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Abstract—Authentication schemes based on wireless physical
layer channel information have gained significant attention in
recent years. It has been shown in recent studies, that the channel
based authentication can either cooperate with existing higher
layer security protocols or provide some degree of security to
networks without central authority such as sensor networks.
We propose a Gaussian Mixture Model based semi-supervised
learning technique to identify intruders in the network by
building a probabilistic model of the wireless channel of the
network users. We show that even without having a complete
apriori knowledge of the statistics of intruders and users in
the network, our technique can learn and update the model
in an online fashion while maintaining high detection rate. We
experimentally demonstrate our proposed technique leveraging
pattern diversity and show using measured channels that miss
detection rates as low as 0.1% for false alarm rate of 0.4% can
be achieved.

I. INTRODUCTION

Over the past decade, due to the ubiquity of wireless de-
vices, security has become a significant concern as increasing
amounts of sensitive user and enterprise data is exchanged
through the wireless medium. Due to the inherent shared
nature of the wireless medium, it is challenging to detect and
counteract intrusions in wireless networks. Although conven-
tional security measures based on cryptography are essential
to secure wireless network, tasks like authentication may not
always be possible as they require additional key management
infrastructure which may not be always available. Moreover,
cryptographic security mechanisms do not exploit the unique
properties of the wireless medium to address security attacks.
In recent years, cross-layer authentication schemes, especially
those which employ channel information available at the
physical layer have been proposed. They have been shown to
either cooperate with high-layer security protocols or provide
some level of protection for infrastructure-less networks such
as ad hoc networks or sensor networks.

Some of the previously proposed channel-based authenti-
cation schemes such as those in [1], [2], [3] are based on
comparing the channel response for each new message from
a user with past channel responses. These schemes are setup
as a hypothesis test using a metric derived from the channel.
In [1], the hypothesis test is based on the distance between
the reference channel created from channel estimates from

the messages in the past and the channel from the message
that needs to be authenticated. In [2], the authors employ a
hypothesis test based on the covariance matrix of the time
samples of a single link wireless channel to differentiate
between transmitters. Further, in [3], authors consider a MIMO
system model to improve the channel resolution by using
M independent channel responses from M equally spaced
(in frequency) pilot tones. They assume that the minimum
frequency spacing is greater than the channel coherence band-
width for perfect decorrealtion between channel samples. They
further assess the performance of a channel-based authentica-
tion schemes in the presence of channel estimation error and
terminal mobility and propose a generalized likelihood test
(GLRT) for detection. Besides the schemes based on channel
response, RSS based schemes have also been proposed in the
past [4], [5]. In [5], authors use /N-dimensional feature vector
corresponding to RSS frames measured at N access points
to cluster the M frames received from a given MAC address
using k-means clustering. Their results are further improved
by authors in [6] by using Gaussian Mixture Models(GMM) to
model transmitter profile which consists of multi-modal RSS
distribution as an effect of antenna diversity.

Though many of the proposed channel-based authentication
schemes show promising results, they rely on selecting a test
threshold value for achieving acceptable detection or false
alarm rates for a given system and wireless environment.
It has been shown that the selection of this test threshold
significantly impacts the system performance [3]. Moreover,
as the value of test threshold highly depends on factors such
as, underlying channel statistics, channel estimation errors,
terminal mobility and physical environment where devices
are located, selection of the test threshold is challenging.
In [3], authors propose two methods to select a test threshold.
First, a very common method of selecting a pre-assigned
threshold requiring a large number of field measurements,
which can be prohibitively expensive. Secondly, an adaptive
threshold method where transmitter and receiver exchange
training messages and receiver selects the o-th percentile value
of collected test statistics during the training phase as the
test threshold value. However, the authors mention that the
performance of this method is sensitive to value of o and
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the amount of training required. On the other hand we base
our approach on the notion that the statistical model for the
intruder and legitimate user can be built via semi-supervised
learning where we do not require intruder samples before
and require a very low number of samples for legitimate
users without requiring extensive training data from the field
measurements. We further modify our learning technique to
update the learned model in an online fashion.

There has been significant research in using machine learn-
ing techniques for network intrusion detection by modeling
network traffic and extracting information from higher layers.
The data available for intrusion detection systems can have
different levels of granularity and may consist of packet level
traces, CISCO net-flows, or other information from higher
layers of network stack [7], [8]. In [9] authors provide an
exhaustive survey of anomaly detection techniques, including
many techniques used in network intrusion detection.

In this paper, we propose a detection scheme based on
semi-supervised learning through the use of Gaussian Mixture
Model (GMM) and a classification technique to leverage the
information available at the physical layer. In order to build
a model of the wireless users’ channel information, we use
a family of Gaussian Mixture Model and update the model
parameters online. We provide a feature selection technique
by using the diversity of the wireless channel and show the
performance improvement as the dimensions of the feature
set increases. In that context we use the diversity technique
proposed in [10], [11] where authors make use of the channel
decorrelation obtained by the use of pattern reconfigurable
antennas. They show that using a reconfigurable antenna,
decorrelated channel realizations can be obtained by selecting
the different modes of the antenna which are expected to have
different statistics. This pattern diversity offered by reconfig-
urable antennas is exploited to enhance the performance of the
channel based detection scheme. We note that other diversity
techniques such as antenna diversity, frequency diversity and
MIMO technique can also be used to create feature set for our
proposed learning method and it is not a requirement to have
reconfigurable antennas to implement the learning technique.
We explain how we utilize pattern diversity in Sec II-C and
for more information on reconfigurable antennas and their
applications, we direct the reader to these references [12], [13].

II. SYSTEM MODEL & CHANNEL FINGERPRINT
A. Threat Model

We consider a model consisting of at least three players;
a legitimate transmitter Alice, an intended receiver Bob and
a spoofing intruder Eve. Alice and Bob have established a
connection and are in the process of exchanging information.
Intruder Eve tries to inject messages using Alice’s identity, for
example her MAC address, in an attempt to gain same level
of access as Alice.

Our spoofing detection technique assumes that Alice and
Bob are in a process of establishing a connection and at least
t messages have been exchanged where ¢ > 1. After the first ¢
messages, Bob receives subsequent messages from Alice and

his goal is to now detect whether each subsequent message is
indeed sent by Alice or a spoofing intruder.

B. System Model with Reconfigurable Antennas

Consider a point to point SISO link with the transmit-
ter equipped with a single dipole antenna and the receiver
equipped with a single pattern reconfigurable antenna. We
assume that reconfigurable antenna at the receiver has M
such unique modes and is capable of switching between M
such modes. The degree of correlation between M channel
realizations is governed by the physical structure of the
reconfigurable antenna. For stationary terminals, the temporal
channel variations are primarily caused due to shadowing
and scattering by the moving scatterers in the vicinity of the
link [14], [15], [16]. Under a narrow-band flat-fading setting,
the channel h; can be given as:

hi=Xhi+e+n (1)

where ¢ is the index of the mode of the reconfigurable
antenna, X denotes the shadowing gain on the time invariant
component h;, € is the additional small scale fading gain
induced by the scatterers and n denotes receiver noise. € and n
can be modeled as a complex Gaussian process with 0 means
and variances o2 and 0% respectively. X is modeled as a

random variable with a log-normal distribution with 0 mean
and variance 0%.

C. Channel Fingerprint & Feature Selection

To detect a spoofing attack, Bob monitors the channel
fingerprint, which is a function of the estimated wireless
channel encountered by each received message. The injection
of messages by an unwanted intruder Eve posing as Alice
will correspond to a shift in the channel statistics which will
lead to an abrupt change in channel fingerprint. The collected
channel fingerprints can be then used to make a decision about
the true origin of the received message. We create a channel
fingerprint by using the channel response corresponding to
different modes of the receiver antenna at Bob. Using multiple
channel responses, we create a channel fingerprint h given as:

h = {[h] |he] |ha] (2)

where |R;| is the magnitude of the channel estimate of the
ith mode of the antenna, « = 1,..,M and M is the total
number of available receiver antenna modes. Due to a rich
multipath environment typically seen in indoor environments,
the channel response for each transmit-receive path has a
different distribution. Thus, augmenting the channel signature
with multiple channel responses enhances the signature quality
and makes it more challenging for an adversary to manipulate
the channel between itself and the intended receiver. For
GMM, the channel estimates for different modes create a
rich M-dimensional feature set which allows the data to be
separated in an higher dimensional space. We note that the
features for the channel fingerprint can be chosen via other
means such as channel estimates from different antennas in
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MIMO setting or using frequency diversity by estimating
channel using equally spaced pilot tones in frequency. For this
work, we choose the pattern diversity offered by reconfigurable
antennas to build our feature set for the channel fingerprint.

III. DETECTION SCHEME AND GAUSSIAN MIXTURE
MODEL

A. Spoofing Detection via Clustering

In order to motivate and explain the method of spoofing
detection based on clustering achieved via GMM, we first
provide some assumptions about the data consisting of channel
fingerprints. Many signature based network intrusion detection
schemes [9] work by building models of normal data and
anomalous data using existing labeled data sets of both normal
or anomalous behavior. Once the model is built offline, the
detection process is run either offline or online to detect
anomalies in the observed data. On the other hand, in anomaly
detection techniques, only a model of normal data is created
and deviation from the normal data in the observed data is
detected. However, more often, we either do not have any
labeled normal and anomalous training data or have access
to only a small amount of purely normal data before the
detection process can be applied to the observed data. In the
case of our proposed physical layer authentication technique,
we assume that we have access to only a few messages from
the legitimate transmitter Alice to begin with and we have no
messages from the intruder. We start by building a model based
on the true messages from Alice and then detect deviations
from it online as subsequent messages are received. After the
initial ¢ true message exchanges, detection schemes decides
the true origin of the subsequent messages. Once the decision
is made, the message is stored to update the learned model.
Due to this online update, we can improve the accuracy of the
learned model as more messages are received. Also, we later
show that by reducing the number initial ¢ messages, we can
reduce the chances of spoofing during the establishment of the
connection.

B. Gaussian Mixture Model for Model Learning

We use a Gaussian Mixture Model [17] to perform probabil-
ity density estimation and calculate the posterior probability of
each data point in the unlabeled data set. The data set consists
of N data points and each data point is an M dimensional
vector. M is the number of modes of the receiver antenna
used to create the feature vector given by (2). We assume that
the data is a mixture of £ components and each component &
generates data from a Gaussian distribution with mean p and
covariance Y. The density of a single component k is then
given as:

I (2) = ¢ (x|pg, Xi) 3)

The mixture density is given as the weighted sum of K
component Gaussian densities where weight a; for a com-
ponent k is the prior probability of component k. Therefore,
using (4) mixture density is given as:

Zakfk

The parameters pj, 2 and ai for the Gaussian Mixture
Model are estimated by the maximum likelihood (ML) [18]
criterion using the Expectation Maximization (EM) algorithm.
The EM algorithm provides an iterative computation of the
maximum likelihood estimation when the observed data is
incomplete. During the expectation step, the posterior proba-
bilities for each data point for all K components are computed
as:
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where j represent the j-th iteration. This iterative process is
performed until the algorithm converges. Now, using the above
method, data points are assigned to a cluster by selecting the
component that maximizes the posterior probability. For the
proposed spoofing detection scheme, Alice and Bob exchange
initial training messages ¢ and Bob stores the channel finger-
print vector h corresponding to each training message. We
add the channel fingerprint of the incoming message into the
dataset initialized by training messages and then the spoofing
detector uses the mixture model to cluster the data into sepa-
rate clusters corresponding to Alice and Eve respectively. The
experiments use a GMM with mixture components (K = 2)
with the idea that one of the mixture components is associated
with Alice, while other is associated with Eve.

Labeling Clusters: Since we are dealing with purely unla-
beled data or have labeled data only from the initial training
messages, it is necessary to find some way to determine
which clusters obtained from mixture model contain nor-
mal instances and which contain attacks. Past research in
unsupervised clustering techniques for intrusion or anomaly
detection make some assumptions about the data in order to
classify clusters. In [19], authors assume that normal instances
constitute overwhelmingly large portion (> 98%) of the data
and therefore, the cluster containing the largest number of
data points associated with it, is classfied as normal cluster.
For a single link scenario, where data corresponding to each
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transmitter is stored and treated separately this technique might
be suitable. Instead, we rely on the training messages that we
collected during initial training to classify the clusters. We note
that for the purpose of GMM model learning, only unlabeled
data is used. After the clusters are created using mixture
model, we identify the cluster to which most data points from
the training phase are associated and classify that cluster as
normal. The other cluster is then classified as associated with
the intruder.

IV. EXPERIMENTAL SETUP
A. Indoor Channel Measurements

Channel measurements were conducted to evaluate the
performance of the proposed scheme using a four port vector
network analyzer (VNA) (Agilent N5230A) by measuring
So1 between the transmitter and receivers [11]. Measurements
were conducted in the Drexel Wireless Systems Laboratory
(DWSL), a medium-sized lab with typical office and lab
furniture. Transmitter, receiver, and intruder positions were
chosen to accommodate LOS and NLOS links as shown
in Fig. 3. Nodes at transmitter and intruder positions were
equipped with omni-directional whip antennas and placed at
desk level of approximately 0.75m.

W=

Fig. 1. Two port reconfigurable leaky wave antenna [20]

Fig. 2.

Measured radiation patterns

A total of eight links were considered between the transmit-
ter and receiver locations. Furthermore, for each of these links,
ten distinct intruder locations were considered. Each receiver
was equipped with a Reconfigurable Leaky Wave Antenna

(RLWA) capable of electrically steering its beam pattern in
different directions by applying varying levels of bias voltages
to the varactor diodes on the antenna. Initially proposed by the
authors in [20], the prototype shown in Fig. 1 is a two-port,
composite right/left-handed leaky wave antenna composed of
25 cascaded metamaterial unit cells. Since, we are considering
only a SISO link, we used channel measurements from only
one of the ports. The five antenna modes chosen to steer the
radiation pattern over an angular range from —45° to 45° in
the elevation plane as shown in Fig. 2.

@ Intruder Locations

@ Transmitter Locations

@ Receiver Locations

[ ]
5]
5]
a ®
o o
m [ ]
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Fig. 3. 2D CAD model of test environment showing locations of receivers,
transmitters and intruders

Frequency was swept over a 22 MHz bandwidth equally
spaced into 64 frequency samples centered at 2.484GHz which
corresponds to channel 14 of the 802.11 standard. For each
receiver location, a pair of transmitter and intruder locations
was selected to simultaneously transmit 200 samples for each
of the five antenna modes for a total of 1000 samples.

V. PERFORMANCE ANALYSIS

To evaluate the performance of the proposed detection
scheme, we use the receiver operating characteristics (ROC)
curves. A point on the ROC curve is a pair of false alarm
rate (FAR) and miss detection rate (MDR) calculated by
applying the detection algorithm with a certain threshold. Even
though our scheme does not rely on applying a threshold
during operation, we can characterize the performance using
the posterior probability p; j given by (6) as our metric. At
each step, when a new message ¢ is received at the receiver,
the posterior probability p; j is compared against a threshold
value and FAR and MDR are calculated. We perform this
test for varying dimensions of the feature set used to create
the channel fingerprint h and analyze the impact of using
diversity to increase the fingerprint dimensions thereby an-
alyzing detection performance. This procedure is repeated for
all combinations of receiver, transmitter and intruder locations
at a given frequency point from the channel measurements.

A. Feature Set Dimensions & Diversity

In Fig. 4, we show the ROC curve for the best performing
combination of antenna modes for varying dimensions of the
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Fig. 4. ROC results for independent antenna modes at frequency 2.484 GHz
averaged across all locations

0.12
— \]=2
=3
0.1 — \=4
% = M=5
o 0.08f 1
c
k]
g 0.06f ]
©
=}
& 0.04}f 1
=
0.02f 1

0

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
False Alarm Rate

Fig. 5. ROC results for combination of independent antenna modes at
frequency 2.484 GHz averaged across all locations

feature set used to create the channel fingerprint. As we
increase the dimensions of the feature set, overall detection
performance increases for a given false alarm rate. Using all
five features (corresponding to five antennas modes), algorithm
achieved MDR of 0.1% and FAR of 0.4%. It can also
be observed that percentage improvement in performance,
reduces as more modes are added. Moreover, using only two
modes, mode 1 and mode 2 respectively, we acheived MDR
of 0.8% and FAR of 0.3%. It is not required that adjacent
modes are selected and system designer can select different
modes base on pattern correlation properties [11]. Since we
are exploting pattern diversity provided by reconfigurable
antennas, it is essential that as we add more modes to create
channel fingerprint, the inter-element correlation should be as
low as possible. Since, the correlation between the selected
features can impact on overall performance, we also show
ROC curve for the average performance for all combinations
of mode pairs in Fig. 5.

B. Transmission Frequency

We also analyze the effect of transmission frequency on the
performance of the proposed detection scheme. As mentioned
in section IV-A, the channel response corresponding to each
antenna mode was measured over 64 evenly spaced frequency
samples. The choice of transmission frequency in the 802.11
band can possibly effect the channel estimates due to relative
interference in certain bands which can effect the performance
of the detection scheme. In Fig. 6, we show the ROC curve
for best performing combination of antenna modes averaged
over all sampled frequencies over a bandwidth of 22MHz.
We observe that using more than 3 antenna modes provides
consistent performance for all frequencies with MDR< 0.4%
and FAR of 0.9%.
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Fig. 6. ROC results for independent antenna modes averaged over bandwidth
of 22MHz centered at 2.484 GHz

C. Attack Percentage

In Fig. 7, we analyze the impact of number of attack
attempts on the performance of our detection scheme. The
attack percentage is an important criteria as that highlights
the strength of the model learning technique.
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0 0.005 0.025

Fig. 7. ROC results for various size of test set containing observed samples
from legitimate transmitter and intruder
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In the scenario, where you have access to only a fraction
of data from anomalous source, the model learning technique
should be robust to still maintain required performance. We
observe that as the attack percentage increases, the perfor-
mance of the detection scheme improves. Also, with at-
tack percentage of 20% and using three antenna modes, we
acheived MDR of 0.4% for a false alarm rate of 0.2%.

D. Number of Training Messages

Finally, in Fig. 8, we analyze the impact of number of
training messages ¢ between the Alice and Bob used to
initialize the GMM, on the detection performance.
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Fig. 8. Detection Performance with Minimum Training Messages

From implementation perspective, the number of samples in
the dataset, required to initiate GMM, is lower bounded by the
dimensionality of the feature set. For instance, for M = 2, ¢ >
2. From Fig. 8, it can be seen that even with minimum training
messages (t = 5 for M = 5), the proposed scheme achieved
MDR of .06% and FDR of .4%. Interestingly in this case, as
t is increased, there is a marginal decrease in performance.
This is primarily because the attack percentage is kept low at
10%.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a semi-supervised clustering
based approach using Gaussian Mixture Modeling (GMM)
for physical layer authentication. We have shown that by
using unlabeled data and only a few samples from the normal
data our scheme can achieve very low false alarm rates
and miss detection rates. Our results from measured channel
responses from field tests in an indoor environment show
that using pattern diversity coupled with proposed reduced
training, detection scheme is feasible for real-world scenarios.
We envision adapting this technique for mobile nodes and
integration with higher layer security protocols as future work.
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