
Rapid Prototyping of Wireless Physical Layer Modules
Using Flexible Software/Hardware Design Flow

James Chacko, Cem Sahin, Douglas Pfiel, Nagarajan Kandasamy, Kapil Dandekar
ECE Department, Drexel University, Philadelphia, PA 19104

{jjc652,cs486,dsp36,nk78,krd26}@drexel.edu

ABSTRACT
This paper describes a step by step approach in designing
wireless physical layer modules starting from a software im-
plementation in MATLAB to a hardware implementation
using Xilinx SysGen and ModelSim. The described design
flow promotes baseband physical layer research by providing
high flexibility and speed to the process of module creation
verification and deployment. The novelty introduced into
our system lies within the flexible components created us-
ing this design flow, which enables on-the-fly modification
of multiple parameters to suit various wireless protocols.

Categories and Subject Descriptors
B.6.3 [Hardware]: Logic Design - Design Aid—Automatic
synthesis; Verification; Simulation

Keywords
digital baseband, design flow, MATLAB, Xilinx SysGen,
ModelSim

1. INTRODUCTION
Wireless protocols are often implemented in custom hard-

ware in order to satisfy heavy computational requirements
within tight time constraints. Hardware implementations
can be cumbersome to design and verify and therefore re-
quire longer development times. A programmable software
implementation of the physical layer, also called Software
Defined Radio (SDR), is therefore very advantageous in terms
of supporting multiple protocols, faster time-to-market, higher
chip volumes and easy modifications. Though convenient,
SDR relies on the researcher to choose between the wide ar-
ray of solutions available that are different in their design
language, implementation constraints and flexibility.

Apart from flexible characteristics inherent to SDR’s, an-
other factor that takes prominence on the choice of SDR
would be the design flow involved, which can vary signifi-
cantly in the flavor of software/hardware design languages

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FPGA’15, February 22–24, 2015, Monterey, California, USA.
Copyright c© ACM 978-1-4503-3315-3/15/02 ...$15.00.
http://dx.doi.org/10.1145/2684746.2689084.

used. For instance, based on the chosen SDR platform de-
signing can be either done with high level languages like
MATLAB, Python, C, etc that may or may not translate
automatically into hardware. It can involve writing codes in
HDL languages such as Verilog and VHDL. Through this pa-
per, we’ll discuss the requirements we faced designing wire-
less physical layer modules and tools that were selected for
implementation. This design tutorial is organized as follows:
Section 2 discusses some of the major design tools wile Sec-
tion 3 discusses the requirements in choosing the right one.
Section 4 describes our proposed design flow in detail and
we will finally conclude with Section 5.

2. DESIGN TOOLS
Developing any part of the wireless physical layer is easi-

est when first implemented in software, and MATLAB is the
most extensively used tool in this area. MATLAB provides
a high level interactive environment for numerical computa-
tion and programming. It is a powerful tool in developing
wireless applications especially with its built in math func-
tions and application specific toolboxes [1]. As an add-on
to its coding environment, MATLAB also provides Simulink
which is a graphical programming language tool for model-
ing dynamic systems, such as wireless systems, that require
a wide range of signal processing capabilities. A similar piece
of software to Simulink would be LabVIEW with its graph-
ical communication toolsets [2] and its graphical object ori-
ented approach in developing wireless models. LabVIEW is
a newer addition to wireless design development tools with
provisions to run m-code within its environment to translate
models previously written in MATLAB script. Off the shelf
SDRs such as WARPLab [3], GNUradio [4] and SORA [14]
allow the user to program the baseband/physical layer in
MATLAB, Python and C, respectively, and use modular ra-
dio front ends for transmission and reception. These SDRs
are relevant for conducting wireless baseband level research
in software but they do not provide the runtime advantage
of having a hardware implementation to generate faster re-
sults.

Wireless hardware system development is often implemen-
ted through HDL coding languages like Verilog and VHDL
at the basic level with common development environments
being ModelSim, Altera Quartus and Xilinx ISE [5–9]. Mod-
elSim is more simulation focused, while the latter two are
more focused on targeting and running HDL code on hard-
ware. Both Xilinx ISE and Altera Quartus have communica-
tion design toolboxes that ease the development of wireless
modules. The availability of automatic script or graphical

32

software design translations to hardware makes hardware
development easier for the development of wireless phys-
ical layer designs. Examples of such designing platforms
would be MATLAB Simulink/SysGen and Parallel Applica-
tion from Rapid Simulation (PARS) which both translates
designs directly to hardware [10, 11]. While PARS requires
Sundance hardware, MATLAB Simulink/SysGen can target
a wide variety of FPGA boards. In both cases, automatic
translation depends largely on the complexity and availabil-
ity of the hardware libraries to compile hardware equivalent
designs. In certain research areas, such as wireless physical
layer design, it can be difficult to know which libraries will be
required, thought this might be evident later based on how
a project matures and branches. In such cases the challenge
then is drawn to programming within the constraints of the
chosen tool. Switching design flows can be a cumbersome
task in any project and therefore choosing the appropriate
design environment and tool that can scale in the future
is extremely important. Wireless research as described in
[12, 13] develops a flexible software-hardware implementa-
tion that can be leveraged to research various current and
future OFDM based wireless protocols.

No matter which design flow is chosen, there are certain
essential requirements in a design environment which can
also be relevant and specific to the kind of project being
undertaken. In this paper, we are particularly interested
in the design and research involving the baseband layer of
wireless standards that benefit from the flexibility that is
typical of a software implementation as well as real time
performance which is typical of a hardware implementation.
In the next section we will go over the requirements we saw
essential in choosing an appropriate design tool.

3. DESIGN TOOL REQUIREMENTS
Flexible Designing Environment: This is the most sig-

nificant attribute in choosing a design language and environ-
ment. The programming method for building the design can
either be script based or GUI based, but must provide gran-
ularity and flexibility in the aspect of building complex de-
signs based on functions and libraries that are built-in to the
programming language. In the case of designing the wire-
less baseband/physical layers, programs with built in com-
munication libraries and functions are beneficial and would
give the programmer an edge in implementing designs at
a much faster rate than otherwise would have taken longer
if implemented from scratch. The language should also be
flexible enough to have user defined functions/modules in-
tegrate well with built in functions/modules, which requires
well documented descriptions for ease in integration.

For instance, in order to build a quadrature amplitude
modulation (QAM) module, that maps bits into waves, the
presence of built in QAM functions and libraries would ease
implementation but these libraries may not be available for
more complex modules comprising the wireless baseband.
QAM itself can vary in its scale setting which decides on
how many bits to map at a time: BPSK, 4QAM and 16QAM
that maps 1, 2 and 4 bits, respectively. Varying data rates
through modules especially in a pipeline are much easier to
implement in software than on hardware where implemen-
tation relies on data to be predictive. Thus, the need arises
for flexibility in the use of available functions/libraries and
the programming environment itself.

Debugging and Verification Environment: The de-
bugging and verification environment associated with a pro-
gramming language is nearly as important as designing the
system itself. The debugging environment becomes partic-
ularly relevant in complex designs that cannot can not be
built in a tier system that are otherwise inherent in smaller
designs. Complex system designs involving feedback and
control loops, as in wireless baseband/physical layer designs,
are far more complex to debug and verify.

The channel estimation block is an appropriate example of
a complex module within the wireless baseband layer that
provides channel data to rectify the received signal. The
complexity in this block is due to the processing speed and
data alignment with which it provides feedback. An error
within would be harder to locate and often forces the pro-
grammer into tracing errors from scratch if not aided with
higher level debugging tools like signal captures and wave-
forms. The effort of debugging and verification also changes
based on if the design resides in software or on hardware
and it is best to choose an environment that has strengths
in debugging in both areas.

Result Capture and Processing: Based on where the
design resides, software or hardware, the process of gather-
ing results for processing can be a challenge of its own. A
fully software based implementation benefits from being able
to capture data from across the entire design easily, whereas
significant work needs to be done to capture the same for
a hardware based implementation. In the area of wireless
research, where designs may reside on software, hardware or
consist of a complex integration of both software and hard-
ware cores, the availability of capturing and processing data
flexibly is a significant attribute of the right design tool.

For instance, in the case of implementing the QAM mod-
ule discussed earlier, data going into and out of the module
are totally different in it’s characteristics, one being bits and
the other fixed point decimal values on hardware or floating
point in software. Research in this area depends on visu-
alizing channel mapping results and the ability to capture
data around the QAM module is necessary irrespective of
whether its on software or hardware.

4. DESIGN FLOW
In this section of the paper, we are going to have a de-

tailed discussion of our design flow that starts from utilizing
the flexibility provided with a full software implementation
to utilizing the speeds provided with a full hardware im-
plementation. We use this design flow in implementing the
baseband/physical layer modules targeted for wireless re-
search.

4.1 MATLAB Script Implementation
As the first step towards implementing a module, we write

MATLAB m-code that will also be used as a blueprint to
build further upon the model if required. We chose MAT-
LAB because of the high level interactive environment for
numerical computation and availability of pre-built commu-
nication toolboxes and function libraries. At this stage,
there are a few relevant points to be kept in mind while
writing MATLAB scripts. The first would be to have the
option of changing function variables and parameters from
outside the function call itself for comparative flexibility
which will get more clearer in the next few sections. The
second would be to have a structured data source and data

33

!"#$%&' !$()*$+,' !-./0+' 123!$(' 45#675#0'

83"260' 8260*!$(' 94:;'

% green summary comment!
v = zeros(1:10);!
!
for(i = 1; i < 10; i++) {!
 some code!
 some code!
 % green comment!
}!
!
% another green comment!
if (blah) {!
 do this now;!
 some other code!
}!

% green summary comment!
v = zeros(1:10);!
!
for(i = 1; i < 10; i++) {!
 some code!
 some code!
 % green comment!
}!
!
% another green comment!
if (blah) {!
 do this now;!
 some other code!
}!

Figure 1: Proposed design flow for projects implementing baseband/physical layer modules for wireless
research.

sink plotting/processing output data for quick script level
verification of functionality and correctness.

4.2 MATLAB Simulink Implementation
As the next step, we use MATLAB’s Simulink graphical

design tool and create the functional equivalent of the script
that was previously developed. The Communication Sys-
tems Toolbox available in Simulink provides a wide array
of built-in wireless modules that helps the creation of wire-
less physical layer modules, but its library implementation
may vary with the one in script. To continue, have the re-
sults from both the script and Simulink designs compared
against each other to ensure script and Simulink design level
coherence to the same set of input and output data that can
be captured easily within MATLAB’s workspace. For those
modules that do not have built-in equivalents for the func-
tions to be implemented, it can be put together with the
logic level functions/modules Simulink provides.

4.3 SysGen Implementation
In this section, we are going to use Xilinx System Gener-

ator (SysGen) Toolkit that is present as an add-on within
the Simulink library in MATLAB to create the SysGen func-
tional equivalent of the Simulink design that was created in
the previous step. By using building blocks provided in the
SysGen library, we will be able to build custom hardware
IPs and directly export them to hardware using SysGen’s ex-
port tools. The implementation change from floating point
arithmetic to fixed point arithmetic has to be kept in mind
while designing blocks in SysGen. After completing the de-
sign it must be crosschecked for errors against its Simulink
implementation by having the data to the SysGen modules
sourced directly from the Simulink data source and results
captured and processed within the MATLAB workspace.
This will ensure functional correctness and show the range
of error from conversion to fixed point implementation.

4.4 ModelSim Implementation
Complex Verilog/VHDL functions and controls can be

created through ModelSim and imported into MATLAB’s
Simulink environment using the BlackBox SysGen module.
This allows building of complex functions much quicker than
otherwise would have taken for piecing together SysGen li-
brary blocks. Once created and imported into the design,
the models can be further studied against the inputs from
the Simulink/SysGen design by invoking ModelSim to scope
the signal and control flow through waveforms for ease in de-
bugging.

4.5 Software/Hardware Co-Simulation
Wireless communication research benefits greatly from hard-

ware support in the form of accelerators and radio front
ends. Since a full baseband implementation in hardware
is difficult to implement from scratch, having the ability for
software/hardware co-simulation enables software flexibility,
hardware speeds and access to the wireless channel.

4.5.1 PC Driven Interface
At this stage, our hardware designed through SysGen will

be verified for their correct functionality on an FPGA, a
ML605 board in our project, using real data before moving
forward. Our Simulink-based design provides capabilities to
fulfill this need. Leveraging the features available through
the Simulink software, we set up a software-hardware Ether-
net co-simulation platform. In this scenario, the experiment
master is set up as the host PC, which orchestrates the full
experiment.

4.5.2 Data Input/Output
For our co-simulation experiment, we initialize the data

using the MATLAB workspace, where each data vector is
created and prepared for transmission through our FPGA
design. The co-simulation feature feeds data into these entry
points at the beginning of the experiment via the Ethernet

34

connection onto the ML605, allowing them to flow through
our FPGA design, and captures the data as the experiment
is progressing. The captured data is finally saved back into
the MATLAB workspace, where a final script checks the
received data against the expected results for correctness.
It should be noted that even though the ML605 is the one
processing the data, this scenario allows us to tap into the
data’s flowpath at any point with the use of Simulink scopes
and identify the problematic stages on the hardware if there
are any error flags.

4.6 Hardware Implementation
Although the time and effort needed to set up a software-

hardware Ethernet co-simulation experiment is short, the
runtime for each experiment is extremely long. The per-
formance of our custom FPGA design is diminished signifi-
cantly due to the host PC being the experiment master. The
co-simulation framework does prove to be a valid method
to verify our hardware design rapidly for smaller data sets.
Since it cannot provide results quickly for larger data sets
within a reasonable time, we will discuss a faster method
that will unleash the full performance of our hardware im-
plementation.

4.6.1 Microblaze Driven Interface
Close-to-real-time measurements are ideal when trying to

determine the characteristics of hardware designs. A fully
embedded design achieves this goal with few additional de-
sign requirements. For a data sourced development process,
we complemented our hardware design with an on-board
data generator, which also has the capability to keep track
of error rates. The control of the experiment has now been
moved from the host PC to the on-board processor, MicroB-
laze, available on the ML605. In addition to implement-
ing and integrating the on-board data generator, the code
loaded on the MicroBlaze initializes the board and starts and
controls the experiment throughout its runtime. This design
was developed by exporting the MATLAB Simulink/SysGen
design directly to Xilinx Embedded Development Kit (EDK)
and then using Xilinx Software Development Kit (SDK) that
allows to communicate with the FPGA through C code run-
ning on the on-board MicroBlaze processor.

4.6.2 Data Input/Output
As introduced above, the data is fed into our design us-

ing our custom on-board data generator. This hardware
block simply accepts a seed and outputs randomly gener-
ated data. Using carefully calculated delays, the same data
(using the same seed) is generated at the receive end of
the design as well for cross checking. Once the MicroB-
laze sends the signal to start the design flow, the data is
sent through all the stages of our design serially and looped-
back to the receive path. The pre-generated data is then
compared against what was captured from the receive path.
The total bit count, and the bit error rates are updated in
real-time within the data generation block registers, which
are accessible from the MicroBlaze at any time for verifica-
tion. Upon full completion of the experiment (i.e. the total
bit count reached the user-preset count set for the experi-
ment), the total bits sent/received, total number of errors,
and the bit error rate (BER) data are also printed to the
COM port for user analysis.

5. CONCLUSION
This paper throughly describes the requirements we found

essential in choosing design tools for designing the base-
band/physical layer for wireless research in software and
then realizing it in hardware in a step-by-step process for
assembling a novel research tool. The described design flow
benefits from the flexibility provided with software imple-
mentation and hardware runtime speeds. We also described
tool techniques that are relevant in SDR research that we
used for debugging and verifying complex designs compris-
ing of both software and hardware modules with ease.

Acknowledgment
This project is supported by the National Science Founda-
tion through grants CNS-0854946 and CNS-0923003.

6. REFERENCES
[1] Matlab Communications System Toolbox.

http://www.mathworks.com/products/communications/.

[2] LabView Tools: IP for Software Designed Instruments.
https://decibel.ni.com/content/docs/DOC-29613.

[3] ”Rice University WARP - Wireless Open-Access
Research Platform (WARP).” http://warp.rice.edu.

[4] GNU Radio Overview.
http://gnuradio.org/redmine/projects/gnuradio.

[5] Xilinx Comprehensive Baseband Solutions.
http://www.xilinx.com/applications/wireless-
communications/baseband/index.htm.

[6] Xilinx Wireless IP, Reference Designs.
http://www.xilinx.com/esp/wireless/.

[7] Altera Software Defined Radio.
http://www.altera.com/end-
markets/wireless/advanced-dsp/sdr/wir-sdr.html.

[8] ModelSim-Altera Edition Software.
http://www.altera.com/products/software/quartus-
ii/modelsim/qts-modelsim-index.html.

[9] ModelSim: ASIC and FPGA design.
http://www.mentor.com/products/fv/modelsim/.

[10] Matlab HDL Verifier.
http://www.mathworks.com/products/hdl-verifier/.

[11] Parallel Application from Rapid Simulation.
http://www.sundancedsp.com/development-
tools/pars.

[12] J. Chacko, C. Sahin, D. Nguyen, D. Pfeil,
N. Kandasamy, and K. Dandekar. Fpga-based
latency-insensitive ofdm pipeline for wireless research.
In High Performance Extreme Computing Conference
(HPEC ’14). 19th Annual HPEC Conference, Sept
2014.

[13] B. Shishkin, D. Pfeil, D. Nguyen, K. Wanuga,
J. Chacko, J. Johnson, N. Kandasamy, T. Kurzweg,
and K. Dandekar. Sdc testbed: Software defined
communications testbed for wireless radio and optical
networking. In Modeling and Optimization in Mobile,
Ad Hoc and Wireless Networks (WiOpt), 2011
International Symposium on, pages 300 –306, May
2011.

[14] K. Tan et al. Sora: high performance software radio
using general purpose multi-core processors. In Proc.
USENIX Symp. Networked Systems Design &
Implementation (NSDI), pages 75–90, 2009.

35

