of lanthionine-containing RiPPs which
exhibit a wide range of bioactivities, including antiviral [2,43], anti-
bacterial [44], antifungal [45], and antiallodynic functions [46]. The
structurally distinctive feature of lanthipeptides is the thioether cross-
link. Such a motif is constructed via the dehydration of serine or
threonine followed by conjugate addition with the hydrosulfuric group
of cysteine [46] (Fig. 3A and 3B). Based on the mechanism of dehy-
dration and cyclization, lanthipeptides can be divided into four major
types. Two proteins individually catalyze the dehydration (LanB) and a
Michael-type cyclization (LanC) in class I lanthipeptide biosynthesis. Of
note, LanB accomplishes the dehydration by transferring glutamate
from glutamyl-tRNA®™ to the B-hydroxyl group of serine or threonine
followed by [-elimination [46,47]. Class II features a single protein
with both dehydration and cyclization domains (LanM), in which the
dehydration is mediated by ATP-dependent phosphorylation of serine
or threonine side chain followed by phosphate elimination [36,48].
Class III and IV are featured by their unique phosphorylation-mediated
dehydration mechanism, in which donors of the phosphate group are
not nucleotide-specific [49-52]. The absence or presence of zinc-
binding motif in the cyclization domain further distinguishes class III
(without zinc-binding motif) and class IV (containing conserved zinc-
binding ligands) lanthipeptides. Since extensive works have been done
for discovering novel lanthipeptides, elucidating their biosynthetic gene
clusters, and illustrating enzymatic mechanisms of key steps, a variety
of unique hallmark genes have been accumulated for PTM enzyme-
based genome mining (Fig. 3C).

Prior to the genomic era, identifying BGCs relied heavily on se-
quence similarity searching, such as BLAST (Fig. 3C). The two-com-
ponent lantibiotic, haloduracin, was identified from the Bacillus

Synthetic and Systems Biotechnology 5 (2020) 155-172

halodurans C-125 by sequence similarity searching of the lantibiotic
mersacidin [53] rather than traditional isolation-based identification
(Fig. 4). The HalA1 precursor peptide share significant sequence iden-
tity with the precursor peptide from the known two-component lanti-
biotics. However, two LanM genes designated as halM1 and halM2 are
the distinctive markers of haloduracin with low similarity with known
LanM, suggesting chemical novelty of its encoding products Halo and
Halp (Fig. 4). Both of these two lanthipeptides exhibit bactericidal ac-
tivity against Lactococcus lactis CNRZ 117 [53]. Similarly, Lichenicidin
was discovered by using BLAST searching combined with the initial
version of BAGLE [22]. Briefly, 89 LanM homologs were first obtained
using BLAST, and then 61 genome sequences were prioritized and
further analyzed with BAGLE to identify putative BGCs [20]. Licheni-
cidin exhibits antimicrobial activity against Listeria monocytogenes,
methicillin-resistant Staphylococcus aureus, and vancomycin-resistant
Enterococcus strains [20]. In addition to searching homologs of tailoring
enzymes, other BGC-associated proteins were also used to mine novel
lantibiotic BGCs. For example, the LanT, which is designated as ABC
transporter [46] that excretes lanthipeptide after biosynthesis, was used
as a marker in identifying putative lanthipeptide BGCs [54]. Another
similar case is associated with the use of profile HMM, by which the
LanB was examined in the human oral and gut microbiome [55].

The increasing number of well-studied biosynthetic logics of lan-
thipeptides discovery via genome mining, in return, has made a sig-
nificant contribution to the development of genome mining strategies.
For example, the cleavage site motifs of class I to class IV and the tai-
loring enzymes, including LanB, LanC, LanM, LanKC, and LanL [46],
are frequently used as hallmarks in the training prediction model for
identifying lanthipeptides or lanthipeptide-like RiPPs, such as anti-
SMASH?”>. Upon the prioritization of antiSMASH-based genome mining,
streptocollin [16,30] and kyamicin [56] were isolated and structurally
identified (Fig. 4). Class IV lanthipeptide Streptocollin was isolated
from Streptomyces collinus Tii 365, and its BGC was further confirmed by
heterologous expression. Kyamicin, a type B cinnamycin-like lantibiotic
antibiotic, was discovered via in situ activation and heterologous ex-
pression of a cryptic BGC mined from Saccharopolyspora species.

Informatipeptin was identified as a new class III lanthipeptide from
Streptomyces by mass spectrometry-based genome mining using an al-
gorithmic tool named RiPPquest, which was developed by Dorrestein's
group [39]. Unlike the traditional genome-guided discovery that re-
quires manual inspection of mass spectrometry data and genetic in-
formation, RiPPquest is able to automatically connect natural product
genotypes predicted from microbial genome sequences with their cor-
responding chemotypes from metabolomic data sets (Fig. 3C) [39]. In
the trajectory of MS-based genome mining, a set of gene fragments
centered at LanC-domain were generated from 16 sequenced Strepto-
myces strains followed by the prediction of potential precursor smaller
than 100 aa [39]. A computed MS/MS spectra dataset of all possible
mature peptides were then matched with experimentally generated LC-
MS/MS data. Peptide-spectrum matches were scored and molecular
network [57] analysis was then used to prioritize compounds of in-
terest.

Traditional natural products discovery methods have been suc-
cessfully applied to discover many lanthipeptides with varied BGC ar-
chitectures and tailoring enzymes. The known BGC pool will keep ex-
panding so that prediction confidence in defining an unknown BGC or
assigning the function of each ORF in that BGC will increase as well. A
straightforward mining tool, like antiSMASH that is supported by
RODEDQ, is becoming more and more reliable in mining lanthipeptides.

3.2. Lasso peptides: from sequence similarity searching to pattern-based
matching

Lasso peptides are a class of cyclotides which features a distinct
“threaded lasso” topological folding that distinguishes them from any
other RiPPs. Such a structurally complex architecture can be achieved
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Fig. 3. Lanthipeptide biosynthetic logic and mining strategy. A) Exemplified enzymatic mechanism of lanthipeptide biosynthesis. LP, leader peptide. Xn, peptide
with n residues. B) Nisin biosynthetic gene cluster from Lactococcus lactis. C) Lanthipeptide mining strategy. (i) Tailoring enzyme-based mining mainly focuses on
identifying the hallmark of lanthipeptide biosynthesis, such as dehydratase and cyclase. (ii) MS/MS matching connects genotypes and chemotypes. The MS data of
predicated mature peptides was aligned with the experimentally obtained MS data to guide target isolation.

using as few as 20 amino acids: (I) the y-carboxyl group of glutamate or
the -carboxyl group of aspartate firstly forms an isopeptide bond be-
tween the amino group of N-terminal amino acid to give a 7-, 8- or 9-
amino acids macrocycle and, (II) the C-terminal of the precursor
threads lactam ring to yield a tail and a loop region (Fig. 5A and B)
[58]. The number and type of disulfide bond in the mature peptide
divide this type of RiPP into four major groups: (i) class I lasso peptide
harbors two interlinked disulfide bonds, (ii) class II has no disulfide
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bonds, (iii) class III contains only one single interlinked disulfide bond
and (iv) class IV contains a handcuff disulfide bond [8,14]. The minimal
lasso peptide biosynthetic gene cluster always includes a precursor
protein (denoted as A protein), a precursor recognition protein with
proteolytic activity (B protein), and an ATP-dependent asparagine
synthase-like lasso cyclase (C protein) [58]. The conserved patterns
present in the precursors and C proteins are the distinctive hallmarks
for lasso peptide genome mining.
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Kyamicin Streptocollin

Fig. 4. Examples of lanthipeptides discovered by genome mining. Haloduracin a and 3 were isolated from Bacillus halodurans C-125. Kyamicin and streptocollin

were discovered from Saccharopolyspora species and Streptomyces collinus Tu 365, respectively. Abu, p-a-aminobutyric acid. Dha, 2,3-didehydroalanine. Dhb, 2,3-
didehydrobutyrine.
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Fig. 5. Lasso peptide biosynthetic logic and mining strategy. A) Enzymatic mechanism of lasso peptide biosynthesis. LP, leader peptide. X indicates Gly, Cys, Ala,
or Ser residue. B) Capistruin biosynthetic gene cluster from Burkholderia thailandensis E264. C) Representative strategies of lasso peptide mining. The precursor-
centric approach is to search putative lasso peptide precursors based on the conserved patterns of known lasso peptides. BGC candidates were identified by searching
adjacent tailoring enzymes and ranking the conservativeness based on then conserved motifs, such as Cys-His-Asp catalytic triad for proteases (B protein) and Asp-

rich motif for asparagine synthetases (C protein). In contrast, the maturase-centric strategy starts by retrieving tailoring enzymes-containing BGCs followed by
searching possible adjacent short peptides, which could be the precursors.
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Fig. 6. Representative lasso peptides discovered by genome mining. A) Lasso peptides mined by a precursor-centric approach. Astexin (PDB ID 2M37) was
isolated from freshwater bacterium Asticcacaulis excentricus. Xanthomonin I and II (PDB ID 4NAG, 2MFV) were derived from Xanthomonas gardneri. The 3D structures
of xanthomonin I and II showed here are truncated by four and six residues, respectively. B) LP2006, Des-citrulassin A and Citrulassin A were derived from
Nocardiopsis alba NRRL B-24146 and Streptomyces albulus NRRL B-3066, respectively. Arg9 in Des-citrulassin A was modified to citrulline in Citrulassin.

The first genome mining-guided discovery of lasso peptide is the
sequence similarity searching based identification of capistruin BGC
(Fig. 5B) from Burkholderia thailandensis E264 in 2008 [59], using the
most well-studied lasso peptide MccJ25 as a query. BGC of MccJ25
contains a peptidase McjB and a typical C protein McjC that catalyze the
maturation of the precursor McjA [60]. By using McjB and McjC as the
query sequence [60,61], the authors found corresponding homologs in
B. thailandensis and located the putative tailoring enzymes CapB and
CapC with overall similarities of 36% and 38%, respectively. Followed
by manually analyzing the adjacent genes, the precursor CapA was
identified. Heterologous expression of the putative BGC in E. coli re-
sulted in the production of mature lasso peptide Capistruin (Fig. 6A),
which showed antimicrobial activity against Burkholderia and Pseudo-
monas strains [59]. Such a straightforward sequence similarity-based
strategy has been effectively applied to identify and prioritize BGCs for
the targeted discovery of RiPPs, including lasso peptides.

Later in 2012, more comprehensive mining of lasso peptide BGCs
was conducted based on conserved motifs of both precursors and ma-
turation enzymes [62]. Based on conservativeness of the penultimate
threonine in leader peptides of the known lasso peptides, authors built a
preliminary filtering rule for a precursor-centric genome mining, which
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allows for a more global survey of lasso BGCs. Two known (microcin
J25 and capistruin) and nine putative BGCs were used as a MEME
(Multiple EM for Motif Elicitation) [63] training set to generate the
conserved motifs in McjB/CapB-like and McjC/CapC-like tailoring en-
zymes. Briefly, four motifs were used as a filter in matching McjB/CapB-
related enzymes and three motifs were set as markers for identifying
McjC/CapC-like enzyme, including an Asp- and Ser-rich ATP binding
pocket [62]. By counting the overall number of conserved motifs pre-
sent in the predicted precursors and modification enzymes, the poten-
tial lasso peptide BGCs were ranked (Fig. 5C). Applying this pattern-
based approach, authors conducted a global lasso BGC analysis of 3000
prokaryotic genomes and identified a highly polar lasso peptide astexin-
1 with antimicrobial activity against Caulobacter crescentus [62]. A si-
milar pattern-based strategy that searches for the pattern of adenylation
domains and tailoring enzymes was also applied to the global genome
mining of NRPS from thousands of bacterial genomes, leading to the
discovery of novel peptide antibiotics and resistance enzymes [64,65].
Compared to sequence similarity searching, the pattern-based matching
is capable of comprehensively analyzing the distribution of a specific
type of lasso peptide BGCs among different phyla regardless of their
phylogenetic distance. Besides, this strategy can be modified and
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utilized to mine novel lasso peptides or other types of RiPPs with
conserved motifs in precursors or PTM enzymes. For example, a similar
approach was used in the genome mining of a unique 7-residues mac-
rolactam ring [66,67]. The McjB protein was used as a query for PSI-
BLAST, which resulted in 124 homologs of McjB, and 74 putative
precursors were then identified [66]. Of note, 7 out of 74 precursors
were found with a Glu residue for potential lasso ring formation at the
seventh position, instead of the canonical eighth or ninth position, of
the proposed lasso peptide sequence [67]. Heterologous production and
crystallization of isolated products revealed Xanthomonins I-III were 7-
ring lasso peptides (Fig. 6A).

In contrast to the precursor-centric matching [62], Mitchell's group
developed a tailoring-enzyme-based tracing by using RODEO (rapid
ORF description and evaluation online), which also mines genes ad-
jacent for the prediction of precursor peptide [14]. In this combina-
tional strategy, the authors first manually curated amino acid sequences
of 28 known lasso cyclases, followed by BLAST-P against the NCBI-nr
database. When the top 1000 hits were obtained, RODEO was then used
to search the gene context for the precursor prediction. The lasso
peptide BGC was defined by the presence of genes encoding proteins
that match the Pfam HMMs for lasso cyclase (C protein), leader pepti-
dase (B protein), a RiPP recognition element (RRE), and a precursor
peptide [14]. A total number of 1419 potential lasso peptide BGCs were
identified based on the initial 28 known BGCs, which significantly ex-
pand the chemical diversity of lasso peptides. Upon precursors anno-
tation and ranking using a combination of heuristic scoring, motif
analysis, and machine learning, a list of high-scoring 1315 precursors
were subjected to SSN analysis [27] to visualize their diversity, dis-
tribution, and discovery status for BGC prioritization. By examining
RODEO predicted BGCs in the public database USDA-ARS (http://nrrl.
ncaur.usda.gov/), six BGCs were prioritized and led to the discovery of
5 new lasso peptides, citrulassin A, lagmysin, LP2006, anantin B1 and
moomysin [14] (Fig. 6B).

3.3. w-ester bond containing peptides: a phylogenetic tree-guided profiling
approach

w-ester bond containing peptides (OEPs) are a class of RiPPs that
contain an intramolecular w-amide or w-ester bond [68-71]. The for-
mation of w-amide or w-ester bond adopts general acid-base chemistry
and is similar to that in lasso peptide biosynthesis, both of which are
ATP-dependent condensation. The significant differences here are that
(i) unlike the formation of AMP-precursor intermediate in lasso peptide

maturation, the precursor peptides in OEPs are activated by
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phosphorylation of the carboxyl side chain of glutamate or aspartate
and (ii) condensation exhibits a side-to-side manner in OEP rather than
a side-to-end pattern in lasso peptides (Fig. 7A) [58,72]. Side-to-side
connection in OEPs is capable of creating topologically complex multi-
cyclotides. The first OEP, microviridin, was discovered and isolated
from Cyanobacterium Microcystis viridis in 1990 [73]. Until 2008, the
biosynthetic pathway of microviridin was identified via analyzing the
producer strains M. aeruginosa NIES298 and Microcystis UOWOCCMRC
genomic DNA and screening fosmid libraries (Fig. 8) [69,74]. Hetero-
logous production in E. coli proofed that such a tricyclic depsipeptide is
ribosomally synthesized and modified by a stand-alone ATP-grasp-type
ligase (Fig. 7B) [75].

Based on the deciphered OEPs BGCs, more and more OEPs with
diverse topology have been discovered. Seokhee Kim's group disclosed
more than 1500 OEPs BGCs and comprehensively analyzed their dis-
tributions by SSN- and phylogenetic tree-guided approach [7]. Their
initial workflow is similar to that in RODEO, i.e., they manually col-
lected four known OEP BGCs [70-72,74] and compiled a list of ATP-
grasp enzymes as PSI-BLAST (position-specific iterative basic local
alignment) input which returned 5276 unique homology enzymes
under the thresh hold of 10%-35 [7]. An evolutional tree was then
constructed and revealed a significant clue for their following mining,
i.e., the topologically diverse four know OEPs were catalyzed by four
phylogenetically divergent ATP-grasp enzymes [7]. This finding further
supported that novel OEPs could be unveiled by retrieving the pre-
cursors that adjacent to ATP-grasp proteins and grouping them into
different clades in the phylogenetic tree. Phylogenetic tree-guided
profiling enabled the identification of 12 groups of OEPs (Fig. 8), in-
cluding an unprecedented BGC in which a single ATP-grasp enzyme is
capable of catalyzing the formation of w-amide and w-ester bonds si-
multaneously [7]. Mining novel enzymes from a phylogenetic per-
spective is relatively straightforward and powerful, because function-
ally divergent enzymes among a superfamily are always distributed in
different clades. For many other kinds of natural products, such as
terpenes, this strategy can also work well in mining novel terpene
synthases [76,77]. However, phylogenetic tree-guided approaches may
not be suitable for mining RiPPs of novel family. Because strategies
based on phylogeny will inevitably generate homologous results, which
restrict their capability to find novel RiPPs classes.

3.4. Sactipeptides and ranthipeptides: a radical SAM-centric approach

Sactipeptides refer to sulf-linked-to-alpha-carbon peptides.
Although both lanthipeptides and sactipeptides contain intramolecular
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Microviridin B2 and B3

Fig. 8. Microviridins and other OEPs discovered by genome mining. Microviridins were isolated via heterologous expression of mdnABCDE gene cluster in E. coli.
Arg in C-terminal Trp was highlighted in bold, indicating the differences between microviridin B and microviridin J in their cyclic region. OEP-4-1, OEP-5-1 and OEP-
6-1 BGCs were derived from Sphingobacteriales bacterium 44-61, Vibrio sp. JCM 18905 and Chryseobacterium greenlandense UMB34, respectively. The mature peptides
were obtained via heterologous expression of the corresponding gene clusters in E. coli.
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the overall transformation. Xn, peptide with n residues. LP, leader peptide. B. Thurincin CD biosynthetic gene cluster from Bacillus thuringiensis strain DPC6431.

thioether bond, the enzymatic mechanisms involved in the C-S bond
formation are different. Lanthipeptidic thioether is formed by a
Michael-type addition between a nucleophilic cysteine and an electro-
philic B-carbon of the dehydrated residue [46]. Whereas Ca-S bond in
sactipeptides is formed via a radical approach-catalyzed by the radical
S-adenosylmethionine (SAM) enzymes (RaS) [4,78]. In many other
cases, RaS may install a CB-S or a Cy-S thioether linkage [15,79]. In
order to structurally distinguish these radical non-a thioether peptides
from sactipeptides, they are named as ranthipeptides [15]. The me-
chanism of C-S bond formation is postulated to be a radical-mediated
manner, i.e., (i) 5-deoxyadenosyl (5-dA) radical is firstly generated
through the reductive cleavage of SAM by [4-Fe-4S] cluster of RaS
enzyme, (ii) 5’-dA radial is then capable of abstracting a hydrogen atom
from a-, B- or y-carbon, (iii) thioether bridge is formed via in-
tramolecular attack (Fig. 9A) [80-82]. Currently, seven sactipeptides
with confirmed BGCs were isolated: subtilosin A [81], thurincin H
[75,83], thuricin C/D [84], thuricin Z [85], ruminococcin C [86,87]
and sporulation killing factor (Fig. 9B) [80]. The typical components of
sactipeptides or ranthipeptides BGC consist of a precursor peptide, a
radical SAM protein, a peptidase, and (or) a transporter protein. The
varied function of RaS bestows the diverse thioether linkage pattern in
mature peptides. Thus, RaS is the most frequently used hallmark in
genome mining for sactipeptides and ranthipeptides.

Applying a similar RODEO-based strategy used in lasso peptide
discovery, Mitchell's group performed comprehensive mining of RaS
enzymes, identified hundreds of canonical Ca-S bond sactipeptides
BGCs and several BGC families of non-a thioether RiPPs [15]. The
overall mining was radical SAM-centric, i.e., a list of 4600 sactipeptide-
related RaS proteins was first retrieved from InterPro 72.0 database

[88] using four experimentally confirmed and two putative sactipep-
tide-related RaS sequences as PSI-BLAST input. The cognate precursors
were identified by RODEO 2.0 and subsequent SSN analysis of pre-
cursor revealed four popular but uncharacterized sactipeptide groups.
Among them, Huazacin was identified from B. thuringiensis (Fig. 10)
[15], which was also identified but named as Thuricin Z by Zhang's
group at the same time [85]. Notably, the SSN analysis related the RaS
of Huazacin BGC to QhpD, a previously characterized quinohemopro-
tein amine dehydrogenase but not a RiPP maturase. QhpD is known to
catalyze several post-translational modifications, including the C3- and
Cy-S linkage between Cys-Asp and Cys-Glu, respectively [89,90]. Thus,
the unexpected relatedness between RaS and QhpD indicated a new RaS
family that may catalyze non-a thioether bond formation [15]. Fur-
thermore, the identification of freyrasin via heterologous expression
supported the CB-S cross-linkage in freyrasin (Fig. 10) [15]. The
genome mining guided discovery of C[B-S linkage ranthipeptides may
provide an important indication that protein or peptide-related PTM
enzymes, just like QhpD, could be used as indicators in genome mining
of novel RiPPs.

3.5. Thioamidated RiPPs and thiopeptide

Thioamidated peptides are exceptionally rare in nature. Currently,
only a few thioamidation processes have been disclosed, including the
biosynthesis of RiPPs thiopeptin [91,92] and thioviridamides [93,94],
non-ribosomal peptides costhioamide [95] and post-translational
modification of methyl-coenzyme M reductase [96]. In vitro recon-
stitution of methyl-coenzyme M reductase thioamidation demonstrated
that sulfur atom was introduced by ATP-dependent YcaO enzyme
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Fig. 10. Representative sacti- and ranthipeptides discovered by genome mining. Huazacin was isolated from Bacillus thuringiensis serovar huazhongensis.
Freyrasin belongs to ranthipeptide which contains six Cp-S bonds formed between Cys and Asp residues.
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Thiovarsolin was identified by heterologous expression of Thiovarsolin BGC derived from Streptomyces varsoviensis.

(Fig. 11A) [97] and TfuA-like partner protein, which was proposed to
serve as precursor peptide recognition element (RRE) in the maturation
process [98]. YcaO enzyme and TfuA-like RRE are thus frequently used
as hallmarks for genome mining of thioamidated RiPPs, as exemplified
by the discovery of Thiostreptamide S4 and Thiovarsolins A-D de-
scribed below.

Thioviridamide, which features five contiguous thioamide bonds,
was first isolated from Streptomyces olivoviridis culture broth in the
course of screening for antitumor agents [93]. Cloning and hetero-
logous expression of the thioviridamide BGC confirmed its ribosomally-
synthetic pathway [99]. Thiostreptamide S4 is a thioviridamide-like
molecule that was identified by BLAST using the YcaO domain of
thioviridamide BGC (Fig. 12) [94]. Thiostreptamide S4 contains four
thioamide groups, which are subtly different from thioviridamide.
Bioactivity assay revealed that Thiostreptamide S4 exhibited potent
antiproliferative activity on tumor cell lines [94]. Besides using YcaO
for genome mining, a RiPPER-based comprehensive analysis of TfuA-
like protein against available genome data revealed that thioamidated
RiPPs were widely spread in actinobacteria. Among those putative
candidates, Thiovarsolin BGC was cloned from Streptomyces varsoviensis
and heterologously expressed in Streptomyces. coelicolor M1146, which
resulted in the identification of a series of linear thioamidated RiPPs
Thiovarsolin A-D [38].(Fig. 12).

Thiopeptides are a class of azoline ring-rich macrocycles. The bio-
synthetic machinery is highly conserved among all reported thiopep-
tides: (i) an Ocin/ThiF-dependent YcaO cyclodehydrates Cys and Ser/
Thr to form azoline moiety [97], (ii) a LanB-like dehydratase then de-
hydrates remained Ser or Thr to yield dehydroalanine and, (iii) an in-
termolecular [4 + 2] cycloaddition enzyme catalyzes the formation of
six-membered pyridine (Fig. 11B) [6,97]. The [4 + 2] Diels— Alderase
is the distinctive feature of thiopeptide so that it can be used as a
hallmark in genome mining. By targeting the Diels— Alderase via
RODEO, Mitchell's group identified several novel thiopeptides and ex-
panded the members of this family [100]. One of the representatives is
saalfelduracin (Fig. 13), which is a hybrid of three classes of RiPPs:

linear azole-containing peptides, lanthipeptides, and thioamide-con-
taining RiPPs. Aurantizolicin was identified by a classical integrated
approach RiPP-PRISM [26]. In addition to the thiazole ring, aur-
antizolicin contains additional multiple oxazole rings that distinguish it
from other thiopeptides (Fig. 13). Other members of aurantizolicin-like
RiPPs were classified into YM-216391 [101,102] family.

3.6. Other RiPPs: a case-specific biomarker in targeted mining

For biosynthesis of well-known lasso peptide, OEPs, lanthipeptides,
and sactipeptides, there are either unequivocal conserved residues in
precursor peptides or conserved domains in PTM enzymes or both. For
some new RiPPs family with little known cases, however, no hallmark
gene is available for genome mining. For instance, C-C crosslink
[103-105] and aliphatic ether-containing RiPPs [106]. Unlike those
well-studied RiPPs families, the enzymes responsible for the C-C or
aliphatic ether bond installation of RiPPs are rare and yet to know.
Radical SAM enzyme PqqE is capable of catalyzing the C-C crosslink
between y-C of glutamate and tyrosine of pyrroloquinoline quinone
cofactor [107] and is the first reported radical SAM enzyme that can
modify a linear peptide via C-C cross-coupling. The discovery of
Pepl1357C [108], renamed as streptide [104] later, is a representative
example of the C-C crosslinked RiPPs. Streptide features a lysine-to-
tryptophan crosslink and was initially isolated from Streptococcus ther-
mophilus, a gram-positive non-pathogenic strain. In the disclosed
streptide biosynthetic gene cluster, a quorum sensing (QS) operon was
found in the upstream of precursor peptide [104,108]. Quorum sensing,
or cell-cell communication, is the regulation of gene expression in re-
sponse to fluctuations in cell density [109]. Inactivation of QS operon
abolished the Pepl1357C biosynthesis in Streptococcus thermophilus
[108]. The Cooccurrence of QS operon and Pepl1357C-type BGC re-
vealed an inherent and evolutionarily important role of Pepl1357C
peptide. Inspired by the correlation of QS system and streptide BGC,
Seyedsayamdost's group explored 2875 streptococcal genomes and
identified 667 putative RiPPs BGCs via pattern-based mining, which
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Aurantizolicin

Fig. 13. Representative thiopeptides discovered by genome mining. Saalfelduracin was produced by strain Amycolatopsis saalfeldensis NRRL B-24474.
Aurantizolicin was isolated from the fermentation broth of Streptomyces aurantiacus JA 4570.

contains both SAM and conserved QS locus [105]. 592 streptide-like
BGCs were then verified manually and found to be mainly distributed in
16 different groups. Among thesel6 different groups, a single radical
SAM enzyme WgkB was proved to regio- and stereospecifically catalyze
two C-C bonds formation between four inactivated positions, resulting
in a unique tetrahydro [5,6]benzindole moiety (Fig. 14) [105]. The
detailed mechanism regarding how one single-electron oxidant (the
5 dA‘) accomplishes a four-electron involving cyclization remains un-
clear. Another radical SAM enzyme RrrB was reported to cyclize the C8§
of the arginine side chain and ortho-position of tyrosine (Fig. 14) [103].
In addition to C-C crosslink formation, QS system-guided mining also
led the discovery of aliphatic ether bond-containing RiPPs, which is
formed between the threonine side chain and a-carbon of glutamine
(Fig. 14) [106]. This is a rare post-modification which has not been
found in other types of RiPPs families. The question regarding why the
QS system is adjacent to these RiPPs BGCs and what the biological role
of these structurally novel RiPPs awaits further exploration. Never-
theless, the adjacent QS system is a promising specific biomarker in
targeted mining RiPPs.

Trp-Lys crosslink

HaN NH  OH

NH Xc = QTKGWY
Xn = MQIEFTSEELMQMKTIDELMSIVQDTPGEIVPAGPFITR

3.7. Emerging universal hallmark: RiPP recognition element

RiPP recognition element (RRE) is regarded as a peptide-binding
domain within the RiPP biosynthetic enzymes. Although the specific
function and presence of RRE are not well studied, more and more
pieces of evidence have supported its prevalence among RiPPs or RiPPs-
related biosynthesis. One of the most convincing cases is the PQQ
biosynthesis, in which RRE is a stand-alone open reading frame en-
coded by gene pqqD [110]. A similar architecture is also found in lasso
peptides [111] and streptide-like RiPP [105]. Whereas, for other cases,
including sactipeptides, RRE may fuse with post-modification enzymes
either in the N-terminal or in the C terminal [4]. A comprehensive
analysis of RRE by using profile hidden Markov models revealed that
RRE is present in more than 50% prokaryotic RiPPs [112,113], in-
cluding class I lanthipeptides, radical SAM-catalyzed sactipeptides and
thiopeptides. RREs are structurally similar but highly divergent in pri-
mary sequences. Overall, currently reported RRE domains adopt a si-
milar folding manner: three to four consecutive a-helices followed by
three to four consecutive (3-sheet, or reverse. Although conserved re-
sidues cannot be found among these RRE using routine sequence
alignment, such as BLAST, their similarities in 3D structure may be a

Fig. 14. Other Radical SAM enzyme-catalyzed
RiPPs identified by a quorum sensing-based ap-
proach. Streptide-like Trp-Lys and Tyr-Arg crosslink
containing RiPPs were respectively found in
Streptococcus ferus DSM 20646 and Streptococcus. suis
LSS38. The aliphatic ether motif-containing RiPP
was identified from Streptococcus suis.
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Fig. 15. The flowchart of future RiPPs (meta)genome mining approach.

hidden hallmark that can be developed for RiPPs genome mining. For
instance, Medema, van Wezel, and Mitchell's groups recently developed
a tool named RRE-finder to discover RREs in protein sequences for the
finding of RiPP BGCs [114], which uses pHMMs and secondary struc-
ture predictors such as HHpred [112] to address on the 3D structure
similarity.

4. Conclusions and perspectives

With the development of new sequencing techniques, more and
more bacterial genomes and metagenomes have been sequenced, pro-
viding an excellent chance to harness their genetic potential for natural
product discovery. In the meantime, the demand for more advanced
biosynthetic analysis promotes a large variety of bioinformatics tools
for genome mining. Genome mining strategies are now commonplace in
natural product discovery. Traditional genome mining of RiPPs based
on the distinct PTM enzymes has facilitated the targeted discovery of
many RiPPs from different classes over the decades. Tools such as
BAGEL and RODEO that were explicitly designed for RiPPs genome
mining provided more detailed information and showed more con-
fidence in finding precursor peptides than general genome mining tools.
However, these traditional methods rely on the sequence similarity of
well-studied proteins of cultivated microbes and thus suffer from the
bias issue when applying to metagenome data. Additionally, they are
conducted in a gene context-dependent manner and limit their utili-
zation to well-assembled genome data only. The limitations of these
genome mining approaches hinder the mining of RiPPs BGCs from the
complex microbiome due to the amount, assembling quality, and
complexity of metagenomic data.

Nowadays, the increase of DNA sequences of bacterial genomes,
especially, metagenomes is staggering. However, mining metagenomic
data for natural product discovery is particularly challenging. Most of
the current RiPPs genome mining tools described above are not fully-
applicable for metagenomic data. Although sophisticated techniques
have been developed to assemble the short DNA sequences in the me-
tagenome, fragmentation often occurs from variable coverage of
shotgun sequencing. The fragmentation impedes genome mining tools
to find the post-modification enzymes or precursors in RiPPs BGCs, or
even hinder BGC detection itself. The recent success of deep learning
approaches in image recognition and natural language processing has
inspired researchers in the fields of genome mining. Deep learning-
based genome mining can grasp the hidden essence of RiPPs precursors
in a gene context-independent manner. Therefore, deep learning-based
strategies require merely the sequences of RiPPs precursors, which are
more obtainable from poorly assembled genomes (e.g., metagenome).
In a trade-off, however, their prediction accuracies are lower than
traditional methods with predefined rules. Currently, deep learning in
RiPPs genome mining is still nascent and suffered from bias caused by
small data size. As more sophisticated models are invented and more
disclosed RiPPs biosynthetic gene clusters are available for training the
prediction models, the prediction confidence of one specific type of
RiPP would be significantly improved. Owing to data size requirements
by deep learning models, the insufficiency in the number of rare RiPPs
families will gradually become another bottleneck of applying deep

169

learning in genome mining of novel BGCs. Therefore, researchers in
chemistry and biology are expected to collaborate more with those in
bioinformatics and computer science. Retaining the virtuous circle of
inventing new methods and applying them to discover more RiPPs is
envisioned to be the best way to develop new genome mining ap-
proaches.

As conventional fermentation-based discovery from cultivated mi-
crobe is dwindling, the exploration of the untapped microbiome has
risen as a major focal point for new drug discovery. Although so far, no
sophisticated metagenome mining tool has been developed specifically
for RiPPs, scientists are trying to adapt existing alternating methods to
enable metagenome mining for RiPPs from the unexplored microbiome.
Recent advances in microbial genomics, metabolomics, and synthetic
biology are facilitating us to explore the large microbial world present
that is not yet cultured, which represents an unprecedented opportunity
for natural product discovery. RiPPs have attracted intense interest
owing to their structural and functional diversity and the predictability
of the biosynthetic logic of the genetically encoded assembly lines that
produce them. The small size of RiPP BGCs (5-15 kb) makes their as-
sembly or synthesis more practical and economical. Their immense
genetic and biochemical diversity is only beginning to be appreciated
and is becoming a rich source of novel chemical entities for the dis-
covery of more potent drugs. Full leverage the genetic potential of
RiPPs for drug discovery will require new efficient discovery ap-
proaches and productive interplay between analytical chemistry, com-
putational biology, and synthetic biology. In the future, the integrative
application of advanced interdisciplinary technologies, including me-
tabolomics, genomics, Al, and synthetic biology, will promote inter-
disciplinary collaborations for RiPPs-based drug discovery (Fig. 15). For
example, we can envision that the combinational use of deep learning
and synthetic biology tools in the discovery stage not only tre-
mendously increases the chance of identification of new antibiotic leads
but also unlocks unknown chemical language encoded within the mi-
crobiome in shaping the ecosystem or human health. Although bias in
the training set is inevitable for current Al-based mining strategies,
their capability of identifying RiPPs precursors from metagenome data
is promising. Metagenome mining, coupled with cutting-edge synthetic
biology strategies, can harness the chemical potential of the untapped
microbiome, which offers a new venue for the unexplored RiPPs library
with medicinal potential.
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