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Abstract— In this paper, we propose an online learning
algorithm for selecting the state of a reconfigurable an-
tenna. We formulate the antenna state selection as a multi-
armed bandit problem and present a selection technique,
implemented for a 2 × 2 MIMO OFDM system employing
highly directional metamaterial Reconfigurable Leaky Wave
Antennas. We quantify the performance of our selection
technique using a software defined radio testbed and present
results for a wireless network in a typical indoor environment.

Index Terms— Learning algorithms, bandit problem, re-
configurable antennas, MIMO, OFDM.

I. INTRODUCTION

In recent years, studies have shown that reconfigurable

antennas can offer additional performance gains in Multi-

ple Input Multiple Output (MIMO) systems [1], [2], [3],

[4], [5], [6]. These reconfigurable antennas are capable

of generating multiple uncorrelated channel realizations

by changing their electrical and radiation properties and

are gradually making their way into commercial wireless

systems [7]. The key to effectively utilizing the reconfig-

urability offered by these antennas is to select a state which

provides the highest signal to noise ratio (referred to as

optimal state in rest of the paper) among all the available

states for a given wireless environment.

Reconfigurable antennas can be employed either at the

transmitter or receiver, or at both the ends of the RF chain.

This flexibility can create a large search space in order to

find an optimal state for communication. Moreover, the

effect of node mobility to a different location, changes

in physical antenna orientation, and the dynamic nature of

the wireless channel can render previously found “optimal”

states suboptimal over time. This makes it essential for a

wireless system to employ a learning algorithm to find the

new optimal states and maintain the highest possible SNR.

In order to be effective, an online learning algorithm for

antenna state selection (also referred to interchangeably as

selection technique) must overcome certain challenges. We

identify such challenges below:

1) Optimal antenna state for each wireless link (be-

tween a single transmitter and a receiver location) is

unknown apriori. Moreover, each wireless link may

have a different optimal state. A selection technique

should be able to learn and find the optimal state for

a given link.

2) For a given wireless link, there might be several

states which are near optimal over time based on

channel conditions and multipath propagation. A

selection technique should provide a policy to bal-

ance between exploiting a known successful state

and exploring other available states to account for

dynamic behavior of the channel.

3) For the purpose of real-time implementation in a

practical wireless system, a selection technique must

employ simple metrics which can be extracted from

the channel without large overhead or extensive

feedback data.

Previous work related to state selection is based on

estimating channel response of each antenna state which

required changing the standard OFDM frame format [1].

Selection techniques using second order channel statistics

and average SNR information have also been proposed [8].

Though some of these techniques were successful in

showing the benefits of multi-state selection and moti-

vated the need for a selection algorithm, none solved the

challenges mentioned above. Previous work in learning

for cognitive radios has primarily been focused on link

adaptation [9], [10] and channel allocation for dynamic

spectrum access [11]. In this paper, we make a case for

using learning algorithms for antenna state selection and

investigate the feasibility of implementing such algorithms

in a practical wireless system.

We propose a solution to the challenges mentioned

above by formulating the antenna state selection as a multi-

armed bandit problem. Multi-armed bandit problem [12],

[13], [14] is a fundamental mathematical framework for

learning unknown variables. In its classic form, there are

N independent arms with a single player, playing arm

i (i = 1, . . . N). Each play of a single arm yields random

rewards which are i.i.d with a distribution of unknown

mean. The goal is to design a policy to play one arm

at each time sequentially to maximize the total expected

reward in the long run. Lai and Robbins [12] studied

the non-Bayesian formulation and provided a performance

measure of an arm selection policy referred to as regret or
cost of learning. Regret is defined as the difference in the

expected reward gained by always selecting the optimal

choice and the reward obtained by a given policy. Since
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the best arm cannot always be identified in most cases

using a finite number of prior observations, the player

will always have to keep learning. Due to the continuous

learning process, the player will make mistakes which will

grow the regret over time. It has been shown in [12] that

the minimum rate at which regret grows is of logarithmic

order under certain regularity conditions.

II. PROBLEM FORMULATION AND ALGORITHM

Our work is influenced by the work done in [14] where

arms have non-negative rewards that are i.i.d over time

with an arbitrary un-parametrized distribution. We consider

the set up where there is a single transmitter and M
wireless receiver nodes and both the transmitter and the

receivers employ the reconfigurable antennas. The trans-

mitter has a fixed antenna state and the receivers can select

from N available antenna states. This reduces the problem

to selecting an antenna state only at the receiver end where

each receiver can select state i independently. The decision

is made at every packet reception n to select the state to

be used for the next reception. If a receiver node selects

a state i and assuming the transmission is successful, a

random reward is achieved which we denote as Ri (n).
Without loss of generality, we normalize Ri (n) ∈ [0, 1] .
When a receiver selects a state i, the value of Ri (n) is

only observed by that receiver and the decision is made

only based on locally observed history.

We base our selection technique on the deterministic

policy UCB1 given in [14]. To implement this policy,

each receiver stores the average of all the reward values

observed for state i up to the current packet n denoted as

R̄i (n) and the number of times state i has been played,

ni (n). The UCB1 policy is shown below as Algorithm I.

Algorithm 1 UCB1 Policy, Auer [14]

// Initialization

ni, R̄i ← 0
Play each arm at least once and update ni, R̄i accord-

ingly.

// Main Loop

while 1 do
Play arm i that maximizes R̄i +

√
2ln(n)

ni

Update ni, R̄i for arm i
end while

We also implemented the ε-GREEDY policy which is a

randomized policy and the UCB1-Tuned policy [14] which

has been shown to work better for practical purposes. In the

ε-GREEDY policy, the arm with current highest average

is selected with probability 1 − ε and a random arm is

selected with probability ε. UCB1-Tuned is a fine tuned

version of UCB1 policy which accounts for the variance

measured independently across arms. In this policy, the

upper confidence bound of UCB1 policy is replaced by

√
ln(n)

ni
min

{
1

4
, Vi (ni)

}
(1)

where Vi is defined as

Vi (s) ≡
(
1

s

∑
R2

i,s

)
− R̄2

i,s +

√
2ln(t)

s
(2)

when arm i has been played s times during the first t
plays.

III. RECONFIGURABLE LEAKY WAVE ANTENNAS

The Reconfigurable Leaky Wave Antenna (RLWA) is

a two port antenna array designed to electronically steer

two highly directional independent beams over a wide

angular range. Initially proposed by the authors in [15], the

prototype shown in Fig. 1 is a composite right/left-handed

leaky wave antenna composed of 25 cascaded metama-

terial unit cells [3]. Moreover, the application of various

combinations of bias voltages “S” and “SH” controls the

beam direction allowing for symmetrical steering of the

two radiation beams at the two ports over a 140◦ range.

Fig. 1. Two port reconfigurable leaky wave antenna [15]

In order to characterize the effect of beam direction on

the efficacy of a wireless system with RLWAs deployed at

both ends of a link, a subset of states was selected to allow

the beam to steer over a range of 140◦ in the elevation

plane. Fig. 2 shows the measured radiation patterns for

the selected states and their corresponding bias voltages.
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Fig. 2. Measured radiation patterns for port 1 (Gain ≈ −3dB)
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(a) Tx: 2 Rx: 1
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(b) Tx: 2 Rx: 3
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(c) Tx: 2 Rx: 4
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(d) Tx: 4 Rx: 1
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(e) Tx: 4 Rx: 2
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(f) Tx: 4 Rx: 3

Fig. 3. Average reward for each algorithm for the designated links

IV. EXPERIMENTAL SETUP AND RESULTS

In our experiments we make use of the Wireless Open

Access Research Platform (WARP), an FPGA-based soft-

ware defined radio testbed and WARPLab, the software

development environment used to control WARP nodes

from MATLAB [16]. Four WARP nodes were distributed

throughout the fifth floor of the Drexel University Bossone

Research Center as shown in Fig. 4. By using WARPLab,

each of the nodes were centrally controlled for the syn-

chronization of the transmission and reception process and

to provide control over the antenna state selected at each

of the nodes. Although, the nodes were controlled cen-

trally for data collection purposes, the learning algorithm

was decentralized. Specifically, no information during the

learning process was shared with the transmitter.

The performance of the RLWA was evaluated in a

2×2 MIMO system with spatial multiplexing as the trans-

mission technique [15]. For baseline measurements, each

designated WARP node transmitter broadcasted packets

modulated using BPSK. For each packet transmission, the

receiver nodes stored channel estimates and measured the

post-processing signal-to-noise ratio (PPSNR) by evalu-

ating the error vector magnitude of the received symbol

constellations. Furthermore, the antenna states for each

receiver node were switched after each packet until all

5 possible antenna states between the transmitter and

receivers were tested. This process was repeated until 200

realizations were achieved for all state combinations and

Open�Air
18°

18°

Rx:�Most�selected�optimal�state
Tx:�Fixed�antenna�state

Node 4

Node 1

36° Node 2

Node 3
18°

Fig. 4. Node positions on the 5th floor of the Drexel University
Bossone Research Center.

for each node acting as a transmitter. The beam direc-

tions in Fig. 4 corresponds to the optimal state selected

most often at each of the receivers when node 4 was

transmitting. The algorithm described in Section II is an

online algorithm, but note that we collected the channel

realizations corresponding to each state and evaluated the

algorithm in post-processing. This is essential in order

to benchmark the performance of different policies under

the same channel conditions and make sure that channel

conditions do not bias the performance results.

We present the results for three multi-armed bandit poli-

cies (UCB1, UCB1-Tuned, ε-GREEDY) in Fig. III verify-

ing the empirical performance of our selection technique.
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Each sub-figure represents the average reward achieved by

all three policies for a given wireless link over 200 packets.

We define the upper bound as the reward obtained by a

genie which always selected the optimal state with perfect

channel knowledge of all antenna states at each trial. For

most of the links (3(a)-3(c), 3(e)), we found UCB1-Tuned

outperformed the other policies. UCB1-Tuned has been

found to work better for practical purposes [14] since

it is not sensitive to the variance of the states. Also,

ε-GREEDY did not perform well because ε-GREEDY

explores uniformly over all states and can select sub-

optimal states more often, thereby reducing the average

reward. It is evident from the figure that among three

instances of ε-GREEDY policy, the instance with highest ε
performed the worst. However, were we to consider mobile

users in our experiment, it is possible that ε-GREEDY

policy will adapt better to substantial variations in channel

condition.

Also, we show in Table I the percentage of time the

optimal state was selected by each policy. For four links

((3(b)-3(e)), UCB1-Tuned selected the optimal state more

than 95% of the time. For the links where all the policies

had lower success rate, we attribute that to the fact that,

even though some states had higher instantaneous rewards,

those states did not consistently generate highest rewards

and were not selected.

TABLE I

PERCENTAGE OF TIME EACH POLICY SUCCESSFULLY

SELECTED THE OPTIMAL STATE

Tx Rx UCB1 ε(0.05) ε(0.1) ε(0.2) UCB1-Tuned
2 1 82 79 78 69 83
2 3 95.5 95 90 79.5 97.5
2 4 94.5 87.5 87.5 79.5 95.5
4 1 98 93.5 87 86.5 98
4 2 88.5 89.5 83.5 81 95
4 3 67 64 63 60 67.5

V. CONCLUSION AND FUTURE WORK

We have proposed a learning algorithm for antenna state

selection and have shown that wireless systems employing

reconfigurable antennas can benefit from such technique.

We have shown empirically that the multi-armed bandit

problem is a useful online learning framework for an-

tenna state selection in a practical wireless system. For a

network of four nodes employing reconfigurable antennas

equipped with five states, the learning algorithm improves

the received PPSNR and thereby improving the achievable

throughput of the system. In the future work, we would like

to consider a system in which multiple antenna states can

also be selected at the transmitter and evaluate the feedback

requirements and overhead. In addition, we would like

to evaluate the algorithm’s performance in more diverse

indoor as well as outdoor environments. Another area of

future work can involve performance evaluation of the

learning algorithm with mobile nodes.
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