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Abstract—In this paper, we propose an online learning
algorithm for selecting the state of a reconfigurable an-
tenna. We formulate the antenna state selection as a multi-
armed bandit problem and present a selection technique,
implemented for a 2 x 2 MIMO OFDM system employing
highly directional metamaterial Reconfigurable Leaky Wave
Antennas. We quantify the performance of our selection
technique using a software defined radio testbed and present
results for a wireless network in a typical indoor environment.

Index Terms— Learning algorithms, bandit problem, re-
configurable antennas, MIMO, OFDM.

I. INTRODUCTION

In recent years, studies have shown that reconfigurable
antennas can offer additional performance gains in Multi-
ple Input Multiple Output (MIMO) systems [1], [2], [3],
[4], [5], [6]. These reconfigurable antennas are capable
of generating multiple uncorrelated channel realizations
by changing their electrical and radiation properties and
are gradually making their way into commercial wireless
systems [7]. The key to effectively utilizing the reconfig-
urability offered by these antennas is to select a state which
provides the highest signal to noise ratio (referred to as
optimal state in rest of the paper) among all the available
states for a given wireless environment.

Reconfigurable antennas can be employed either at the
transmitter or receiver, or at both the ends of the RF chain.
This flexibility can create a large search space in order to
find an optimal state for communication. Moreover, the
effect of node mobility to a different location, changes
in physical antenna orientation, and the dynamic nature of
the wireless channel can render previously found “optimal”
states suboptimal over time. This makes it essential for a
wireless system to employ a learning algorithm to find the
new optimal states and maintain the highest possible SNR.

In order to be effective, an online learning algorithm for
antenna state selection (also referred to interchangeably as
selection technique) must overcome certain challenges. We
identify such challenges below:

1) Optimal antenna state for each wireless link (be-
tween a single transmitter and a receiver location) is
unknown apriori. Moreover, each wireless link may
have a different optimal state. A selection technique
should be able to learn and find the optimal state for
a given link.
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2) For a given wireless link, there might be several
states which are near optimal over time based on
channel conditions and multipath propagation. A
selection technique should provide a policy to bal-
ance between exploiting a known successful state
and exploring other available states to account for
dynamic behavior of the channel.

For the purpose of real-time implementation in a
practical wireless system, a selection technique must
employ simple metrics which can be extracted from
the channel without large overhead or extensive
feedback data.

3)

Previous work related to state selection is based on
estimating channel response of each antenna state which
required changing the standard OFDM frame format [1].
Selection techniques using second order channel statistics
and average SNR information have also been proposed [8].
Though some of these techniques were successful in
showing the benefits of multi-state selection and moti-
vated the need for a selection algorithm, none solved the
challenges mentioned above. Previous work in learning
for cognitive radios has primarily been focused on link
adaptation [9], [10] and channel allocation for dynamic
spectrum access [11]. In this paper, we make a case for
using learning algorithms for antenna state selection and
investigate the feasibility of implementing such algorithms
in a practical wireless system.

We propose a solution to the challenges mentioned
above by formulating the antenna state selection as a multi-
armed bandit problem. Multi-armed bandit problem [12],
[13], [14] is a fundamental mathematical framework for
learning unknown variables. In its classic form, there are
N independent arms with a single player, playing arm
i(t=1,...N). Each play of a single arm yields random
rewards which are 7.t.d with a distribution of unknown
mean. The goal is to design a policy to play one arm
at each time sequentially to maximize the total expected
reward in the long run. Lai and Robbins [12] studied
the non-Bayesian formulation and provided a performance
measure of an arm selection policy referred to as regret or
cost of learning. Regret is defined as the difference in the
expected reward gained by always selecting the optimal
choice and the reward obtained by a given policy. Since
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the best arm cannot always be identified in most cases
using a finite number of prior observations, the player
will always have to keep learning. Due to the continuous
learning process, the player will make mistakes which will
grow the regret over time. It has been shown in [12] that
the minimum rate at which regret grows is of logarithmic
order under certain regularity conditions.

II. PROBLEM FORMULATION AND ALGORITHM

Our work is influenced by the work done in [14] where
arms have non-negative rewards that are ¢.i.d over time
with an arbitrary un-parametrized distribution. We consider
the set up where there is a single transmitter and M
wireless receiver nodes and both the transmitter and the
receivers employ the reconfigurable antennas. The trans-
mitter has a fixed antenna state and the receivers can select
from NN available antenna states. This reduces the problem
to selecting an antenna state only at the receiver end where
each receiver can select state ¢ independently. The decision
is made at every packet reception n to select the state to
be used for the next reception. If a receiver node selects
a state ¢ and assuming the transmission is successful, a
random reward is achieved which we denote as R; (n).
Without loss of generality, we normalize R; (n) € [0,1].
When a receiver selects a state 4, the value of R; (n) is
only observed by that receiver and the decision is made
only based on locally observed history.

We base our selection technique on the deterministic
policy UCBI1 given in [14]. To implement this policy,
each receiver stores the average of all the reward values
observed for state ¢ up to the current packet n denoted as
R; (n) and the number of times state i has been played,
n; (n). The UCBI1 policy is shown below as Algorithm I.

Algorithm 1 UCBI1 Policy, Auer [14]
// Initialization
N, Rz +~— 0
Play each arm at least once and update n;, R; accord-
ingly.
// Main Loop
while 1 do
Play arm i that maximizes R; +

2in(n)
n;

Update n;, R; for arm i
end while

We also implemented the e-GREEDY policy which is a
randomized policy and the UCB 1-Tuned policy [14] which
has been shown to work better for practical purposes. In the
e-GREEDY policy, the arm with current highest average
is selected with probability 1 — ¢ and a random arm is
selected with probability e. UCB1-Tuned is a fine tuned
version of UCBI1 policy which accounts for the variance
measured independently across arms. In this policy, the
upper confidence bound of UCB1 policy is replaced by
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In(n) 1
\/ni mln{4,VZ(nl)} (1
where V; is defined as
1 9 — 2In(t)
(s)= (L 2 ) _ R MY 2
v = (ST R) -’y o

when arm ¢ has been played s times during the first ¢
plays.

III. RECONFIGURABLE LEAKY WAVE ANTENNAS

The Reconfigurable Leaky Wave Antenna (RLWA) is
a two port antenna array designed to electronically steer
two highly directional independent beams over a wide
angular range. Initially proposed by the authors in [15], the
prototype shown in Fig. 1 is a composite right/left-handed
leaky wave antenna composed of 25 cascaded metama-
terial unit cells [3]. Moreover, the application of various
combinations of bias voltages “S” and “SH” controls the
beam direction allowing for symmetrical steering of the
two radiation beams at the two ports over a 140° range.

Fig. 1. Two port reconfigurable leaky wave antenna [15]
In order to characterize the effect of beam direction on
the efficacy of a wireless system with RLWAs deployed at
both ends of a link, a subset of states was selected to allow
the beam to steer over a range of 140° in the elevation
plane. Fig. 2 shows the measured radiation patterns for
the selected states and their corresponding bias voltages.

—— Config 1
— Config 2
— Config 3
—— Config 4
— Config 5

Fig. 2. Measured radiation patterns for port 1 (Gain ~ —3dB)
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Fig. 3. Average reward for each algorithm for the designated links

IV. EXPERIMENTAL SETUP AND RESULTS

In our experiments we make use of the Wireless Open
Access Research Platform (WARP), an FPGA-based soft-
ware defined radio testbed and WARPLab, the software
development environment used to control WARP nodes
from MATLAB [16]. Four WARP nodes were distributed
throughout the fifth floor of the Drexel University Bossone
Research Center as shown in Fig. 4. By using WARPLab,
each of the nodes were centrally controlled for the syn-
chronization of the transmission and reception process and
to provide control over the antenna state selected at each
of the nodes. Although, the nodes were controlled cen-
trally for data collection purposes, the learning algorithm
was decentralized. Specifically, no information during the
learning process was shared with the transmitter.

The performance of the RLWA was evaluated in a
2 x 2 MIMO system with spatial multiplexing as the trans-
mission technique [15]. For baseline measurements, each
designated WARP node transmitter broadcasted packets
modulated using BPSK. For each packet transmission, the
receiver nodes stored channel estimates and measured the
post-processing signal-to-noise ratio (PPSNR) by evalu-
ating the error vector magnitude of the received symbol
constellations. Furthermore, the antenna states for each
receiver node were switched after each packet until all
5 possible antenna states between the transmitter and
receivers were tested. This process was repeated until 200
realizations were achieved for all state combinations and
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B Tx: Fixed antenna state
Bl Rx: Most selected optimal state

Fig. 4. Node positions on the 5th floor of the Drexel University
Bossone Research Center.

for each node acting as a transmitter. The beam direc-
tions in Fig. 4 corresponds to the optimal state selected
most often at each of the receivers when node 4 was
transmitting. The algorithm described in Section II is an
online algorithm, but note that we collected the channel
realizations corresponding to each state and evaluated the
algorithm in post-processing. This is essential in order
to benchmark the performance of different policies under
the same channel conditions and make sure that channel
conditions do not bias the performance results.

We present the results for three multi-armed bandit poli-
cies (UCB1, UCB1-Tuned, e-GREEDY) in Fig. III verify-
ing the empirical performance of our selection technique.
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Each sub-figure represents the average reward achieved by
all three policies for a given wireless link over 200 packets.
We define the upper bound as the reward obtained by a
genie which always selected the optimal state with perfect
channel knowledge of all antenna states at each trial. For
most of the links (3(a)-3(c), 3(e)), we found UCB1-Tuned
outperformed the other policies. UCBI1-Tuned has been
found to work better for practical purposes [14] since
it is not sensitive to the variance of the states. Also,
e-GREEDY did not perform well because e-GREEDY
explores uniformly over all states and can select sub-
optimal states more often, thereby reducing the average
reward. It is evident from the figure that among three
instances of e-GREEDY policy, the instance with highest ¢
performed the worst. However, were we to consider mobile
users in our experiment, it is possible that e-GREEDY
policy will adapt better to substantial variations in channel
condition.

Also, we show in Table I the percentage of time the
optimal state was selected by each policy. For four links
((3(b)-3(e)), UCB1-Tuned selected the optimal state more
than 95% of the time. For the links where all the policies
had lower success rate, we attribute that to the fact that,
even though some states had higher instantaneous rewards,
those states did not consistently generate highest rewards
and were not selected.

TABLE 1
PERCENTAGE OF TIME EACH POLICY SUCCESSFULLY
SELECTED THE OPTIMAL STATE

Tx | Rx | UCBI1 | €(0.05) | €(0.1) | €(0.2) | UCBI-Tuned
2 1 82 79 78 69 83

2 3 95.5 95 90 79.5 97.5

2 4 94.5 87.5 87.5 79.5 95.5

4 1 98 93.5 87 86.5 98

4 2 88.5 89.5 83.5 81 95

4 3 67 64 63 60 67.5

V. CONCLUSION AND FUTURE WORK

We have proposed a learning algorithm for antenna state
selection and have shown that wireless systems employing
reconfigurable antennas can benefit from such technique.
We have shown empirically that the multi-armed bandit
problem is a useful online learning framework for an-
tenna state selection in a practical wireless system. For a
network of four nodes employing reconfigurable antennas
equipped with five states, the learning algorithm improves
the received PPSNR and thereby improving the achievable
throughput of the system. In the future work, we would like
to consider a system in which multiple antenna states can
also be selected at the transmitter and evaluate the feedback
requirements and overhead. In addition, we would like
to evaluate the algorithm’s performance in more diverse
indoor as well as outdoor environments. Another area of
future work can involve performance evaluation of the
learning algorithm with mobile nodes.
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