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ABSTRACT: Switchable coupling between two qubits is
important for quantum information science (QIS). As a proof of
concept, a series of mesosubstituted porphyrins have been
synthesized with a (2,2,6,6-tetramethylpiperidin-1-yl)oxyl stable
free radical (SFR) appended and metalated with Cu(II), Ni(II),
and Zn(II) in order to explore the interaction between the SFR
doublet state and metalloporphyrin. The spin state of the
porphyrin varies upon metal insertion, where Zn(II) is a
diamagnetic metal, Cu(II) is paramagnetic, and Ni(II) can be
switched from a diamagnetic square-planar structure to a
paramagnetic octahedral state by complexation with a solvent (i.e., pyridine or tetrahydrofuran). Time-resolved electron
paramagnetic resonance (EPR) measurements reveal that upon photoexcitation, the Zn(II) and free-base porphyrin species
demonstrate different magnetic exchange regimes between the porphyrin triplet excited states and the SFR doublet state, with the Zn
derivative populating a quartet state (i.e., moderate magnetic exchange), whereas the free-base derivative remains a triplet (i.e., weak
magnetic exchange). Transient absorption measurements corroborate the TREPR results, demonstrating a 66% increase in the
singlet excited-state decay rate due to enhanced intersystem crossing for the Zn(II) derivative in comparison to a modest 14%
enhancement for the free-base porphyrin. These results enable the realization of a switchable qubit coupler, depending upon Zn
metal insertion to the free-base porphyrin, which has potential QIS applications.

■ INTRODUCTION

World energy consumption is ever increasing, and new
methods and developments are required to harvest renewable
energy to keep costs down as well as preserve Earth’s natural
resources. Effective organic electronic devices operating on a
renewable energy platform will face challenges with time, as the
device operating sizes drop below the 10 nm size range.1 At
this reduced size scale, operational principles transition to the
single molecule regime and become quantized in nature.
Consequently, the research field of spintronics and quantum
information science (QIS) has been gaining ever-increasing
momentum, where information can be manipulated, stored,
and transferred using the quantum properties of electron
spins.2,3

The term spintronics was first introduced in the 1980s and
has evolved into the field of QIS where electron spins have
been demonstrated to serve as quantum bits (qubits) in a
variety of applications.3 However, research pertaining to this
field is still in its infancy with respect to predictable and
reliable molecular design for organic QIS applications.
Advanced fundamental studies are required to elucidate the
molecular properties necessary to achieve practical operational
devices functioning to manipulate quantum information. From
an organic synthesis perspective, attention has been focused on

the creation of a diverse range of organic molecules with
interesting open-shell character, which have targeted QIS
applications.4−12

Porphyrins represent a class of aromatic, light-harvesting
chromophores that can coordinate metals, transforming them
to organometallic species with further unique chemical and
physical properties.13 Porphyrins can also exist as stabile
oxidized, reduced, or neutral radicals.14 From a biological
perspective, extensive research on oxophlorin and meso-
hydroxyporphyrin has been carried out to elucidate their role
in the catabolism of heme.15 Inspired by Nature, impressive
synthetic achievements have been made in the design and
realization of stable porphyrin oxyl radicals with relevant
magnetic properties.16,17

Porphyrins can be metalated with numerous metals,
including Zn(II), Ni(II), and Cu(II). These metals can
provide a platform for studying the electron spin dynamics

Received: April 9, 2020
Revised: June 12, 2020
Published: June 17, 2020

Articlepubs.acs.org/JPCA

© 2020 American Chemical Society
6168

https://dx.doi.org/10.1021/acs.jpca.0c03176
J. Phys. Chem. A 2020, 124, 6168−6176

D
ow

nl
oa

de
d 

vi
a 

N
O

R
TH

W
ES

TE
R

N
 U

N
IV

 o
n 

M
ay

 1
4,

 2
02

1 
at

 1
4:

09
:4

2 
(U

TC
).

Se
e 

ht
tp

s:
//p

ub
s.a

cs
.o

rg
/s

ha
rin

gg
ui

de
lin

es
 fo

r o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Norbert+Grzegorzek"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Haochuan+Mao"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Patrick+Michel"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Marc+J.+Junge"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Emmaline+R.+Lorenzo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ryan+M.+Young"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ryan+M.+Young"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Matthew+D.+Krzyaniak"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Michael+R.+Wasielewski"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Erin+T.+Chernick"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jpca.0c03176&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c03176?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c03176?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c03176?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c03176?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c03176?fig=abs1&ref=pdf
https://pubs.acs.org/toc/jpcafh/124/30?ref=pdf
https://pubs.acs.org/toc/jpcafh/124/30?ref=pdf
https://pubs.acs.org/toc/jpcafh/124/30?ref=pdf
https://pubs.acs.org/toc/jpcafh/124/30?ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acs.jpca.0c03176?ref=pdf
https://pubs.acs.org/JPCA?ref=pdf
https://pubs.acs.org/JPCA?ref=pdf


of both diamagnetic and paramagnetic porphyrin complexes:
Zn(II) is a diamagnetic metal, Ni(II) can switch between
diamagnetic and paramagnetic states depending on liga-
tion,18,19 and Cu(II) is paramagnetic.
The intermolecular20−23 and intramolecular interactions24,25

between a stable doublet radical and a porphyrin triplet state
have both been investigated by time-resolved electron
paramagnetic resonance (TREPR). Different effects of a stable
free radical (SFR) on a photoexcited chromophore or charge-
transfer state have been observed26 such as enhanced
intersystem crossing (EISC)27 and electron spin polarization
transfer.28 These mechanisms are governed by the molecular
and electronic structure as well as the extent of magnetic
exchange coupling between the porphyrin triplet state and the
SFR.
Van der Est et al. reported a transient EPR study on a meso-

tetratolylporphyrin complex with a verdazyl SFR appended
directly to the β-position of the porphyrin.24 The porphyrin
derivative was then metalated with vanadium to incorporate an
additional unpaired spin to the system. TREPR spectroscopy
revealed that the free-base porphyrin triplet state couples
ferromagnetically with the doublet radical to form a quartet
species. For vanadium porphyrin, the verdazyl radical couples
ferromagnetically to the porphyrin triplet but antiferromagneti-
cally to the unpaired spin of the vanadium metal. These results
are very relevant when addressing current research efforts
toward the design of molecular systems that can undergo spin
hyperpolarization where the polarization of the excited state is
transferred to the SFR.29−34

Not only the porphyrin metal center but also the
substituents and their position around the porphyrin periphery
largely influence the spin−spin exchange between a doublet
state and a porphyrin.35 For example, Balch et al. reported that
a β-octaethylporphyrin Ni(II) oxyl radical complex demon-
strated an antiferromagnetic interaction between the oxyl
radical and paramagnetic Ni(II) center.36 However, when
Osuka et al. substituted a porphyrin oxyl radical with
pentafluorophenyl substituents in the mesopositions, the oxyl
radical demonstrated a ferromagnetic interaction with the
high-spin Ni(II).37

We are specifically interested in exploring the spin−spin
interactions between an SFR covalently appended to a
photoexcited chromophore.38−42 Specifically, we want to
design and synthesize molecular systems where the spin states
can be manipulated such that the magnetic exchange coupling
between the radical and photoexcited chromophore can be
turned “on” and “off”. The final goal is to design and synthesize
functional organic molecules with controllable variable
magnetic exchange regimes that may be relevant for quantum
information applications.
Based on the aforementioned reports, we decided to

elaborate upon the porphyrin and synthesize a series of
metalloporphyrins with an SFR covalently appended to the
mesoposition, where the spin state of the metal can be varied.
Herein reported is the synthesis of a series of mesosubstituted
porphyrins with the electron-withdrawing pentafluorobenzene
moiety in three positions to aid in pyridine coordination to
form the Ni(II) octahedral high-spin state. Electron-with-
drawing groups on the periphery of the macrocycle decrease
the porphyrin basicity and enhance the interaction between the
Ni ion and axial nitrogen donor ligands.37,43−45 The final
mesoposition substituted with a (2,2,6,6-tetramethylpiperidin-
1-yl)oxyl (TEMPO) SFR appended by an imine bond between

a phenyl group and the porphyrin core (Figure 1). The phenyl
group ensures that the radical substituent assumes a nearly

perpendicular conformation relative to the porphyrin chromo-
phore. The porphyrin was metalated with Cu(II), Zn(II), and
Ni(II), whose spin states have been described earlier. The
complete synthesis and characterization of the free base and
three metalloporphyrins are reported, in addition to TREPR
and transient absorption (TA) measurements. We have been
able to show that the free base and zinc porphyrin radicals
demonstrate different magnetic exchange regimes in the
excited state. Based on transient nutation experiments, we
were able to demonstrate29 that the Zn derivative populates a
quartet state, indicating that the porphyrin triplet state and
doublet radical are coupled, whereas the free-base excited state
is a triplet, demonstrating weak magnetic exchange. Additional
TA measurements corroborate the TREPR results, demon-
strating a much larger increase in percentage of intersystem
crossing (ISC) rates of the metalated porphyrin in comparison
to the free-base porphyrin. These results permit us to envision
a switchable quantum state based upon metalation of the
porphyrin with Zn(II).

■ RESULTS AND DISCUSSION
Synthesis. The synthesis of mesosubstituted porphyrins is

well documented, with methodology milestones reported by
Rothemund,46 Adler,47 and Lindsey.48 Substitution of a
porphyrin with different functional groups is highly dependent
on the number and reactivity of functionalities desired to
comprise the porphyrin and the final configuration of the
functionalities (i.e., asymmetric or cis/trans).49−55 Our desired
porphyrin requires three pentafluorophenyl substituents and
one cyanophenyl substituent,56 which serves as a synthetic
handle for further reactions. Shown in Scheme 1 is the
porphyrin condensation reaction with the pentafluorophenyl
dipyrromethane, p-cyanobenzaldehyde, and pentafluorobenzal-
dehyde starting reagents in the presence of the Lewis acid
trifluoroborate. Oxidation with 2,3-dichloro-5,6-dicyano-1,4-
benzoquinone (DDQ) yields desired precursor porphyrin 1 in
18% yield following purification.
Porphyrin 1 is treated with diisobutylaluminum hydride

(DIBAL-H) to afford the free-base porphyrin aldehyde 2 in

Figure 1. Target porphyrin radicals and their metal-coordination
motifs.
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37% yield (Scheme 2). The principal side reaction is insertion
of the aluminum metal from the DIBAL-H reduction reagent
into the porphyrin core, which is very difficult to remove after
insertion.57 Hence, a synthetic methodology was developed to
protect the porphyrin core with Zn (Scheme 2) and
simultaneously allowed for the isolation of the Zn radical.
Concurrently, we recovered the unprotected porphyrin
aldehyde precursor 2 in higher yields compared to direct
reduction from the cyanophenyl free-base porphyrin precursor
1.
Free-base porphyrin 1 was refluxed with zinc(II) acetate

dihydrate to afford 1(Zn) in the near-quantitative yield (99%),
which was then reduced with DIBAL-H to the corresponding
aldehyde 2(Zn) in 93% yield. From porphyrin 2(Zn), free-base
aldehyde 2 was recovered in 95% yield by treatment with
trifluoroacetic acid (TFA). Aldehyde 2 was then further

reacted to free-base radical 3. Appending the TEMPO SFR is
accomplished following a previously reported procedure.38

Ultrasonication of porphyrin aldehyde precursors 2 and 2(Zn)
with excess TEMPO-amine in DCM with an acid catalyst
yields free-base porphyrin radical 3 and Zn porphyrin radical
3(Zn) in the near-quantitative yield.58 Removal of excess
TEMPO-amine is accomplished via size exclusion chromatog-
raphy as the imine bond undergoes hydrolysis back to the
starting material under acidic (silica gel) or basic (alumina gel)
purification conditions.
The final two metalated porphyrins (Cu and Ni) were

synthesized from either cyanophenyl free-base porphyrin 1 or
free-base benzaldehyde porphyrin 2, as shown in Scheme 3.
Porphyrin 1 or 2 can undergo metal insertion by copper(II)
acetate to form the corresponding copper metalated derivatives
1M (M = Cu-94%) and 2M (M = Cu-88%) via methods (b)
and (c). Conversely, free-base porphyrin 1 was metalated with
Cu and then reduced with DIBAL-H as outlined in procedure
(d) to yield 2(Cu) in 74%. Porphyrin 2(Ni) was achieved by
metalation of free-base aldehyde 2 with nickel(II) acetate.
Porphyrin radical precursors 2(Cu) and 2(Ni) are subjected to
the TEMPO amine condensation reaction described earlier to
yield porphyrin radicals 3(Cu) and 3(Ni) in the near-
quantitative yield.

Steady-State Spectroscopy. Steady-state UV/vis absorp-
tion measurements were carried out on 3, 3(Ni), 3(Zn), and
3(Cu) in DCM (see the Supporting Information pgs S22−
S24). The Soret band absorption has maxima at 415, 407, 416,
and 411 nm for 3, 3(Ni), 3(Zn), and 3(Cu), respectively.
Free-base porphyrin radical 3 displays Q-band absorptions at
509, 541, and 585 nm. The three metalated porphyrin radicals
have two Q-band absorptions, as expected,59 at 525/558, 545/

Scheme 1. Synthetic Route toward Precursor Porphyrin 1;
(a) (i) BF3 × Et2O, 1 h, rt and (ii) DDQ (3 equiv), 1 h, rt
(18%)

Scheme 2. Synthesis toward Radicals 3 and 3(Zn); (a) (i) DIBAL-H (2 equiv), DCM, 110 min, rt, Ar and (ii) NH4Claq. sat., 40
min, rt (37%); (b) Zn(OAc)2 × 2H2O (10 equiv), CHCl3/MeOH, 2 h, 85 °C (99%); (c) (i) DIBAL-H (4 equiv), DCM, 120
min, rt, Ar and (ii) NH4Claq. sat., 40 min, rt (95%); (d) (i) TFA, DCM, rt and (ii) H2O, rt, 15 min (93%); and (e) TEMPO−
Amine (10 equiv), AlOx (Excess), DCM, 2 h Sonication (≥95%)
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577, and 536/571 nm for 3(Ni), 3(Zn), and 3(Cu),
respectively. Comparison of the UV/vis spectra of the four
radicals to their aldehyde precursors shows no discernible
difference in absorption maxima, indicating that the radical has
negligible electronic influence.
Steady-state continuous wave EPR (CW-EPR) measure-

ments were conducted for 3, 3(Zn), 3(Ni), and 3(Cu) at the X
band (9.5 GHz). The spectra collected at 85 K are shown in
Figure 2, and those collected at room temperature are provided
in the Supporting Information (Figures S23−S25). Free-base
porphyrin 3 and 3(Zn) are diamagnetic; hence, only the
powder spectra of the TEMPO free radical are detected. For
3(Ni), it is assumed that two mTHF molecules coordinate to

Ni, making it octahedral and paramagnetic in nature. However,
the zero-field splitting (zfs) between the two unpaired
electrons of Ni renders the metal EPR silent at the X band
(9.5 GHz),19,60 and again, we only observe the TEMPO
radical. The spectrum of 3(Cu) show an additional multiplet at
a lower field because of hyperfine coupling of the copper
unpaired electron with the four porphyrin 14N nuclei, which is
characteristic of copper porphyrins.61,62

Time-Resolved Spectroscopy. TREPR measurements
were performed at 85 K in glassy mTHF following photo-
excitation at the most intense Q-band absorption (S1 ← S0
transition) for each sample.63 Porphyrins 3(Ni) and 3(Cu) did
not yield any TREPR signals, which is most likely due to the
strong spin−orbit (SO) coupling between the paramagnetic
metal center and the porphyrin core,64 leading to enhanced
ISC,27,30,65 which shortens the lifetime of the porphyrin triplet
excited states (vide infra). Shown in Figure 3a,b are the
TREPR spectra of 2, 3, 2(Zn), and 3(Zn) recorded at 40 ns
following excitation. Free-base porphyrin 2 gives an EPR
spectrum with an e,a,e,a,e,a (a = enhanced absorption, e =
enhanced emission) polarization pattern (Figure 3a upper),
which is the result of selectively populating the |Ty⟩ triplet
sublevel due to SO-ISC.66 Overlaid in red is a simulation of the
triplet using the zfs parameters: |D| = 1294 MHz and E/D =
0.118, which falls within the range expected for a free-base
porphyrin.67,68 The spectrum of 3 exhibits the same polar-
ization and has largely the same spectral shape as 2 with the
exception of a small negative peak at 338 mT. This negative
peak can be attributed to some nonzero coupling between the
TEMPO radical and the triplet;69,70 however, the small
amplitude and lack of other spectral changes make simulating
the spectrum underdetermined. Porphyrin 2(Zn) (Figure 3b)
shows an a,a,a,e,e,e polarization pattern, which is consistent

Scheme 3. Synthesis toward Radicals 3(Cu) and 3(Ni); (a) (i) DIBAL-H (2 equiv), DCM, 110 min, rt, Ar and (ii) NH4Claq.
sat., 40 min, rt (37%); (b) (Cu) − Cu(AcO)2 × H2O (5 equiv), CHCl3/MeOH, 1 h, 85 °C (94%); (c) (i) (Cu) Cu(AcO)2 ×
H2O (5 equiv), CHCl3/MeOH, 1 h, 85 °C (88%) and (ii) (Ni) Ni(AcO)2 × 4H2O (15 equiv), Glacial Acetic Acid, 6 h, 130 °C
(84%); (d) (i) DIBAL-H (4 equiv), DCM, 120 min, rt, Ar (Cu 74%); and (e) TEMPO−Amine (10 equiv), AlOx (Excess),
DCM, 2 h Sonication (≥95%)

Figure 2. Steady-state CW-EPR of (a) 3, (b) 3(Zn), (c) 3(Ni), and
(d) 3(Cu) in mTHF at the X band (9.5 GHz), obtained at 85 K with
a 0.1 mT modulation amplitude. Overlaid in red are the simulations
for the TEMPO; all four simulations utilized the same fit parameters:
g = [2.0112, 2.0083, 2.0034] and A(14N) = [17.9, 17.9, 93.8] MHz.
Shown in blue is the simulation for the copper porphyrin utilizing the
parameters g = [2.069, 2.069, 2.186], A(Cu) = [79, 79, 611] MHz,
and 4 equiv A(N) = [48, 48, 43] MHz.
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with selective population of the |Tz⟩ triplet sublevel. Simulation
of the triplet spectrum yields the zfs parameters: |D| = 995
MHz and E/D = 0.332 and agrees well with reports on similar
molecules.71,72 The deviation of the simulation from the
spectrum is likely due to some aggregation;72 however, we do
not anticipate aggregation to have a major effect on the zfs
parameters unless there is significant delocalization.73−75 The
spectrum of 3(Zn) shows significant changes relative to 2(Zn)
including a 5 mT splitting on the outer features, with a wider
set of wings along with a strong narrow absorptive line at 342
mT. In order to confirm that these features are not a result of
aggregation, a TREPR spectrum of 3(Zn) in the presence of a
coordinating ligand, pyridine, was also collected (Figure S28);
interestingly, no significant change in the structure was
observed. Additionally, the central peaks in both 3 and
3(Zn) decay concomitantly with the broad features (Figure
S27), which suggests that the central peak is a result of a spin-
coupled quartet species and not from transfer of polarization
from the triplet to TEMPO.
In order to further investigate the spin states of 3 and 3(Zn),

pulsed transient nutation EPR spectroscopy was performed.
This technique provides information about the electron spin
quantum number and the transition by measuring the nutation
frequency of a spin upon irradiation with resonant micro-
waves.76,77 Molecules 3 and 3(Zn) are ideally suited for
transient nutation spectroscopy because in the dark state, they
have an internal S = 1/2 standard by way of TEMPO, which
then allows for normalization of the nutation frequency and
easy comparison to the photogenerated state. Figure 4a,b
shows the nutation spectra acquired at the noted magnetic field
points for 3 and 3(Zn), respectively. The nutation frequency of
the TEMPO radical, shown in red, was collected prior to
photoexcitation; following photoexcitation, the nutation
frequencies of the transient EPR features were collected and
normalized to the frequency of the S = 1/2 TEMPO radical.
Hence, ω = 1 corresponds to the ms = −1/2 to ms = 1/2
transition for an S = 1/2 species. In Figure 4a, the feature at
329 mT for 3 has a nutation frequency of ω = 1.4 ≈√2, which
corresponds to the ms = ±1 to ms = 0 transitions of an S = 1
triplet state. At 333 mT and 370 mT in 3(Zn) (Figure 4b), the
nutation frequencies are ω = 1.7 and ω = 1.65, respectively,

which correspond closely to the expected frequency of the ms =
±1/2 to ms = ±3/2 transitions for an S = 3/2 quartet species,
√3.
The combination of the TREPR and the transient nutation

results provides an estimation of the magnitude of the
exchange coupling between the triplet and radical (JTR) in
the excited states of 3 and 3(Zn). The central feature in the
TREPR spectrum of 3 provides evidence for coupling between
the triplet and the radical; however, the transient nutation
suggests that the photogenerated triplet is only weakly
interacting with TEMPO and the character of the EPR
spectrum remains essentially that of separate triplet and radical
species. In this case, the combination of triplet−radical dipolar
coupling and JTR is much smaller than the triplet zfs and likely
smaller than the inhomogeneous line width of the TREPR
spectrum.69,70,78

In contrast, the TREPR spectrum of 3(Zn) more obviously
demonstrates a coupling between the triplet and radical, and
the nutation frequencies clearly show that the quartet is an
eigenstate of the spin Hamiltonian.69,70 The spectral width of
the TREPR spectrum of 3(Zn) does not contract by 2/3 as
would be expected of a strongly coupled triplet−radical
quartet, which places the coupling into the weak-to-moderate
regime. In comparison to 3, the triplet−radical dipolar
coupling should not change significantly in 3(Zn), meaning
that JTR in 3(Zn) must have increased. This increase in JTR
from 3 to 3(Zn) can be explained by an increase in
delocalization of the triplet wave function with the addition
of Zn.79 This is immediately apparent with a comparison of the
zfs values for 2 and 2(Zn), which are 1294 and 995 MHz,
respectively. Using the point dipole approximation,80 the mean
distance between the two triplet electrons increases from 3.42
to 3.72 Å when the porphyrin is metalated with Zn; this
change suggests that the π-system containing the triplet is
larger in 2(Zn).81,82 Free-base porphyrins are also known to
have a nonplanar structure as opposed to the more planar zinc
porphyrin,83,84 which also results in less orbital overlap and
thus a decrease of the exchange interaction with the appended
radical.

Figure 3. TREPR spectra in frozen mTHF at 85 K at 40 ns following
a 7 ns laser pulse for (a) 2 and 3 and (b) 2(Zn) and 3(Zn). Figure 4. Echo-detected transient nutation spectra collected at 85 K

in mTHF for (a) 3 and (b) 3(Zn) following the 510 and 550 nm, 7
ns, and 2.5 mJ laser pulse, respectively.
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The increase in JTR manifests itself through changes of the
TREPR spectrum of 3(Zn) relative to 2(Zn) and broad wings
extending out 20 mT from a more intense central feature with
approximately the same width as 2(Zn). Simulations suggest
that when JTR is large but still less than the triplet zfs, broad
wings arise and can provide an indication of the maximum
magnitude of JTR, as illustrated in Figure S29. Based on the
simulations, JTR is at most 20 mT (560 MHz); however, the
weak and unstructured nature of the wings suggests a
distribution of JTR which is not surprising, given the flexible
nature of both TEMPO and the linker. The magnitude of JTR
and the distribution are not without a precedent; a similarly
linked biradical demonstrated an exchange interaction that
ranged from 10 mT (280 MHz) to more than 40 mT (1000
MHz) as a function of temperature, and this range was
attributed to the flexible nature of both the linker and
TEMPO.85,86

TA spectroscopy studies on 2, 3, 2(Zn), and 3(Zn)
determined the effect of EISC on the singlet excited-state
lifetimes of the free-base porphyrin and zinc porphyrin in the
presence of nitroxide radicals. Comparison of the relative
quenching rates provides qualitative information on the
exchange coupling between the nitroxide radical and porphyrin
triplet state. The TA apparatus is detailed in the Supporting
Information. Photoexcitation of 3 and 3(Zn) in mTHF at 85 K
populates the excited singlet state of the Zn porphyrin or free-
base porphyrin, followed by ISC to the porphyrin triplet states
as seen by the depletion of the stimulated emission at 650 nm
for 3 and 700 nm for 3(Zn) (Figure 5.). Global fitting of the
spectra to an A → B model yields the species-associated
spectra (SAS) along with singlet excited-state lifetimes of τS1 =
1.02 ns for 3(Zn) and τS1 = 17.4 ns for 3 (Figure S29).
Compound 2 and 2(Zn) yielded TA spectra with similar
features but with different lifetimes (Figure S30). The lifetimes
for the four compounds and the relative enhancement of the
decay rates due to EISC are summarized in Table 1. The ISC

rate of zinc porphyrin in 3(Zn) is increased by 66%, whereas a
relatively moderate enhancement of 14% is observed for the
ISC rate of free-base porphyrin in 3. The higher increase in the
ISC rate of 3(Zn) indicates stronger exchange interaction
between porphyrin triplet states and the radical, which agrees
with the EPR measurement of observing quartet states for
3(Zn).
TA spectroscopy on 3(Cu) and 3(Ni) confirms the

reasoning for the absence of a TREPR signal (Figures S31−
32). The porphyrin excited state decays to the triplet in 0.46
and 1.01 ps for 3(Cu) and 3(Ni), respectively, and the triplet
decays on a much faster time scale with time constants of 1 and
5 ns, respectively, well within the instrument response of the
EPR spectrometer. These enhanced rates relative to 3 and
3(Zn) are most likely a result of EISC, leading to both faster
porphyrin triplet formation and faster decay of the triplet
excited state.27,30,65

■ CONCLUSIONS
We have synthesized a series of metalated porphyrins
appended with the TEMPO SFR and investigated their
photoexcited spin-state properties. The porphyrins were fully
characterized and then investigated via a series of EPR
experiments. TREPR spectra for the free-base porphyrin and
Zn derivatives show distinguishable polarization patterns
because of change in the magnitude of the exchange coupling
between the porphyrin triplet state and the SFR. In addition,

Figure 5. TA spectra and species-associated spectra of 3 and 3(Zn). (a) TA spectra of 3 and 3(Zn) in 2-methyl THF at 85 K following λex = 550
nm and λex = 510 nm, respectively. (b) Species-associated spectra of 3 and 3(Zn) resulting from the global fitting of the data to an A → B model.

Table 1. Singlet Lifetimes (τ = 1/k) for 2, 2(Zn), 3, and
3(Zn) and Increment of Rates for 3 and 3(Zn)

Compound S1 Lifetimes (ns) Increase of Decay Rate %

2(Zn) 1.69 ± 0.04
3(Zn) 1.02 ± 0.02 65.7 ± 7.2
2 19.8 ± 0.1
3 17.4 ± 0.1 13.8 ± 0.3
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EPR transient nutation experiments elucidated that metalation
with Zn turns on the exchange coupling between the porphyrin
triplet excited state and the TEMPO doublet state, yielding an
overall quartet state. This change in exchange coupling through
metalation was further confirmed by TA experiments, which
determined a greater enhancement of ISC for the Zn
porphyrin versus the free-base porphyrin when appended
with TEMPO. Hence, we have realized a switchable exchange
coupling through simple metalation. These results enable the
possibility of employing metalation as a switchable coupler for
multiqubit systems. Further studies will include varying the
nature of the appended SFR, the number of appended SFRs,
and the position of substitution (meso vs β) to expand our
library of multispin porphyrins for potential quantum
information applications.
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