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Chain Decompositions of q, t-Catalan
Numbers via Local Chains
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Abstract. The q, t-Catalan number Catn(q, t) enumerates integer parti-
tions contained in an n × n triangle by their dinv and external area
statistics. The paper by Lee et al. (SIAM J Discr Math 32:191–232,
2018) proposed a new approach to understanding the symmetry prop-
erty Catn(q, t) = Catn(t, q) based on decomposing the set of all integer
partitions into infinite chains. Each such global chain Cµ has an opposite
chain Cµ∗ ; these combine to give a new small slice of Catn(q, t) that is
symmetric in q and t. Here, we advance the agenda of Lee et al. (SIAM
J Discr Math 32:191–232, 2018) by developing a new general method for
building the global chains Cµ from smaller elements called local chains.
We define a local opposite property for local chains that implies the needed
opposite property of the global chains. This local property is much easier
to verify in specific cases compared to the corresponding global property.
We apply this machinery to construct all global chains for partitions with
deficit at most 11. This proves that for all n, the terms in Catn(q, t) of
degree at least

(
n
2

) − 11 are symmetric in q and t.
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1. Introduction

The q, t-Catalan numbers Catn(q, t) are polynomials in q and t that reduce
to the ordinary Catalan numbers when q = t = 1. These polynomials play a
prominent role in modern algebraic combinatorics, with connections to rep-
resentation theory, algebraic geometry, symmetric functions, knot theory, and
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other areas. Garsia and Haiman [5] originally defined these polynomials as
sums of complicated rational functions indexed by integer partitions. Haglund
[6] and Haiman independently discovered elegant combinatorial interpreta-
tions of the q, t-Catalan numbers as weighted sums of Dyck paths. Garsia and
Haglund [4] proved that Haglund’s combinatorial formula was equivalent to the
original definition. More background on q, t-Catalan numbers may be found in
Haglund’s book [7] and in [11, Sec. 1].

One version of the combinatorial formula for Catn(q, t) is a sum over
Dyck paths weighted by statistics called area and dinv. We can regard a Dyck
path as the southeast border of a partition diagram contained in the triangle
Δn with vertices (0, 0), (0, n), and (n, n). This lets us rewrite the formula for
Catn(q, t) as a weighted sum over all integer partitions that fit in this triangle:

Catn(q, t) =
∑

γ⊆Δn

q|Δn|−|γ|tdinv(γ). (1.1)

(See Section 2.1 for the definition of dinv(γ) and other notation used in this
formula.)

It is known [3,4] (see also [2,9,15]) that Catn(q, t) = Catn(t, q) for every
n, but it is a notoriously difficult open problem to give a combinatorial proof
of this fact based on (1.1) or related formulas. In [13], the last three authors
proposed an approach to this problem based on the following ideas. Instead of
focusing only on integer partitions contained in a particular triangle Δn, we
consider the infinite set Par of all integer partitions. We seek to decompose this
set into a disjoint union of chains denoted Cμ, where each chain is indexed by an
integer partition μ called a deficit partition. Each chain is an infinite sequence of
partitions such that dinv increases by 1 as we move along the chain. Moreover,
for each γ in the chain Cμ, the deficit statistic defc(γ) = |γ| − dinv(γ) has
the constant value |μ|. Among other technical conditions, the chains Cμ must
satisfy the following crucial opposite property. For each n ≥ 0 and collection S
of partitions, define

Catn,S(q, t) =
∑

γ∈S: γ⊆Δn

q|Δn|−|γ|tdinv(γ). (1.2)

The opposite property asserts that for each k, there is an involution μ �→ μ∗

on the set of partitions of k such that for every n ≥ 0,

Catn,Cµ
(q, t) = Catn,Cµ∗ (t, q).

If such chains Cμ can be constructed for all partitions μ of a fixed k, then we
can deduce the joint symmetry of the terms in Catn(q, t) of degree

(
n
2

)
−k. At

a finer level, every pair Cμ and Cμ∗ that we build reveals a new “small slice”
of the Catalan objects that is symmetric in q and t. A remarkable feature of
this setup is that the infinite chains Cμ and Cμ∗ (which do not depend on n)
induce joint symmetry for all n simultaneously.

Here is a brief summary of the main results in [13] most relevant to
our current work. Conjecture 6.9 of [13] gives a complete technical statement
of the decomposition of Par into the chains Cμ outlined above. A version of
this conjecture appears as Conjecture 2.2 below. Section 2 of [13] explicitly
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constructs the chains Cμ for one-row partitions μ = (k). In this case, μ∗ =
μ, and the self-opposite property Catn,C(k)(q, t) = Catn,C(k)(t, q) is proved in
Sect. 3 of [13]. Section sec:specificspschains of [13] constructs the chains Cμ for
two-row partitions of the form μ = (ab−b−1, b−1) and μ∗ = (ab−a−1, a−1).
The opposite property for these chains is proved in Sect. 5 of [13]. Finally, with
the aid of results in Section 6 and extensive computer calculations, the online
version of the appendix to [13] presents maps μ �→ μ∗ and chains Cμ for all
integer partitions μ of size at most 9. However, it should be emphasized that
the chains in this appendix were found through exhaustive computer searches,
not by any systematic construction. These searches become impractical for
|μ| ≥ 10.

The main contribution of this paper is a new general method for build-
ing the global chains Cμ by piecing together smaller local chains. The precise
definition of a local chain is rather technical (see Sect. 3.5), but here is the
rough idea. For each partition γ, we must keep track of the least integer n
such that γ ⊆ Δn; this integer is denoted minΔ(γ). A local chain is a sequence
of partitions γ(a), γ(a + 1), . . . , γ(b) such that dinv(γ(i)) = i for a ≤ i ≤ b,
defc(γ(i)) is constant for a ≤ i ≤ b, and the sequence (minΔ(γ(i)) : a ≤ i ≤ b)
has a certain staircase structure (described later). We show how suitable local
chains may be pasted together to form global chains. We introduce the idea of
locally opposite local chains and use this concept to prove the needed opposite
property of the global chains Cμ and Cμ∗ . The new local framework leads to
much shorter and conceptually simpler proofs of the opposite property, com-
pared to the very intricate computations that were given in Sects. 3 and 5
of [13]. We give a new conjecture on writing the set Par as a union of (par-
tially overlapping) local chains, and we prove that this conjecture implies the
earlier conjecture on the decomposition of Par into global chains. Finally, we
construct global chains Cμ satisfying the new local conjecture for all partitions
μ of size at most 11. In contrast to [13], these global chains were found not
through exhaustive computer searches, but rather by applying systematic op-
erations for building local chains. The full technical details of these operations
(in their general form) will be the subject of a future paper.

The rest of this article is organized as follows. Section 2 reviews the
needed background material and definitions, which are included so that this
paper can be read independently of [13], On the other hand, to avoid undue
repetition of technical details, we do refer to [13] for the proofs of some specific
results. Section 3 develops the theory of local chains, states the new structural
conjecture for local chains, and proves that this conjecture implies the previous
conjecture for global chains. Section 4 presents global chains Cμ for |μ| ≤
11 and explains how to verify that these chains satisfy the local conjecture.
Section 5 contains the concluding remarks indicating intended directions of
future research.
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2. Background

This section reviews definitions and preliminary results on partitions, Dyck
vectors, and a map ν that is useful for constructing chains.

2.1. Partition Statistics

An integer partition is a weakly decreasing finite sequence of positive integers.
Given a partition γ = (γ1, γ2, . . . , γs), let γi = 0 for all i > s. Any of these zero
parts may be appended to the sequence γ without changing the partition. The
length of γ is �(γ) = s, the number of strictly positive parts of γ. The diagram
of γ is the set

dg(γ) = {(i, j) ∈ Z>0 × Z>0 : 1 ≤ i ≤ �(γ), 1 ≤ j ≤ γi}.

We visualize the diagram as an array of left-justified unit squares with γi

squares in the ith row from the top. The conjugate partition γ′ = (γ′
1, γ

′
2, . . .)

is defined by letting γ′
j be the number of cells in the jth column of dg(γ), for

1 ≤ j ≤ γ1.
The arm of a cell c = (i, j) in dg(γ) is arm(c) = λi − j, which is the

number of cells strictly right of c in its row. The leg of a cell c = (i, j) in dg(γ)
is leg(c) = λ′

j − i, which is the number of cells strictly below c in its column.
We can now define the following partition statistics:

• The size of γ is |γ| =
∑

i≥1 γi, which is the number of cells in the diagram
of γ.

• The diagonal inversion count dinv(γ) is the number of cells c in the
diagram of γ such that arm(c) − leg(c) ∈ {0, 1}.

• The deficit of γ is defc(γ) = |γ|−dinv(γ), which is a nonnegative integer.
• For each integer n > 0, the n-triangle Δn is the diagram of the partition

(n − 1, n − 2, . . . , 3, 2, 1).
• The minimum triangle size of γ, denoted minΔ(γ), is the least integer n

such that dg(γ) ⊆ Δn. Equivalently, minΔ(γ) is the least integer n such
that γi ≤ n− i for 1 ≤ i ≤ �(γ). (This statistic was denoted Δ(γ) in [13].)

• For any n such that dg(γ) ⊆ Δn, the external area of γ relative to Δn

is arean(γ) = |Δn| − |γ| =
(
n
2

)
− |γ|. This is the number of cells in the

triangle Δn outside the diagram of γ.

Example 2.1. Let γ = (5, 4, 1, 1, 1). This partition has length �(γ) = 5, size
|γ| = 12, diagonal inversion count dinv(γ) = 8, deficit defc(γ) = 4, and mini-
mum triangle size minΔ(γ) = 6. Figure 1 shows the diagram of γ embedded in
the non-minimal triangle Δ7. Counting the shaded cells, we see that the exter-
nal area of γ relative to Δ7 is area7(γ) =

(
7
2

)
− |γ| = 9, whereas area6(γ) = 3.

The eight cells marked with a dot contribute to dinv(γ), while the other four
cells in the diagram of γ contribute to defc(γ). For example, the second cell
c in row 1 contributes to defc(γ) since arm(c) = 3 and leg(c) = 1, while the
third cell c′ in row 1 contributes to dinv(γ) since arm(c′) = 2 and leg(c′) = 1.

Next, we define some special collections of integer partitions.
• Let Par be the set of all integer partitions.
• Let Par(n) be the set of all integer partitions of size n.
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Figure 1. A partition contained in the triangle Δ7

• Let DP(n) = {γ ∈ Par : dg(γ) ⊆ Δn} be the set of all partitions whose
diagrams fit in the n-triangle. We call such partitions Dyck partitions
of order n since these partitions correspond bijectively to Dyck paths of
order n by taking the southeast border of γ in Δn (see the thick shaded
line in Fig. 1). Observe that

DP(n) = {γ ∈ Par : minΔ(γ) ≤ n}. (2.1)

• Let Def(k) = {γ ∈ Par : defc(γ) = k} be the set of all partitions having
deficit k. (This set was denoted DP∗,k in [13].)

Continuing Example 2.1, note that the partition γ = (5, 4, 1, 1, 1) is a
member of the sets Par(12), Def(4), and DP(n) for all n ≥ 6, since minΔ(γ) =
6.

We can now rewrite the definition (1.1) of q, t-Catalan numbers as fol-
lows:

Catn(q, t) =
∑

γ∈DP(n)

qarean(γ)tdinv(γ).

For example, DP(3) = {(0), (1), (2), (1, 1), (2, 1)}, and

Cat3(q, t) = q3 + q2t + qt + qt2 + t3.

2.2. Dyck Vectors

For many calculations involving dinv, it is convenient to use Dyck vectors in-
stead of Dyck partitions. A Dyck vector of order n is a list v = (v1, v2, . . . , vn)
of nonnegative integers such that v1 = 0 and vi+1 ≤ vi + 1 for 1 ≤ i < n. Let
DV(n) be the set of Dyck vectors of order n. There is a bijective correspon-
dence between the sets DP(n) and DV(n), which can be defined pictorially
by drawing γ ∈ DP(n) inside Δn and letting vi be the number of exter-
nal area cells in the ith row from the bottom. For example, letting n = 7,
the partition γ = (5, 4, 1, 1, 1, 0, 0) shown in Fig. 1 maps to the Dyck vector
v = (0, 1, 1, 2, 3, 1, 1). Formally, the bijection dvn : DP(n) → DV(n) and its
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inverse dpn : DV(n) → DP(n) are given by these formulas:

DVn(γ1, γ2, . . . , γn) = (0 − γn, 1 − γn−1, . . . , i − γn−i, . . . , n − 1 − γ1);
(2.2)

DPn(v1, v2, . . . , vn) = (n − 1 − vn, n − 2 − vn−1, . . . ,

n − i − vn−i+1, . . . , 1 − v2, 0 − v1). (2.3)

We can compute the statistics arean, dinv, and defc directly from the
Dyck vector associated with a Dyck partition. In more detail, for any Dyck
vector v ∈ DV(n), define

arean(v) = v1 + v2 + · · · + vn;

dinv(v) = the number of i < j with vi − vj ∈ {0, 1};

defc(v) =
(

n

2

)
− arean(v) − dinv(v).

The bijections defined above preserve all three statistics, so that if v = dvn(γ),
then arean(v) = arean(γ), dinv(v) = dinv(γ), and defc(v) = defc(γ). The
verification of this assertion for dinv is not completely routine—see [8, Lemma
4.4.1] for details.

2.3. The Successor Map ν

This section recalls the definition and properties of the successor map ν, which
is a function (defined on a subset of Par) that suffices to construct “almost
all” of the links in the global chains Cμ. Intuitively, if γ ∈ Cμ is a partition in
the domain of ν, then ν(γ) is the next partition in the chain Cμ.

The domain of ν is {γ ∈ Par : γ1 ≤ �(γ) + 2}. For γ = (γ1, . . . , γ�) in this
domain, we define

ν(γ) = (�(γ) + 1, γ1 − 1, γ2 − 1, . . . , γ� − 1).

Pictorially, we obtain the diagram of ν(γ) from the diagram of γ by removing
the leftmost column, then inserting a new top row that is one cell longer than
the removed column. For example, ν(5, 4, 1, 1, 1) = (6, 4, 3, 0, 0, 0) = (6, 4, 3),
whereas ν(6, 4, 3) is undefined. The key property of ν (proved in Lemma 2.3
of [13]) is that for all γ in the domain of ν,

dinv(ν(γ)) = dinv(γ) + 1 and defc(ν(γ)) = defc(γ).

We may also conclude that arean(ν(γ)) = arean(γ) − 1 if γ and ν(γ) are both
in DP(n).

It is readily checked that the image of ν is the set {δ ∈ Par : δ1 ≥ �(δ)}.
For a partition δ = (δ1, . . . , δs) in this set, we have

ν−1(δ) = (δ2 + 1, δ3 + 1, . . . , δs + 1, 1δ1−�(δ)),

where the notation 1δ1−�(δ) denotes δ1 − �(δ) copies of 1. We say δ ∈ Par is
an initial partition if ν−1(δ) is undefined, i.e., δ1 < �(δ). We say γ ∈ Par is a
final partition if ν(γ) is undefined, i.e., γ1 > �(γ) + 2.

Remarkably, for every partition μ, we can build the whole infinite tail
of the chain Cμ by starting with a particular partition TI(μ) and applying ν
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repeatedly. Suppose μ has n1 parts equal to 1, n2 parts equal to 2, and so on.
Taking N = μ1 + �(μ) + 1, the tail initiator partition of type μ is

TI(μ) = dpN (0, 0, 1n1 , 0, 1n2 , 0, . . . , 0, 1nµ1 ).

(This partition was denoted γμ in [13].) For example, μ = (4, 3, 1, 1, 1) has
n1 = 3, n2 = 0, n3 = n4 = 1, and N = 10, so

TI(μ) = dp10(0, 0, 1, 1, 1, 0, 0, 1, 0, 1) = (8, 8, 6, 6, 5, 3, 2, 1, 1, 0).

For any μ, the Dyck vector associated with TI(μ) starts with two 0s and ends
with a 1, which implies that the length of TI(μ) is 1 more than the longest
part of TI(μ). Thus, every TI(μ) is an initial partition. Moreover, it is shown
in [13, Lemmas 6.7 and 6.8] that νm(TI(μ)) is defined for every integer m ≥ 0,
defc(TI(μ)) = |μ|, and dinv(TI(μ)) =

(
μ1+�(μ)+1

2

)
− �(μ) − |μ|. We call the set

tail(μ) = {νm(TI(μ)) : m ≥ 0}
the ν-tail of the chain Cμ. Note that μ is uniquely determined by the sequence
tail(μ), as follows. First, TI(μ) is the unique object with minimum dinv in
tail(μ). Second, we can find the multiplicities of the parts of μ by counting
consecutive 1s in dvN (TI(μ)), where N = minΔ(TI(μ)).

Now, suppose γ is any partition. The ν-segment generated by γ is the set
of partitions obtained by applying ν and ν−1 to γ as many times as possible.
Formally, the ν-segment ν∗(γ) is the set of all partitions νm(γ) for those inte-
gers m such that νm(γ) is defined. All ν-tails are ν-segments. An example of
a finite ν-segment is

ν∗(5, 2, 2, 2) = {(3, 3, 3, 1), (5, 2, 2, 2), (5, 4, 1, 1, 1), (6, 4, 3)}.

Since ν and ν−1 are one-to-one on their domains, the set Par and all of its
subsets Def(k) are disjoint unions of ν-segments. We hope to express each
chain Cμ as the union of certain (suitably chosen) ν-segments, one of which
is the ν-tail of Cμ. The hard part of the construction is figuring out which
ν-segments can be combined to make the needed opposite property hold.

2.4. The Global Chain Decomposition Conjecture

We now have all the ingredients needed for the main structural conjecture on
global chains. The conjecture stated here consists of parts (a), (b), (c), (d),
(f), (g), and (j) of Conjecture 6.9 in [13]. Our conjecture on local chains (given
in §3.7) implies this version of the global conjecture. Recall from (1.2) the
notation

Catn,S(q, t) =
∑

γ∈S∩DP(n)

qarean(γ)tdinv(γ). (2.4)

Conjecture 2.2. There exist collections of partitions Cμ, indexed by deficit par-
titions μ, and a size-preserving involution μ �→ μ∗ on Par, satisfying the fol-
lowing conditions:
(a) The collections Cμ are pairwise disjoint.
(b) For all γ ∈ Cμ, defc(γ) = |μ|.
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(c) Each Cμ has the form {Cμ(a), Cμ(a + 1), Cμ(a + 2), . . .},
where a = �(μ∗) and dinv(Cμ(i)) = i for all i ≥ a.

(d) Every γ ∈ Def(k) belongs to Cμ for some μ ∈ Par(k).
(e) For all μ, tail(μ) ⊆ Cμ.
(f) For all γ ∈ Cμ, if ν(γ) is defined then ν(γ) ∈ Cμ.
(g) For all n ≥ 0 and all μ, Catn,Cµ

(q, t) = Catn,Cµ∗ (t, q).

Parts (a), (b), and (d) say that each set Def(k) is the disjoint union of
the chains Cμ with μ ∈ Par(k). Parts (b) and (c) say that each chain Cμ is an
infinite string of objects of deficit |μ|, where dinv increases by 1 as we move
along the string, and the first object in the string has dinv equal to �(μ∗).
Part (e) says that the “right end” of Cμ is the ν-tail tail(μ). (More generally,
Conjecture 6.9(g) of [13] asserts that each Cμ is closed under ν and is therefore
a union of ν-segments, but this cannot be deduced from our local conjecture.)
Part (f) says that each chain Cμ is closed under ν (and hence is closed under
ν−1). Part (f) is equivalent to requiring that for all γ ∈ Cμ, the whole ν-segment
ν∗(γ) is contained in Cμ. Part (g) is the crucial global opposite property of the
global chains. We note that μ∗ is usually not the transpose of μ, and μ∗ = μ
can occur. For instance, (k)∗ = (k) as seen in [13].
Remark 2.3. By invoking a deep result from [14], we can prove that there is
a way to satisfy conditions (a) through (d) of Conjecture 2.2. Specifically, the
main result of [14] yields an explicit (but extremely intricate) bijection Φ on
Par that preserves size and sends dinv to the length of the first part:

|Φ(γ)| = |γ| and Φ(γ)1 = dinv(γ) for all γ ∈ Par .

For each partition μ, let Bμ be the set of partitions obtained by adding a new
longest part to μ of any size i ≥ a, where a = μ1 = �(μ′). (So μ∗ is μ′ in this
remark.) Let Cμ = {Φ−1(γ) : γ ∈ Bμ}. By the properties of Φ cited above,
each object (i, μ) in Bμ maps to an object Cμ(i) in Cμ having dinv equal to i
and deficit equal to |μ|. Since Par is clearly the disjoint union of the sets Bμ,
Par is also the disjoint union of the sets Cμ. But, we have checked that the
chains Cμ in this remark do not satisfy the opposite condition 2.2(g).

We can use Φ to compute the number of integer partitions of n having a
given deficit k. For integers a, b ≥ 0, let p(a) be the number of integer partitions
of a, and let p(a, b) be the number of integer partitions of a with largest part at
most b. These numbers satisfy the recursion p(a, b) = p(a−1, b−1)+p(a−b, b)
with appropriate initial conditions. To build an integer partition of n with
deficit k, first choose a partition λ with λ1 = n − k and (λ2, λ3, . . .) any
partition of k with largest part at most n − k. Then Φ−1(λ) is a partition of n
with dinv n−k and deficit k. Thus the number of partitions of n with deficit k
is p(k, n−k). As n increases while k is fixed, this number ranges from 1 (when
n = k + 1) to p(k) (when n ≥ 2k).

3. Local Chains

This section develops the theory of local chains. Section 3.1 begins by relat-
ing the opposite property of global chains to the sequence of minΔ values of
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objects in the chains. The next three subsections study staircase sequences
and sequences built from these by a pointwise minimum operation. It turns
out that the needed opposite property has a remarkably simple proof in this
abstract setting. The formal definition of local chains appears in Sects. 3.5
and 3.6. We state our main conjecture on local chains in Sect. 3.7, and we
show how Conjecture 2.2 follows from this local conjecture.

3.1. The Opposite Property for minΔ-Sequences

Suppose S = (γ(i) : i ≥ a) is a sequence of partitions in Def(k) such that
dinv(γ(i)) = i for all i ≥ a. We have defc(γ(i)) = k and |γ(i)| = k + i for
all i ≥ a. To compute the polynomials Catn,S(q, t), we consider the function
(sequence) F : Z≥a → Z defined by F (i) = minΔ(γ(i)) for all i ≥ a. We call
F the minΔ-sequence associated with S. By (2.1) and (2.4), for any n ≥ 0 we
have

Catn,S(q, t) =
∑

i: F (i)≤n

q(
n
2)−k−iti. (3.1)

Next, suppose S∗ = (δ(j) : j ≥ b) is another sequence of partitions in
Def(k) with dinv(δ(j)) = j for all j ≥ b. Let G : Z≥b → Z be the associated
minΔ-sequence given by G(j) = minΔ(δ(j)) for all j ≥ b. For all n ≥ 0,
Catn,S∗(t, q) =

∑
j: G(j)≤n t(

n
2)−k−jqj . Making the change of variable i =

(
n
2

)
−

k − j, we have

Catn,S∗(t, q) =
∑

i: G((n2)−k−i)≤n

q(
n
2)−k−iti.

Compared to (3.1), we see that the sequences S and S∗ have the opposite
property (namely, Catn,S∗(t, q) = Catn,S(q, t) for all n) iff F and G are related
by the following condition:

for all integers n and i, F (i) ≤ n ⇔ G

((
n

2

)
− k − i

)
≤ n. (3.2)

Here and below, a statement such as “G(
(
n
2

)
− k − i) ≤ n” is an abbreviation

for “
(
n
2

)
−k−i is in the domain of G and G(

(
n
2

)
−k−i) ≤ n.” By definition, we

say that any two functions F and G satisfying (3.2) have the opposite property
for deficit k.

3.2. Staircase Sequences

We intend to build functions (minΔ-sequences) having the opposite prop-
erty (3.2) by taking the pointwise minimum of certain other sequences with
special structure. These latter sequences are defined as follows.

Definition 3.1. Given integers a,m, h, the infinite (a,m, h)-staircase is the
function (sequence) F : Z≥a → Z such that the values (F (a), F (a + 1), F (a +
2), . . .) consist of m + 1 copies of h, followed by h copies of h + 1, followed by
h + 1 copies of h + 2, followed by h + 2 copies of h + 3, and so on. A finite
(a,m, h)-staircase is any finite prefix of the sequence F , that is, a function
obtained by restricting F to a domain of the form {a, a + 1, . . . , b}.



748 S. Han et al.

Here is an explicit formula for the values of the infinite (a,m, h)-staircase
F :
F (i) = h if a ≤ i ≤ a + m;
F (i) = h + 1 if a + m + 1 ≤ i ≤ a + m + h;
F (i) = h + 2 if a + m + h + 1 ≤ i ≤ a + m + h + (h + 1);
F (i) = h + 3 if a + m + h + (h + 1) + 1 ≤ i ≤ a + m + h + (h + 1) + (h + 2);
. . . . . .
F (i) = h + p if a + m + h + (h + 1) + · · · + (h + p − 2) + 1 ≤ i

≤ a + m + h + (h + 1) + · · · + (h + p − 1).

So (taking h + p = n above),

for all n > h, F (i) = n ⇔ a + m +

(
n − 1

2

)

−
(
h

2

)

< i ≤ a + m +

(
n

2

)

−
(
h

2

)

.

(3.3)

The following result shows that staircase sequences arise naturally by
taking the minΔ-sequence associated with a ν-segment or ν-tail. The special
case of a ν-tail was proved in [13, Lemma 6.8(2)].

Proposition 3.2. Suppose γ is a partition with dinv(γ) = a, minΔ(γ) = n, and
m ≥ 0 is the least integer such that γ′

m+1 = n−m−1. Let I be the set of i ≥ 0
such that νi(γ) is defined. Then the sequence F with domain {a + i : i ∈ I}
given by F (a + i) = minΔ(νi(γ)) is an (a,m, n)-staircase.

Proof. We first note that the value m has the following geometric interpreta-
tion. Draw the diagram of γ inside the minimal triangle Δn and look for the
lowest point where a cell in the diagram touches the diagonal boundary y = x
of Δn. This point has coordinates (m + 1,m + 1), as is readily checked. We
call this point the first-return point for γ (relative to Δn).

Suppose m ≥ 1 and ν(γ) is defined. As noted earlier, we obtain the
diagram of ν(γ) by removing the leftmost column of dg(γ) and making a
new top row that is 1 cell longer. Since the diagram of γ does not touch
(1, 1), the new diagram still fits in Δn with first-return point (m,m). Thus,
minΔ(ν(γ)) = n. Similarly, if m ≥ 2 and ν2(γ) is defined, then the diagram
of ν2(γ) still fits in Δn with first-return point (m − 1,m − 1). For any m ≥ 0,
we can apply this reasoning for m steps (always assuming the relevant powers
νi(γ) are defined), until we eventually obtain the diagram of νm(γ) inside Δn

with first-return point (1, 1). Thus the first m+1 values of F are n, as needed.
See Fig. 2 for an example where γ = (5, 5, 3, 3, 1), a = 14, n = 7, m = 2, and
the F -sequence starts (73, 87, 98, 109, . . .).

Now consider νm+1(γ) (if defined). Here, we remove the first column of
size n − 1 and add a new first row of size n. This new row no longer fits inside
Δn, but it does fit inside Δn+1. We conclude that minΔ(νm+1(γ)) = n+1, and
the first-return point is now (n, n). Repeating the reasoning in the previous
paragraph, we see that the next n partitions νm+1(γ), . . . , νm+n(γ) (if defined)
will all have minimum triangle size n + 1, as the first-return point moves from
(n, n) to (1, 1) one step at a time. After that, the next n+1 partitions will have
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*
*

*

*

Figure 2. Finding the minimum triangle sizes for the se-
quence (νi(γ) : i ≥ 0). The first-return point for each object
is starred

minimum triangle size n+2, with first-return point moving from (n+1, n+1)
to (1, 1). This reasoning can be continued forever, unless we eventually reach
a final partition where ν is undefined. In either case, we have proved that the
sequence F is an (a,m, n)-staircase. �

3.3. The Pointwise Minimum of Staircase Sequences

Suppose F1, . . . , Fs are integer-valued sequences with respective domains
D1, . . . , Ds ⊆ Z. The pointwise minimum of F1, . . . , Fs is the sequence F with
domain D = D1 ∪ · · · ∪ Ds such that for each j ∈ D, F (j) is the least integer
in the set {Fi(j) : j ∈ Di}. We write F = min(F1, . . . , Fs). The next lemma
gives an explicit description of the sets {i : F (i) ≤ n} in the case where F is
the pointwise minimum of staircase sequences. For any a, b ∈ Z, we use the
notation [a, b] = {a, a + 1, . . . , b} for an interval of consecutive integers. This
interval is the empty set if a > b.

Lemma 3.3. Let Fj be the infinite (aj ,mj , hj)-staircase for 1 ≤ j ≤ s, and let
F = min(F1, . . . , Fs). For every integer n ≥ 0,

{i : F (i) ≤ n} =
⋃

j: n≥hj

[
aj , aj + mj +

(
n

2

)
−

(
hj

2

)]
. (3.4)

Proof. By (3.3), for 1 ≤ j ≤ s and any n ≥ hj ,

{i : Fj(i) ≤ n} =
[
aj , aj + mj +

(
n

2

)
−

(
hj

2

)]
.

On the other hand, if n < hj , then {i : Fj(i) ≤ n} = ∅. Fix n ≥ 0 and i in the
domain of F . By definition of pointwise minimum and since Fj has minimum
value hj ,

F (i) ≤ n ⇔ for some j, Fj(i) ≤ n

⇔ for some j, n ≥ hj and Fj(i) ≤ n

⇔ i ∈
⋃

j: n≥hj

[
aj , aj + mj +

(
n

2

)
−

(
hj

2

)]
.

�
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3.4. The Opposite Property for Minima of Staircases

Lemma 3.4. Fix a deficit value k ≥ 0, an integer N ≥ 2, and nonnegative
integers aj , bj ,mj , hj for 0 < j < N . For 0 < j < N , let Fj be the infinite
(aj ,mj , hj)-staircase, let Gj be the infinite (bN−j ,mN−j , hN−j)-staircase, let
F = min(Fj), and let G = min(Gj). Assume that

aj + bj + mj + k =
(

hj

2

)
for 0 < j < N . (3.5)

Then, F and G have the opposite property (3.2) for deficit k.

Proof. Fix integers n and i. By Lemma 3.3 and the assumption aj+mj−
(
hj

2

)
=

−bj − k,

F (i) ≤ n ⇔ i ∈
⋃

j: n≥hj

[
aj ,

(
n

2

)
− bj − k

]

⇔ ∃j, n ≥ hj and aj ≤ i ≤
(

n

2

)
− bj − k.

Similarly, applying Lemma 3.3 to G and replacing j by N − j, we get:

G

((
n

2

)
− k − i

)
≤ n

⇔
(

n

2

)
− k − i ∈

⋃

j: n≥hN−j

[
bN−j , bN−j + mN−j +

(
n

2

)
−

(
hN−j

2

)]

⇔
(

n

2

)
− k − i ∈

⋃

j: n≥hj

[
bj , bj + mj +

(
n

2

)
−

(
hj

2

)]

⇔ ∃j, n ≥ hj and bj ≤
(

n

2

)
− k − i ≤

(
n

2

)
− k − aj

⇔ ∃j, n ≥ hj and aj ≤ i ≤
(

n

2

)
− bj − k ⇔ F (i) ≤ n.

�

The next two lemmas consider a special situation where we can conclude
F1 ≥ F2 ≥ · · · ≥ FN−1; this situation will arise in our study of local chains.

Lemma 3.5. Suppose F is the infinite (a,m, h)-staircase, G is the infinite
(a′,m′, h′)-staircase, a + m < a′, and G(a′) < F (a′). Then for all i ≥ a′,
G(i) ≤ F (i).

Proof. We know F and G are weakly increasing sequences whose values in-
crease by 0 or 1 at each step. Let y = F (a′), let i1 be the least integer with
F (i1) = y, and let i2 be the least integer with G(i2) = y. Since a + m < a′,
we know F (a) = · · · = F (a + m) < F (a + m + 1) ≤ y, so a + m < i1 ≤ a′.
Since G(a′) < y, the definition of a staircase sequence shows that i2 exists and
a′ < i2. The values of the sequence F , from input i1 onward, are y − 1 copies
of y, then y copies of y + 1, and so on. The values of the sequence G, from
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input i2 onward, are y − 1 copies of y, then y copies of y + 1, and so on. If
i2 ≤ i, then these remarks show that

G(i) = F (i1 + (i − i2)) = F (i + (i1 − i2)) ≤ F (i),

since i1 − i2 < 0. If a′ ≤ i < i2, then G(i) ≤ G(i2) = y = F (i1) ≤ F (a′)
≤ F (i). �

Lemma 3.6. Suppose Fj is the infinite (aj ,mj , hj)-staircase for 1 ≤ j ≤ c,
aj−1+mj−1 < aj and Fj(aj) < Fj−1(aj) for 1 < j ≤ c, and F = min1≤j≤c(Fj).
Let ac+1 = ∞. If aj ≤ i < aj+1, then

F (i) = min{F1(i), F2(i), . . . , Fj(i)} = Fj(i). (3.6)

Proof. The domain of Fj is Z≥aj
. If aj ≤ i < aj+1, then i is in the domain

of F1, F2, . . . , Fj , but not in the domain of Fj+1, . . . , Fc. So the first equality
in (3.6) follows from the definition of pointwise minimum. To get the second
equality, we prove the following stronger statement by induction on j: for all
p < j and all i ≥ aj , Fj(i) ≤ Fp(i). Fix j > 1, and assume that for all p < j−1
and all i ≥ aj−1, Fj−1(i) ≤ Fp(i). Fix i ≥ aj . Since aj−1 + mj−1 < aj and
Fj(aj) < Fj−1(aj), Lemma 3.5 shows that Fj(i) ≤ Fj−1(i). Combining this
with the induction hypothesis, we see that Fj(i) ≤ Fp(i) for all p < j, as
needed. �

3.5. Ordinary Local Chains

We are now ready to define local chains. A sequence of partitions S is called
an ordinary local chain of deficit k iff there exist nonnegative integers a, a′,m,
m′, h, h′ satisfying the following conditions. First, S = (γ(i) : a ≤ i ≤ a′ + m′)
where defc(γ(i)) = k and dinv(γ(i)) = i for a ≤ i ≤ a′ + m′. Second, the
minΔ-sequence F = (minΔ(γ(i)) : a ≤ i ≤ a′ +m′) associated with S satisfies

F (a′ − 1) > F (a′) = F (a′ + 1) = · · · = F (a′ + m′) = h′.

Third, a + m + 1 < a′ and the restriction of F to {a, a + 1, . . . , a′ − 1} is an
(a,m, h)-staircase, so in particular

h = F (a) = F (a + 1) = · · · = F (a + m) < F (a + m + 1).

Since F (a + m) < F (a + m + 1) and F (a′ − 1) > F (a′), the integers
a, a′,m,m′, h, h′ are uniquely determined by S, and we denote them aS , a′

S ,
mS , m′

S , hS , h′
S (respectively). We also define the left part, middle part, and

right part of S to be

left(S) = {γ(j) : a ≤ j ≤ a + m};

mid(S) = {γ(j) : a + m < j < a′};

right(S) = {γ(j) : a′ ≤ j ≤ a′ + m′}.

It is helpful to visualize the conditions on the minΔ-sequence of a local
chain S by graphing the set of ordered pairs (dinv(γ),minΔ(γ) : γ ∈ S) in the
xy-plane. See Fig. 3 for an illustration of the structure of an ordinary local
chain.
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Figure 3. Structure of an ordinary local chain

Example 3.7. Here are two ordinary local chains of deficit 7:

S = ((3333), (52222), (641111), (753), (44422), (633311));

T = ((32222), (621111), (751), (43331), (63222), (652111)).

The following two-line arrays show the values of dinv and minΔ for objects in
the sequences S and T :

FS =
[

dinv : 5 6 7 8 9 10
minΔ : 7 7 7 8 7 7

]
; FT =

[
dinv : 4 5 6 7 8 9

minΔ : 7 7 8 7 7 7

]
.

We have

aS = 5, mS = 2, hS = 7, a′
S = 9, m′

S = 1, h′
S = 7;

aT = 4, mT = 1, hT = 7, a′
T = 7, m′

T = 2, h′
T = 7.

The left, middle, and right parts of S have size mS +1 = 3, 1, and m′
S +1 = 2,

respectively.

Suppose S and T are ordinary local chains of deficit k. We say that S is
locally opposite to T iff mT = m′

S , m′
T = mS , hT = h′

S , h′
T = hS ,

aS + mS + k + a′
T =

(
hS
2

)
, and a′

S + m′
S + k + aT =

(
h′

S
2

)
. (3.7)

For instance, the local chains S and T in Example 3.7 are locally opposite
because mT = 1 = m′

S , m′
T = 2 = mS , hT = 7 = h′

S , h′
T = 7 = hS , and

(recalling k = 7)

5 + 2 + 7 + 7 = 21 =
(

7
2

)
, 9 + 1 + 7 + 4 = 21 =

(
7
2

)
.

3.6. Exceptional Local Chains

We also need two types of exceptional local chains of deficit k. First, any one-
element set T = {γ} with defc(γ) = k is an exceptional local chain, and we
define

a′
T = dinv(γ), m′

T = 0, h′
T = minΔ(γ),

left(T ) = ∅, mid(T ) = ∅, and right(T ) = {γ}.
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Second, for any μ ∈ Par(k), the ν-tail S = tail(μ) = ν∗(TI(μ)) is an excep-
tional local chain, and we define

aS = dinv(TI(μ)), mS = 0, hS = minΔ(TI(μ)),
left(S) = {TI(μ)}, mid(S) = S \ {TI(μ)}, and right(S) = ∅.

By Proposition 3.2 applied to γ = TI(μ), the minΔ sequence associated with
S = tail(μ) is the infinite (aS ,mS , hS)-staircase.

Two exceptional local chains of deficit k are locally opposite iff one chain
is S = tail(μ) and the other chain is T = {γ} where dinv(γ) = �(μ) and
minΔ(γ) = minΔ(TI(μ)). Since we know |μ| = k, minΔ(TI(μ)) = μ1 +�(μ)+1,
and dinv(TI(μ)) =

(
μ1+�(μ)+1

2

)
− �(μ) − |μ| (see Sect. 2.3), it follows that

m′
T = 0 = mS , h′

T = minΔ(γ) = hS , and the first equation in (3.7) holds. It
follows from these definitions that the relation “S is locally opposite to T ” is
a symmetric relation on the set of all (ordinary and exceptional) local chains
of deficit k.

Example 3.8. Here are two exceptional local chains of deficit 6:

S = tail(411) = ν∗(6654211) = ((6654211), (855431), (774432), . . .);
T = {(3111111)}.

Writing μ = (411), TI(μ) = (6654211), and γ = (3111111), we compute
dinv(γ) = 3 = �(μ) and minΔ(γ) = 8 = minΔ(TI(μ)). So S and T are lo-
cally opposite chains. Note that

aS = dinv(TI(μ)) = 19, mS = 0, hS = 8, a′
T = 3,m′

T = 0, h′
T = 8,

and aS + mS + k + a′
T = 19 + 0 + 6 + 3 = 28 =

(
hS
2

)
.

3.7. The Local Chain Conjecture

We can now state our main structural conjecture on local chains.

Conjecture 3.9. For every k ≥ 0, there is a set L of local chains of deficit k,
and there is an involution S �→ S∗ on L, satisfying the following conditions:
(a) For every μ ∈ Par(k), tail(μ) belongs to L.
(b) For any two distinct chains in L, either the two chains are disjoint or the

right part of one chain equals the left part of the other chain.
(c) Every γ in Def(k) belongs to exactly one or two local chains in L. In the

former case, γ belongs to the middle part of the chain. In the latter case,
γ belongs to the right part of one chain and the left part of the other.

(d) For all S in L, the local chains S and S∗ are locally opposite.
(e) For all S, T ∈ L, if S and T have nonempty intersection, then S∗ and

T ∗ have nonempty intersection.
(f) For all S ∈ L, left(S) ∪ mid(S) is a union of ν-segments.

Aided by computer searches, we can explicitly construct local chains prov-
ing this conjecture for all k ≤ 11. The details appear in Section 4. First, we
prove that this conjecture for local chains implies the corresponding conjecture
for global chains.
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Theorem 3.10. Conjecture 3.9 implies Conjecture 2.2.

Proof. Assume Conjecture 3.9 holds for a fixed deficit value k ≥ 0. We prove
the conclusions of Conjecture 2.2 for partitions μ of k.

Step 1. We construct the global chains Cμ for μ ∈ Par(k). Start with the
local chain S = tail(μ), which belongs to L. By 3.9(b) and (c), there is a
unique S ′ ∈ L with right(S ′) = left(S) = {TI(μ)}. If this chain S ′ is not
a singleton, then there is a unique S ′′ ∈ L with right(S ′′) = left(S ′). We
continue to paste together overlapping local chains in this way until eventually
terminating at an exceptional (singleton) chain. Such a chain must be reached
in finitely many steps, since the minimum dinv value for each local chain
strictly decreases as we proceed. At the end, we have

Cμ = S0 ∪ S1 ∪ · · · ∪ Sc, (3.8)

where S0 = {γ}, Sc = tail(μ), and right(Sj) = left(Sj+1) for 0 ≤ j < c.
The last condition shows that Sj+1 is uniquely determined by Sj . Iterating
this, we see that tail(μ) and hence μ are uniquely determined by any Si

in (3.8). So, two chains constructed in this way from two different partitions
μ must be disjoint. So far, we have built chains Cμ (for μ ∈ Par(k)) satisfying
conditions 2.2(a), (b), (c), and (e), except for the claim a = �(μ∗) that will be
proved later. Since a is the minimum value of dinv among all objects in Cμ,
we see from the construction that a = dinv(γ) for the unique γ in S0.

Step 2. We prove two formulas expressing the minΔ-sequence Fμ of Cμ

as the pointwise minimum of staircase sequences determined by the chains
S0,S1, . . . ,Sc in (3.8). For brevity, write aj = aSj

for 0 ≤ j ≤ c, and define mj ,
hj , a′

j , m′
j , and h′

j similarly. Let Fj denote the infinite (aj ,mj , hj)-staircase,
and let F ′

j denote the infinite (a′
j ,m

′
j , h

′
j)-staircase. We claim

min
0<j≤c

Fj = Fμ = min
0≤j<c

F ′
j . (3.9)

Since right(Sj−1) = left(Sj) for 0 < j ≤ c, we must have a′
j−1 = aj ,

m′
j−1 = mj , h′

j−1 = hj , and hence F ′
j−1 = Fj for 0 < j ≤ c (compare to

Figure 3). So the second equality in (3.9) follows from the first one. We prove
the first equality with the help of Lemma 3.6. Let F = min(F1, . . . , Fc). By
definition of local chains, aj−1 + mj−1 < a′

j−1 = aj and

Fj(aj) = hj = h′
j−1 < Fj−1(a′

j−1 − 1) ≤ Fj−1(a′
j−1) = Fj−1(aj)

for 1 < j ≤ c. So for i in the range aj ≤ i < aj+1 (taking ac+1 = ∞), the
lemma tells us that F (i) = Fj(i). Thus, it suffices to show that Fμ(i) = Fj(i)
for all i in this range.

If j < c and i satisfy aj ≤ i < aj+1 = a′
j , then the unique object Cμ,i

in Cμ with dinv(Cμ,i) = i belongs to the left part or middle part of Sj . Then,
Fμ(i) = minΔ(Cμ,i) = Fj(i) by the third condition in the definition of an
ordinary local chain. On the other hand, if ac ≤ i, then Fμ(i) = Fc(i) because
the minΔ-sequence of the ν-tail Sc is known to be the infinite (ac,mc, hc)-
staircase Fc.

Step 3. We construct the involution μ �→ μ∗ on Par(k) and verify the op-
posite property 2.2(g). Fix μ ∈ Par(k) and consider the local chains S0,S1, . . . ,Sc
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in (3.8). Using 3.9(d), let S∗
0 ,S∗

1 , . . . ,S∗
c be the corresponding chains in L such

that Sj and S∗
j are locally opposite for 0 ≤ j ≤ c. The exceptional chain

S0 = {γ} must be locally opposite to some ν-tail, so that S∗
0 = tail(μ∗)

for some partition μ∗ of k. Using 3.9(e), since S0 and S1 overlap, S∗
0 and S∗

1

must overlap as well, and in fact right(S∗
1 ) = left(S∗

0 ). Similarly, since S1

and S2 overlap, S∗
1 and S∗

2 must also overlap, with right(S∗
2 ) = left(S∗

1 ).
We can continue this reasoning until reaching S∗

c , which is locally opposite to
Sc = tail(μ) and must therefore be a singleton chain. We conclude that the
decomposition (3.8) for the chain Cμ∗ looks like

Cμ∗ = S∗
c ∪ S∗

c−1 ∪ · · · ∪ S∗
1 ∪ S∗

0 . (3.10)

We now apply Lemma 3.4 with N = c + 1, aj = aSj
, bj = a′

S∗
j
, mj = mSj

=
m′

S∗
j
, and hj = hSj

= h′
S∗
j

for 0 < j < N . Define Fj , Gj , F , and G as in the
lemma. The first equality in (3.9) shows that F = Fμ. The second equality
in (3.9) (applied to μ∗, and keeping in mind the reversal of the index order
in (3.10)) shows that G = Fμ∗ . Since Sj and S∗

j are locally opposite chains,
the lemma hypothesis (3.5) follows from the first equation in (3.7), which
holds even if j = c. Therefore, the lemma applies to show that Fμ and Fμ∗

have the opposite property for deficit k. As seen in §3.1, this property implies
Catn,Cµ∗ (t, q) = Catn,Cµ

(q, t).
Step 4. We prove a = �(μ∗) in 2.2(c) and deduce 2.2(d). With the above

notation, we know S0 = {γ} is locally opposite to S∗
0 = tail(μ∗), so dinv(γ) =

�(μ∗) by definition. We saw that a = dinv(γ) at the end of Step 1. Finally,
Lemma 6.11 of [13] proves that part (d) of Conjecture 2.2 follows automatically
from parts (a), (b), and (c), which are already known.

Step 5. We use 3.9(f) to prove 2.2(f). By construction, each global chain
Cμ is an overlapping union of certain local chains S ∈ L. By 3.9(b) and (c),
we can also regard each global chain Cμ as the disjoint union of the left and
middle parts of these same local chains. Since each set left(S) ∪ mid(S) is a
union of ν-segments by hypothesis, so is the global chain Cμ. This proves that
Cμ is closed under ν (and ν−1). �

4. Global and Local Chains for |μ| ≤ 11

This section presents specific chains Cμ satisfying Conjectures 3.9 and 2.2 for all
deficit partitions μ of size at most 11. First, we show that any putative global
chain Cμ can be decomposed into an overlapping union of local chains in at
most one way. We will see that the local opposite property of the local chains
comprising Cμ and Cμ∗ can be checked quite easily, in contrast to the global
opposite property from [13]. We give an example of this process by presenting
the complete verification for deficit partitions μ of size 4. The appendix to [13]
lists specific global chains Cμ that happen to satisfy the new local conjecture
for all μ with 0 ≤ |μ| ≤ 6. So, we do not repeat that data here. However, for
deficit values larger than 6, some new chains are needed. We list these chains
(and the data needed to verify the local opposite property) in the appendix
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at the end of this section. This proves the joint symmetry of the terms in
Catn(q, t) of degree

(
n
2

)
− k for all n ≥ 0 and all k ≤ 11.

4.1. Decomposing Global Chains into Local Chains

A given global chain Cμ is an infinite sequence (γ(i) : i ≥ d) of Dyck partitions
of deficit k. A convenient way to present such a chain is by specifying the
initial partitions of the ν-segments comprising Cμ. This is a finite list that
ends with the partition TI(μ), which generates the ν-segment tail(μ). Now,
it is a simple matter to compute the finite ν-segments starting at these initial
partitions and tabulate the values of dinv and minΔ for the resulting objects.
We thereby obtain a two-line array, which needs to be of the form

Fμ =
[

dinv : d d + 1 d + 2 · · · e − 1 e · · ·
minΔ : wd wd+1 wd+2 · · · we−1 we · · ·

]
,

where wi = minΔ(γ(i)) and i = dinv(γ(i)) for all i ≥ d. We can terminate
the display at e = dinv(TI(μ)), since the right end of the array (starting
with the values for TI(μ)) is known to be an infinite (e, 0, we)-staircase by
Proposition 3.2.

We now show that the global chain Cμ can be decomposed into an overlap-
ping union of local chains Si in at most one way. This decomposition is readily
deduced from the word w = wdwd+1 · · · we. On one hand, we know the local
chain decomposition must begin with the exceptional local chain S0 = {γ(d)}
and end with the exceptional local chain Sc = tail(μ) = ν∗(TI(μ)). On the
other hand, we can uniquely build the local chains Si for i = 0, 1, 2, . . . , c
as follows. (Keep in mind Fig. 3, especially the arrows showing ascents and
descents forced by the definition of local chains.) Scan w from left to right,
looking for descent positions i where wi > wi+1. Each such descent marks a
place where the middle part of the current local chain ends and the left part
of the next local chain begins. The length of this new left part is the unique m
such that wi+1 = wi+2 = · · · = wi+m < wi+m+1. Also, the right part of the old
local chain equals the left part of the new local chain. This process determines
the values of a, a′, m, m′, h, and h′ for each local chain Si. We must also
check that the restriction of Fμ to each subinterval {a, a + 1, . . . , a′ − 1} is an
(a,m, h)-staircase, as required by the definition of local chains.

Example 4.1. Let k = 6 and μ = (42), so TI(μ) = (554221). Given the global
chain

C(42) = ν∗(3111111) ∪ ν∗(42221) ∪ ν∗(44411) ∪ ν∗(554221),

let us find the constituent local chains for Cμ. The array of (dinv,minΔ) values
for the beginning of this chain is:

F(42) =
[

dinv : 3 4 5 6 7 8 9 10 11 12 13 14 · · ·
minΔ : 8 9 6 7 7 7 7 7 7 8 7 8 · · ·

]
, (4.1)

where the bars show where ν-segments begin and end. The word of minΔ-
values (with descents marked) is w = 8, 9 > 6, 76, 8 > 7, 87, 98, · · · . Following
the procedure above, we find the local chains

S0 = {(3111111)},
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S1 = ν∗(3111111) ∪ {(42221)},

S2 = ν∗(42221) ∪ ν∗(44411) ∪ {(554221)},

S3 = ν∗(554221) = tail(μ).

Note that left(S2) ∪ mid(S2) is the union of two ν-segments, and the nec-
essary staircase property does hold. Because of the overlapping left and right
parts of consecutive local chains, we can conveniently present the values of
a, a′,m,m′, h, h′ for all the local chains in a table such as the following:

S0 S1 S2 S3

a a′ – 3 5 13 –
m m′ – 0 0 0 –
h h′ – 8 6 7 –

The entries in columns 1 and 2 mean that a,m, h are undefined for S0,
while a′ = 3, m′ = 0, h′ = 8 for S0. Reading columns 2 and 3, we see that
(a,m, h) = (3, 0, 8) for S1, whereas (a′,m′, h′) = (5, 0, 6) for S1. Next, we
find (a,m, h) = (5, 0, 6) and (a′,m′, h′) = (13, 0, 7) for S2. Finally, (a,m, h) =
(13, 0, 7), while (a′,m′, h′) are undefined for S3. All of these values were found
from inspection of (4.1) (compare to Fig. 3). For brevity, we use a shorter
version of the table in the appendix. In this example, the abbreviated version
consists of the three vectors a = (3, 5, 13), m = (0, 0, 0), and h = (8, 6, 7).

4.2. Verifying the Local Opposite Property

Our next example shows how to check the local opposite property for the local
chains comprising given global chains Cμ and Cμ∗ .

Example 4.2. For μ = (42), we have μ∗ = (411), TI(411) = (6654211), and

C(411) = ν∗(221111) ∪ ν∗(33211) ∪ ν∗(6654211).

Proceeding as we did above, we find

F(411) =
[

dinv : 2 3 4 5 · · · 10 11 · · · 17 18 19 20 · · ·
minΔ : 7 8 6 7 · · · 7 8 · · · 8 9 8 9 · · ·

]
, (4.2)

leading to local chains Ti with parameters shown here:

T0 T1 T2 T3

a a′ – 2 4 19 –
m m′ – 0 0 0 –
h h′ – 7 6 8 –

To see that C(411) is globally opposite to C(42), we check that T3−i is
locally opposite to Si for i = 0, 1, 2, 3, as follows. First, note that the m-vector
for (411) is the reverse of the m-vector for (42), and the h-vector for (411) is
the reverse of the h-vector for (42). Second, note that the first object in C(42)
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has dinv 3 = �(411), while the first object in C(411) has dinv 2 = �(42). Third,
we directly verify Eq. (3.7) by computing

3 + 0 + 6 + 19 = 28 =
(

8
2

)
; 5 + 0 + 6 + 4 = 15 =

(
6
2

)
;

13 + 0 + 6 + 2 = 21 =
(

7
2

)
.

Example 4.3. For μ of size 4, we present the global chains Cμ from the appendix
to [13] and confirm the local opposite property. We list the initial objects of
each ν-segment of Cμ, followed by the local chain parameters in abbreviated
form. We can check by inspection the reversal properties of the m-vectors and
h-vectors, as well as the equality of the least dinv value in Cμ and the length
of μ∗. We also show the verification of (3.7) in each case.

Involution on partitions of 4: (4)∗ = (4); (31)∗ = (22); (211)∗ = (1111).
Global chain C(4): (11111), (2221), (3331), (44321).

Local chain parameters: a = (1, 3, 10), m = (0, 0, 0), h = (6, 5, 6).
This chain is self-opposite, so the m-vector and h-vector are palindromes.

We verify 1 + 0 + 4 + 10 =
(
6
2

)
, 3 + 0 + 4 + 3 =

(
5
2

)
, and 10 + 0 + 4 + 1 =

(
6
2

)

(this last check is redundant).

Global chain C(31): (2211), (44311).
Local chain parameters: a = (2, 9), m = (0, 0), h = (5, 6).

Global chain C(22): (21111), (3221).
Local chain parameters: a = (2, 4), m = (0, 0), h = (6, 5).

We verify 2 + 0 + 4 + 4 =
(
5
2

)
and 9 + 0 + 4 + 2 =

(
6
2

)
.

Global chain C(211): (32111), (43111), (44211).
Local chain parameters: a = (4, 6, 8), m = (0, 0, 0), h = (6, 6, 6).

Global chain C(1111): (31111), (42111), (43211).
Local chain parameters: a = (3, 5, 7), m = (0, 0, 0), h = (6, 6, 6).

We verify 4 + 0 + 4 + 7 = 6 + 0 + 4 + 5 = 8 + 0 + 4 + 3 =
(
6
2

)
.

4.3. Appendix: Chain Data

This appendix lists the global chains and values of a, m, h for all deficit
partitions μ with 7 ≤ |μ| ≤ 9. The online extended appendix which presents
this information for |μ| = 10 and |μ| = 11 is available in [10]. The SageMath
code for checking the correctness of the global chains for 1 ≤ |μ| ≤ 11 is also
available at the webpage in the above reference. In the data below, initial
objects that do not start new local chains are marked N .

Involution on partitions of 7: (7)∗ = (7); (31111)∗ = (3211); (211111)∗ =
(1111111); (61)∗ = (331); (52)∗ = (52); (511)∗ = (4111); (43)∗ = (322);
(421)∗ = (421); (2221)∗ = (2221); (22111)∗ = (22111).
C(7): (11111111), (22222), (33331), (44432), (555421)N , (6664321)N , (77654321).
a = (1, 3, 6, 10, 28), m = (0, 1, 2, 1, 0), h = (9, 7, 7, 7, 9).
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C(31111): (3311111), (5311111), (5331111), (6431111), (6442111), (6542211),
(77643211).
a = (4, 6, 8, 10, 12, 14, 24), m = (0, 0, 0, 0, 0, 0, 0), h = (8, 8, 8, 8, 8, 8, 9).
C(3211): (42111111), (4421111), (5422111), (5532111), (6533111), (6643111),
(6644211).
a = (5, 7, 9, 11, 13, 15, 17), m = (0, 0, 0, 0, 0, 0, 0), h = (9, 8, 8, 8, 8, 8, 8).
C(211111): (43211111), (54211111), (54321111), (65321111), (65431111),
(75432111), (76532111), (76543111), (77543211).
a = (7, 9, 11, 13, 15, 17, 19, 21, 23), m = (0, 0, 0, 0, 0, 0, 0, 0, 0),
h = (9, 9, 9, 9, 9, 9, 9, 9, 9).
C(1111111): (43111111), (53211111), (54311111), (64321111), (65421111),
(65432111), (76432111), (76542111), (76543211).
a = (6, 8, 10, 12, 14, 16, 18, 20, 22), m = (0, 0, 0, 0, 0, 0, 0, 0, 0),
h = (9, 9, 9, 9, 9, 9, 9, 9, 9).
C(61): (511111), (3333), (44422), (554421)N , (77654311).
a = (3, 5, 9, 27), m = (0, 2, 1, 0), h = (7, 7, 7, 9).
C(331): (21111111), (32222), (43331), (544311).
a = (2, 4, 7, 11), m = (0, 1, 2, 0), h = (9, 7, 7, 7). C(52): (2211111), (33221),
(555311)N , (6654221).
a = (2, 4, 19), m = (0, 0, 0), h = (8, 6, 8).
C(511): (32111111), (541111), (44322), (77654211).
a = (4, 6, 8, 26), m = (0, 0, 1, 0), h = (9, 7, 7, 9).
C(4111): (31111111), (42222), (533211), (77653211).
a = (3, 5, 8, 25), m = (0, 1, 0, 0), h = (9, 7, 7, 9).
C(43): (322111), (441111), (44222), (554111), (553321).
a = (3, 5, 7, 10, 12), m = (0, 0, 1, 0, 0), h = (7, 7, 7, 7, 7).
C(322): (222111), (332111), (43222), (544111), (553221).
a = (2, 4, 6, 9, 11), m = (0, 0, 1, 0, 0), h = (7, 7, 7, 7, 7).
C(421): (4111111), (522111), (443111), (552211), (6653311).
a = (3, 5, 7, 9, 18), m = (0, 0, 0, 0, 0), h = (8, 7, 7, 7, 8).
C(2221): (521111), (433111), (552111), (543311). a = (4, 6, 8, 10), m = (0, 0, 0, 0),
h = (7, 7, 7, 7).
C(22111): (4221111), (532211), (6553211).
a = (5, 7, 16), m = (0, 0, 0), h = (8, 7, 8).

Involution on partitions of 8: (8)∗ = (8); (4211)∗ = (4211); (41111)∗ =
(41111); (32111)∗ = (32111); (311111)∗ = (311111); (2111111)∗ = (11111111);
(71)∗ = (44); (62)∗ = (5111); (611)∗ = (521); (53)∗ = (2222); (3221)∗ = (422);
(431)∗ = (332); (3311)∗ = (3311); (22211)∗ = (22211); (221111)∗ = (221111).
C(8): (111111111), (222221), (33332), (444321), (555431)N , (6665321)N ,
(77754321)N , (887654321).
a = (1, 3, 6, 10, 36), m = (0, 0, 1, 0, 0), h = (10, 7, 7, 7, 10).
C(4211): (33111111), (5411111), (5332111), (6531111), (6443111), (6642211),
(77644211).
a = (4, 6, 8, 10, 12, 14, 24), m = (0, 0, 0, 0, 0, 0, 0), h = (9, 8, 8, 8, 8, 8, 9).
C(41111): (421111111), (4431111), (6422111), (5542111), (6533211), (887643211).
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a = (5, 7, 9, 11, 13, 32), m = (0, 0, 0, 0, 0, 0), h = (10, 8, 8, 8, 8, 10).
C(32111): (42211111), (44211111), (54221111), (55321111), (65331111),
(75431111), (75532111), (76533111), (77543111), (77553211).
a = (5, 7, 9, 11, 13, 15, 17, 19, 21, 23), m = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
h = (9, 9, 9, 9, 9, 9, 9, 9, 9, 9).
C(311111): (431111111), (53311111), (64311111), (64421111), (65422111),
(66432111), (76442111), (76542211), (887543211).
a = (6, 8, 10, 12, 14, 16, 18, 20, 31), m = (0, 0, 0, 0, 0, 0, 0, 0, 0),
h = (10, 9, 9, 9, 9, 9, 9, 9, 10).
C(2111111): (532111111), (543111111), (643211111), (654211111), (654321111),
(764321111), (765421111), (765432111), (875432111), (876532111), (876543111),
(886543211).
a = (8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30), m = (012), h = (1012).
C(11111111): (432111111), (542111111), (543211111), (653211111), (654311111),
(754321111), (765321111), (765431111), (865432111), (876432111), (876542111),
(876543211).
a = (7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29), m = (012), h = (1012).
C(71): (222211), (33322), (444311), (555331)N , (6655321)N , (887654311).
a = (2, 5, 9, 35), m = (0, 1, 0, 0), h = (7, 7, 7, 10).
C(44): (211111111), (322221), (43332), (544321).
a = (2, 4, 7, 11), m = (0, 0, 1, 0), h = (10, 7, 7, 7).
C(62): (321111111), (551111), (44332), (6664311)N , (77654221).
a = (4, 6, 8, 26), m = (0, 0, 1, 0), h = (10, 7, 7, 9).
C(5111): (22111111), (33222), (443211), (887653211).
a = (2, 4, 7, 33), m = (0, 1, 0, 0), h = (9, 7, 7, 10).
C(611): (41111111), (522211), (444211), (554331)N , (887654211).
a = (3, 5, 8, 34), m = (0, 0, 0, 0), h = (9, 7, 7, 10).
C(521): (311111111), (422221), (533311), (554411)N , (77653311).
a = (3, 5, 8, 25), m = (0, 0, 0, 0), h = (10, 7, 7, 9).
C(53): (422211), (444111), (552221), (555221)N , (6653321).
a = (4, 7, 9, 18), m = (0, 0, 0, 0), h = (7, 7, 7, 8).
C(2222): (2221111), (333111), (432221), (543221).
a = (2, 4, 6, 9), m = (0, 0, 0, 0), h = (8, 7, 7, 7).
C(3221): (3221111), (432211), (6553111), (6643311).
a = (3, 5, 14, 16), m = (0, 0, 0, 0), h = (8, 7, 8, 8).
C(422): (5211111), (4331111), (542221), (555211)N , (6653221).
a = (4, 6, 8, 17), m = (0, 0, 0, 0), h = (8, 8, 7, 8).
C(431): (322211), (442211), (6653111), (6644311).
a = (3, 6, 15, 17), m = (0, 0, 0, 0), h = (7, 7, 8, 8).
C(332): (5111111), (5221111), (532221), (544221).
a = (3, 5, 7, 10), m = (0, 0, 0, 0), h = (8, 8, 7, 7).
C(3311): (3321111), (43322), (6554211). a = (4, 6, 16), m = (0, 1, 0), h = (8, 7, 8).
C(22211): (4411111), (5322111), (5531111), (6433111), (6642111), (6544211).
a = (5, 7, 9, 11, 13, 15), m = (0, 0, 0, 0, 0, 0), h = (8, 8, 8, 8, 8, 8).
C(221111): (53111111), (6421111), (5442111), (6532211), (76643211).
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a = (6, 8, 10, 12, 22), m = (0, 0, 0, 0, 0), h = (9, 8, 8, 8, 9).

Involution on partitions of 9: (9)∗ = (9), (54)∗ = (54), (531)∗ = (432),
(522)∗ = (33111), (5211)∗ = (51111), (4311)∗ = (4221), (42111)∗ = (411111),
(3321)∗ = (3321), (32211)∗ = (3222), (321111)∗ = (321111), (3111111)∗ =
(3111111), (22221)∗ = (22221), (2211111)∗ = (222111), (21111111)∗

= (21111111), (111111111)∗ = (111111111), (81)∗ = (441), (72)∗ = (621),
(711)∗ = (711), (63)∗ = (63), (6111)∗ = (333).
C(9): (1111111111), (222222), (333321), (444421)N , (555432), (6665421)N ,
(77764321)N , (888654321)N , (9987654321).
a = (1, 3, 6, 15, 45), m = (0, 1, 0, 1, 0), h = (11, 8, 7, 8, 11).
C(54): (2222111), (3331111), (442221), (555111)N , (553331)N , (6654111),
(6644321).
a = (2, 4, 6, 15, 17), m = (0, 0, 0, 0, 0), h = (8, 8, 7, 8, 8).
C(531): (3222111), (6311111), (6331111), (6441111), (554222), (6652211),
(77644311).
a = (3, 5, 7, 9, 11, 14, 24), m = (0, 0, 0, 0, 1, 0, 0), h = (8, 8, 8, 8, 8, 8, 9).
C(432): (51111111), (5222111), (532222), (5533111), (6633111), (6644111),
(6644221).
a = (3, 5, 7, 10, 12, 14, 16), m = (0, 0, 1, 0, 0, 0, 0), h = (9, 8, 8, 8, 8, 8, 8).
C(522): (52211111), (533221), (6664211)N , (77653221).
a = (5, 7, 24), m = (0, 0, 0), h = (9, 7, 9).
C(33111): (32211111), (433211), (76653211).
a = (3, 5, 22), m = (0, 0, 0), h = (9, 7, 9).
C(5211): (4211111111), (4432111), (6522111), (5543111), (6633211), (887644211).
a = (5, 7, 9, 11, 13, 32), m = (0, 0, 0, 0, 0, 0), h = (11, 8, 8, 8, 8, 10).
C(51111): (331111111), (6411111), (6332111), (6541111), (6443211), (9987643211).
a = (4, 6, 8, 10, 12, 41), m = (0, 0, 0, 0, 0, 0), h = (10, 8, 8, 8, 8, 11).
C(4311): (52111111), (4422111), (542222), (6442211), (77643111), (77554211).
a = (4, 6, 8, 11, 21, 23), m = (0, 0, 1, 0, 0, 0), h = (9, 8, 8, 8, 9, 9).
C(4221): (33211111), (54111111), (5522111), (553222), (6552211), (77643311).
a = (4, 6, 8, 10, 13, 23), m = (0, 0, 0, 1, 0, 0), h = (9, 9, 8, 8, 8, 9).
C(42111): (4311111111), (53321111), (65311111), (64431111), (75422111),
(66532111), (76443111), (77542211), (887553211).
a = (6, 8, 10, 12, 14, 16, 18, 20, 31), m = (0, 0, 0, 0, 0, 0, 0, 0, 0),
h = (11, 9, 9, 9, 9, 9, 9, 9, 10).
C(411111): (422111111), (44311111), (64221111), (55421111), (65332111),
(76431111), (75542111), (76533211), (9987543211).
a = (5, 7, 9, 11, 13, 15, 17, 19, 40), m = (0, 0, 0, 0, 0, 0, 0, 0, 0),
h = (10, 9, 9, 9, 9, 9, 9, 9, 11).
C(3321): (6211111), (433311), (544411)N , (6553311).
a = (4, 6, 15), m = (0, 0, 0), h = (8, 7, 8).
C(32211): (4222111), (6321111), (5441111), (6432211), (76643111), (77544211).
a = (4, 6, 8, 10, 20, 22), m = (0, 0, 0, 0, 0, 0), h = (8, 8, 8, 8, 9, 9).
C(3222): (44111111), (53221111), (5433111), (6632111), (6544111), (6643221).
a = (5, 7, 9, 11, 13, 15), m = (0, 0, 0, 0, 0, 0), h = (9, 9, 8, 8, 8, 8).
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C(321111): (531111111), (533111111), (643111111), (644211111), (654221111),
(664321111), (764421111), (765422111), (775432111), (875532111), (876533111),
(886543111), (886643211).
a = (6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30), m = (013), h = (1013).
C(3111111): (4321111111), (542211111), (553211111), (653311111), (754311111),
(755321111), (765331111), (865431111), (866432111), (876442111), (876542211),
(9986543211).
a = (7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 39), m = (012), h = (11, 1010, 11).
C(22221): (4322111), (5521111), (543222), (6552111), (6543311).
a = (5, 7, 9, 12, 14), m = (0, 0, 1, 0, 0), h = (8, 8, 8, 8, 8).
C(2211111): (43311111), (64211111), (54421111), (65322111), (66431111),
(75442111), (76532211), (877543211).
a = (6, 8, 10, 12, 14, 16, 18, 29), m = (0, 0, 0, 0, 0, 0, 0, 0), h = (9, 9, 9, 9, 9, 9, 9, 10).
C(222111): (442111111), (55311111), (64331111), (75421111), (65532111),
(76433111), (77542111), (76553211).
a = (7, 9, 11, 13, 15, 17, 19, 21), m = (0, 0, 0, 0, 0, 0, 0, 0), h = (10, 9, 9, 9, 9, 9, 9, 9).
C(217): (53217), (54317), (643216), (654216), (6543215), (7643215), (7654211111),
(7654321111), (8754321111), (8765321111), (8765431111), (9765432111),
(9875432111), (9876532111), (9876543111), (9976543211).
a = (8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38), m = (016), h =
(1116).
C(19): (54217), (543216), (653216), (654316), (7543215), (7653215), (7654311111),
(8654321111), (8764321111), (8765421111), (8765432111), (9865432111),
(9876432111), (9876542111), (9876543211).
a = (9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37), m = (015), h = (1115).
C(81): (6111111), (333311), (44442)N , (555422), (6664421)N , (77664321)N ,
(9987654311).
a = (3, 5, 14, 44), m = (0, 0, 1, 0), h = (8, 7, 8, 11).
C(441): (2111111111), (322222), (433321), (544421)N , (6554311).
a = (2, 4, 7, 16), m = (0, 1, 0, 0), h = (11, 8, 7, 8).
C(72): (411111111), (522221), (444221), (554431)N , (77754311)N , (887654221).
a = (3, 5, 8, 34), m = (0, 0, 0, 0), h = (10, 7, 7, 10).
C(621): (221111111), (332221), (443311), (6655311)N , (887653311).
a = (2, 4, 7, 33), m = (0, 0, 0, 0), h = (10, 7, 7, 10).
C(711): (3111111111), (422222), (44441), (555322), (6654421)N , (9987654211).
a = (3, 5, 8, 13, 43), m = (0, 1, 3, 1, 0), h = (11, 8, 8, 8, 11).
C(63): (22211111), (333211), (533321), (555411)N , (6664221)N , (77653321).
a = (2, 4, 8, 25), m = (0, 0, 0, 0), h = (9, 7, 7, 9).
C(6111): (332211), (554322), (9987653211).
a = (3, 12, 42), m = (0, 1, 0), h = (7, 8, 11).
C(333): (3211111111), (432222), (543321).
a = (4, 6, 9), m = (0, 1, 0), h = (11, 8, 7).
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5. Future Work

This paper has focused on the ordinary q, t-Catalan numbers Catn(q, t), which
enumerate integer partitions contained in the n × n triangles bounded by the
diagonal line y = x. Recently, many researchers have studied the more general
rational q, t-Catalan numbers Cata,b(q, t), which enumerate integer partitions
contained in triangles with vertices (0, 0), (0, a), and (b, a). See [1, §6] for a
combinatorial definition of rational q, t-Catalan numbers. We call a/b the slope
parameter for Cata,b(q, t).

It is likely that the machinery developed here (global chains, local chains,
joint symmetry proofs, etc.) can be extended to rational q, t-Catalan numbers,
although many technical issues still need to be resolved. The first (straightfor-
ward) step is to generalize the partition statistics from Sect. 2.1—size, dinv,
deficit, external area, and minimum triangle size—to containing triangles of a
fixed slope s = a/b. For example, minΔ,s(γ) would be the least a ≥ 0 such that
the diagram of γ fits inside the triangle with vertices (0, 0), (0, a), and (a/s, a).
The next (nontrivial) step would be to develop an analog of the successor map
ν for slope s and prove a version of Proposition 3.2 explaining how minΔ,s

changes upon iteration of this map. For slope s = 1/M where M is a positive
integer, we already have a candidate successor map, namely the map f0 in
Definition 8 of [12] (see also Lemma 9 of that reference). But the interaction
of f0 and minΔ,1/M is not yet understood.

We also hope to extend the local chain technology to q, t-parking functions
and their generalizations (such as rational-slope parking functions [1] and word
parking functions). Here the situation is even more complicated because, in
general, there must be infinitely many chains of objects for each deficit k > 0.
We intend to explore these directions more fully in future papers.
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