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ABSTRACT
This paper develops a software-defined radio (SDR) frame-
work for real-time reactive adversarial jamming in wireless
networks. The system consists of detection and RF response
infrastructure, implemented in the FPGA of a USRP N210
and designed to function with the open source GNU Ra-
dio SDR library. The framework can be used to imple-
ment a fast turnaround reactive jamming system capable
of timely RF response within 80ns of signal detection. Our
framework also allows for full control and feedback from the
FPGA hardware to the GNU Radio-based cognitive radio
backend, making it applicable to a wide range of preamble-
based wireless communication schemes. This paper presents
the capabilities, design, and experimental evaluation of this
framework. Using this platform, we demonstrate real-time
reactive jamming capabilities in both WiFi (802.11g) and
mobile WiMAX (802.16e) networks and quantify jamming
performances by measuring the network throughput using
the iperf software tool. The results indicate that our sys-
tem works reliably in real time as a reactive jammer and
can be used for practical assessments of modern jamming
and secure communication techniques.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and Protection

General Terms
Security, Experimentation, Performance
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Denial of Service; Reactive Jamming; Software Radio

1. INTRODUCTION
Software-defined radios have been instrumental in mul-

tiple areas of research in wireless communications, espe-
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cially those requiring real-time experimentation. SDRs al-
low highly customizable hardware and software designs to be
used as testbeds for prototyping new communication tech-
niques without the need for proprietary ASIC hardware.
Due to shorter development time and the flexibility they af-
ford across the hardware-software stack, SDRs are an attrac-
tive choice for proof-of-concept experimentation and perfor-
mance analysis within the wireless research community.

Recent research in wireless communications has strongly
emphasized securing the physical layer against external threats.
One such threat is the Denial-of-Service (DoS) attack, wherein
the adversary transmits interfering signals, i.e. jamming sig-
nals, to make the network unavailable to legitimate users.
In its most basic form, a DoS attack can just be a contin-
uous inband jamming signal with sufficient power to cor-
rupt all transmitted packets. A continuous jammer, though
simple to implement, suffers from two disadvantages: high
power requirement and high probability of detection. On
the other hand, reactive jammers are more efficient due to
their ability to sense the wireless medium and jam packets
that are already in the air [3]. By jamming wireless packets
reactively at critical moments, adversaries can significantly
reduce network throughput using little energy while mini-
mizing the chances of being detected. Nevertheless, reactive
jammers have not been considered a serious threat in prac-
tice, mainly due to the implementation challenges in meet-
ing strict real-time constraints for detecting and reacting to
in-flight packets of high-speed wireless networks [3].

This paper develops an SDR platform capable of very fast
RF signal detection and response, to be used in wireless se-
curity research. The main focus of discussion is a prototype
of a real-time, multi-standard reactive jamming system for
preamble-based communication networks, implemented us-
ing GNU Radio [1] and the USRP N210 SDR platform from
Ettus Research. We show that reactive jammers can be re-
alized using readily available, commercial off-the-shelf SDR
hardware, but nonetheless can achieve the necessary per-
formance to reliably and selectively jam in-flight packets of
WiFi (802.11 a/b/g) and mobile WiMax (802.16e) networks.
We anticipate that the developed platform will be quite use-
ful in wireless security research, both to realize a range of
sophisticated DoS attacks as well as to prototype several
classes of jamming-based secure communication schemes.

There is considerable prior research analyzing the threat
posed by adversarial jamming to several wireless protocols [3,
4, 13, 15]. The problem of reactive jamming, in particu-
lar, has been studied from both the viewpoint of a jammer
to devise optimal jamming strategies [7, 10], and from the
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viewpoint of a wireless network to achieve jamming-resilient
communications [8, 9, 12]. Recently, the possibility of using
self-jamming and cooperative jamming as a way to create se-
cure wireless networks has also been considered. Gollakota
and Katabi [5,6] develop a data secrecy scheme called iJam
wherein randomized self-jamming signals are used to deny
potential eavesdroppers access to the raw signal data. Sim-
ilarly, Shen et al. [11] develop a method to jam the wireless
channel continuously while properly controlling the jamming
signals with secret keys such that these signals interfere in an
unpredictable fashion with unauthorized devices but are re-
coverable by authorized ones equipped with the secret keys.
While a majority of the above-mentioned research focuses

on theoretical analysis and simulations, researchers still lack
a practical way to deploy experimental protocols and eval-
uate their performances in typical high-speed wireless en-
vironments. The difficulties of achieving synchronization
with real-time signals and timely RF responses are outlined
and echoed throughout many publications. For example,
the iJam protocol was experimentally demonstrated using
USRP radios; but the transmitter must purposely introduce
dummy paddings at the end of the PHY header, before the
useful data, to account for the decoding and jamming re-
sponse delays at the receiver. During our literature review,
only a single study, by Wilhelm et al. [14], was found to per-
form reactive jamming using SDRs on standard-compliant
networks in real time; the authors demonstrate a hardware
implementation of reactive jammers capable of operating in
low-rate, Zigbee-based 802.15.4 networks.
The primary contribution of our paper is a reactive jam-

ming platform with significantly faster RF response time
as well as additional degrees of freedom for performing live
experiments with a variety of high-speed wireless standards.
The paper is organized as follows: Section 2 discusses design
and implementation details of the reactive jamming frame-
work. We characterize the platform’s detection performance
in WiFi 802.11g networks in Section 3. Validation results for
both WiFi and WiMAX networks are presented in Sections 4
and 5, respectively, and we conclude the paper in Section 6.

2. SYSTEM ARCHITECTURE

2.1 SDR Platform Overview
The USRP N210 SDR hardware and GNU Radio frame-

work provide a low-cost, open-source starting point for de-
velopment. While other SDR platforms exist with poten-
tially faster over-the-air response time (e.g., WARP [2]), we
choose the USRP for our implementation due to its existing
integration with several signal intelligence libraries imple-
mented in GNU Radio and the ease of composing jamming
waveforms on the fly. The USRP N210 is capable of full-
duplex transmission and supports several front-ends, includ-
ing the SBX radio daughterboard that we use in this design.
SBX is an agile transceiver board that provides up to 40
MHz of instantaneous RF bandwidth and tunable center fre-
quency between 400 MHz and 4 GHz. This flexibility allows
us to conduct reactive jamming experiments with a vari-
ety of high-speed wireless standards. To minimize switching
time between RX and TX operations during jamming, we
initialize both TX and RX chains simultaneously in the host
application at start-up. All time-sensitive functions, includ-
ing packet detection, trigger filtering, and transmit-to-jam
operations are implemented in the FPGA hardware, with
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Figure 1: High level overview of the custom IP im-
plementation using the USRP N210 FPGA.

Figure 2: The hardware block diagram of the reac-
tive jammer.

only a few high-level controls provided to host. This im-
plementation effectively bypasses host-side operations and
even the soft processor on the USRP during signal process-
ing. Our custom DSP core takes complete control of the
transmit data path and produce jamming waveforms based
on several application presets. A wide variety of detection
settings and jamming response parameters, such as jammer
uptime, delay, and waveforms, are dynamically accessible
and can be changed on the fly from the host application.

To increase the platform flexibility, we target a hardware
system that works with the highest sampling rate available
on the USRP platform. As such, the hardware design is
built to work with a USRP baseband sampling rate of 25
MSPS, and a hardware clock of 100 MHz.

2.2 Custom Hardware Implementation
The Universal Hardware Driver (UHD) for USRP prod-

ucts allows for the customization of DSP operations at mul-
tiple critical locations in the digital downconversion chain
(DDC). The core of our design, a hardware block that acts
as a custom packet detector and a jamming controller, is
nested within the DDC chain and inside the custom DSP
module wrapper provided by UHD, as shown in Fig. 1.
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Figure 2 shows the high-level architecture of our custom
DSP core, consisting of four main functional blocks: a cross-
correlator for matched filtering, an energy differentiator for
energy rise and fall detections, a jamming event builder, and
a transmit controller. Details on each of these functional
blocks are covered in subsequent sections. In addition to
these main blocks, the core also has a number of smaller
logic blocks responsible for internal timing synchronization
and control of external I/Os. I and Q samples of the received
RF signal, after down-conversion, decimation, and filtering,
are passed through this custom core to carry out user-defined
operations, including signal detection and jamming triggers.
We implement our custom DSP core using Xilinx System
Generator (version 14.2), a plugin for Matlab Simulink that
allows HDL generation directly f rom block-level diagrams.
The host-side control path for the core is enabled through

the user register bus in the UHD design. This user bus con-
tains a 32-bit data bus and an 8-bit address bus, together
providing up to 255 programmable 32-bit registers in the
user’s custom DSP core. The gr-uhd component of GNU
Radio provides the necessary APIs to interact with this user
register bus and program the custom user registers to control
our DSP core. Our current design makes use of 24 of these
user registers to enable run-time updates of cross-correlator
coefficients, detection thresholds, jammer settings, and an-
tenna control signals from host applications. Figure 2 shows
the internal architecture of our custom DSP core, together
with the primary I/O signals routed from higher levels of
the UHD hardware implementation.

2.3 Hardware Signal Detection
We make several design choices in designing our signal de-

tection system to ensure successful and accurate jamming in
real time, while minimizing the occurences of false reactions
and retaining system flexibilty. First, we move signal de-
tection processing from host onto the USRP N210’s FPGA.
This allows for high-speed detector designs and determinis-
tic timing in operations. Secondly, in our custom DSP core,
a signal cross-correlator and an energy differentiator oper-
ate in parallel to realize fast and accurate real-time signal
detection. The cross-correlator performs template-based de-
tection and enables the platform to react to only packets of
a single wireless standard. The energy detector performs
coarse-grained detection to detect any wireless activity on a
particular band of interest. The signal detection hardware
also provides a control path for customization of detection
logic at runtime.
Signal cross-correlator: For synchronization and fine-

grained signal detection, we extract and make use of the
cross-correlation DSP core from Rice University WARP’s
OFDM Reference Design version 15 [2]. This referenced
hardware core implements a 64-sample weighted phase cor-
relator, with 90° phase resolution, using the sign bits from
each pair of incoming I and Q samples. The structure of our
version of the core, with added custom logic, is shown in
Fig. 3. In our design, incoming baseband samples are corre-
lated against a template of 64 3-bit signed cross-correlation
coefficients for both I and Q signals. These coefficients are
generated offline on the host based on knowledge of the wire-
less standards’ preambles or inferred from the low-entropy
portions of the samples of incoming signals. The result of
this process is a confidence-weighted phase correlator out-
put that is then compared against a user-selected threshold
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Figure 3: Block diagram of the cross-correlator
block on the FPGA.

for a detection decision. In addition, we also modify the ref-
erenced cross-correlation core to enable run-time loading of
user-defined correlation coefficients from host-side applica-
tions through the user register bus provided by UHD. This
allows full customization of signal detection as long as the
host application knows the preset preamble values or is able
to detect some low-entropy portions of the received signal.

Energy Differentiator: Our secondary detection method
is an energy differentiator, shown in Fig. 4, which continu-
ously compares the energy level of incoming samples against
the recent past to detect an energy rise or fall. In essence,
this hardware block keeps a running sum of N recent energy
readings, where N is the desired length of the differentiator
(32 samples in our experimental implementation). At the
nth instant, an energy reading x[n] is computed from the
incoming pair of I and Q values. The energy sum y[n] is
then updated according to the relationship:

y[n] = y[n− 1] + x[n]− x[n−N ], for n ≥ N

The output of the energy sum calculator is compared to its
own previous values after scaling by user-defined thresholds
either for energy high or energy low detection. Users can
set detection for any energy level change between 3dB and
30dB, and for both positive (increasing) and negative (de-
creasing) energy changes. This energy differentiation pro-
vides the channel occupancy status if no cross-correlation
coefficients are available.

2.4 Real Time System Response
In our jamming platform, reactive jamming capability is

achieved through triggering jamming operations immmedi-
ately following detection events. In our initial implementa-
tion, a three-stage hardware state machine allows the user
to select up to three trigger event combinations, all of which
must occur within a user-assigned time interval. Once trig-
gered, jamming operations will take place using one of three
user-selectable waveforms: (i) a pseudorandom 25MHzWhite
Gaussian Noise (WGN) signal, (ii) a repetitive replay of up
to 512 most recently received samples, or (iii) the waveform
currently being streamed to the transmit buffer from host.
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Figure 4: The energy differentiator block diagram.

The duration of jamming is also customizable and can range
from 1 sample time (40ns) to 232 sample time (about 40s).
A user-defined delay option between detection triggers and
active jamming is also provided to enable jamming of spe-
cific locations in the packets.
Since all detection and reaction functions are implemented

in FPGA hardware, the turnaround time between detection
triggering and jamming response is extremely short. An RF
jamming response can be initiated within 1 clock cycle of
detection trigger, with approximately seven more cycles re-
quired to populate the digital up-conversion chain (DUC)
with jamming waveforms. With the 100 MHz hardware
clock of the USRP N210 platform, our platform can detect
and jam over-the-air packets within 80ns of signal detection.

2.5 Host Side Interface
We implement a Python-based custom GUI to configure

our jammer operations on the fly, using GNU Radio Com-
panion with additional custom code. This GUI acts as a
reactive jamming event builder, where users can specifically
control detection types and desired jamming reactions dur-
ing run time. The user inputs are passed directly to the
UHD driver stack, which uses pre-defined functions to set
all RF as well as our custom DSP core operations. The
GUI application is a useful tool for demonstration purposes,
and can be easily modified to provide an interface for more
powerful host side processing applications, thereby enabling
complete, autonomous jamming operations.

3. DETECTION PERFORMANCE

3.1 Jamming Timelines
To get an impression of the platform’s reactive jamming

capabilities, we estimate the timelines of various detection
and jamming operations based on their latency in terms of
hardware cycles and show our analysis in Fig. 5. Here we de-
note the minimum time for the system to detect an energy
high (or low), corresponding to an active transmission, as
Ten det, the time for cross-correlation detection as Txcorr det,
the time to schedule and initialize the TX pipeline for jam-
ming as Tinit, and the jamming duration as Tjam. The sys-

TTxcorr_det
Ten_det Tinit Tjam

PHY PACKET

TTresp

Figure 5: Reactive jamming timelines.

tem response time, denoted as Tresp, is the combined time
for both detection and jamming triggers. We make the fol-
lowing observations:

• An energy high (or low) detection takes at most 32
baseband samples, or 128 clock cycles, to trigger. This
duration can be shorter if the threshold is set low (at
the cost of higher false alarm rates). Since the hard-
ware clock is 100 MHz, we have Ten det < 1.28µs.

• The cross-correlator hardware performs a 64-sample
phase correlator. With a good preamble design, it
takes exactly 64 samples from the start of transmis-
sion to trigger a cross-correlation detection. At a digi-
tal sampling rate of 25 MSPS, this means Txcorr det =
2.56µs.

• Once a detection triggers, it takes about 8 clock cycles
to initialize the transmit chain and start jamming, so
Tinit ≈ 80ns. The system response time is therefore
less than 1.36µs if using energy detection, and 2.64µs
using cross-correlation detection.

• The jamming duration (Tjam) is selectable between
40ns and 40s by the users. In general, a short but
sufficient jamming burst is desired. Jamming can also
be inititalized after a custom delay to target specific
portions of the packet. This type of“surgical” jamming
is highly destructive due to its ability to target critical
information contained in a wireless PHY packet, such
as channel estimation [13].

In comparison, each 802.11gWiFi packet contains 10 short
preambles (8µs duration), 2 long preambles (8µs duration),
PHY parameters (4µs) and a variable length Physical Layer
Service Data Unit (PSDU). With a system response time of
at most 2.56µs, an 802.11g packet can be jammed before the
first OFDM data symbol is received.

3.2 Signal Detection
We characterize the signal detection performance of the

platform in a WiFi transmission scheme. As mentioned
earlier, the signal detection subsystem consists of a cross-
correlator and a differential energy detector for two different
detection purposes. The cross-correlator is useful for fine-
grained detection of signals with known preambles from a
particular wireless standard. On the other hand, the differ-
ential energy detector is useful when no signal preamble is
known before hand, and the user’s goal is to detect any kind
of RF signals on a specific band of interest.

In one experiment, the cross-correlator is set up to detect
two types of WiFi preambles: the short preambles consisting
of 16 samples in length, and the long preambles consisting
of 64 samples in length. To test the robustness of this cross-
correlator, we use a second USRP N210 as the transmitter
and generate two types of frames for testing: complete WiFi
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frames with 10 short preambles, 2 long preambles, the SIG-
NAL symbol, and the payload, as well as pseudo-frames with
only a single short or long preamble. Our characterization
is performed in a wired link to isolate environmental effects
and provide independently measured SNR values at the re-
ceiver.

To get the characteristic false alarm rates for a particular
correlation threshold, we terminate the receiver with a 50Ω
terminator and count the number of false triggers that occur
in 30 minutes. For probability of detection, we generate and
send 10000 WiFi frames (or pseudo frames), at 130 frames
per second, and count the number of detections. Figure 6
shows the detection results of long WiFi preambles under
two false alarm rates, 0.083 and 0.52 triggers/s. We see that
using a lower correlation detection threshold, i.e., aiming for
a lower false alarm rate, generally decreases the probability
of detection. For detection of a single long WiFi preamble,
the detection rate increases with higher SNR and is slightly
above 50% for SNR over 5 dB, which is rather low for a
64-sample correlator. The efficiency of the cross-correlator
depends on a number of parameters, including the sampling
rate mismatch between the correlator and the RF signal, the
dynamic range characteristics of the signal being correlated,
and the quantization of both the phase and amplitude of the
correlation coefficients. In this case, the sampling rate mis-
match between the transmitter and receiver causes a highly
suboptimal operating condition for the cross-correlator. On
the transmit side, the WiFi long preamble is generated as-
suming a sampling rate of 20 MSPS according to the 802.11g
standard (64 samples within a period of 3.2µs FFT integra-
tion time). On the receive side, the correlation window also
consists of 64 samples, but at a digital sampling rate of 25
MSPS as dictated by the UHD hardware design. As a re-
sult, an orthogonal code that is 3.2µs long is being correlated
across its first 2.56µs, yielding significantly low detection
performance. Increasing the correlation size above 64 sam-
ples will undoubtedly improve the single-preamble detection
performance, but will also give rise to higher resource uti-
lization, lower speed, and potential timing issues.

Figure 6 also shows that the probability of detection be-
comes better if multiple copies of the same preamble are
transmitted, as in the case of full WiFi frames. Since two
long preambles are transmitted in each WiFi frame, the
cross-correlator yields significantly higher detection rates at
over 75% for SNR above 5 dB.

For comparison, we conduct the same test using full WiFi
frames but set the cross-correlator to detect only WiFi short
preambles. Each short preamble consists of 16 samples at 20
MSPS, repeated for 10 times in a WiFi frame. The duration
of the orthogonal code here is 0.8µs with 10 cyclic repeti-
tions, totaling 8µs of short preamble time. The detection
results, shown in Fig. 7, show that the cross-correlator is
able to trigger on over 90% of the preambles at -3 dB SNR,
and over 99% of the preambles at SNRs above 3 dB, with a
constant false alarm rate of 0.059 detection per second.

Using the same methodology, we characterize the energy
differentiator detection performance by sending complete
WiFi frames at 130 frames per second, for a total of 10,000
frames. The energy detection threshold is set to 10 dB, yield-
ing a measured false alarm rate of 0 detection per second.
Figure 8 shows the energy high detection performance when
the received SNR is increased gradually. For SNRs below
-3 dB, the signal level is below the noise floor, and thus no
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Figure 6: Cross-correlation based detection of WiFi
long preamble for packets with a single long pream-
ble as well as full WiFi frames.
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Figure 7: Cross-correlation based detection of full
WiFi frames using short preambles.

detection occurs. When the SNR is between -3 dB and 8 dB,
the signal level approaches the noise floor, and multiple en-
ergy high detections are recorded per frame. The excessive
detections are caused by continuous dynamic range varia-
tions during the duration of the PHY frame, as a result of
the superposition of OFDM signals and noise at roughly the
same power levels. This effect fades as the SNR raises above
the energy detection threshold, and the energy differentia-
tor reliably produces a single detection per frame for SNRs
above 10 dB.

These characterization results demonstrate the functional
and efficient performance of the detection system within our
framework. Multiple detection methods can be combined to
create even more reliable detection mechanisms.

4. VALIDATION ON WIFI NETWORKS
We perform system tests to validate our platform’s reac-

tive jamming capabilities with real-time traffic in two differ-
ent standards: WiFi 802.11g and mobile WiMAX 802.16e.
This section presents our experimental results in WiFi 802.11g
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Figure 8: Performance of the energy differentiator in
terms of detection probability for full WiFi frames.

networks, while section 5 shows our results in mobile WiMAX
networks.

4.1 Experimental Setup
In order to test the effectiveness of our real-time reactive

jammer in a non-disruptive controlled manner, we set up a
wired, 5-port interconnect network using power splitters as
shown in Fig. 9. 20dB attenuators are placed on ports 1 and
2 to emulate the path loss caused by wireless environments
and to prevent receiver saturation. A variable attenuator is
added to Port 4 in order to provide a large dynamic range
for the effects of the jammer on the network. The network
is characterized using a vector network analyzer at the num-
bered ports, and port to port losses are recorded in Table 1.

For this experimental setup, we connect system compo-
nents as shown in Fig. 9. A Linksys WRT54GL router, pro-
grammed with custom firmware, acts as a wireless network
access point (AP) and is connected to port 1. The wireless
client is placed at port 2. Ports 4 and 5 are dedicated to the
jammer transmitter and receiver, respectively. All active
system components are programmed to use the same WiFi
channel 14 at 2.484 GHz and WiFi protocol 802.11g. No
other interference is observed in the channel. Finally, port

Figure 9: 5-port network showing the connections
to the system.

3 is connected to an oscilloscope in order for us to observe
the signaling environment in the time domain.

4.2 Experimental Procedure
The AP is connected to a computer running connectivity

tests along with throughput traffic tests using iperf, a pop-
ular network bandwidth measurement tool at application
layer. An identical computer is also set up on the wireless
client side in order to generate and characterize the wire-
less traffic between the two users. We run simple ping tests
to ensure active network connection and delay. The main
experiment is a detailed iperf UDP bandwidth test. We
designate the AP as the iperf server, and the wireless client
as the iperf client. UDP bandwidth tests with maximum
bandwidth of 54 Mbps are conducted repeatedly for 60 sec-
ond intervals between these two hosts under different jam-
mer settings. The 802.11g buffering parameters and rate
back-offs are not constrained and therefore considered as
inherent parts of the hardware limitations and 802.11 link
characteristics, respectively.

A USRP N210 FPGA in full-duplex operation is intro-
duced into the system as the jamming entity. The jammer
is connected to the 5-port network as described in Fig. 9. Its
settings is controlled on the fly using the interface presented
in Section 2.5. The performance of our reactive jammer is
measured and compared against the no-jamming case results
along with the continuous jamming case results.

4.3 WiFi Reactive Jamming Results
Using the same hardware platform, we characterize three

different types of jamming: a continuous jamming, reactive
jamming with relatively long uptime after trigger (0.1 ms),
and reactive jamming with short uptime after trigger (0.01
ms).

Bandwidth Under Jamming: The results from our
iperf 60-second UDP bandwidth test is shown in Fig. 10.
We plot the achievable UDP bandwidth reported by iperf
against the signal-to-interference power ratio (SIR) at the
AP. A wide SIR range is generated by controlling jammer
TX power as well as though the use of stacked attenuators.
Note that the SIR axis is arranged in descending order to
illustrate the drop in system performance with increase in
interference power.

Though we specified the maximum UDP bandwidth at
54 Mbps for the iperf application, the maximum achieved
UDP bandwidth during application runs, with or without
the jammer, was around 29 Mbps. This is due to over-
head within the 802.11 standard, the TCP/IP stack, and
additional data overhead of the iperf application itself. The
dashed line in Fig. 10 represents maximum achievable band-

Output

Input 1 2 3 4 5

1 - -51.0 dB -25.2 dB -38.4 dB -39.3 dB

2 -51.0 dB - -31.7 dB -32.0 dB -32.8 dB

3 -25.2 dB -31.7 dB - -19.1 dB -19.9 dB

4 -38.4 dB -32.0 dB -19.1 dB - -

5 -39.2 dB -32.8 dB -19.8 dB - -

Table 1: Insertion loss values measured at the ports
of our 5-port network.
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Figure 10: WiFi UDP Bandwidth reported by iperf.
The jamming power increases from left to right.

width without the jammer. A continuous jammer, even at
low jamming power, raised the system noise level and sig-
nificantly reduced network bandwidth. At an SIR of 33.85
dB, the continuous jammer caused the wireless bandwidth
to drop to 0 Kbps, and connection to the access point was
lost.

Reactive jammers disrupt the wireless networks in a more
subtle fashion, and thus are harder to detect. The SIR val-
ues presented here depict the channel conditions experienced
by the AP during those brief moments when the jammer
was actively transmitting. Throughout these experimental
runs, the access point had no knowledge of the jammer’s
presence and always reported an “excellent” link condition.
We see from Fig. 10 that a reactive jammer with longer up-
time after trigger tends to be more disruptive to the wireless
network. The 0.1ms uptime reactive jammer reduced the
network bandwidth by half at an SIR of 33.85 dB, and com-
pletely shut down the network at SIR 15.94 dB. The 0.01ms
uptime reactive jammer needed to transmit at a much higher
power, yielding an SIR of 2.79 dB at AP, in order to shut
down the wireless channel.

Packet Reception Ratio Under Jamming: Figure 11
shows the packet reception ratios (PRR), i.e. the reliability
of the link, under various jamming conditions. We expe-
rienced link drop-out with a continuous jammer when the
PRR dropped from 100% to 0% at around 33 dB SIR (i.e.,
very low jamming power). Note that though the instan-
taneous power requirement is low, the continuous jammer
must remain on the entire time to shut down the wireless
network. The 0.1ms uptime reactive jammer required 17 dB
more instantaneous power to achieve 0% PRR at 16 dB SIR
and below. However in this case, the jamming burst only
lasted for 0.1ms. The 0.01 ms uptime reactive jammer was
the most discreet but also required the highest instantaneous
power, yielding 0% PRR only at SIRs below 3 dB.

While the results indicates that higher instantaneous jam-
ming powers are required to perform reactive jamming op-
erations, it is important to note that the actual energy re-
quirements are considerably lower. Only a short reactive
jamming burst is required to disable the wireless link and
force a reset of the client connection to re-establish commu-
nications.

Platform Reconfigurability: Our WiFi jamming ex-
periments also demonstrate to a large extent the runtime
reconfigurability of our jamming platform. All three differ-
ent types of jammers were realized at runtime on a single
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Figure 11: WiFi Packet Reception Ratio reported
by iperf. The jamming power increases from left to
right.

hardware instantiation. We did not have to reprogram the
FPGA to switch between different types of jammers. On-
the-fly jamming personalities can be changed with a small
latency equivalent to the latency of the UHD user setting
bus (hundreds of ns).

5. VALIDATION ON WIMAX NETWORKS
To demonstrate our reactive jamming platform’s ability

to reactively jam signals from mulitple high-speed wireless
standards, we attempt to detect and jam downlink signals
from a mobile WiMAX base station. The target communi-
cation standard is 802.16e, using OFDMA as the physical
layer. We use an Airspan Air4G macro cell base station
to continuously broadcast the downlink signals. The base
station is set to operate in Time Division Duplexing (TDD)
mode and utilize a 10 MHz bandwidth channel at 2.608 GHz
center frequency. In this mode, the hardware sampling rate
is set to 11.4 MHz, and the modulation FFT size is set to
1024. Three different preamble carrier sets are defined with
different allocations of subcarriers. Each preamble set has a
non-zero pilot tones every 3 subcarriers, and 86 guard band
subcarriers on each side of the spectrum. Furthermore, each
preamble set uses a different 284-value PN sequence to mod-
ulate its subcarriers. The preamble carrier set is selected
based the Cell ID and Segment ID value of the base station.
For this experiment, we set the base station to Cell ID 1 and
Segment ID 0. In the time domain, the WiMAX preamble
constitute a single OFDMA symbol at the beginning of each
frame, lasting for 100.8µs. Internally, this preamble contains
an orthogonal code of 284 samples that repeats itself 3 times
within the preamble time. The total duration of this code
is 25µs.

Lacking a functional WiMAX receiver to establish a full
TCP/IP stack for running system throughput tests with the
base station, we only evaluate reactive jamming performance
at the physical layer by observing WiMAX and jamming sig-
nals on an oscilloscope. The results presented here simply
show an informative proof, rather than a thorough mea-
surement analysis. Figure 12 shows a scope capture of both
the WiMAX base station signal and our reactive jamming
signal in the time domain. In the correlation scheme, we at-
tempt to detect the WiMAX preamble using our 64-sample
cross-correlator, running at 25 MSPS. Again, the 25µs or-
thogonal code in the preamble is being correlated across its
first 2.56µs. Insufficient correlation time leads to a mis-
detection rate of about 2/3 of the packets. However, when
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Figure 12: Reactive jamming of WiMAX downlink
packets from an Airspan Air4G base station.

combining the cross-correlator with the energy differentiator
for detection, our system is able to detect reliably 100% of
all downlink packets from only the mobile WiMAX network
being observed. The lower portion of Fig. 12 shows our jam-
ming signal in real time with a one-to-one correspondence to
the WiMAX downlink frames. With the energy differentia-
tor alone, we can simply detect wireless activities without
the ability to pinpoint the underlined wireless technology.
Having both effective detection and protocol awareness can
enable a wide range of sophisticated attacks, such as a type
of “surgical jamming” mentioned above, as well as malicious
wireless packet injection to interfere with ongoing commu-
nications.

Limitations of the platform: it is worth mentioning
that our reactive jamming platform has some inherent limi-
tations, as clearly demonstrated in this section. The signal
detection system works on a fixed correlation window (64
samples) and digital sampling rate (25 MSPS), thus mak-
ing it difficult to detect signal preambles of long duration or
different sampling rates.

6. CONCLUSIONS
In this paper we have presented our initial implementation

of a real-time, protocol-aware, reactive jammer targeted for
high-speed wireless networks with preambles. Based on the
popular SDR platform USRP N210, our jammer is highly
versatile and adapts quickly to intercept 802.11 and 802.16e
network traffic under various channel conditions.

Our initial experimental results show that effective reac-
tive jamming in high-speed wireless networks is indeed fea-
sible for an adversary. The results also show that our plat-
form can reliably detect and react to packets from a range of
wireless standards. The platform is extremely flexbile and
programmable to adapt quickly on the fly. This tool sets
an example to prove that SDR-based reactive jamming is
practical and should be considered a serious physical layer
security threat that warrants additional research and consid-
eration in standard development. The testbed presented in
this paper can be an effective tool for studying and develop-
ing countermeasures to a new series of real-time over-the-air
physical layer attacks.
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