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Abstract—Reconfigurable antennas are capable of dynamically
re-shaping their radiation patterns in response to the needs of
a wireless link or a network. In order to utilize the benefits of
reconfigurable antennas, selecting an optimal antenna state for
communication is essential and depends on the availability of full
channel state information for all the available antenna states. We
consider the problem of reconfigurable antenna state selection in
a single user MIMO system. We first formulate the state selection
as a multi-armed bandit problem that aims to optimize arbitrary
link quality metrics. We then show that by using online learning
under a multi-armed bandit framework, a sequential decision
policy can be employed to learn optimal antenna states without
instantaneous full CSI and without a priori knowledge of wireless
channel statistics. Our objective is to devise an adaptive state
selection technique when the channels corresponding to all the
states are not directly observable and compare our results against
the case of a known model or genie with full information. We
evaluate the performance of the proposed antenna state selection
technique by identifying key link quality metrics and using mea-
sured channels in a 2 X 2 MIMO OFDM system. We show that
the proposed technique maximizes long term link performance
with reduced channel training frequency.

Index  Terms—Beamsteering, cognitive radio, MIMO,
multi-armed bandit, OFDM, online learning, reconfigurable
antennas.

I. INTRODUCTION

ECONFIGURABLE antenna technology has gained a lot

of attention in recent years for applications in wireless
communications. Both theoretical and experimental studies
have shown that reconfigurable antennas can offer additional
performance gains in multiple input multiple output (MIMO)
systems by increasing channel capacity [2], [3]. These have
also been shown to perform well in low SNR regimes [4].
Gradually making their way into commercial wireless systems
[5], [6], these antennas bring two major benefits to traditional
multi-element wireless systems. First, the additional degree of
freedom to dynamically alter radiation patterns enable MIMO
systems to adapt to physical link conditions. This adaptation
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leads to enhanced performance and can provide robustness to
varying channel conditions. Second, these antennas provide
space and cost benefits either by incorporating multiple ele-
ments in a single physical device [7] or by reducing the number
of RF chains [8], [9]. Beyond single user MIMO systems,
reconfigurable antennas have more recently been used for
improving advanced interference management techniques such
as interference alignment (IA) [10]-[12]. With the continued
interest in developing practical cognitive radios having greater
autonomy, learning, and inference capabilities, the integration
of reconfigurable antennas in cognitive radios along with intel-
ligent algorithms to control them, is going to play a significant
role.

One of the key challenge to effectively use the reconfigura-
bility offered by these antennas and integrate them in practical
wireless systems, is to select an optimal radiation state! (in
terms of capacity, SNR, diversity etc.) among all the available
states for a wireless transceiver in a given wireless environ-
ment. There are two fundamental challenges to achieve this
goal: (i) the requirement of additional channel state information
(CSI) corresponding to each state for each transmitter-receiver
pair; (i) The amount and the frequency of the channel training
required and the associated overhead. These challenges become
even more difficult to overcome when reconfigurable antennas
are employed at both the ends of the RF link thus creating a
large search space in order to find an optimal radiation state for
communication. Moreover, the effect of node mobility, changes
in physical antenna orientation, and the dynamic nature of the
wireless channel can render previously found “optimal” states
suboptimal over time.

Translating the benefits of reconfigurable antennas into
a practical realizable MIMO system is thus a highly chal-
lenging task. Existing antenna state selection techniques (see
Section I1-B) have primarily relied on the availability of perfect
instantaneous CSI coupled with modified periodic pilot based
training to perform state selection. Besides the performance loss
caused by imperfect or incomplete CSI, the additional problem
of changing the data frame to enable additional channel training
render these approaches impractical for use in systems such
as IEEE 802.11x and IEEE 802.16 as the number of available
states increase.

In this work, instead of relying on the availability of full, in-
stantaneous CSI and periodic channel training, we ask the fol-
lowing questions:

IState refers to either the radiation pattern selected at the receiver or the trans-
mitter or a combination of radiation patterns selected at the receiver and trans-
mitter respectively.

0018-926X © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Drexel University. Downloaded on May 11,2021 at 02:35:41 UTC from |IEEE Xplore. Restrictions apply.



1028

» Can a reconfigurable antenna system learn to select an op-
timal radiation state without the availability of instanta-
neous full CSI and periodic training while optimizing an
arbitrary link quality metric?

» Can a reconfigurable antenna system also adapt to varying
channel conditions without extensive channel training and
parameter optimization?

Towards addressing these challenges, we present an online
learning framework for reconfigurable antenna state selection,
based on the theory of multi-armed bandit. We model a system
where each transmitter-receiver pair (i.e., a link) develops a se-
quential decision policy to maximize the link throughput. For
each decision, the system receives some reward from the envi-
ronment which is assumed to be an i.i.d random process with
an arbitrary distribution. It is also assumed that mean reward
for each link is unknown and is to be determined online by the
learning process. Specifically, we provide the following contri-
butions in this work:

1) We first present a learning framework to learn the optimal
state selection based on the theory of multi-armed bandit,
in order to maximize system performance.

2) We identify key link quality metrics which can be used
with the learning framework to assess the long-term per-
formance of the system.

3) We implement and evaluate the learning algorithm in a
practical IEEE 802.11x based single user MIMO-OFDM
system to evaluate the performance over measured wire-
less channels.

The rest of our paper is organized as follows: In Section II,
we provide a background on reconfigurable antennas and multi-
armed bandit theory along with related work on both the topics.
Section IIT describes the MIMO system model and explains the
multi-armed bandit formulation for reconfigurable antenna state
selection. In Section IV, we describe the selection policies and
the reward metrics used to evaluate the performance of the pro-
posed schemes. In Section V, we provide a description of exper-
imental setup, hardware components, and the implementation of
the learning policies. Section VI provides detailed performance
analysis and empirical evaluation followed by the conclusion in
Section VII.

II. BACKGROUND AND RELATED WORK

A. Background

Pattern Reconfigurable Antennas: With the introduction of
reconfigurable antennas, there was a departure from the notion
that antennas can only have fixed radiation characteristics.
Reconfigurable antennas are capable of changing the oper-
ating characteristics of the radiating elements through either
electrical, mechanical or other means. Over the last ten years,
research has primarily been focused on designing reconfig-
urable antennas with the ability to dynamically change either
frequency [13], radiation pattern [3] and polarization [14] or
the combination of one of these properties. Reconfigurability is
based on the fact that the change in the current distribution in
the antenna structure effects the spatial distribution of radiation
from the antenna element [15]. Current distribution in the re-
configurable antenna can be modified by mechanical/structural
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changes, material variations or using electronic components
like PIN diodes [16] and MEMS switches [17]. In this paper,
we focus only on the pattern reconfigurable antennas and using
the pattern diversity offered by them.

Multi-Armed Bandit Theory: The multi-armed bandit
problem (MAB) is a fundamental mathematical framework
for learning unknown variables. It embodies the well known
exploitation vs. exploration trade off seen in reinforcement
learning and limited feedback learning. In the classic formu-
lation [18]—-[20], there are N independent arms with a single
player, playing arm (¢ = 1,...N). The trade-off involves
choosing an arm with the highest expected payoff using cur-
rent knowledge and exploring the other arms to acquire more
knowledge about the expected pay-offs of the rest of the arms.
On each play of a single arm, the player receives a random
reward. The goal is to design a policy to play one arm at each
time sequentially to maximize the total expected reward in the
long run. In the seminal work of Gittins [21], it was shown that
the optimal policy of MAB with Bayesian formulation where
reward distributions are known, has a simple index structure,
i.e., Gittins index. Within the non-Bayesian framework, Lai
and Robbins [18] provided a performance measure of an arm
selection policy referred to as regret or cost of learning. Regret
is defined as the difference in the expected reward gained by
always selecting the optimal choice and the reward obtained by
a given policy. Since the best arm cannot always be identified
in most cases using a finite number of prior observations, the
player will always have to keep learning. Due to the continuous
learning process, the player will make mistakes which will
grow the regret over time. The goal of the learning policies
under multi-armed bandit framework is to keep the regret as
low as possible and bound the growth of regret over time.

B. Related Work

1) Pattern Reconfigurable Antennas and Beam Selection:
Though the architecture of pattern reconfigurable antennas and
their performance in MIMO systems have received significant
attention, there are only a handful of studies which focus on
practical control algorithms and optimal state selection tech-
niques [1]. In [22], the authors estimate the channel response
for each antenna state at the transmitter and receiver using pilot
based training and select an optimal state combination. They
theoretically show the effect of channel estimation error on link
capacity and power consumption. Since, their technique relies
on the availability of full CSI at every time slot, a change in
the data frame is required to enable additional channel training
which can lead to a loss of capacity as the number of antenna
states increase. The authors in [23], provide a selection tech-
nique based on second order channel statistics and average SNR
information for state selection without changing the OFDM
data frame. This technique maximizes the average system
performance over long run. Their selection technique relies
on building offline lookup tables for a given SNR and power
angular spread for a given environment and is not adaptive in
nature. Periodic exhaustive training techniques with reduced
overhead is presented in [24] where the authors highlight the
effect of channel training frequency on the capacity and the
bit-error rate (BER) of a MIMO system. In order to reduce the
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overhead of exhaustive training for all the beam combinations,
the authors make assumptions on the prior availability of statis-
tics of the channel in order to eliminate sub-optimal beams. But
in their work it is not clear how to re-introduce the excluded
states which may become optimal over time due to channel
variations. Though some of these techniques were successful
in showing the benefits of multi-beam selection and motivated
the need for a selection algorithm, none solved the challenges
mentioned above. Moreover, all the schemes mentioned above
provide only simulated results without any practical implemen-
tation and assume the availability of full CSI from the periodic
channel training. In our work, we neither assume full CSI for all
states at every time slot nor do we perform periodic exhaustive
training. Our approach does not require a change in the frame
structure and can still adapt on a per packet basis.

2) Multi-Armed Bandit (MAB) for Cognitive Radio: Sto-
chastic online learning via multi-armed bandit has gained
significant attention for applications in opportunistic and
dynamic spectrum access. The authors in [25] applied the
multi-armed bandit formulation to the secondary user channel
access problem in cognitive radio network. Later, a restless
MAB formulation for opportunistic multi-channel sensing for
secondary user network was presented and evaluated in [26].
Further in [27], a combinatorial version of MAB was proposed
for a network with multiple primary and secondary users taking
into account the collisions among the secondary users. Dis-
tributed channel allocation among multiple secondary users was
further studied and proposed in [28] and [29]. Another appli-
cation of multi-armed bandit for cognitive radio was proposed
in [30] for adaptive modulation and coding. The application
of online learning for cognitive radio for dynamic spectrum
access can be enhanced by either using pattern reconfigurable
antennas to avoid interference using spatial means or can be
combined with spectrum sensing where a secondary user can
opportunistically select a radiation state once an unoccupied
channel is found using channel sensing.

Notation: We use capital bold letters to denote matrices and
small bold letters for vectors. H !, H' and H” denote the
matrix inverse, Hermitian and transpose operation respectively.
||H| 7 represents the Frobenius norm of H respectively. The
d x d identity matrix is represented by I;.

III. SYSTEM MODEL AND BANDIT FORMULATION

A. MIMO System Model with Reconfigurable Antennas

Consider a point to point MIMO link with M pattern recon-
figurable antennas at the transmitter (Tx) and /N pattern recon-
figurable antennas at the receiver (Rx). We assume that reconfig-
urable antennas at the transmitter have 7 such unique states and
the antennas at the receiver are capable of switching between K
such states. The degree of correlation between all the resulting
J x K combination of channel realizations is governed by the
physical structure of the reconfigurable antenna. We employ the
V-BLAST [31] architecture for transmission of the spatial mul-
tiplexed input symbol x (€ CM*1) (i.e., each antenna element
carries an independent stream of information). Further, in order
to approximate the channel as having flat fading, we employ
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Fig. 1. OFDM frame structure. Preamble is loaded with 4 training symbols for
channel training of a single selected antenna state.

OFDM as the multicarrier modulation scheme. Under such a
setting, the received signal is given as

y(f) = Hi;(/)x(f) +n(f) )

where f denotes the OFDM subcarrier index, %, j represent
the antenna state of the reconfigurable antenna selected at the
receiver and transmitter respectively, y is the N x 1 received
signal vector, H, ; is the N x M MIMO channel between the
transmitter and the receiver, x is M x 1 and n represents the
N x 1 vector of complex zero mean Gaussian noise with co-

variance matrix E[nn'] = o2Iy. For brevity, we will drop
the symbols &, j and f. The input vector x is subject to an
average power constraint, E[Tr(xx")] = P with total power

equally distributed across the input streams, i.e. the input co-
variance matrix is given by Q = (P/M)I,;. The set containing
all the combinations of states of the reconfigurable antenna at
the transmitter and receiver will be represented by the vector
Q={jxk:5e€ T, kek}.

Frame Structure and Channel Estimation: To enable fre-
quency domain estimation of MIMO channel coefficients at the
receiver, every OFDM frame carries four training symbols in the
preamble, two for each antenna element as shown in Fig. 1. Each
transmit antenna is trained orthogonally in time, i.e., while the
training symbols are transmitted from one transmit antenna, the
other transmit antenna stays silent. The received training sym-
bols are then used to estimate the MIMO channel using a least
squares estimator. Let t; and to represent the vector of training
symbols and T represent the matrix of training symbols, i.e.
T = [t; t]. Then, the least square estimate of a single tap
channel is given as

His = YT'(TTH )

where Y represents the matrix of received signal vectors corre-
sponding to both the training symbols. It should be noted that
(2) is evaluated for every OFDM subcarrier f. In addition to the
channel estimates obtained via (2), each OFDM symbol carries
4 evenly placed pilot tones, which are used for phase correction
at the receiver.

thascfcorrectcd - HLS(%?](/H (3)

where ¢; represents the average phase of the 4 pilot tones for
the «th OFDM symbol in a frame. These frequency domain
channel estimates are then used to carry out channel equaliza-
tion using zero forcing-successive interference cancelation (ZF-
SIC) equalizer. To further enhance the performance of ZF-SIC,
symbols are decoded based on optimal SNR ordering and then
finally combined using maximal ratio combining (MRC). We
estimate the channel for a single antenna state using the OFDM
frame structure described above. Therefore, this frame structure
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Fig. 2. System diagram of 2 x 2 MIMO OFDM system with reconfigurable antennas and the receiver employing learning module for antenna state selection.

does not change as the number of antenna states are increased.
Once the channel estimates are available for the selected an-
tenna state at each time slot, the reward metrics are extracted
and used as input to the learning model to select the antenna
state for next time slot as shown in Fig. 2.

B. Bandit Formulation for Antenna State Selection

Our work is influenced by the formulation in [20] where arms
have non-negative rewards that are i.i.d over time with an arbi-
trary un-parametrized distribution. We consider the set up where
there is a single transmitter and L wireless receivers and both
the transmitter and the receiver employ pattern reconfigurable
antennas. The receivers can select from K available antenna
states and the state at the transmitter is fixed which reduces the
problem to selecting an antenna state only at the receiver where
each receiver can select state ¢ independently. It can be shown
that this framework can be easily extended to the case where
the antenna state at the transmitter is not fixed and state selec-
tion is also performed for the transmitter. In that case an antenna
state will refer to a combination of the radiation state j at the
transmitter and radiation state ¢ at the receiver. In the context of
multi-armed bandit a radiation state % is interchangeably referred
to as an arm ¢. The decision is made at every time slot (packet)
n to select the antenna state to be used for the next reception.
If a receiver selects a state « and assuming the transmission is
successful, an instantaneous random reward is achieved which
we denote as I?;(n). This reward is assumed to evolve as an
i.i.d random process and the mean of this random process is un-
known to the receiver. Without loss of generality, we normalize
R;(n) € [0,1]. When a receiver selects an antenna state 4, the
reward I?;(n) is only observed by that receiver and the decision
is made only based on the locally observed history. Also, the
reward is only observed for the selected state ¢ and not for the
other states. In other words, a receiver receives channel state in-
formation for only the selected radiation state at a given time
slot and acquires no new information about the other available
radiation states. In this way our proposed technique differs from
the other techniques in the literature as it does not rely on the
availability of instantaneous CSI for all the radiation states at
each time slot.

We represent the unknown mean for a given state ¢ as ¥; =
E[R;]. The collection of these means for all states is then repre-
sented as X = E{z;,1 <4 < K}. We further define the deter-
ministic policy w(n) at each time serving as a mapping between
the reward history { Rk}z;i and the vector of antenna states

r{n) to be selected at time slot n where receiver{ selects antenna
state 7;(n). The goal is to design policies for this multi-armed
bandit problem that perform well with respect to regret. Intu-
itively, the regret should be low for a policy and there should be
some guarantees on the growth of regret over time. Formally,
the regret of a policy after n plays is given by (4).

K
win — Z 1B [Ti(n)] )
i=1
where
W= Max) <i<K i ()

(" is the average reward of the optimal antenna arm, p; is the
average reward for arm 4, n is the number of total trials. £[] is
the expectation operator and T;(n) is the number of times arm ¢
has been sampled up to time slot n. It has been shown in [18] that
the minimum rate at which regret grows is of logarithmic order
under certain regularity conditions. The authors established that
for some families of reward distributions there are policies that
can satisfy

1
ET(n)] < (W + 0(1)) ln(n) (6)
where o(1) — 0 as n — oc and
DGl = [t 2 )

is the Kullback-Leibler divergence between the reward density
1 of a suboptimal arm 7 and the reward density of the optimal
machine z*. Therefore, over infinite horizon, the optimal arm is
played exponentially more often than any other arm.

IV. POLICIES AND REWARD

A. Selection Policies

A learning policy for antenna state selection (also referred to
interchangeably as selection technique) must overcome certain
challenges. We identify such challenges below.

1) Optimal antenna state for each wireless link (between a
single transmitter and a receiver location) is unknown a
priori. Moreover, each wireless link may have a different
optimal state. A selection technique should be able to learn
and find the optimal state for a given link.
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2) For a given wireless link, there might be several states
which are near optimal over time based on channel con-
ditions and multipath propagation. A selection technique
should provide a policy to balance between exploiting a
known successful state and exploring other available states
without excessive retraining to account for the dynamic be-
havior of the channel.

3) For the purpose of real-time implementation in a practical
wireless system, a selection technique must be computa-
tionally efficient and employ simple metrics which can be
extracted from the channel without large overhead or ex-
tensive feedback data.

Most of the learning policies for the non-Bayesian multi-
armed bandit problem in the literature, works by associating an
index called upper confidence index to each arm. The calcula-
tion of such an index relies on the entire sequence of rewards
obtained up to a point from selecting a given arm. The com-
puted index for each arm is then used as an estimate for the
corresponding reward expectations and is used to select the arm
with highest index.

We base the antenna state selection technique on the deter-
ministic policy UCB1 and its variants as given in [20].

1) UCBI—Selection Policy: To implement the UCBI1 policy,
each receiver stores and updates two variables; the average of
all the instantaneous reward values observed for state # up to
the current packet n denoted as R;(n) (sample mean) and the
number of times antenna state ¢ has been selected up to the cur-
rent packet n, denoted as n;(n). The two quantities R;(n) and
n;(n) are updated using the following update rule:

B n;(n—1)+1 (8)
Ri(n—1) else

_ 7L,i(7l - 1) +1
ni(n) —{ ni(n —1)

Ri(n) ={ Huln—Dnaln DR if state i is selected

if state ¢ is selected
else. ©)

The UCBI policy as shown in Algorithm 1, first begins by
selecting each antenna state at least once and 12;(n) and n;(n)
are then updated using 8 and 9. Once the initialization is com-
pleted, the policy selects the state that maximizes the criteria on
line 6. From line 6, it can be seen that the index of the policy
is the sum of two terms. The first term is simply the current
estimated average reward. The second term is the size of the
one-sided confidence interval of the estimated average reward
within which the true expected value of the mean falls with a
very high probability. The estimate of the average reward im-
proves and the confidence interval size reduces as the number
of times an antenna state is selected increases. Eventually, the
estimated average reward reaches as close as possible to the true
mean. The size of the confidence interval also governs the index
of the arm for future exploration.

For an instance, consider a two-armed bandit problem shown
in Fig. 3. In order to select between the two arms, if only the
average reward 131 and R, are considered, clearly arm 1 will be
selected. However, this will ignore the confidence in the other
arm in order to explore higher pay-offs. By adding the size of
the confidence interval to the index term, even the though the
Ry < Ry, arm 2 is selected for further exploration instead of
arm 1. Since the confidence interval size depends on the number
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Fig. 3. Illustration of UCBI1 Policy for a 2-armed bandit problem.

of times an arm has been played as well as the total number of
trials, an arm which has been played only a few times and has
estimated average reward near to an optimal, will be chosen to
be played.

Algorithm 1 UCBI Policy, Auer et al. [20]

1: // Initialization
2: n.,;,R,; «— 0

3: Select each antenna state at least once and update n;, R;
accordingly.

4: // Main Loop

5: while 1 do

6: Select antenna state 7 that maximizes R; + /2 In(n)/n;
7:  Update n;, R, for antenna state 7

8: end while

The UCBI policy has an expected regret of at most [20]

5> > A

Gippy < g Ty <pt

Inn n 1+71'2
A, 3

where A; = p* —

2) UCBI-Tuned Policy: For practical implementations, it
has been shown that by replacing the upper confidence bound
of UCBI1 with a different bound to account for the variance in
the reward yields better results [20]. In UCB1-Tuned, the explo-
ration term is given as

(10)

| 1
,\/Mmin {—,vg(ni)} (11)
where V; is defined as
1 _ 2In(t)
Vitsy= (- R? ) - R? = 12
() (SZ ) e T\ (12)

when state ¢ has been selected s times during the first £ time
slots. Therefore, the UCB1-Tuned policy can now be written as
Algorithm II. Even though UCB1-Tuned policy has been shown
to work experimentally well, there are no proofs available for
the regret bounds in the literature. We expect this policy to work
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best for the scenarios where the link quality metrics have large
variance due to dynamic channel variations.

Algorithm 2 UCBI1-Tuned Policy, Auer et al. [20]

1: // Initialization
2:n; ,Ri «— 0

3: Select each antenna state at least once and update n;, R,
accordingly.

4: // Main Loop
5: while 1 do

6: Select antenna state ¢ that maximizes R; +

/(In(n)/n;) min{1/4, V;(n;)}

7:  Update n;, R; for antenna state ¢

8: end while

3) UCBI-Normal Policy: The two UCBI polices described
above made no assumptions on the reward distributions. In the
UCBI1-Normal policy, it is assumed that the reward follows a
normal distribution with unknown mean and variance. This is a
special case and it is shown in [20] that the policy in Algorithm
3 achieves logarithmic regret uniformly over n time slots. The
index associated with each arm is still calculated based on the
one sided confidence interval of the average reward, but since
the reward distribution is known, instead of using the Chernoft-
Hoeftding bound, to compute the index, the sample variance is
used as an estimate of the unknown variance. Thus, the UCB1
policy can be modified as shown in Algorithm 3 and the highest
index is calculated using line 8.

Algorithm 3 UCB1-Normal Policy, Auer ef al. [20]

1: // Initialization
2y, Ry — 0

3: // Main Loop
4: while 1 do

5:  Select the antenna state which has not been selected at
least 8 logn times

6: Otherwise select the antenna state ¢ that maximizes

7.

8: R+ \/16 — niR; )/(n,,; —1))(In{n — 1)/n;)
9:
10: Update n;, RR; for antenna state i

11: end while

where g; is the sum of squared rewards for state .
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UCBI1-Normal policy has an expected regret of at most

0_? 7T2 K
Z A_ +<1+7+810gn> ;Al .

dipry < p* ¢
(13)

256(logn)

B. Reward Metrics

In this section, we discuss the link quality metrics that we
use as instantaneous reward for the selection policies described
above. The selection of reward metrics is dependent on the spe-
cific system implementation and based on the desired objective,
the system designer can identify a relevant reward metric. In this
paper, we evaluate two commonly used link quality metrics for
MIMO systems.

1) Post-Processing SNR (PPSNR): We first use post-pro-
cessing SNR as the reward metric to perform the antenna state
selection. PPSNR can be defined as the inverse of the error
vector magnitude (EVM) [32], [33]. As true SNR is not easily
available for MIMO systems on a per-packet basis, PPSNR can
be used to approximate the received SNR and can be used as
the link quality metric. EVM for a MIMO spatial multiplexed
system is defined as the squared symbol estimation error calcu-
lated after the MIMO decoding of the spatial streams. At every
OFDM packet reception, we calculate the PPSNR for all the
subcarriers and separately for all the spatial streams. Then, the
instantaneous reward R;(n) for time slot (packet) » can be cal-
culated as

(14)

o:|%4
'11 | =

F
Z PSNR

-5

where F' is the number of subcarriers and .S is the number of
spatial streams.

2) Demmel Condition Number (DCN): For MIMO systems
employing spatial multiplexing (SM) technique, the separate an-
tenna streams on which data is modulated are required to be as
uncorrelated as possible for achieving maximum capacity. The
correlation among the spatial streams is influenced by the prop-
agation effects such as multipath propagation and the amount of
scattering. In MIMO systems equipped with reconfigurable an-
tennas, the additional degree of freedom to select the radiation
states can potentially reduce the correlation between the spatial
streams. Previously, regular condition number or its reciprocal
have been used to evaluate the quality of MIMO channel ma-
trix. However, motivated by results in [34], we use the Demmel
condition number as it can be related to a sufficient condition for
multiplexing to be better than diversity. If the Demmel condi-
tion number is high, it represents high correlation between the
streams. We calculate the Demmel condition number per sub-
carrier as

2
_ ||Hf||F
Ak

(15)

where || - || is the Frobenius norm of the channel and Ay, is the
smallest eigenvalue of the MIMO channel matrix H ;. We then
calculate instantaneous reward R;(n) as

(16)
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Fig. 4. Two port reconfigurable leaky wave antenna [7].

where
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V. EXPERIMENTAL SETUP

A. Pattern Reconfigurable Leaky Wave Antennas

For our experiments, we use the reconfigurable leaky wave
antenna (RLWA) which is a two port antenna designed to elec-
tronically steer two highly directional independent beams over a
wide angular range. Initially proposed by the authors in [7], the
prototype shown in Fig. 4 is a composite right/left-handed leaky
wave antenna composed of 25 cascaded metamaterial unit cells
[35] loaded with varactor diodes. In order to achieve the CRLH
behavior, a unit cell is implemented by inserting an artificial se-
ries capacitance and a shunt inductance into a conventional mi-
crostrip line using an interdigital capacitor and a shorted stub.
Further, there are two varactor diodes (D) in parallel with the
microstrip series interdigital capacitor and one varactor diode
(Dsgr) is placed in series with the shunt inductor. The applica-
tion of various combinations of bias voltages “S” and “SH” to
the independent bias networks, controls the beam direction al-
lowing for symmetrical steering of the two radiation beams at
the two ports over a 140° range. As the two ports are located
on the same antenna structure, it is used as a two-element array
in a MIMO setup. The radiation states were selected so that all
the states have approximately similar measured gain with as low
pattern correlation as possible. All the radiation states at the two
ports are matched for a target return loss of 10 dB with the iso-
lation between the two ports being higher than 10 dB.

Though the antenna in [35] is ideally capable of switching
between an infinite number of radiation states, in order to char-
acterize the effect of beam direction on the efficacy of a wireless
system with RLWAs deployed at both ends of a link, a subset of
5 states was selected to allow the beam to steer over a range of
140° in the azimuthal plane. Fig. 5 shows the measured radia-
tion patterns for the selected states and their corresponding bias
voltages are shown in Table I.

B. Measurement Setup

In our experiments we make use of the wireless open access
research platform (WARP), an FPGA-based software defined
radio testbed and WARPLab, the software development envi-
ronment used to control WARP nodes from MATLAB [36].
Four WARP nodes were distributed throughout the fifth floor
of the Drexel University Bossone Research Center as shown in
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Fig. 5. Measured radiation patterns for port 1 & 2(Gain is shown in dB and is
~ —3 dB).

TABLE 1
MAIN RADIATION CHARACTERISTICS OF FIVE ANTENNA STATES

Index | Bias Voltage(V) | Gain(dB) | Direction(expected)
1 S=38SH=5 -3 0°
2 S=5SH =30 -3 18°
3 S=10SH=5 -3.2 36°
4 S=2SH=10 -3.4 60°
5 S=2SH=2 -3 72°
20
&3
B state 2
15| I state 3
I state 4
I state 5

Average Post Processing SNR (dB)
) e =

|
o

1 2 3 4 5 6 7 8 9 10 11 12
Link Number

Fig. 6. Average received Post Processing SNR for 5 antenna states at the re-
ceiver measured for 12 links. Link 1-3 is when node 1 is active, Link 4-6 is
when node 2 is active, Link 7-9 is when node 3 is active and Link 10-12 is
when node 4 is active. Standard deviation is also shown for all links and an-
tenna states.

Fig. 7. This setup allowed us to capture performance for both
line-of-sight (LOS) and non-line-of-sight (NLOS) links and
also cover a wide SNR regime. As shown in Fig. 6, the PPSNR
varies significantly from location to location and for each
antenna state. When node 1 is active, it means that node 1 is
transmitting and the other three nodes are receiving. Once all the
channels are collected for node 1, the measurement controller
makes node 2 as the transmitting node and other remaining
nodes receive. This process is repeated until all four nodes
have finished transmitting and the data is collected. Since we
have 4 nodes and at a given time 1 node transmits and 3 nodes
receive, we have a set of total of 12 links each corresponding
to a unique transmitter-receiver combination. For certain links,
there are more than one antenna states which are near optimal
thus making the state selection more challenging. By using
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B Tx: Fixed antenna state
I Rx: Most selected optimal state

Fig. 7. Node positions on the 5th floor of the Drexel University Bossone Re-
search Center.

WARPLab, each of the nodes were centrally controlled for the
synchronization of the transmission and reception process and
to provide control over the antenna states selected at each of the
nodes. Although, the nodes were controlled centrally for data
collection purposes, the learning algorithm was decentralized.
Specifically, no information during the learning process was
shared with the transmitter.

The performance of the RLWA was evaluated in a 2 x 2
MIMO system with spatial multiplexing as the transmission
technique [31]. The implemented communication system fol-
lowed an OFDM PHY as described in the IEEE 802.11n stan-
dard with total 64 subcarriers. 48 subscribers were used for
loading data symbols, 4 for Carrier Frequency Offset correc-
tion and 12 left blank (i.e., F = 48, S = 2). For collecting
channel realizations, we use a broadcast scheme where each des-
ignated WARP node transmitter broadcasts packets modulated
using BPSK. For each packet transmission, the receiver nodes
stored channel estimates and extracted the reward metrics as de-
scribed above. Furthermore, the antenna states for each receiver
node were switched after each packet until all 5 possible an-
tenna states between the transmitter and receivers were tested.
This process was repeated until 200 channel realizations were
stored for all the state combinations and for each node acting
as a transmitter. The beam directions in Fig. 7 corresponds to
the optimal state selected most often at each of the receivers
when node 4 was transmitting. The selection policies described
in Section II1-B are online learning policies but we note that we
collected the channel realizations corresponding to each state
and evaluated the algorithm in post-processing. This is essen-
tial in order to benchmark the performance of different selection
policies under the same channel conditions and to make sure that
channel conditions do not bias performance results.

VI. PERFORMANCE ANALYSIS AND RESULTS

We evaluate the performance of the proposed online selec-
tion policies using the measurement setup described above. We
compare these polices with three policies 1) Genie Policy: In
this policy it is assumed that the true mean rewards for all the
antenna states are known a priori and a genie always selects
the optimal antenna state. This closely represents the ideal case
where instantaneous full CSI corresponding to all the states
are available to select the optimal antenna state. 2) Exhaustive
Search with Periodic Training (ESPT): In this selection scheme,

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 62, NO. 3, MARCH 2014

all the antenna states are selected periodically in sequence and
the corresponding channel estimates are then used to select the
optimal state. The frequency and the amount of the training is
fixed and are given by 7 and ¢. Since, we do not change the
frame structure to enable periodic training for all antenna states,
this represents an alternative where all antenna states are pe-
riodically selected both for channel training and sending data.
This can be viewed as the process of consecutive exploration
and exploitation, except that the duration of the exploration and
exploitation is fixed and exploration occurs uniformly across all
the states 3) Random Selection: In this selection scheme, at each
time slot, one antenna state is randomly selected with uniform
probability from the available K states.

A. Regret Analysis

The goal of the learning policies is to maximize the long-term
average reward, but in order to analyze the cost of learning, the
regret of a system is an essential metric. Regret is a finer perfor-
mance criteria as compared to long-term average reward and it
indicates the growth of the loss incurred due to learning without
complete state information. In Fig. 8(a) and (b), we show the
regret with respect to the number of packets for all the selection
policies corresponding to two different reward metrics respec-
tively. The regret is averaged across all the transmitter and re-
ceiver locations shown in Fig. 7. It can be seen that the UCBI1
policy and its variants have a sublinear regret as compared to
the ESPT and Random selection. Further, it can be seen that
varying the parameters of ESPT has direct impact on the re-
gret of the system. ESPT with 7 = 10 and ¢) = 1 shows min-
imum regret among other ESPT policies, where a single round
of periodic training was performed every 10 OFDM symbols.
If there are many suboptimal states and exhaustive training is
performed with high frequency (= = 5, ¢ = 1), suboptimal
states will be selected much more often thus incurring higher
regret. Also, if the frequency is kept constant and the amount of
training is increased in order to get a better estimate of the re-
ward (7 = 10, ¢ = 2), it will reduce the rate of regret but it will
still be linear. This indicates the trade-off between the amount
and the frequency of the channel training which makes tuning
the parameters 7 and ¢ very challenging for a given environ-
ment. On the other hand, UCBI1 polices do not require param-
eter tuning and inherently adjusts the exploration rate based on
the acquired estimate of the average reward and the associated
confidence in the estimate.

Further in the Fig. 9(a) and (b), we show the percentage of
time optimal state is selected by a policy up to time slot n. When
using instantaneous PPSNR, UCB1-Tuned policy outperforms
other policies, selecting the optimal state up to 90% of the time.

While UCBI policy performs closer to UCB1-Tuned, the
UCBI1-Normal performs suboptimally due to the assumption
that the reward is normally distributed. As shown in [32],
PPSNR is chi-squared distributed, therefore the UCB1-Normal
policy is not expected to perform as well as the rest of the UCB1
policies. Further, as shown in the case of regret, performance of
the ESPT policy varies as 7 and ¢ are varied, where in this case,
best ESPT policy selected the optimal state only up to 50%.

In Fig. 10, we show the impact of increasing the number
of antenna states on regret. As the number of antenna states
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Fig. 10. Regret [2(n) vs Number of Available Antenna States available at each
receiver.

increase, the regret for ESPT polices increase with higher
leading constant while the regret for UCBI policies increase
only slightly. More interesting is the fact that the regret for
random policy decreases as the number of available states to
select, increases. This decrease is due to the fact that the random
policy explores uniformly and if there are more than one near

optimal states, the regret will decrease. The regret for the
random policy will eventually grow in a situation where there
is only one constantly optimal state and the rest of the states are
sub optimal as the probability of sampling sub optimal states
will increase.

B. Average PPSNR

We first study the impact of increased pattern diversity on the
average PPSNR. In Fig. 12, it can be seen that as the number
of antenna states at the receiver is increased, a higher gain
in average PPSNR is achieved. There is a 25% improvement
achieved by learning policies in average PPSNR across all the
links when the number of antenna states is increased from 2 to
5. On the other hand, the gain in average PPSNR achieved by
the best ESPT policy is only 10% while the worst case ESPT
policy shows negative improvement. This is due to the fact
that, as the number of antenna states are increased, performing
exhaustive search periodically negates diversity benefits due to
increased training overhead. Further, the random policy shows
higher gain since the random policy explores more frequently
to find the optimal antenna state.

We further study the improvement in the average PPSNR by
evaluating the gain in the average PPSNR for both the reward
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Fig. 11. Average received Post Processing SNR for best and worst UCB and
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metrics; instantaneous PPSNR and Demmel Condition Number
(DCN). In Fig. 11, we compare the performance of best case
and worst UCBI1 policies with respective ESPT policies. It can
be seen that the percentage improvement in average PPSNR is
significant between the worst case UCB1 and ESPT policies.
Also, the two UCBI polices have only marginal performance
difference. In Figs. 13 and 14, we show the empirical CDF of
average PPSNR for all the selection policies averaged across all
the links in the network for the two reward metrics respectively.
Additionally, we also show the average PPSNR achieved by the
genie policy as a reference ideal case which defines the upper
bound. It can be seen from Fig. 13 that all UCBI1 policies have
better performance than the rest of the policies.

The average PPSNR for all UCB1 policies lie within 1 dB
of the best case scenario which is shown as upper bound. The
relative performance of the ESPT policies follow a similar trend
as seen above. The best performing UCB1 policy achieves 2.3
dB higher average PPSNR providing 31% improvement over
the best ESPT (7 = 10, ¢ = 1) policy while the worst UCBI
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policy achieves 4.4 dB higher average PPSNR providing 82%
improvement over the worst case ESPT (7 = 5, ¢ = 1).

Further, in Fig. 14, when instantaneous DCN is selected as
the reward metric, the overall gain in average PPSNR is less
than the case when instantaneous PPSNR is selected as the re-
ward metric. This difference in average PPSNR indicates that
the optimal state which provides the most correlation between
the streams may not always provide the best PPSNR, since re-
ceived PPSNR also depends on the power in the channel and
is influenced by propagation effect such as fading. In this case,
the best performing UCBI1 policy achieves 1.4 dB higher av-
erage PPSNR providing 22% improvement over the best ESPT
(t = 10, ¢ = 1) policy while the worst UCB1 policy achieves
2.4 dB higher average PPSNR providing 46% improvement
over worst case ESPT (7 = 5, ¢ = 1).

C. Sum Throughput

We further assess the impact of improved PPSNR on the
throughput of the network. To analyze throughput improve-
ment, we perform a simple discrete rate look up table based
adaptive modulation and coding (AMC) technique. The fixed
look up table is defined by SNR ranges obtained by using the
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TABLE 11
AMC SCHEMES WITH DATA RATES (bps/Hz)

Index | Modulation(M) | Coding Rate (r) | Data rate (bps/Hz)
1 BPSK 12 0.5

2 4-QAM 12 1

3 4-QAM 3/4 1.5

4 16-QAM 172 2

5 16-QAM 3/4 3

6 64-QAM 2/3 4

7 64-QAM 3/4 4.5
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Fig. 15. Empirical CDF of Sum throughput (bits/sec/Hz) across all links. Re-
ward: Instantaneous PPSNR.

upper bound expression for symbol error probability in AWGN
channels [37]

1 3m  Ep1l
Prm=2{1- — " )<«
VA ( m)g M- Nr) =8 08
where
3m K1

where M is the constellation order, + is the coding rate,
Ey /Ny is the SNR per bit, and m = loga(M). The selected
AMC scheme is used for all the subcarriers. Based on the
measured received PPSNR of each antenna state, we calculate
the throughput each link would achieve when using the AMC
schemes shown in Table II.

In Figs. 15 and 16, we show the empirical CDF of calculated
sum throughput using the AMC scheme described above for two
reward metrics respectively. The PPSNR improvement realized
by using the learning policies allow each receiver to select an
appropriate AMC scheme to maximize link throughput, thereby
improving the sum throughput of the network. As shown in
Fig. 15, the best performing UCBI policies achieve 17% im-
provement over best case ESPT policy, while the worst case
UCBI policy achieves 38% improvement over worst case ESPT
policy.

For the scenario where DCN is used as reward metric UCB1
policy achieves 8% and 13% improvement over best case and
worst case respectively.
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VII. CONCLUSION

We have proposed a novel online learning based antenna state
selection technique and have shown that wireless systems em-
ploying reconfigurable antennas can benefit from such tech-
nique. The proposed selection technique allows the optimal state
selection without requiring instantaneous CSI for all the an-
tenna states and does not require modification to OFDM frame
for periodic training. This leads to reduced overhead of channel
training. The performance of the proposed selection technique
is empirically evaluated in a practical wireless system covering
wide SNR range and both LOS and NLOS links. We show the
impact of available antenna states on system regret and long
time average reward. A relative average PPSNR gain and cor-
responding throughput gain is achieved and the performance
is compared to the ideal selection technique utilizing instanta-
neous full CSI. Future work will involve devising new learning
policies which utilize multiple reward metrics at the same time
for sequential decision making. In addition, investigating the ap-
plication of antenna state selection in conjunction with optimal
channel selection in a cognitive radio network or multi-user
MIMO network are possible future directions.
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