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Intrusion detection is a challenging problem in wireless networks due to the broadcast nature of the wirelessmedium. Physical layer
information is increasingly used to protect these vulnerable networks. Meanwhile, reconfigurable antennas are gradually finding
their way into wireless devices due to their ability to improve data throughput. In this paper, the capabilities of reconfigurable
antennas are used to devise an intrusion detection scheme that operates at the physical layer. The detection problem is posed as a
GLRT problem that operates on the channels corresponding to the different modes of a reconfigurable antenna. The performance
of the scheme is quantified through field measurements taken in an indoor environment at the 802.11 frequency band. Based on
the measured data, we study the achievable performance and the effect of the different control parameters on the performance of
the intrusion detection scheme. The effect of pattern correlation between the different modes on the scheme’s performance is also
analyzed, based on which general guidelines on how to design the different antenna modes are provided. The results show that the
proposed scheme can add an additional layer of security that can significantly alleviate many vulnerabilities and threats in current
fixed wireless networks.

1. Introduction

Attacks on wireless networks have become increasingly
sophisticated with the increasing pervasiveness of these
networks. It is challenging to detect and counteract intrusions
in wireless networks due to the inherent broadcast nature of
the medium. Among many known security risks, man-in-
the-middle attacks and spoofing attacks [1] pose a significant
intrusion threat to wireless networks since such attacks
allow intruders to hijack a connection already established
by a legitimate user. Though advanced wireless intrusion
protection and detection systems have been developed and
deployed to mitigate such threats, it has been repeatedly
demonstrated that eachmethod has its point of failure and no
single method guarantees protection against all attacks [2, 3].

Such a hostile landscape requires multiple levels of
defense for network protection. This requirement has gradu-
ally led to a more cross-layer approach to wireless security in
recent times where security mechanisms are being deployed

at different layers of the network. Particularly channel infor-
mation available at the physical layer is being increasingly
used to provide an additional degree of protection against
intruders. Schemes that employ channel based security tech-
niques can be categorized into encryption and authentication
schemes. The former uses the wireless channel as a source
for encryption key generation [4–9], while the latter utilizes a
metric derived from the channel information as an identifier
for authentication [10–16].

Intrusion detection has traditionally been categorized
into misuse detection or anomaly detection techniques.
While the former uses patterns characteristic of known
attacks to detect known intrusions, the latter relies on
detecting deviations from the established behavior patterns in
the system [17]. In many usage scenarios, where the physical
link remains unchanged over a session, the wireless channel
response corresponding to the link can be considered to
represent the established behavior pattern for that link. Any
changes that violate this pattern abruptly beyond a certain
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limit can be then checked for adversarial behavior. In this
paper, we follow this approach where the channel is moni-
tored for any abrupt changes in its statistics through repeated
applications of the generalized likelihood ratio test (GLRT)
[18]. The scheme is based on the idea that the statistics of the
link corresponding to an intruder who is physically located at
a different locationwill be different from that of the legitimate
user and when the intruder tries to inject packets over the
same connection, it will trigger an abrupt change in the GLR
value.

Additionally we utilize a pattern reconfigurable antenna
to improve the performance of the intrusion detection
scheme. The ability of pattern reconfigurable antennas to
enhance system throughput has been well demonstrated [19].
By picking antenna modes that are decorrelated in their
radiation patterns, decorrelated channel realizations can be
obtained to enhance system performance. Hence channels
corresponding to different modes of the antenna can be
expected to have different statistics, a property which is
exploited to the benefit of the proposed detection scheme.
However, the use of reconfigurable antennas (pattern diver-
sity) should be differentiated from schemes that use mul-
tiple antennas (spatial diversity) with perfect decorrelation
between the elements [11, 14, 16]. We relax any assumptions
about channel correlation between the different diversity
branches and specifically quantify the effect of correlation on
detection performance. Moreover, a reconfigurable antenna
provides a more practically viable solution to generate mul-
tiple channel realizations than spatially separated multiple
antenna elements due to cost and space constraints.

In many public open networks (e.g., coffee shops) higher
level authentication solutions are usually not implemented.
Freely available software tools such as Firesheep can be used
to simply execute session hijacking attacks when users visit
insecure websites in such networks [20]. A wireless access
point equipped with reconfigurable antennas that can imple-
ment the proposed method can be used to provide a layer of
security that can significantly alleviate such security threats
in these networks. In networks with higher level security
mechanisms for encryption, authentication, and integrity, the
proposed scheme can complement those mechanisms while
they continue to play their part in securing the wireless link.

The rest of the paper is organized as follows.The intrusion
detection problem and the threat model are described in
Section 2. The detection scheme is described and the GLRT
for intrusion detection is developed in Section 3.The channel
measurement procedure is described in Section 4. We justify
our assumption regarding the probability distribution of the
channels in Section 5. The performance of the scheme is
analyzed and the results are presented in Section 6. Some
practical considerations are discussed in Section 7 before we
conclude this paper in Section 8.

2. Problem Definition and Threat Model

Theproblem that is addressed in this paper is one of detecting
an intruder who has gained access into the system by means
of hijacking a connection already established by a legiti-
mate user. The problem scenario consists of three players:

T R

I eavesdrops on T-R
connection to obtain 
identifying information
about T

Data

I

ID T

(a)

R

T ’s identifying information spoofed
I tries to trick R into believing it is T

Data ID T

I

(b)

Figure 1: Illustration of the problem. (a) T eavesdrops on a data
transfer session between R and T to obtain sensitive information
about T’s identity. (b) After obtaining the information, I tries to
masquerade as T to R.

the receiver R, transmitter T, and an intruder I. Transmitter
T and receiver R have established a connection and are in the
process of exchanging information as shown in Figure 1(a).
Intruder I eavesdrops into this connection and waits till he
gathers sufficient information to spoof T. A surprisingly large
number of vulnerabilities exist in modern wireless access
technologies that allow I to obtain this information with
relative ease. Once this information is obtained, I launches
a spoofing attack by posing as T to R as shown in Figure 1(b).

To gain a practical perspective of the problem, R can
be thought of as a wireless access point through which
T is connected to the organizational network. I can be
an adversarial entity whose objective is to gain entry into
the organizational network, hijack T’s connection with R,
or launch a man-in-the-middle attack on the connection
between T and R among other possibilities. The objective
of the security scheme is to detect this change in the real
transmitter at R in order to initiate counter measures.

To achieve his goal, I can be equipped with a powerful
transceiver capable of passively monitoring and capturing
all traffic between T and R and sufficient computational
resources to analyze the traffic to exploit the vulnerabilities
in relatively quick time. I can be an external adversary
attempting to launch an attack on the network from outside
the organization’s premises or an internal entity who is
interested in launching an attack on T. In both cases, we note
that I cannot be physically colocated with T which forms the
basis of our method for intrusion detection.

It should be noted that I’s motive is to compromise T’s
identity in the network and therefore it is imperative for I that
Tfirst initiates and establishes a connectionwithR.Therefore,
it is assumed that I will not resort to jamming attacks to
prevent T from establishing a successful connection with R.
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Additionally, we assume that only R is equipped with a
reconfigurable antenna with 𝑀 modes since it is more likely
that an access point is equipped with such an antenna than
a user terminal due to cost and space constraints. Therefore,
we also assume T and R to be equipped with standard
omnidirectional antennas.

As stated earlier, the proposed solution exploits the fact
that T and I have to be located in two different physical
locationswhichwould bemanifested by twodifferent channel
distributions sensed by R. Due to the multipath structure
of the environment, I cannot methodically manipulate the
channel between itself and R in such a way as to imitate
the channel between T and R. This is because it does not
and cannot know the channel between T and R. Introduc-
ing reconfigurable antennas to the solution adds multiple
channel distributions corresponding to each mode used in
the antenna. This makes the problem of closely matching
the channel corresponding to T even more challenging for
I which results in enhanced protection. However, it should
be noted that our scheme does not attempt to localize T or
I. Instead, channel information pertaining to the different
antenna modes is used to detect I if it compromises the
existing link between T and R.

3. Description of Scheme

With the notable exception ofmobile networks,many current
and emerging wireless data networks are associated with
stationary terminals at both ends of the link. Temporal
variations in channels related to such networks arise mainly
due to movements of people and objects in the vicinity
of the terminals as well as small localized movement of
the terminals within a very small area [21–23]. A typical
example for such a scenario would be a user seated at a
bench in a public place accessing the network from a laptop
connected to an access point in the vicinity. This work
addresses intrusion problems that pertain to such wireless
network usage scenarios and does not address large-scale
terminal mobility.

The amplitude of the estimated complex channel coef-
ficient, corresponding to a single frequency carrier 𝑔, is
denoted by ℎ. The probability distribution of ℎ follows
a Ricean or Rayleigh distribution. We choose the latter
distribution with parameter 𝜎 to describe ℎ for reasons that
will be discussed in Section 5:
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responding to T is estimated through a sequence of training
packets. At some time instant when I succeeds in spoofing
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physically different location, 𝜎 = 𝜎
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distribution from which the elements of h originated, the
intrusion detection problem can be now formulated as a
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Substituting (4) into (3) and simplifying yields:
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where 𝜆 = ∑
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The use of multiple antenna modes will result in 𝑀

different channel realizations at each time instant. The envi-
ronment “seen” by the different modes of the antennas will
be different due to the differences in their radiation patterns
and therefore the distribution for each of these 𝑀 channel
realizations will be characterized by different 𝜎’s. Assuming
that the channel realizations yielded by the different antenna
modes are independent, we can now write
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where 𝜎
0𝑚

and 𝜎
1𝑚

are the distributions’ parameters for
mode𝑚 under the null and alternate hypothesis, respectively,
h
𝑚
represents the channel vector for mode 𝑚. The decision

function and is simplified to:
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where 𝜆
𝑚
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𝑘

𝑖=𝑗
ℎ
2

𝑖𝑚
and ℎ
𝑖𝑚

denotes the channel realization
at time instant 𝑖 for the𝑚th antenna mode.

The control parameters that can be used to tune the
performance of this scheme are listed in Table 1.

A graphical depiction of these parameters are shownwith
respect to a sample evolution of 𝐿(h) in Figure 2.



4 International Journal of Distributed Sensor Networks

Table 1: Control parameters.

Parameter Description

𝑁

Block size. Number of most recent consecutive
channel estimates used in the test including the
estimate corresponding to the packet under test.

𝑁T
Number of training packets used to estimate 𝜎

0

during connection initialization.

𝛾
Threshold. It can be set based on the values of
𝐿(h) observed during the training phase.

𝑁
𝐷

Detection delay. Maximum number of packets
from I within which it should be detected. If
detection does not happen by this time, it is
considered a missed detection.

𝑁
𝐹

Number of packets from T before I takes over.
Though this is not a controllable parameter in real
time, it has a critical effect on the false alarm rate.

𝑀 Number of antenna modes.

3.1. Steps of the Detection Scheme

(1) During the outset of the session, R estimates 𝜎
0

through training. The number of packets used for
training is denoted by𝑁T.

(2) R also computes 𝐿(h) for 𝑗 = 𝑖−𝑁+1 and 𝑘 = 𝑖 based
on these channel estimates at each instant 𝑖 (𝑁 ≤ 𝑖 ≤

𝑁T).

(3) Actual transmissions begin from T and R continues
to compute 𝐿(h) for each packet transmission. I is
assumed to hijack this connection and starts trans-
mitting to R after𝑁

𝐹
transmissions from T.

(4) Based on these computed 𝐿(h) during the training
phase, a threshold 𝛾 is picked such that an alarm is
raised whenever 𝐿(h) > 𝛾.

(5) In the event of an alarm, a higher layer reauthentica-
tion procedure can be evoked to reverify the identity
of the transmitter.

3.2. Threshold Selection. The value of 𝛾 will be chosen based
on the values observed for 𝐿(h) during the training period.
If the maximum value of 𝐿(h) observed during training
is 𝐿
𝑀
(h), we can express 𝛾 as 𝐾𝐿

𝑀
(h) where 𝐾 is the

scaling factor that needs to be controlled in order to achieve
the desired detection and false alarm rates. In our scheme,
selection of 𝐾 is performed in an adaptive manner. We start
with 𝐾 = 1 and gradually increase its value till an acceptable
false alarm rate is achieved.

The connection can be vulnerable to an attack during
this threshold selection phase as well. Therefore, higher layer
authentication protocols (e.g., 802.11i) should be evoked to
verify false alarms during this adaptation process to ensure
security until the target value of𝐾 is reached though this may
cause some processing overhead due to frequent reauthenti-
cation. Optionally, depending on the level of threat to which
the network is exposed to, this reauthentication process
can be relaxed during this adaptive threshold determination
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Figure 3: Layout of measurement environment. Test locations of R,
T, and I are indicated as shown in the figure.

phase for more efficient operation and all alarms may be
treated as false alarms.

4. Channel Measurements

Channelmeasurementswere performedonDrexelUniversity
campus using a four-port vector network analyzer. The
measurement environment and node locations are shown
in Figure 3. The environment is a large laboratory which is
20m long, 8m wide, and 4m high with plaster walls. The
roomhas several cubicles partitioned usingmetallic walls and
laboratory equipment and furniture distributed throughout
the room.
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Figure 4: Radiation patterns corresponding to the 5 different
antenna modes in the elevation plane. The elevation plane corre-
sponds to the measurement environment plane shown in Figure 3.
All patterns are vertically polarized.

The measurements were performed with R equipped
with a reconfigurable leaky wave antenna (LWA) [25]. The
radiation patterns corresponding to the five modes used in
the study are shown in Figure 4. T and I were equipped
with standard monopoles. Measurements were performed
at 2.484GHz which corresponds to the center frequency of
channel 14 of the 802.11 band. Two R, four T, and ten I

locations were chosen which yielded a total of eight R − T

links each with then corresponding R − I links. For each (R,
T, I) combination, 1000 time snapshots were recorded for
the R − T and R − I links for the 5 different antenna modes.
Measurements were performed during different hours of the
day over several days duringwhich there was low tomoderate
movement in the environment.

5. Why Rayleigh Distribution?

It has been assumed that the channel amplitudes follow a
Rayleigh distribution instead of the more general Ricean
distribution for the purposes of this study. In order to
justify this assumption, the empirical distribution functions
obtained for each link from themeasured data was compared
to a Rayleigh or Ricean distribution whose parameters were
estimated from themeasurements.The similarity between the
empirical distribution (𝑝

𝑒
) and standard distribution (𝑝

𝑝
) for

each link is quantified through twometrics: the total variation
distance between the distributions and the Kullback-Leibler
(KL) divergence.

The total support 𝑆 is defined as

min (𝑆
𝑒
, 𝑆
𝑝
) ≤ 𝑆 ≤ max (𝑆

𝑒
, 𝑆
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) , (8)

where 𝑆
𝑒
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standard distributions, respectively. 𝑆 is discretized into 𝑇

evenly spaced discrete points. The total variation distance
between the two distributions is defined as
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Table 2 lists the trends in the observed values over all the
measured links for the difference between the empirical
distribution and the two standard distributions.

As can be observed, though the channel distributions are
not “purely” Rayleigh nor Ricean, which is to be expected,
they resemble these distributions sufficiently enough which
provides us with the ability to develop an analytical frame-
work for the problem. Moreover, as the values indicate,
on average, due to the combination of line-of-sight (LOS)
and nonline-of-sight (NLOS) links, modeling the channel as
Rayleigh does not lead to a large error compared to modeling
it as Ricean in the system, though the observed distributions
marginally resemble the Ricean distribution more than the
Rayleigh.Nevertheless, Rayleigh distributionwas picked over
Ricean for three reasons. Closed form MLE estimates do not
exist for the parameters that characterize Ricean distributions
and it requires recursive methods that are computationally
intense [26]. The second reason is that when small values
of 𝑁 are used in the scheme, the recursive scheme does not
achieve convergence resulting in very poor estimates that
will have a significantly negative effect on the scheme’s per-
formance. Finally, a simpler form of GLRT function cannot
be formulated due to the Bessel functions that characterize
Ricean distributions which will lead to higher computational
complexity. Based on these observations and reasons, the
channel was modeled as Rayleigh distributed.

6. Analysis and Results

The performance of the intrusion detection scheme was
studied in terms of the probability of missed detection (𝛽)

and false alarm rates (𝛼) as a function of the different
control parameters listed in Section 3. 𝛼 and 𝛽 characteristics
presented in this section were computed from the measured
channels as follows.

(1) For each (R, T, I) combination, a detection threshold
𝛾 was obtained through the first𝑁T training samples.

(2) For the𝑁
𝐹
subsequent samples fromT, the number of

instances where 𝐿(h) exceeds 𝛾 was recorded. A false
alarm was recorded when the number of instances
was greater than one.

(3) The friendly samples were followed by samples from
I. A detection was recorded if 𝐿(h) exceeds 𝛾 within
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Table 2:Difference between empirical and parametric distributions.

Distribution Mean of 𝑒 Standard
deviation of 𝑒

Mean KL
divergence

Rayleigh 0.059 0.014 1.56
Ricean 0.036 0.014 0.32

the first 𝑁I transmissions from I. If not, a miss was
recorded.

(4) This process was repeated for 100 trials with different
subsets of friendly and adversary samples and the
average 𝛼 and 𝛽 were computed.

(5) The overall 𝛼 and 𝛽 were computed as the average
obtained over all possible (R, T, I) combinations.

Unless specifically otherwise stated, the presented results also
reflect the average over the different antenna combinations
possible for a given 𝑀; that is, for a given 𝛼, the presented
missed detection probabilities are averages obtained over the
(
5

𝑀
) possible combinations for a given𝑀.

6.1. Single Antenna Mode (𝑀=1). Figure 5 shows the average
detection error tradeoff (DET) curves for a single antenna
mode for different values of block size 𝑁. The nonlinear
scaling of the axes in a DET curve is designed to yield a
straight line when 𝐿(h) from the system follows a normal
distribution [27]. The diagonal line defined by 𝛽 = −𝛼

represents completely random performance and curves that
lie on the quadrant left of this line represent positive levels of
performance.

It can be observed that the performance improves with
block size.This is due to two reasons. A larger block size gives
a better estimate for 𝜎

1
and hence when the intruder starts

injecting packets, the difference between 𝜎
0
and 𝜎

1
becomes

more clear which in turn results in 𝐿(h) growing above the
threshold rapidly. Moreover, when 𝑁 is large, the increased
contribution from channels corresponding to I in 𝐿(h) after
the intrusion will result in a rapid increase in its value as well.

Moreover, the values of𝑁used in the computation of𝐿(h)
are not sufficiently large enough to yield a Gaussian behavior
and therefore the DET curves do not exhibit a linear trend.
While such a Gaussian behavior is preferred since it allows us
to resort to standard normal distributions to set the threshold
𝛾, it will not be possible to employ a sufficiently large 𝑁 to
yield this behavior since a meaningful minimum detection
delay𝑁

𝐷
is determined by the block size.

However, with just a single antenna mode, the achievable
detection rates are unacceptably low at low 𝛼 regions. In cases
where 𝜎

1
and 𝜎

0
are not well separated, the level of increase

in 𝐿(h) after intrusion will not be sufficient enough to match
the 𝛾 that is required to maintain a low 𝛼 which in turn leads
to poor detection rates. To gain insights into this, we define
the maximum percentage difference between 𝜎’s among the
different antenna modes as

𝑃 = max
𝑚=1,...,𝑀

󵄨󵄨󵄨󵄨𝜎1𝑚 − 𝜎
0𝑚

󵄨󵄨󵄨󵄨

𝜎
0𝑚

× 100%. (11)
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Figure 5: Average DET curves for a single antenna (𝑀 = 1) mode
for different values of𝑁.𝑁

𝐷
is equal to𝑁 for each curve.𝑁T = 25.

For a given 𝛼, 𝛽 decreases with the block size. However, at low 𝛼

levels, the corresponding 𝛽 levels remain unacceptably high for a
single antenna mode even at relatively large block sizes.

Table 3: Statistics pertaining to 𝑃 from measured links.

𝑀 = 1 𝑀 = 2 𝑀 = 3 𝑀 = 4 𝑀 = 5

Mean (𝑃) 75.5 95.8 105.6 111.7 116.1
Median 76.2 86.6 88.9 90.4 91.5
Pr (𝑃 ≤ 100) 0.93 0.89 0.86 0.84 0.82

Figure 6 shows the CDF of𝑃 for different values of𝑀. Table 3
lists some of the quantities extracted from these CDFs.When
a single antenna mode is employed, the mean maximum
percentage difference is 75.5% and the probability of this
percentage difference being greater than 100% is as low as
0.07. This observation clearly elucidates the challenge with
designing a GLRT based detection scheme using a single
antenna.Though the links can be differentiated in terms of 𝜎,
the amount of separation in 𝜎

0
and 𝜎

1
may not be sufficient

in any given scenario for the GLRT to yield acceptable
performance levels with a single antenna mode.

Figure 7 shows the variation of probability of detection as
a function of detection delay in terms of number of packets.
Understandably, detection rate improves with the allowable
detection delay. However, it should be noted that timely
detection of the intruder is very critical and therefore 𝑁

𝐷

cannot be increased to arbitrarily large values to achieve the
required detection rates. Again, it can also be observed that
the performance improves with block size. However, to be
effective, higher values of 𝑁 require that the detection delay
to be at least as long as the block size so that the block
will contain samples entirely from the intruder. The effect of
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Figure 7: Variation of detection probability with 𝑁
𝐷
for a single

antenna (𝑀 = 1) mode at 𝛼 = 0.05. 𝑁T = 25. 𝑁
𝐷
is equal to 𝑁

for each curve. The dashed segments correspond to points where
𝑁
𝐷

< 𝑁. Longer delays result in only marginal improvements
in detection. Larger 𝑁 improves performance, but the minimum
required detection delay is longer for larger𝑁’s.

𝑁 being less than the detection delay can be observed by the
dotted lines in Figure 7 where the detection performance is
significantly deteriorated.

The false alarm rate, as a function of the number of
friendly transmissions from T before I takes over, is shown in
Figure 8. As one would expect, the chances of raising a false
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Figure 8: Variation of 𝛼with𝑁
𝐹
for a single antenna (𝑀 = 1)mode

at 𝛽 = 0.05. 𝑁T = 25. 𝑁
𝐷
is equal to 𝑁 for each curve. Longer

number of transmissions from T increases the probability of false
alarms. Larger𝑁 improves performance due to better 𝜎

0
estimates.

alarm rises withmore friendly packets. A larger𝑁 results in a
better estimate for 𝜎

0
during the training phase. Additionally,

it will yield a value for 𝜎(h) that is closer to the true 𝜎
0
as well.

Thus, the probability of 𝐿(h) to exceed 𝛾 picked based on the
estimated 𝜎

0
will be lower and hence 𝛼 improves with𝑁.

To summarize the preceding trends, higher 𝑁 lowers 𝛼
while improving detection rates. Though a longer detection
delay can help detection rates, in practice it is undesirable
to have such long delays. However, due to the marginal
difference between the 𝜎 values for the T − R and T − I

links, it is challenging to obtain acceptable detection rates
while keeping the false alarm rates very low when using a
single mode antenna system. Hence, we resort to multimode
antenna systems.

6.2. Multiple Antenna Modes. We begin our analysis of the
multiple antenna mode case with Figure 9 which shows the
DET curves achievable through the combination of channel
information corresponding to multiple antenna modes. For
each incoming packet, 𝐿(h) is computed as in (7) based on
the channel information corresponding to the chosen 𝑀

configurations from which subsequent detection rates and
false alarm rates are computed. It can be clearly seen that
the detection rate significantly improves with the number
of modes for a given 𝛼. Referring again to Figure 6 and
Table 3, it can be observed that the maximum percentage
difference between 𝜎’s among the different antenna modes
increases with 𝑀. This is by virtue of the fact that different
antenna modes will exhibit different 𝜎 values and hence the
probability that the difference between 𝜎

0
and 𝜎
1
is very small

for all the modes will be lower. Thus, modes that exhibit
a larger difference in 𝜎 will contribute more to the GLRT
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Figure 9: Average DET curves for a multiple antenna modes for
𝑁 = 𝑁

𝐷
= 10. 𝑁T = 25. For a given 𝛼, 𝛽 decreases with increasing

number of antenna modes. Acceptable levels of 𝛽 can be achieved at
low 𝛼 levels by using multiple antenna modes.

resulting in better performance. Increasing 𝑀 increases the
probability of finding modes that exhibit a larger difference
in 𝜎’s and hence performance significantly improves with𝑀.
Again, due to the lower value of 𝑁, a non-Gaussian trend is
observed in the observed DET curves.

Figure 10 shows the achievable detection rates as function
of detection delay for the different𝑀 values. Comparing this
with Figure 7, it can be seen that the level of improvement
achievable in detection rates is quite high with 𝑀 than 𝑁.
For example, increasing 𝑁 from 10 to 25 results in a mere
5% improvement in detection when a single mode is used.
Moreover, this improvement comes at the cost of a longer
detection delay. By introducing an additional mode, 𝛽 can be
lowered from around 20% to 9% while keeping 𝑁 and 𝑁

𝐷

at 10.
Figure 11 shows 𝛼 as a function of the number of friendly

packets. As described in step (2) in Section 6, 𝛼 is defined
as the probability that there will be at least one packet that
exceeds the threshold 𝛾 during the friendly transmissions.
Improvements in 𝛼 is also observed with increasing𝑀. Nat-
urally false alarms increase with increasing friendly packets
regardless of𝑀. For relatively smaller values of𝑁 and a single
antenna mode, when certain samples in h come from the tail
region of the underlying Rayleigh distribution, the resulting
estimate of 𝜎̂

1
can significantly diverge from 𝜎

0
resulting in

excursions of 𝐿(h) above the threshold 𝛾. However, when
multiple antenna modes are employed, the probability that
the channels corresponding to most of the modes belong to
the tail region at any given instant is reduced. Therefore, at
every time instant, the “well-behaved” modes help dampen
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= 10. 𝑁T = 25. As observed
in Figure 7, longer delays result in only marginal improvements in
detection. More antenna modes however results in better detection
rates without requiring longer detection delays.

Pr
ob

ab
ili

ty
 o

f f
al

se
 al

ar
m

Number of friendly packets

10
0

10
−1

10
−2

10
−3

10
2

10
3

M = 1

M = 2

M = 3

M = 4

M = 5

Figure 11: Variation of 𝛼 with 𝑁
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the hikes in 𝜎̂
1
due to the “stray” modes and therefore help

keep the excursions of 𝜎̂
1
above 𝛾 low and hence reduce the

probability of false alarm.
We conclude this section by providing a list of key

statisticalmeasures for𝛼 and𝛽 that were observed for various
values of 𝐾 in 100 trials. These measures are shown in
Table 4. It can be observed that the standard deviation is
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Table 4: Key statistical measures for 𝛼 and 𝛽 observed during 100 trials (𝑀 = 5,𝑁 = 25,𝑁T = 25, and𝑁
𝐷
= 1).

𝐾 𝛼/𝛽 Std. Dev. Mean Min 𝑃
25

𝑃
50

𝑃
90

𝑃
99

Max

1.00 𝛼 0.00009 0.00005 0.00000 0.00000 0.00000 0.00020 0.00020 0.00020
𝛽 0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

1.05 𝛼 0.00010 0.00007 0.00000 0.00000 0.00000 0.00020 0.00020 0.00020
𝛽 0.01350 0.83669 0.80566 0.82646 0.83809 0.85381 0.85977 0.85977

1.10 𝛼 0.00009 0.00006 0.00000 0.00000 0.00000 0.00020 0.00020 0.00020
𝛽 0.01593 0.73663 0.70234 0.72422 0.73994 0.75811 0.77676 0.78477

1.20 𝛼 0.00010 0.00009 0.00000 0.00000 0.00000 0.00020 0.00020 0.00020
𝛽 0.01861 0.61567 0.57227 0.60215 0.61689 0.63965 0.64688 0.64863

1.40 𝛼 0.00010 0.00014 0.00000 0.00000 0.00020 0.00020 0.00039 0.00039
𝛽 0.01630 0.44315 0.40430 0.43369 0.44453 0.46113 0.48057 0.48418

1.60 𝛼 0.00010 0.00021 0.00000 0.00020 0.00020 0.00039 0.00039 0.00039
𝛽 0.01592 0.31338 0.27715 0.30293 0.30986 0.33535 0.35586 0.35820

1.80 𝛼 0.00014 0.00026 0.00000 0.00020 0.00020 0.00039 0.00059 0.00059
𝛽 0.01575 0.22166 0.19629 0.21064 0.21768 0.24863 0.26113 0.26367

2.00 𝛼 0.00015 0.00029 0.00000 0.00020 0.00020 0.00049 0.00059 0.00059
𝛽 0.01459 0.15741 0.13613 0.14590 0.15273 0.18145 0.19688 0.19707

2.25 𝛼 0.00019 0.00037 0.00000 0.00020 0.00039 0.00059 0.00078 0.00078
𝛽 0.01265 0.10750 0.09004 0.09893 0.10361 0.12842 0.14385 0.14570

2.50 𝛼 0.00024 0.00051 0.00020 0.00039 0.00059 0.00078 0.00098 0.00098
𝛽 0.00867 0.07441 0.06211 0.06992 0.07266 0.07998 0.10449 0.10488

Table 5: Pattern correlation coefficients between different modes of
the LWA.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
Mode 1 1 0.73 0.42 0.10 0.06
Mode 2 0.73 1 0.82 0.27 0.07
Mode 3 0.42 0.82 1 0.55 0.11
Mode 4 0.10 0.27 0.55 1 0.56
Mode 5 0.06 0.07 0.11 0.56 1

limited to 1.5% for false alarm rates and to less than 1% for
missed detection rates. The data shows that, for a given set of
parameters, false alarm rates and missed detection rates are
stable across multiple trials.

6.3. Which Modes to Choose? From the previous results it is
clear that introducing multiple antenna modes improves the
system’s overall performance. However, these results do not
provide insights into how to pick the mode combinations
and most importantly if there is any benefit in increasing
the number of modes beyond a certain level. Some insights
into this problem can be found by analyzing Figure 12 and
Table 5. Table 5 lists the spatial pattern correlation that exists
between the radiation patterns corresponding to the different
antenna modes used in the study. The best, worst, and
average detection rates achieved by different individual mode
combinations for 𝑀 = 2 and 𝑀 = 3 are shown in
the figure. For 𝑀 = 2, it is evident that the detection
rate is a function of the antenna correlation coefficient.
The best performance is achieved by the mode combination
(5, 1) which also has the lowest correlation between patterns.
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Figure 12: Average DET curves for different antenna mode com-
binations. 𝑁 = 𝑁

𝐷
= 10. 𝑁T = 25. Detection rates have a direct

correlation with the correlation coefficient between the patterns of
the employed antenna modes. For a given 𝑀, lower correlation
coefficient between the antenna patterns results in better detection
for a given 𝛼.

The combinationwith the highest correlation of 0.82 achieves
the worst performance. Similarly, for 𝑀 = 3, detection rates
exhibit the same trend with respect to the average correlation
between the different pair of modes within the combinations.
Moreover, it can be seen that the performance achieved by
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the best combination for𝑀 = 3 outperforms the𝑀 = 5 case
as well.

The preceding behavior can attributed to the well-known
phenomenon of decorrelated antenna patterns resulting in
decorrelated channel realizations [28]. The information pro-
vided by more decorrelated channel realizations serves to
improve the “quality” of 𝐿(h) and hence enables the scheme
to distinguish between T and Imore accurately.

Based on these trends, two guidelines are suggested
for picking the different antenna modes. Antenna modes
should be picked such that the pattern correlation coefficient
between the differentmodes should be kept as low as possible.
Many reconfigurable antenna architectures exist that can
generate patterns with a very low correlation coefficient
between their modes [19, 29]. The second is that adding
new modes will improve detection rates as long as the newly
introduced mode does not diminish the average correlation
coefficient among the modes. This can be seen by observing
the different circled pairs of DET curves in Figure 12, where
adding a new mode improves detection when the addition
of the mode lowers the average correlation coefficient among
the modes.

6.4. Effect of Training. The quality of training will have a
significant effect on the performance of the scheme as the
estimated 𝜎

0
forms the basis for the likelihood ratio based on

which it operates. Figure 13 shows the effect of the amount
of training on the DET curves. As evidenced by the figure,
longer training leads to better performance at the lower 𝛼

regions as expected. But interestingly more training has a
negative effect on system performance at the larger 𝛼 regions.
Recall that the threshold 𝛾 is computed as 𝐾𝐿

𝑀
(h) where

𝐿
𝑀
(h) is the maximum of 𝐿(h) observed during training.

Longer training on average leads to marginally larger values
for 𝐿
𝑀
(h). At high 𝛼 regions, 𝐾 ≈ 1 and hence the threshold

𝛾 is more sensitive to 𝐿
𝑀
(h).Therefore, for a given 𝛼, keeping

all other parameters constantwhile increasing only𝑁T results
in an increased estimate of the threshold 𝛾, which in turn
deteriorates detection. Although the estimate of 𝜎

0
does

improvewith𝑁T, the increase in𝐿𝑀(h)overweighs its benefit
in the high 𝛼 region leading to performance degradation.
Nevertheless, meaningful utilization of this scheme will
involve operating in the low false alarm region and therefore
longer training will be still preferred.

7. Practical Considerations

Some key practical issues need to be considered in order to
make this scheme work in practice. The most critical issue
is the problem of obtaining channel estimates over all the
antenna modes on a packet-by-packet basis. Figure 14 shows
the possible candidate for a frame structure at the physical
layer that can be used to achieve this operation. An extended
payload is interspersed with the necessary training symbols
for each mode along with padded intervals to allow for
switching the antenna to a newmode and resynchronization.
High-speed switches with switching speeds in the order of
picoseconds currently exist that can allow the antenna to
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Figure 13: Average DET curves for 𝑀 = 1 and 𝑀 = 5 for different
number of training samples. 𝑁 = 𝑁

𝐷
= 10. Solid lines indicate

𝑀 = 1 and dotted lines indicate 𝑀 = 5. Longer training results
in better detection at lower 𝛼 regions. But the gains achieved from
more training cannot match the gains achieved by employing more
number of antenna modes.
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Figure 14: Extended transmit frame that can be used to obtain
channel estimates for multiple antenna modes using a single packet
transmission.

switch modes at a rate compatible with current high data rate
applications.

As noted previously, this scheme is proposed to comple-
ment existing higher level security protocols. Therefore, such
protocols should continue to play their role in protecting the
wireless link. An adaptive approach can be pursued when
the GLRT triggers an alarm at the physical layer. When an
alarm is raised by the physical layer scheme, the system can
reconfigure the GLRT to operate in a point on the DET
curve that prioritizes low missed detection over false alarms.
Subsequent alarms should be handled by the upper layer
authentication protocols such as 802.11i till it is ensured
that the perceived threat does not exist after which point
the GLRT can prioritize over false alarms again. Moreover,
successfully adapting the alarm threshold will also rely on
these reauthentication protocols.
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Channel statistics may also gradually change with time
which can lead to arbitrarily high false alarm rates. Periodic
retraining can be implemented to keep the system perfor-
mance within acceptable levels. Therefore, this scheme can
benefit from more comprehensive training algorithms that
continually update𝜎

0
based on packets that pass the intrusion

detection test at the physical as well as upper layers.

8. Conclusion

An intrusion detection scheme that utilizes physical layer
information based on a reconfigurable antennawas proposed.
The intrusion detection problem was setup as a generalized
likelihood ratio test under the assumption of Rayleigh fading
channels for different antenna modes. The assumption was
justified based on channel measurements gathered in an
indoor environment using a network analyzer. The measure-
ments were then used to study the performance of the scheme
as a function of several control parameters available to the
user. It was observed that large block sizes lower false alarm
rates while yielding high detection rates as well. By utilizing
multiple modes in a reconfigurable antenna concurrently in
the likelihood function, it was shown that the detection rates
can be improved and false alarm rates can be decreased while
keeping the block size low.The pattern correlation coefficient
that exists between the radiation patterns of the different
antenna modes was shown to have a direct correlation
with the resulting detection performance, with lower pattern
correlation resulting in better performance. In networks with
very limited or nonexistent security such as publicWiFi spots,
the proposed scheme can add a layer of security that can
provide improved levels of protection against intrusion. In
more secure networks operating in hostile environments,
this scheme in conjunction with existing higher layer based
security mechanisms can provide a much needed extra layer
of security.

Future work to make the scheme more robust includes
smart training algorithms that continuously train the system
and keep the system up-to-date as well as algorithms that
adaptively tweak the different control parameters to keep the
system operating at the required performance level.
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