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ABSTRACT: Pattern formation and dynamic restructuring play a
vital role in a plethora of natural processes. Understanding and
controlling pattern formation in soft synthetic materials is
important for imparting a range of biomimetic functionalities.
Using a three-dimensional gel Lattice spring model, we focus on
the dynamics of pattern formation and restructuring in thin
thermoresponsive poly(N-isopropylacrylamide) membranes under
mechanical forcing via stretching and compression. A mechanical
instability due to the constrained swelling of a polymer network in
response to the temperature quench results in out-of-plane
buckling of these membranes. The depth of the temperature
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quench and applied mechanical forcing affect the onset of buckling and postbuckling dynamics. We characterize formation and
restructuring of buckling patterns under the stretching and compression by calculating the wavelength and the amplitude of these
patterns. We demonstrate dynamic restructuring of the patterns under mechanical forcing and characterize the hysteresis behavior.
Our findings show that in the range of the strain rates probed, the wavelength prescribed during the compression remains constant
and independent of the sample widths, while the amplitude is regulated dynamically. We demonstrate that significantly smaller
wavelengths can be prescribed and sustained dynamically than those achieved in equilibrium in the same systems. We show that an
effective membrane thickness may decrease upon compression due to the out-of-plane deformations and pattern restructuring. Our
findings point out that mechanical forcing can be harnessed to control the onset of buckling, postbuckling dynamics, and hysteresis
phenomena in gel-based systems, introducing novel means of tailoring the functionality of soft structured surfaces and interfaces.

B INTRODUCTION

Pattern formation and dynamic restructuring under external
stresses exerted by the confinements play a critical role in a
number of processes in nature. For example, compressive
stresses generated by the smooth muscle control the transitions
between the types of patterns—from longitudinal ridges to
villi—in the lining of the human gut,1 while many features of
phyllotactic patterns in plants can be understood by analyzing
mechanical stability of growing elastic sheets undergoing
buckling under lateral constraints.”* Mechanical instabilities
are triggered by sufficiently high compressive stresses, which
may arise during growth, expansion, or swelling of soft layers or
films under various geometrical constraints.””’ Specific
patterns observed, including surface wrinkling, creasing, and
folding,*~'" depend on sizes and shapes of the samples®”'*~"*
and can be tailored by imposing the gradients in sample
width,”> thickness,"®™*° crosslink density,u’22 elastic mod-
ulus,*® or by introducing dynamic variations in sample
properties or external conditions.”* Bucking plays an important
role in defining shapes and properties of various heterogeneous
gel-based systems, from controlling three dimensional shape
transformations in thin hydrogel sheets with embedded arrays
of stripes”” to buckling-induced interactions between
inclusions in the infinite thin plate.””** Buckling-induced
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shape morphing of responsive hydrogels or hybrid materials
incorporating hydrogels can be achieved by tuning gel
properties and external conditions,”””>" and snap-through
buckling can be generated via transient shape changes during
the gel drying.*”

Stimuli-responsive gels undergo extensive volume changes in
response to changes in environmental conditions such as
temperature, light, and solvent quality.”*~* Further, an applied
tension affects volume phase transition in gels: an increase in
tension increases the volume phase transition temperature‘%_38
and can result in a shift from the discontinuous to continuous
volume phase transitions.’® While mechanical instabilities may
result in transient surface patterns observed during the
extensive swelling of gels freely suspended in solvents,™
these patterns disappear in the absence of constraints upon
reaching an equilibrium. In other words, an equilibrium degree
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of swelling corresponding to the selected external conditions is
reached within the unconstrained homogeneous sample. If
however the swelling is mechanically constrained, the
compressive stresses are generated, which in turn may result
in differential swelling, local or global buckling, or surface
wrinkling or creasing."”*' The swelling of a thin hydrogel strip
or film may be constrained by either clamping its single
edge’®™" or both edges,*** confining a strip gel in a corona
geometry,""** or by bonding a thin polymer layer with higher
stiffness to the gel undergoing swelling. In the latter case, if the
swelling of the gel layer is constrained by the bonded stiffer
polymer layer, the instability arises due to the mismatch
between the elastic moduli of two materials.*”**~* Notably,
the elastic properties of the thermoresponsive hydrogels, such
as poly(N-isopropylacrylamide) (PNIPAAm) hydrogels, vary
with temperature with higher elastic modulus measured well
above the volume phase transition temperature,”” > while
softening is reported at the phase transition temperatures.”' >
This temperature dependence of the elastic modulus
correspondingly affects the features of the wrinkling patterns
observed in the bilayer systems incorporating PNIPAAm.*" In
addition to rather extensively studied bilayer systems, the
trilayer hybrids incorporating the thermoresponsive hydrogel
layer were recently fabricated; these systems allowed for
simultaneous control of the Gaussian curvature and direction
of buckling in shape-morphing systems.54 Finally, buckling of
layered hydrogel films constrained at the short edges was used
to design a material with negative swelling (i.e., material which
shrinks when it imbibes the solvent).*

A restriction of swelling of a thin gel strip by clamping its
long edge is well known to result in buckling instability if the
critical conditions are satisfied.”" A linear stability analysis
using Foppl—von Karman (FvK) equations® allows one to
estimate a wavelength of periodic patterns in the samples with
the long edge clamped. In the limit of sufficiently thin plates
(hy/L < 1), the wavelength of sinusoidal buckling is shown to
scale linearly with the sample width, w, as*™ A% = 3.26w,. This
scaling is in an agreement with the wavelength measured in
experiments for the samples of various thicknesses.*’ However,
with the increase in the swelling ratio, the wavelengths
measured in the experiments may exhibit relatively large
deviations from the above scaling."” While the linear stability
analysis is often used to predict both the threshold of the
critical compressive stress that is required for the onset of
buckling and the wavelength of patterns formed, the
assumptions made during this analysis have the following
major limitations:*' (a) the most unstable modes used to
calculate the wavelengths are taken at the instability threshold,
while the experimental conditions often correspond to external
stresses well above this threshold and (b) the variations in the
thickness and in the elastic properties of the plate during
swelling are neglected. The above limitations are expected to
hold for sufficiently small perturbations, while the patterns
observed often have relatively large amplitudes and notable
deviations from the constant thickness.

Controlling pattern formation dynamically in synthetic
materials would allow one to control a range of functionalities
of surfaces and interfaces. Among the potential applications of
patterned surfaces are adhesives with controllable strength,*®
self-cleaning surfaces based on delamination,””® and directed
waves that can transport cargo.” One means of controlling
pattern formation is by utilizing chemical reactivity, for
example, via chemomechanical coupling in chemoresponsive
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gels.””®" Chemomechanical self-oscillations were recently
reported in gels undergoing dynamic buckling.”® Mechanical
stimuli such as controlled sequential release of prestrain,*®
simple stretching and recovery of bilayers,so’é7 dynamical
loading and unloading,68 longitudinal and/or transverse
compression,”” " and uniaxial stretching’* provide effective
means of controlling patterns in bilayer systems, elastic plates,
and ridges. For example, the sequential release of equi-biaxial
prestrain in one direction, followed by the release of strain in
another direction results in the transition from the disordered
labyrinth to ordered herringbone patterns in polydimethylsi-
loxane-based bilayers.®®

Introducing simple means of dynamic control of pattern
formation in gel-based systems mechanically by stretching and
compression provides means of mechanical control of dynamic
compartmentation and topography in these materials, which
could further promote their usage in a number of applications.
Herein, we demonstrate mechanical control of the out-of-plane
deformations of the thin PNIPAAm gel membranes clamped at
two long edges. PNIPAAm has a lower critical solution
temperature around 32 °C; when PNIPAAm chains are cross-
linked, the hydrogel undergoes volume phase transition and
deswells at higher temperatures. The absolute value of the
volume phase transition temperature depends on the gel
properties, such as crosslink density and polymer volume
fraction at preparation,”>~"* and external conditions such as an
applied external tension.”* >® Herein, we show that the
features of patterns formed dynamically and an onset of
pattern formation can be controlled by the strain rate during
the stretching and compression.

We model the dynamics of pattern formation in a confined
thin PNIPAAm membrane and the dynamics of transitions
between the patterns under the mechanical forcing. In what
follows, we first characterize equilibrium patterns in our
simulations dependent on the depth of the temperature
quench. By utilizing three-dimensional simulations capturing
constrained swelling of a hydrogel membrane along with the
linear stability analysis, we identify the limits of the
applicability of the linear stability analysis in predicting
characteristic wavelength of these patterns and an onset of
buckling. We characterize the deformation of the membrane by
calculating the wavelength and the amplitude of the buckling
patterns. We then characterize the effect of the stretching and
compression of the samples on the out-of-plane deformations
of the membrane and characterize hysteresis in the system
response to the mechanical forcing.

B MODEL

We use a three-dimensional gel lattice spring model (3D
gLSM)”®”” to carry out simulations of the dynamics of the
confined gel membranes. The gLSM was originally developed
to simulate dynamics of chemoresponsive gels undergoing self-
oscillations;”*”” it combines the finite element approach for
the spatial discretization of the equations of the gel
elastodynamics and finite difference approach for the
reaction—diffusion equations if reactions take place with the
polymer network.”” The gLSM was used to simulate the
dynamics of various chemoresponsive gels and was validated
with respect to a number of experimental studies.”"’®”7*0~%>
The gLSM has also been extended to simulate dynamics of gel
composites with embedded filaments®”** or nanoparticles.”
Within the gLSM,”® the total energy of the deformed polymer
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Figure 1. Pattern formation in the constrained gel membrane. (a—c) Morphologies of the sample subjected to the instantaneous temperature
quench from 30 to 24 °C at t = 700 in (a), t = 1100 in (b), and t = 2 X 10* in (c). The color represents the local volume fraction of polymer, ¢,
according to the color bar in (c). The sample is confined at the long edges, as marked in gray. An inset in (c) represents the cross section of the
sample taken along the central node in the y-direction. (d) Wavelength 4,y (blue, left axis) and the amplitude 6Z (red, right axis) of fully developed
patterns as a function of the characteristic swelling ratio . The red dashed line is eq 4, where a. = 1.057, p; = 22.46, and p, = 1.57.

matr1x comprises the mixing energy, U, and elastic energy,
- The dimensionless mixing energy reads”

Upie = 5'2(1 = )n(1 = ) + sy (#, T)P(1 — )]

(1)

where ypy(¢,T) is the Flory—Huggins interaction parameter,
which depends on the polymer volume fraction ¢ and
temperature T, and I; = detB is an invariant of the left
Cauchy—Green (Finger) strain tensor B.Y 131/ 2 represents the
change in the volume of the gel relative to its volume in
preparation, where ¢ = ¢b,."” The dimensionless elastic energy
U, due to the deformation of the rubber-like cross-linked
polymer network is written as®**’

_ % 1/2
=20 -3 - o
The parameter ¢, = vV,/N, is a dimensionless crosslink
density, where v is the number density of elastically active
polymer strands per unit volume at preparation, Vj is the molar
volume of solvent, N, is the Avogadro constant, and I; = trB.
Both energy contributions are normalized by k3T, where kj is
the Boltzmann constant. The dimensionless stress tensor
(normalized by ksTN,/V,) can be written as’”’ & = —=P(¢,T)
I + ¢y 'B, where I is the unit tensor, and P(p,T) =
o, T) + cop(2¢p,)7" is the isotropic pressure with
Toie(,T) = =[p + In(1 — @) + y*], ¢y is a polymer volume
fraction in preparation, and y = ypu(¢,T) (1 -
@) 0yeu(p,T)/0¢p. The contributions from elastic and mixing
components to a total stress are balanced at equilibrium (6 =
0) so that the equilibrium volume fraction of the polymer in
the unconstrained three-dimensional sample, ¢eq(T), can be
found at a given temperature T by solving

5 1/3 5
ﬂmix(qzq; T) = (o [;0] - 2¢0

)

The equilibrium degree of swelling is correspondingly
calculated as /qu(T) = (g{)o/(ﬁeq(T))l/3 The bulk and shear
moduli of the PNIPAAm gel at a given temperature can be
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estimated as’>® ™' K = qﬁﬁ

o
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and

¢2
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b
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= co(peq/Po)"?, respectively; these expressions are
normalized by k3TN, /V,. Within the gLSM, the dynamics of
the polymer network is derived based on the two-fluid
model”””® and is assumed to be purely relaxational.”” Further,
the hydrodynamic interactions are neglected and the gel
dynamics is captured via solvent—polymer interdiffusion”””* so
that the forces acting on the deformed hydrogel are balanced
by the frictional drag of the solvent.” For the derivation of the
set of dynamic equations for the gLSM in three d1mens1ons, we
refer the reader to the original publication.”” The polymer
network within the 3D gLSM framework obeys neo-Hookean
elasticity;77 hence, at sufficiently small strains, the limit of
linear elasticity is expected to hold and linear stability analysis
can be performed (see below).

The 3D gel sample is represented by (L, — 1) X (L, — 1) X
(L, — 1) general linear hexahedral elements, where L, (1 =X, ¥,
z) is the number of nodes in the i-direction.”” The sample is
assumed to be fully immersed in the solvent (water). At the
initial temperature T}, all the elements of the unconstrained gel
sample are identical cubic elements with the dimensionless
edge length defined by the equilibrium degree of swelling,

Aeq(T), and the polymer volume fraction within each element,
gbeq( T,). In the reference scenario, we restrict the motion of all
the nodes at the long edges (these vertical faces are assumed to
be grafted to the hard surfaces, as marked in Figure la).

We choose simulation parameters based on the available
experimental data®® to capture physical properties of the
PNIPAAm gel matrix. We take the polymer—solvent
interaction parameter as”> y(¢,T) = yo(T) + yip, where
2o(T) = 6h — Tds/kgT, y, = 0.518, and 6h = 1.246 X 107" erg
and &s = —4.717 X 107'¢ erg/K are the changes in the enthalpy
and entropy during the mixing, respectively. With the above
choice, the 3D gLSM was shown”” to accurately reproduce an

%,
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0
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analytical solution for both continuous and discontinuous
volume phase transitions observed experimentally in gels with
corresponding physical properties.”””"

In the reference case scenario in the simulations below, we
set the polymer volume fraction of PNIPAAm gels in
preparation at™> ¢y = 0.114, the dimensional crosslink density
at ¢, = 4 X 1073, and choose the sample size of 105 X 15 X 3
nodes. These reference parameters are used unless specified
otherwise. At the initial temperature T; = 30 °C, an equilibrium
degree of swelling is 4., = 0.837, resulting in the dimensionless
initial size of 87.0 X 11.7 X 1.7. Taking the dimensionless unit
of length in our simulations as L, 10 um, the above
dimensionless size can be related to the dimensional size of
0.87 mm X 0.12 mm X 0.02 mm. In addition, a number of
simulations were run with extended sample lengths up to a
sample size of 200 X 15 X 3 nodes or 166.5 X 11.7 X 1.7
dimensionless units (corresponding to 1.74 mm X 0.12 mm X
0.02 mm) for the reference parameters chosen above. We
estimate the characteristic time scale in our simulations by
relating the dimensional relaxation time”” for the cubic sample
of linear size equal to the thickness of the gel (0.02 mm) to the
dimensionless relaxation time™ of the same sample calculated
from simulations upon temperature decrease from 30 to 20 °C.
Taking the collective diffusion coeflicient for the gel as D=2
X 107" m?/s results in the characteristic time scale of
T, = 80 s. Below, all the dimensionless values of length and
time are provided in units of L, and T, respectively. The
reference value of a constant strain rate is set at ¥ = 1 X 107>,
which corresponds to 7.5 X 107° mm/min. We note that even
the fastest rate y considered below ( = 4 X 1073) corresponds
to a sufficiently slow motion (slower than the characteristic
diffusion time on the corresponding length scale). Finally, we
assume that upon the temperature quench, the temperature is
equilibrated instantaneously and uniformly’” within the gel
samples of sizes considered herein since the thermal diffusion
coeflicient of water exceeds the collective diffusion coefficient
of the polymer network by approximately 4 orders of
magnitude.% With the length scale chosen above, the
characteristic wavelengths observed in our simulations are on
the same length scale as that of buckling patterns observed in
prior experimental studies on swollen gels clamped at the
single long edge.*”*" Additional simulation details are provided
in Section S1 (Supporting Information).

B RESULTS AND DISCUSSION

Swelling-Induced Buckling in Constrained Gel Mem-
brane: Dynamics and Equilibrium Properties. In the first
series of simulations, we systematically quenched the temper-
ature of the confined gel membrane from T; = 30 °C to various
lower temperatures T; between 17.5 and 29 °C (Figure 1).
Upon the instantaneous temperature quench, the flat gel
membrane begins to swell; however, the compression due to
the clamped edges does not allow the sample to attain the
equilibrium degree of swelling which the sample would have
attained in the absence of the confinement, /leq( T;). Hence, the
average volume fraction of the polymer within the constrained
sample, ¢, remains higher than that of the corresponding free
sample, ¢y (Figure S1). An example of pattern development in
the confined sample upon a temperature quench from 30 to
24 °C is provided in Figure la—c. At early times, the sample
swells through the thickness (z-direction) and remains nearly
flat. Correspondingly, the volume fraction of the polymer
remains nearly uniform along the length of the sample (x-
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direction) with the exception of the sample ends, which are
effectively less constrained (Figure 1a). Upon further swelling,
the flat film loses its in-plane stability and small out-of-plane
undulations appear close to the center of the sample. At
intermediate times, these undulations increase and propagate
toward the ends (Figure 1b), resulting in further decrease of
the volume fraction of the polymer (color bar in Figure 1). At
late times, the out-of-plane motion slows down until the
system attains an equilibrium (Figure 1c).

To characterize the membrane deformation, we calculate the
amplitude 6Z as the distance between the highest and the
lowest z-coordinates within the whole sample and the
wavelength Ay, as the longitudinal distance between the two
neighboring peaks (inset in Figure 1c) averaged over the entire
sample. The wavelength Ayy is calculated provided that two or
more wavelengths can fit within the length of the sample, and
the amplitude of the surface undulations, A, exceeds a critical
small value (Figure S2a). The amplitude 6Z is calculated for all
samples including an initial flat membrane. Note that the finite
length of the sample results in some deviations of the
calculated values of Ay for the samples of various lengths
depending on the number of half-wavelengths that the samples
can accommodate (Figure S3).

The amplitude 5Z (red symbols, right axis) and the
wavelength Ay, (blue symbols, left axis) depend on the ratio
of the degree of swelling the gel would have attained during the
free swelling in response to the temperature quench from T; to
Tjy & = Aeg(T()/Aeg(T;) (Figure 1d). An increase in a defines an
increase in the compressive stress exerted by the sidewalls. The
respective dependences of the characteristic swelling ratio o on
the depth of the temperature quench for the samples initially at
29 and 30 °C are shown in Figure S4. In effect, the
compressive stresses exerted on the sample by the confinement
can be estimated by considering a free swelling due to the
temperature quench followed by an equi-biaxial compression,
with the compressive strain defined as € = @™ — 1 (see Section
S1: C, Supporting Information). It is constructive to
characterize pattern formation with respect to the character-
istic swelling ratio a defined above since this value can be
calculated analytically for unconstrained samples with various
physical properties (eq 3); hence, the pattern features can be
predicted depending on the physical properties of the gel and
the depth of the temperature quench.

Each data point in Figure 1d corresponds to an independent
simulation run, and we probe two initial temperatures, as given
in the legend. The values of T; define the equilibrium degree of
swelling at a given temperature (ﬂeq(29 °C) = 0.860 and Aeq
(30 °C) = 0.837, respectively), which in turn defines the initial
sizes of the samples. We calculate Ay, and 6Z upon reaching an
equilibrium. Our simulations show that for all the cases
considered in Figure 1d, the in-plane geometry loses its
stability for @ exceeding a critical value, @, = 1.057. Our results
point out that one could predict an onset of buckling in thin
gel membranes confined by the two edges simply based on the
ratio between the degrees of swelling of the free samples at the
final and initial temperatures, a. Further increase in @ results in
a decrease of the wavelength, followed by its saturation at an
approximately constant value (Figure 1d). At higher values of
a considered (@ > 1.18), an increase in the depth of the
temperature quench does not change the wavelength but
results in the increase of the amplitude, 6Z. This behavior is
robust and is confirmed in an independent series of simulations
for significantly longer samples (Figure S3c). These
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simulations show that an increase in a above the critical value
of o, results in an increase in the amplitude as

6Z(a) = pJ1/a. — 1/a +p, (4)

where p; and p, are the fitting parameters depending on gel
properties (see below). This scaling is similar to the scaling
proposed for the postbuckling of elastic plates under uniaxial
compression, which shows that the off-plane deflection
increases proportionally to the square root of the magnitude
of the excess stress relative to the critical compressive stress
required for bucklin§.98’99 A similar dependence was reported
in previous studies'”* for the amplitude of swollen gels
clamped at a single edge.

In the additional series of simulations, we probed the effect
of the gel width w; and the dimensionless crosslink density c,.
We find that the decrease in either w, or ¢, results in an
increase in a, (Figures S5). At «a significantly exceeding a
critical value of a,, Ay() and 5Z(a) effectively overlap for the
samples with different crosslink densities. The values of a,
found in the simulations and the fitting parameters p, and p,
are provided in Table S1. These results show that an increase
in wy or a decrease in ¢, results in an increase in p;, while the
value of p, is approximately equal to the average sample
thickness at the onset of pattern formation.

While the gel elastodynamics within the gLSM model used
herein obeys neo-Hookean elasticity,”””” in the limit of the
small strains, the linear elasticity is expected to hold. The
elastic properties of the sample at a given temperature
(Young’s modulus E and Poisson’s ratio v) can be found
from the bulk modulus (K) and shear modulus (G) as*>*’

KG 4y = (K=20)

3K+ G 2(3K+G)’
that the “dip” in K (referred to as softening) may be observed
at volume phase transition temperatures depending on the
physical properties of gel.”'~>* The Poisson’s ratio calculated
from the simulations at small compressive strains is in good
agreement with analytical estimates (see Section SI: B and
Figure S6). Notably, the functional dependence of the
Poisson’s ratio on the temperature for the thermoresponsive
gels undergoing volume phase transition reproduced in our
simulations and low values of v in the vicinity of the phase
transitions are in %ood agreement with corresponding
experimental studies.””>*"%°

We perform a linear stability analysis of a thin flat confined
hydrogel using FvK equations.” These equations are derived
based on minimizing the total Hookean elastic energy of a thin
plate with a constant thickness.'”"'”> We assume that the
constrained swelling of the gel membranes can be represented
via equi-biaxial in-plane compressive strain € = @' — 1 exerted
by the confining walls on a sample that was swollen to the final
temperature (see Section S1: C and Figure S7a). Notably, a
magnitude of the compressive strain was previously correlated
with the characteristic swelling ratio to analyze the linear
stability of hydrogels with one clamped edge’®** and swollen
layered plates constrained at two short ends.” Solving FvK
equations allows us to find a characteristic wavelength as a
function of the sample width Af; & 2.62w, and estimate a
critical swelling ratio

2
. h

af =1 - 22|
1+ v w

respectively. It has been shown

—1

©)
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corresponding to the onset of instability (details are provided
in Section S1: C, Supporting Information). Our analysis shows
that a significantly higher critical swelling ratio a¥ is required
to observe the onset of buckling in the samples with two edges
clamped than that for the samples with the single edge
clamped.””*"** Further, the wavelength estimated analytically
for the gel with both long edges constrained is lower than that
estimated analytically and observed in experiments for the
geometry with one clamped edge,"”*"* 1% ~ 3.26w,. The
decrease in the observed equilibrium wavelength for the
sample with two clamped edges with respect to that for the
sample with one clamped edge was also previously reported in
simulations.**

In Figure 2a we plot the equilibrium wavelength calculated
from the simulations as a function of the sample width wj at a
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Figure 2. (a) Wavelength A, at equilibrium as a function of the initial
width wy. Both A,y and w, are normalized by the initial thickness of
gels at T), . The initial temperature T; and the crosslink density c, for
each independent simulation run (symbols) are given in the legend.
The color of the symbols represents the value of the ratio a/a,, as
shown in the color bar. The dashed line is the analytical prediction
from the linear stability analysis, 4y = 2.62w,. (b) Stability of the
confined sample under various depths of temperature quench in (e,
wo/hy) phase space. Independent simulations correspond to three
initial temperatures T, listed in the legend, and the remaining
parameters correspond to the reference parameters (with ¢, = 4 X
1073). Green and red symbols correspond to the buckled and stable
flat states, respectively. The dashed line is the analytical prediction of
o using the linear stability analysis (eq S). The insets illustrate two
fully developed buckled states, as indicated by the arrows.

range of system parameters and compare these simulation
values with the predictions from the linear stability analysis
(dashed line). Both Ay and w, are normalized by the initial
thickness of the membrane, h,. The inset in the lower right
corner shows an ansatz used to solve the corresponding FvK
equations (eq S8). The symbols in Figure 2a correspond to the
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Figure 3. Dynamic reconstruction of buckling patterns upon stretching and compression cycles. (a) Time evolution of the width w (blue, right axis)
and the amplitude 6Z (red, left axis). The patterns are fully developed following the temperature quench from 30 to 24 °C (red shaded region)
before the stretching and compression, with a rate of 7 = 1 X 1072 being applied. After the completion of the sixth cycle (w = w,), the sample attains
equilibrium (green shaded region). (b) Morphologies of the sample at the time instances marked A—C (stretching) and D—F (compression), as
shown in (a). The color represents the local volume fraction of polymer ¢. The arrows point out the direction of the moving boundary.

simulation data from the samples with various crosslink
densities and initial temperatures, as marked in the legend
(and hence samples with various initial equilibrium degrees of
swelling). The color of the symbols represents a/a,, the ratio
of a to the critical value o, which corresponds to the onset of
instability in the respective simulation series (the values of a.
are provided in Table S1). Recall that an increase in « defines
an increase in the compressive stresses exerted by the
boundaries due to an increase in the depth of the temperature
quench (Figure S4). The data points corresponding to the
simulation data in Figure 1d are marked by the blue-dashed
rectangle.

Our results show that the equilibrium wavelength Ay
calculated from simulations agrees well with the wavelength
A predicted by the linear stability analysis, provided that an
applied temperature quench is close to the onset of instability
(symbols in light blue in Figure 2a). As we increase « above
the critical value of a,, the analytical predictions overestimate
the observed wavelengths, with more pronounced deviations
observed for the wider samples. At chosen values of @ and
aspect ratios wy/h, the wavelength normalized by the initial
thickness, Ay /hg, remains constant as we increase the initial
sample thickness h, (Figure S8). Finally, the buckling was
suppressed in simulations for the samples with wy/h, < 4; this
is in agreement with prior studies reporting suppression of
buckling in narrow samples.*"**'%?

The stability of the flat confined gel membrane in the phase
space of the initial width-to-thickness aspect ratio (wo/h, taken
at T,) and the characteristic swelling ratio a is depicted in
Figure 2b. The symbols correspond to the simulation data for
the three initial temperatures, as listed in the legend. The
dashed line corresponds to the analytical prediction from the
linear stability analysis, a* (eq S and Section S1: C, Supporting
Information). We find that the critical values of a. obtained
from our simulations are in a good agreement with analytical
predictions for the wider samples but exhibit rather distinct
deviations for the narrow samples (small w,/hj).

To understand the underlying reasons for the deviations
observed in simulations with respect to the analytical
predictions, recall that the constant thickness and a flat
shape are postulated in the linear stability analysis of the flat
elastic plate. However, during the gel swelling prior to the

4905

onset of buckling, a notable increase in thickness is observed.
Further, since the sidewalls are held stationary, some
deviations from the flat shape are also observed due to the
swelling through the thickness, while the edges remain
constrained. Our simulations show that the increase in the
sample thickness at the time instant prior to the onset of
buckling with respect to the initial thickness h, is more
pronounced for the deeper temperature quench (higher values
of a/a.) (Figure S9), resulting in larger deviations from the
analytical predictions of the characteristic wavelength at higher
a/a. (Figure 2a). The absolute values of a however, are
higher for the narrow samples, that is, a deeper quench is
needed to promote pattern formation in narrow samples. An
average increase in the thickness of the sample with respect to
the initial thickness at o estimated from the simulation data is
~21% for the most narrow sample considered and is only
around 5% for the widest sample in Figure 2 (Figure S9). As a
result, the compression exerted on the sample by the
boundaries is underestimated in eq S5, and thereby, the
analytical prediction overestimates the onset of instability (a
value of a¥) with more pronounced deviations observed for
the narrow samples (small values of wy/hj).

Dynamic Control of Pattern Formation under
Stretching and Compression. We now focus on the
dynamic reconstruction of patterns by means of stretching
and compression of the buckled sample along its width (y-
direction) with a constant strain rate, 7. In the scenario
depicted in Figure 3a, the sample (the same parameters as in
Figure 1c) that had attained an equilibrium after the
temperature quench from 30 to 24 °C is subjected to six
stretching and compression cycles; the rate is set at y = 1 X
107* dimensionless units. The red curve in Figure 3a depicts an
evolution of the amplitude 6Z from the time instant of the
temperature quench (t = 0) until the equilibrated patterns are
developed (red shaded region), then during the six cycles of
stretching and compression, followed by an equilibration upon
reaching the original width w, after the sixth cycle (green
shaded region). Here and below, the compression portion of
the cycle is applied to the stretched membrane, that is, the
compression effectively represents the controlled release of the
additional applied strain until the initial sample width w, is
reached. The blue curve shows a corresponding time evolution
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Figure 4. Effect of stretching and compression on the thickness of the membrane. (a) Rate of change in the effective average thickness (5hY (red,
left axis) and the average volume fraction of polymer (¢) (blue, right axis) during an equilibrated stretching and compression cycle. The A—F states
correspond to the time instances marked in Figure 3a. The directions of stretching and compression are indicated by the solid and dashed arrows,
respectively. (b,c) Sample morphology during stretching [A—F states, as marked in (a), top view], with color representing the local thickness, h. (d)
Sample morphology during compression [D—F states as marked in (a), top view], with color representing the local value of &.

of the width of the sample. Excluding the first cycle which has
different initial conditions, the dynamics during the remaining
cycles is identical (the wavelength and the amplitude during all
six cycles are provided in Figure S10).

The inset in Figure 3a shows an evolution during the single
cycle and clearly illustrates the asymmetry in 0Z during the
stretching and compression portions of the cycle; note that the
time duration and the rate of the stretching and compression
are fixed. Our results show that during the stretching, the
patterns are “erased” gradually until the width reaches a critical
value denoted as wy. During the compression back to the
initial width wy, the sample remains approximately flat for a
prolonged time period until the buckling occurs at w;, and
then, (point D, red curve) the amplitude of patterns formed,
0Z, varies significantly faster than that during the stretching
portion of the cycle, until the point E on the red curve is
reached. With further compression (beyond the point E), an
increase in the amplitude 6Z noticeably slows down. Our
results show that for the sample widths w < wy, the patterns
are observed during both stretching and compression cycles;
however, the amplitude can be distinctly different. For the
sample widths in the intermediate region, wy < w < wy, the
sample remains nearly flat during the compression, while
buckling is observed during the stretching. Finally, for w > wy,
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the buckling patterns are erased and the sample remains
approximately flat both during stretching and compression.
The sample morphologies during the stretching and
compression at selected time instances as marked by A—F in
Figure 3a are shown in Figure 3b, where the arrow indicates
the moving direction of the confining sidewall.

To further analyze the dynamic response to the stretching
and compression, we focus on the variations in the polymer
volume fraction, (¢), averaged over all the elements, and the
average rate of change of the effective thickness of the sample,
(6h) (Figure 4a). The rate of change of the effective thickness
of the sample is calculated as 6 (t) = (h(t)/h(t — 6t) — 1)/6t,
where the effective thickness h(t) is calculated as the difference
between the z-coordinates of the respective elements at the top
and bottom faces of the sample ((ij,Lz) and (i,j,0) elements’®)
at times t and t — &t (herein, 8t = 5). While 8i(t) and h(t) are
calculated in the x—y plane (Figure 4b—d), (5h) is averaged
over the entire sample. The variations in {¢) and (5h) with the
sample width during a single cycle (the same cycle as
highlighted in the inset in Figure 3a), w, and with effective
strain in the y-direction calculated with respect to the initial
width, wy, as &, = w/wy — 1 (upper x-axis) are shown in Figure
4a. The points A—F correspond to the same states as marked
in Figure 3; the distributions of 8k and h(t) within the sample
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Figure 5. Effects of rates and the depth of the initial temperature quench on pattern reconstruction. (a) Wavelength Ay and (b) amplitude §Z
during an equilibrated cycle; rates are provided in the legend. The stretching and compression are indicated by the solid and dashed arrows,
respectively. The inset in (a) shows vertical coordinates of the middle of the top (in black) and bottom (in red) faces of the sample. (c) Wavelength
Aw at w = wyy and w = w; as the function of the characteristic swelling ratio a. (d) Critical widths, w = wy; (symbols connected by the solid lines)
and w = wy (symbols connected by the dashed lines), as a function of the characteristic ratio a. The error bars in (c) are calculated from data from
four equilibrated cycles. The reference parameters are used, including the crosslink density ¢, = 4 X 107> and the initial temperature T; = 30 °C.

The initial sample size is 166.5 X 11.7 X 1.7.

(top view) are provided for the same states (Figure 4b—d).
These results show that during the stretching portion of the
cycle (marked by the solid arrows in Figure 4a), the value of
(6h) (red, left axis) remains negative, indicating the decrease in
the effective average film thickness. In addition, the snapshot in
Figure Slla shows that the thickness of the sample may
increase only locally in selected regions due to pattern
restructuring. The values of (6h) remain negative (i.e., the
average membrane thickness decreases during stretching) for
all rates considered (Figure S11b). The average polymer
volume fraction, (¢) (blue, right axis), gradually decreases with
an increase in w (Figure 4a).

The membrane restructuring process significantly difters for
the compression portion of the cycle (indicated by the dashed
arrow in Figure 4a). The average thickness of the sample
increases during the compression as anticipated as long as the
membrane remains approximately flat; the average volume
fraction (¢b) during this stage of the compression (w > wy ) also
gradually increases. Following the onset of pattern formation
(snapshot D in Figure 4c,d), the Sh within the small out-of-
plane undulations formed at the central region of the sample
attains small negative values, while these values are positive
within the remainder of the sample (snapshot D, Figure 4d) so
that (Sh) remains positive. Further compression results in
larger undulations, further extensions out of the plane, and
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correspondingly higher negative values of &/ within the central
region of the membrane (snapshot E in Figure 4d). Upon
reaching well-developed patterns at the central portion of the
sample (snapshot E), the patterns restructure and the values of
Sh redistribute accordingly within the sample, with the
negative values of &k corresponding to the peaks appearing
closer to the ends (snapshot F in Figure 4d). Correspondingly,
the effective thickness averaged over the entire sample
increases during the compression as long as the sample
remains relatively flat but then clearly decreases during pattern
restructuring. This observed decrease in the effective thickness
of the membrane during compression due to dynamic pattern
formation (regions in green in Figures 4d and S12g for the
longer samples) indicates that patterns restructuring during
compression exhibit some features of behavior rather inherent
to mechanical metamaterials, in which unconventional
mechanical properties are observed.'**'%°

Notably, a time instant marked by E in Figure 4a indicates a
transition between the two different regimes discussed: faster
increase in 6Z corresponding to the pattern formation only in
the central region of the membrane and slower increase in 6Z
corresponding to the pattern reconstruction within the entire
sample. Our simulations also show that the sample remains
relatively thinner within the hills and valleys of patterns during
both compression (Figure 4c) and stretching (Figure 4b).

https://doi.org/10.1021/acs.langmuir.1c00138
Langmuir 2021, 37, 4900—4912


http://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.1c00138/suppl_file/la1c00138_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.1c00138/suppl_file/la1c00138_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.1c00138/suppl_file/la1c00138_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.1c00138?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.1c00138?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.1c00138?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.1c00138?fig=fig5&ref=pdf
pubs.acs.org/Langmuir?ref=pdf
https://doi.org/10.1021/acs.langmuir.1c00138?rel=cite-as&ref=PDF&jav=VoR

Langmuir pubs.acs.org/Langmuir
(a) (b)
F E o=4x10"° &
® 0=1.3x10"2 | 6 o G=4x10"°
. = o G=1.3%10"
150 IR 5
Aw 1o 624
5 3
0 - - e 2 ]
120 125 130 135 140 145 150 120 125 130 135 140 145 15,
(c) w (d) w
5 &
9 — V=1x10(A,W=126) — y=1x10"(C) > — y=1x10"(D,w,=122) — y=1x10"(F)
4 — y=1x103(B) — stationary(w=12.5) 4 — stationary(wy=12.7)
3 ‘lA 3
Z 2 N Z 2
1 1
0 —Aw=s.atn,4 —Ay=155+0.5 0 —2y=187+04 —2,=19.1+0.7
-1 Ay =15.34+0.5 — Ay =14.51+0.4 -1 — Ay =18.7+0.8 — Ay =17.8+0.4
0 50 100 150 0 50 100 150
(E) stationary X (f) stationary X
[ Y 4 L Yl 4+
L A ¢
0.14 0.15 0.16  0.17 0.18 0.19 0.090 0.095 0.100 0.105 0.110 0.115

compression

compression

0.095

I
0.085

0.105 0.115

Figure 6. Effects of crosslink density c,. (a) Wavelength and (b) amplitude during the equilibrated cycles. The stretching and compression
directions are indicated by the solid and dashed arrows, respectively; 7 = 1 X 107> and a = 1.128 for both cases; initial sample sizes are 166.5 X 11.7
X 1.7 (cg = 4 X 107%) and 166.9 X 11.7 X 2.0 (¢, = 1.3 X 1073). (c,d) Vertical coordinates of the middle of the top face of samples with ¢, = 4 X
1073 [in (c)] and ¢y = 1.3 X 1073 [in (d)] at A—F states marked in (a,b). For comparison, the vertical coordinates of the middle of the top face of
the unstretched samples of matching width (given in the legend) are plotted in (c,d) (green lines). The corresponding wavelengths are listed in the
legend. (e,f) Morphologies for the samples with moving boundaries at A—F states marked in (a,b) with color representing the local polymer volume
fraction ¢. Dashed lines indicate the middle of the top face of the samples in (e,f).

Importantly, all the characteristic features of the behavior
during the stretching and compression are robust and are also
observed in the significantly longer samples (Figure S12).
The snapshots in Figures 4b,c, S11b,c, and S12¢,d show that
the coordinates of peaks and valleys along the length of the
sample remain approximately constant during the stretching
and compression, while the amplitude varies significantly. This
behavior holds and the wavelength observed remains
approximately constant during the stretching and compression
cycles for two additional rates y probed (Figure Sa). Notably,
the longer samples (I, = 166.5) are used in Figure S, and the
wavelength is calculated within the shaded region shown in the
inset of Figure Sa (see also Figure S3c). The critical width wy
at which the patterns are erased upon the stretching and the
critical width wy at which the onset of pattern formation is
observed upon compression, both increase with an increase in
the rate  (Figure 5a). We find that the approximately constant
wavelength (4 ~ 15.3) achieved during the stretching and
compression is close to the wavelength at the onset of pattern
formation for the sample under the same temperature quench
and fixed boundaries (Figure S2b). Our results show that at a
range of compression rates considered in Figure S, the patterns
formed at a corresponding critical width, w; (characterized by
the low value of §Z (Figure Sb), are developing in time with
further compression via the increase in the amplitude. In other
words, the wavelength prescribed mechanically during the

4908

compression remains constant and does not depend on the
variation in the sample width during the compression/
stretching cycles, while additional stresses exerted on the
membrane during compressions are released via the increase in
0Z. The wavelength and the amplitude of patterns accessed
dynamically during the stretching and compression signifi-
cantly differ from those achieved in equilibrium for the
confined swollen membrane of the same width. Notably, a
significantly smaller wavelength can be accessed dynamically; a
comparison between the amplitude 6Z and the wavelength A,
of the patterns observed during stretching and compression
and those in equilibrium is provided in Figure S10.

Our results show that the hysteresis loop is wider and is
shifted toward the larger widths for the samples that undergo
stretching and compression at higher rates (Figure Sa). The
amplitude 56Z (Figure Sb) and the average polymer volume
fraction ¢ (not shown) decrease gradually during stretching,
confirming that the patterns are erased gradually. The three
stages are observed during the compression: at w > wy, the
samples remain nearly flat, and then, the amplitude 6Z
increases relatively fast following the onset of buckling (w =
wy), with further slower increase in 6Z corresponding to
pattern reconstruction within the entire sample. These findings
suggest that at the strain rates probed in Figure Sa, the patterns
do not have sufficient time to restructure longitudinally
(despite the motion of the boundary being chosen to be
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relatively slow with respect to the characteristic diffusion time
on the corresponding length scale even for the highest strain
rates considered; see the Model section). To probe the
system’s response at a significantly lower rate than those
chosen in Figure Sa, we run an additional simulation (Figure
S13) with = 5 X 1075, These results show that at such slow
rates of motion of external boundaries, the wavelength Ay,
indeed decreases during the stretching and increases during the
compression; the coordinates of the peaks and valleys along
the length of the sample correspondingly vary dynamically
during the stretching and compression (Figure S13c).

In the next series of simulations, we probed the effect of the
depth of the initial temperature quench on the sample
response during the compression and stretching. We find
that an increase in a results in the decrease of the constant
wavelength prescribed during the compression (Figure Sc).
Notably, the wavelengths Ay calculated either at wy (ie.,
patterns with the lowest amplitude at the onset of pattern
formation) or at w, (patterns with the highest amplitude
achieved upon compression to the original width) either
overlap within the error bar or attain close values at the given
value of @, indicating that the wavelengths remain approx-
imately constant. The error bars in Figure Sc are calculated
using the data points from the last four cycles (Figure S12a).
Finally, the critical widths wy; and w; both increase with a,
indicating that if a deeper initial temperature quench is applied,
the sample needs to be stretched to a larger width prior to
erasing the patterns, and the onset of pattern formation is
observed at a larger w upon compression. Recall that an
increase in a corresponds to an increase in the effective
compression exerted on the sample by the confining
boundaries, which is consistent with the observed increase in
the critical widths wy; and wy.

Finally, our results in Figure S indicate that an approximate
value of the wavelength prescribed during the compression can
be predicted based on the analysis of the dynamics of pattern
development within the samples with stationary boundaries.
Specifically, the wavelength observed in Figure Sa is close to
the wavelength calculated at early times for the sample at the
same temperature quench and a similar width (Figure S2b).
Hence, if the wavelength at the onset of pattern formation is
predicted from the simulations with the fixed boundaries, one
can estimate the wavelength that is prescribed during the
compression and stretching. This concept is illustrated for the
samples with two crosslink densities (Figure 6). The samples
are subjected to six stretching and compression cycles (j = 1 X
107°) after the patterns fully develop due to the temperature
quench corresponding to the same value of the swelling ratio
for both examples, a 1.128. The dependence of the
wavelength during the last cycle on the sample width is shown
in Figure 6a. Our results show that the wavelength remains
approximately constant for the loosely crosslinked gel (dy ~
18.7, in green in Figure 6a), the same as in the reference case
scenario (in black in Figure 6a, the same simulation as in
Figure S). Both wavelengths observed during the mechanical
forcing are close to those calculated at the onset of buckling for
the samples with stationary boundaries and similar widths
(green curves in Figure 6c,d for both crosslink densities;
corresponding morphologies are shown in top images in Figure
6e,f). Our results also indicate that at a given depth of the
temperature quench (given «), loosely crosslinked samples
exhibit patterns with a larger wavelength Ay, and larger 6Z,
while both critical values wy; and wy decrease (Figure 6a,b).
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Bl CONCLUSIONS

We focus on the dynamics of pattern formation and
reconstruction in the confined hydrogel membrane upon the
temperature quench and under multiple cycles of stretching
and compression. By utilizing three-dimensional simulations
capturing constrained swelling of a hydrogel membrane along
with the linear stability analysis, we predicted the characteristic
wavelength of the patterns formed and critical conditions for
the onset of buckling and identified the limits of the
applicability of the linear stability analysis. We then
characterized the effect of mechanical forcing via stretching
and compression on the dynamics of pattern formations. We
demonstrate highly asymmetric response of the constrained
membrane during stretching and compression and characterize
the hysteresis behavior in these systems. Our results show that
at a range of the strain rates probed, the wavelength prescribed
during the compression remains constant and independent of
the sample widths, while the amplitude is regulated by the
width. Notably, we demonstrate that significantly smaller
wavelengths can be accessed dynamically under mechanical
forcing than those achieved in equilibrium in the same systems.
We also isolated conditions at which an effective membrane
thickness decreases during compression due to dynamic
pattern formation and out-of-plane restructuring. Further,
while in our studies we choose PNIPAAm gels, we anticipate
that similar mechanical adaptation can be observed under
mechanical forcing of various gels undergoing swelling under
similar dynamic constraints, for example, for poly(N-vinyl-
caprolactam) gels, which exhibit volume phase transitions
nearly identical to that in PNIPAAm gels.'*®

To summarize, we demonstrate that pattern formation in
confined hydrogel membranes can be controlled dynamically
by mechanical forcing. Hence, our results point out that the
surface topography, degree of swelling, and correspondingly,
the spatial localization of the effective dynamic compartments
within the polymer network can be regulated mechanically by
adjusting the rate of stretching and compression, providing
simple means of controlling functionality of soft structured gel-
based interfaces for a plethora of applications.
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