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Abstract: The Great Plains low-level jet (LL]) is a contributing factor to the initiation and evolution
of nocturnal Mesoscale Convective Systems (MCSs) in the central United States by supplying
moisture, warm air advection, and a source of convergence. Thus, the ability of models to correctly
depict thermodynamics in the LLJ likely influences how accurately they forecast MCSs. In this
study, the Weather Research and Forecasting (WRF) model was used to examine the relationship
between spatial displacement errors for initiating simulated MCSs, and errors in forecast
thermodynamic variables up to three hours before downstream MCS initiation in 18 cases. Rapid
Update Cycle (RUC) analyses in 3 layers below 1500 m AGL were used to represent observations.
Correlations between simulated MCS initiation spatial displacements and errors in the magnitude
of forecast thermodynamic variables were examined in regions near and upstream of both observed
and simulated MCSs, and were found to vary depending on the synoptic environment. In strongly-
forced cases, large negative moisture errors resulted in simulated MCSs initiating further
downstream with respect to the low-level flow from those observed. For weakly-forced cases,
correlations were weaker, with a tendency for smaller negative moisture errors to be associated with
larger displacement errors to the right of the inflow direction for initiating MCSs.

Keywords: mesoscale convective systems; forecast errors; precipitation; low-level jet; numerical
weather prediction; convective initiation

1. Introduction

The Great Plains receive much of their warm season precipitation from MCSs [1-5]. Nocturnal
MCSs typically ingest buoyant air parcels from layers of air above the convectively stable PBL [6-9].
Agriculture in the central United States depends greatly on MCS rainfall events [1,10], and these
events often bring severe weather [11,12]. Thus, accurately forecasting these events is important [13-
16]. However, Quantitative Precipitation Forecasts (QPF) are very poor for summer precipitation
from MCSs [17-20]. Jankov and Gallus [21] and Squitieri and Gallus [22], among others, found greater
accuracy in forecasting precipitation events within strongly forced synoptic environments than in
weakly forced ones. One reason for poor QPF skill with MCSs is displacement error in the simulated
location. Duda and Gallus [23] and Squitieri and Gallus [24], for instance, found a 105 km average
initiation displacement error for convection that often later evolved into MCSs, while Stelten and
Gallus [25] found these errors to be between 77-105 km for multiple convection-allowing models run
to support the Plains Elevated Convection At Night (PECAN) experiment.
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The LLJ plays a significant role in the initiation of MCSs, particularly during their growth and
mature stages [26-31,6]. An LL] can be loosely defined as a stream of fast-moving air, with low-level
wind maxima of 10 to 30 ms, and an elevation of the peak wind between 250 and 1000 m AGL [32].
The LLJ can be attributed to multiple factors, including an inertial oscillation [33,27] associated with
changes in the diurnal cycle of surface heating [34] and boundary layer mixing, channeling of the
winds by topography, cold air pools and fronts, and heating-induced horizontal temperature
gradients [35-37]. At the time of MCS initiation, the upstream region supplying inflow to the storms
may not yet meet the Bonner [38] criteria for a LL], as MCS initiation often occurs earlier than LL]J
development. While the flow may not yet meet LL] criteria, the inflow region still is an important
contributor to MCS development, as a terrain-heating/slope induced geostrophic low-level wind
maximum [39] provides moisture and differential temperature advection to the region where an MCS
initiates, along with convergence to develop and sustain the MCS.

Recent studies suggest that the amount of low-level moisture within a storm environment plays
an influential role in where an MCS will initiate [24,40], and thus moisture errors within a simulation
might explain some of the displacement errors present. A slight change in moisture at a parcel’s
lifted level may result in large changes in CAPE and CIN, bringing about various responses to the
overall behavior of an MCS [41-43]. Peters et al. [40] showed for one MCS event during PECAN that
in a region near and southwest of the MCS location, a smaller value of simulated CIN resulted in a
small northeastward simulated MCS position error, while a large CIN resulted in a large
northeastward simulated MCS position error, signifying the potential importance of low-level
moisture supply on the location of MCS initiation within numerical weather prediction models. The
simulated moisture regulated the time required for parcels to achieve convective initiation, with drier
values hindering the buoyancy, resulting in a longer isentropic upglide distance for parcels to reach
the level of free convection (LFC) and initiate convection.

Statistically significant correlations were discovered recently between the forecast accuracy of
WRF (Weather Research and Forecasting) simulated LL] thermodynamic variables and MCS QPF for
strongly forced cases. Squitieri and Gallus [22] defined two synoptic environments in which MCSs
associated with LLJs occur. Those with cyclonic flow aloft (at 200 hPa) and strong synoptic forcing
were identified as Type C, and those with anticyclonic flow aloft and weak synoptic forcing were
identified as Type A. In Type C cases, strong convergence was present at 900 hPa and coupled with
200 hPa divergence, while in Type A cases, little or no coupling of the 900 hPa convergence to the 200
hPa divergence was present. MCSs in Type A environments were forced by other, more diverse
means. This coupling alongside the flow aloft was examined at 0600 UTC when the LL] was usually
most prominent [22].

Based on the findings of Peters et al. [40] for one MCS event, the present study seeks to find
whether or not a strong statistical correlation exists between errors in several thermodynamic
variables in the upstream inflow regions of initiating MCSs in simulations, and the spatial
displacement errors of the simulated MCSs. In addition, because Squitieri and Gallus [22] found
differing behaviors in cases with strongly forced versus weakly forced LL]J cases, the present study
also explores sensitivity of the correlations to the amount of larger scale forcing. It is hypothesized
that if negative (positive) simulated moisture errors exist in the inflow region for upscale growing
convection, simulated MCSs will be displaced downstream (upstream) as more (less) lift would be
required within the broad ascending airstream to bring parcels to their LFC, and that the greater the
magnitude of the errors, the larger the displacements will be. Two approaches were taken when
investigating these inflow regions. The first used the observed MCS initiation location at the time of
initiation to explore the validity of the hypothesis. The second used inflow regions based on the
position of the simulated MCS with the aim of finding a relationship to assist forecasting since the
location of the observed MCS initiation would be unknown to forecasters in the hours preceding the
event.
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The paper is structured as follows. Section 2 describes the data used and methodology. Section
3 discusses statistical correlations and their significance, and provides physical interpretation.
Finally, section 4 reviews relevant findings and outlines future work that could build upon the
results.

2. Data and Methodology
2.1. MCS Events Examined

From the sample of 31 MCS events occurring over the eastern Great Plains and Midwest in the
warm seasons of 2007-2014 and associated with LLJs examined in Squitieri and Gallus [22,24], 15
cases that had easily identifiable initiation locations and times were chosen, with 3 additional cases
added from the 2015 PECAN project [44] that also met these criteria, to create a sample of 18 events.
In all cases, relationships were examined between model forecast errors for specific humidity,
equivalent potential temperature (8,), relative humidity, temperature, most unstable convective
available potential energy (MUCAPE), most unstable convective inhibition (MUCIN), and the level
of free convection (LFC) in the inflow regions of the upscale growing convection, and the spatial
displacement errors present at the initiation of those MCSs. Because these cases included LL]Js with
MCS formation in the general region relative to the jet identified in the Maddox [45] climatology, it
was assumed the inflow was gently ascending as suggested in that study, and shown in detail in the
Peters et al [40] MCS case. Additionally, one event was randomly chosen for a more thorough
isentropic analysis, and it clearly showed the slowly ascending inflow into the region where MCS
initiation took place. These parameters were selected based on the findings in Peters et al. [40] for
one PECAN case and because parcel theory would suggest they could have a pronounced influence
on convective initiation. The 18 cases were chosen based on the criterion that an MCS initiated in
both model runs examined for each case, one run using the Yonsei University (YSU; [46]) PBL scheme,
and the other using the Mellor-Yamada-Janjic (MY]; [47]) PBL scheme. An equal number of weakly
and strongly forced cases were chosen for synoptic comparisons (9 Type A, and 9 Type C cases).
Although the larger-scale environment in Type C events likely provided some of the forcing for the
LLJ, LLJs in Type A events were likely primarily forced by the inertial oscillation, terrain sloping, or
heating effects. Usually less lift via low-level convergence or upper level divergence was present for
Type A cases than for Type C Cases [22].

2.2 Model Output

All of the events were simulated using WRF-ARW (Advanced Research WREF; [48]) version 3.6.1
with 3 km horizontal grid spacing. The Dudhia Shortwave [49] and RRTM Longwave [50] radiation
schemes and the Thompson microphysics scheme [51] were used in all simulations, and no
convective parameterization was used. The two PBL schemes used, YSU and MY], were chosen to
explore the sensitivity of the simulated LLJs and MCSs to the PBL scheme choice. YSU is a nonlocal
mixing scheme using first-order closure that represents entrainment at the top of the PBL, and has
been found to underestimate the LL] wind magnitudes [52]. MY] is a local mixing scheme using 1.5-
order closure which used a prognostic calculation for turbulence with an equation for prognosis of
TKE, with the addition of viscous sub-layer to the PBL through molecular diffusion, and may
simulate environments that are too moist and cool, leading to overestimates of the low-level wind
maximum [53]. The two PBL schemes were chosen due to their different behaviors, mainly related to
the fact that one is local and the other is non-local, as well as the opposite magnitude errors they often
have in simulating LL]Js. For each case, the WRF was initialized at 12 UTC, roughly 12 hours before
MCS initiation, and runs were integrated for 24 hours over a 1600 x 1600 km domain centered over
the Great Plains (e.g., Fig. 1), with 50 vertical levels (25 below 850 hPa, and 25 above). As explained

n [22], this domain was generally centered over the LL] and MCS of interest to keep the lateral
boundaries as far from the area of interest as possible and reduce impacts related to lateral boundary
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conditions. 12 km NAM forecast output [54] was used to initialize the WRF and provide lateral
boundary conditions.

As upper-air observations are scarce for nocturnal hours over the Great Plains, 0-h RUC or RAP
analyses (RAP replaced RUC in 2012) with 13 km horizontal grid spacing were substituted for in-situ
observational data [55], except for composite reflectivity. Past studies have explored the potential for
biases to occur in RUC analyses, and have found that problems with using RUC output as a substitute
for observational data were inconsequential [56]. Thus, RUC and RAP analyses have been used in
place of observations in other synoptic and mesoscale studies (e.g., [57-60, 22,24]). However, it should
be noted that in the MCS case studied by Peters et al. [40], the RAP poorly represented the LL] and
moisture when compared to special PECAN soundings. Jahn and Gallus [61], on the other hand,
found that for the full sample of LLJ cases in PECAN, RAP analyses of wind speed, potential
temperature, and moisture generally matched PECAN soundings well, with only a small negative
bias in wind speeds in the LLJ layer. In the present study, the RUC and RAP output, available every
25 hPa in the vertical, were interpolated to levels of constant height for comparisons with WRF
output. The WRF output was filtered and regridded using a Gaussian filter to a 13-km horizontal
grid to allow an appropriate comparison with the RUC data. Times and locations of MCS initiations
(defined in the following sub-section) were identified using composite reflectivity from Multi-Radar
Multi-Sensor (MRMS) 1-km hourly mosaic radar data [62], and the radar data were also regridded to
a 13-km horizontal grid.

2.3. MCS Initiation and Inflow Region Identification

MCS initiation was identified using the criteria of Parker and Johnson [63] and Schumacher and
Johnson [57]. Thus, an MCS was said to have initiated when a nearly-connected linear band of
reflectivity greater than 40 dBZ, that may not show a reflectivity trough, exceeded 100 km in length.
The initiation location was the centroid of the 40 dBZ echo region. All cases contained an LLJ based
on the Bonner [38] criteria, although at the time of MCS initiation, the flow within the inflow regions
may not yet have met the criteria to be considered an LL] (though all cases did reach LL] criteria at
some point during the night).

The inflow region was defined as a 250 x 250 km domain for each case based on various levels
of upstream wind flow using four different methods. It has long been shown (e.g., [45]) that MCSs
develop near the nose of the LL] with heat and moisture being supplied from a generally southerly
direction, motivating our choice to focus on an inflow region. Our choice of a 250 x 250 km domain
was subjective, and we are unaware of prior works establishing what the best area would be over
which to evaluate inflow characteristics. The first method evaluated 750 m AGL flow immediately
upstream of the observed MCS initiation location (Figure 1a; hereafter referred to as Obs-inflow).
This level was chosen as it is near or just above where the LL] often peaks in intensity (e.g., [35,64]).
Note that all of these inflow regions were chosen so that any overlap (at the inflow edge of the MCS)
with the area of composite reflectivity greater than 40 dBZ was by less than 15%, with the majority of
the inflow region extending upstream from that area of MCS initiation. The 750 m AGL flow at the
time of MCS initiation was southerly in most cases, hence most inflow region sub-domains were
located south of the MCS initiation point. Focusing on these regions allowed for the best evaluation
of positive (negative) moisture errors in the inflow region of upscale growing convection that could
systematically lead to upstream (downstream) displacement errors in the simulated MCS location.
The second approach employed the same methodology as the first approach, but used the simulated
MCS initiation location (Figure 1b; hereafter referred to as WRF750m-inflow), as correlations
discovered using only model output could serve as a tool to allow forecasters to predict MCS spatial
displacement errors. Using the observed MCS initiation location would not be possible in practice
since forecasters would not know where an MCS would initiate in advance.
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Figure 1. Type C case on 2 June 2014 at 0000 UTC showing all 4 regions used as inflow domains: a)
Obs-inflow (red) alongside RUC 750 m AGL wind barbs and observed mosaic composite reflectivity
(see color bar for magnitudes), b) WRF750m-inflow (blue) alongside WRF 750 m AGL wind barbs
and simulated composite reflectivity, c) WRFdisp (green) alongside WRF 750 m AGL wind barbs and
simulated composite reflectivity, d) WREF700mb-inflow (purple) alongside WRF 700 mb wind barbs
and simulated composite reflectivity.

The third approach defined the inflow box using the simulated MCS location but with an
adjustment based on the average displacement errors of the simulated MCSs for the sample of cases
examined in the present study (Figure 1c; hereafter referred to as WRFdisp). The average
displacement errors for the runs using the YSU and MY] schemes were 220 and 200 km, respectively.
Because the simulated MCS initiations typically were north or northeast of the observed ones, the
inflow regions were shifted 110 and 100 km south-southwest of the simulated MCSs, respectively.
Only half of the average displacement distance was used to keep the domain relatively near and
upstream of the simulated MCS initiation location.

The last approach allowed for the possibility that some events may feature displacement errors
very different from the average, and assumed that displacement errors may be related to the flow at
some higher level for a given case. Because the 700 mb flow direction often best matched the
direction of the average displacement error, an inflow subdomain was chosen upstream of the
simulated MCS initiation location with respect to the 700 mb flow (Figure 1d; hereafter referred to as
WRF700mb-inflow). Both approaches three and four were investigated because correlations using
an inflow region just upstream of the simulated MCS initiation (approach 2) were often much weaker
than those obtained when using a region upstream of the observed MCS (approach 1). Inflow
regions based on the WRF MCS initiation location with respect to both the 1500 m AGL flow and 500
mb flow were also studied, but the correlations were not as strong, and these results will not be
discussed. It is acknowledged that these four inflow regions are defined subjectively, and future work
could explore a much larger range of inflow regions systematically tested to find the area yielding
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strongest correlations. =~ Within the four inflow regions on which this study will focus,
thermodynamic variables within three vertical layers were studied, 250 — 750 m AGL (lower layer),

1000 — 1500 m AGL (upper layer), and 250 — 1500 m AGL (full layer).
2.4. Statistical Analysis Approach

Mean error was defined for the seven thermodynamic variables mentioned earlier for each
inflow region and aforementioned vertical layers as the averaged WRF value over the inflow region
subtracted from the averaged RUC value over the same inflow region. To minimize convective
contamination of variables within the inflow regions, points within areas of reflectivity greater than
25 dBZ were ignored. The vector displacement error for MCS initiation location was calculated using
the simulated MCS initiation location relative to observations. To gain further insight, correlations
were also computed for the variables with the X and Y-components of displacement, which were
calculated based on a rotated Cartesian axis with the Y-direction being parallel to the general wind
direction in each inflow region, as seen in Figure 2 (positive Y-direction is upstream).

RUC Wind Streamlines & Mosiac Composite Reflectivity
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Figure 2. MCS case on 2 June 2014. Red area represents the Obs-inflow, and the axis represents the
rotated coordinate system aligned with the 750 m AGL flow. Filled contours show mosaic composite
reflectivity (dBZ as indicated by color bar), and RUC wind barbs are in m s'.

To determine the correlation between the errors in forecast thermodynamic variables and the
MCS initiation displacement errors, the Spearman Rank Correlation (S) was employed. S was selected
instead of the Pearson Correlation Coefficient to compensate for the small number of cases used in
this study, as Type A and Type C cases were treated separately. In addition to better handling small
sample sizes, impacts of potential outlier cases (ones that may not follow any significant correlation)
may be dampened with S, thus preserving statistical relationships between two variables that may
otherwise be unfairly punished by an outlier [65]. S is also sign sensitive, and allows for the
determination of statistical significance, making it a useful metric for the present study. Lastly, S is a
non-parametric test, meaning it has statistical use for this study’s data distribution as the mean errors
and distance errors are statistically independent [65]. S was defined in Myers and Well [66] as:

63 (xi —y)?

=1
S nn?-1)

(1

where # is the total number of samples, i is each case, and x; and y; are the mean errors of each
tested variable and displacement of the initiating MCS, respectively. The 90t quantile of Spearman
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rank correlation values was used to determine statistical significance within this study’s data to also
compensate for the small sample size. Using a sample size of nine (as Type A and Type C cases are
treated separately), the critical value for statistical significance was an absolute value of S greater than
or equal to 0.4667, as determined by Conover ([65]; Table A10). For the cases analyzed in the present
study, a positive S value usually signified that the more negative the errors in the thermodynamic
variables, the greater the displacement error in the downstream (negative) direction, usually toward
the northeast. A negative S value usually signified that as displacement errors became more
negative, the mean errors were less negative (smaller in magnitude).

The calculations were done at four different times in hourly intervals. These included the time
of initiation and the three hours prior to initiation. Although correlations were computed at all four
times for all seven thermodynamic variables using all four inflow regions for both Type A and C
cases, because the WRF750m-inflow region exhibited the weakest correlations of all regions
investigated in this study, and the WRFdisp region mirrored the results from the WRF700mb-inflow
region, with the latter having slightly higher significance values, the results that follow will focus
only on correlations using the Obs-inflow and WRF700mb-inflow regions. In addition, because no
significant correlations based on the 90t quantile were discovered using temperature, relative
humidity, MUCIN, MUCAPE, or LFC, the discussion will focus primarily on specific humidity and
0,. Although all of these parameters have an influence on convection, it is possible that for initiation,
the most important ones are related to absolute moisture available around the specific inflow level,
and not to other variables at that level, or parameters that reflect deeper layer conditions such as
MUCIN or MUCAPE.

3. Results
3.1 Type C with YSU Scheme

In the Type C cases for WRF runs using the YSU scheme (Table 1), the Obs-inflow region showed
statistically significant positive S values at nearly all times and in all 3 vertical layers with respect to
the total spatial displacement of MCSs. This agrees with the hypothesis that errors in variables that
would play a role in the level where saturation of an air parcel within ascending flow would occur
will determine the displacement error of a simulated MCS. Positive S values were found in both
specific humidity and 8,. However, correlations at most times were not statistically significant for
specific humidity with respect to the X and Y-components of displacement. 8, showed a positive
significant correlation at most times for all layers for the X-component as well as for the Y-component
in the full layer. Both variables for all vertical layers contained similar positive statistical significance
with respect to the total displacement, but tended to diverge for the X and Y-components. An example
scatterplot of the displacement errors associated with the errors in specific humidity at the time of
initiation using the WRF700mb-inflow domain (Figure 3) reveals that the WRF almost always
produced a drier low-level atmosphere upstream of the MCSs in the present sample of cases than
what the RUC analyses showed. Negative moisture errors were as large as 4 g kg'! while positive
errors remained no larger than roughly 1 g kg

Table 1. Spearman rank correlation coefficients for all Type C cases simulated with WRF using the
YSU scheme, and for all combinations of layers and displacements. Values are at time of initiation (t-
0), and 3 hours prior to time of initiation (t-3), and focus on two regions, the Obs-inflow region (RUC),
and the WRF700mb-inflow region (WRF 700 mb). Bold font represents statistically significant
correlations (S = [0.467]), regular font not statistically significant correlations (S < |0.400]), and if a
non-significant value was an outlier and the t-1 and t-2 values (which are not shown) were both
significant, the value is indicated in italics.



mm Wondershare
PDFelement

Trial Version g

Atmosphere 2020, 11, x FOR PEER REVIEW 8 of 19
Layer Specific Humidity Equivalent Potential Temperature Displacement
Obs-inflow WRF700mb-inflow Obs-inflow WRF700mb-inflow
t-0 t-3 t-0 t-3 t-0 t-3 t-0 t-3
Full Layer  0.617 0.567 0.7 0.783 0.683 0.783 0.583 0.55
Lower Layer 0.267 0.583 0.667 0.75 0.533 0.75 0.767 0.617 . Total
Displacement
Upper Layer  0.25 0.567 0.617 0.783 0.3 0.783 0.233 0.517
Full Layer  0.433 0.383 0.217 0.25 0.5 0.6 0.35 -0.1
Lower Layer 0.467 0.267 0.5 0.3 0.55 0.45 0.267 0 X-Component
Upper Layer  0.05 0.467 0.167 0.167  0.0667 0.6 -0.05 -0.167

Full Layer = 0.333 0.367 0.7 0.767 0.583 0.5 0.533 0.667
Lower Layer -0.117  0.433 0.667 0.683 0.367 0.55 0.767 0.707  Y-Component

291 Upper Layer 0.217 0.3 0.65 0.8 0.317 0.5 0.267 0.617
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Figure 3. Scatterplots representing the correlations and their statistical significance for the
WRF700mb-inflow region utilizing the YSU scheme. Specific humidity mean error is represented on
the x-axis in g kg'and distance values on the y-axis are in km. Red circles represent the displacement
error for MCS initiation locations, the blue triangles are their X-components of displacement, and the
green squares Y-components of displacement. Spearman rank correlation coefficients are in top-right
corner with a line of best fit added to demonstrate the correlation behavior.

In the same set of Type C cases, the WRF700mb-inflow region followed the same trend for both
variables for all vertical layers with respect to the total displacement values. Small differences existed
from the values computed using Obs-inflow, but general results for both variables were similar. No
significant S values were observed for the X-component at all layers, but the same significant positive
correlation was present for all layers with respect to the Y-component. This set of Type C cases that
were simulated using the YSU scheme had the most statistically significant S values with both inflow
regions compared to the MY] runs for Type C cases, and for both configurations with Type A cases
as well, and showed the most consistency between all 3 vertical layers.

Significant positive correlations in both the total displacement and Y-component distances
support the hypothesis that as negative moisture errors increase within a region, the simulated MCS
will be displaced further downstream, and as the negative moisture error decreases, the simulated
MCS will be nearer to the observed MCS with respect to the flow direction, as seen in Figure 4. This
relationship suggests that if a positive moisture error existed in WREF, the MCS may initiate too far
upstream, but since the present sample of cases rarely showed positive moisture errors, future work
with a larger sample of cases is needed to verify this suggestion. For the X-component, a positive
correlation means that as the negative moisture error increases, the simulated MCS will be displaced
further to the right of the inflow direction. As will be discussed later, it is unclear why correlations
existed with the X-component.
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Figure 4. Type C case on 28 June 2014 at 0100 UTC, near the time of initiation. Red contours are mosaic
composite reflectivity above 25 dBZ. Blue contours and wind barbs are WRF output with the MY]
scheme, with blue contours being composite reflectivity above 25 dBZ, and wind barbs representing
the 750 m AGL wind. Bottom left corner displays the specific humidity mean error, and the total
displacement error is represented by the black line.
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3.2 Type C with MY] Scheme

With the MY] PBL scheme in the WRF simulations, Type C cases differed more between vertical
layers (Table 2). For specific humidity within the Obs-inflow region, only the lower layer contained
significant positive correlations at most times for the total displacement and its X-component.
However, the X-component was positively correlated for the full layer as well. This correlation was
present for 6, in the X-component, but for all vertical layers. For nearly all layers and the three
displacement measures, the significance was larger at the earliest times, most removed from the time
of initiation.

Table 2. As in Table 1 except for WRF runs using MY]J.

Layer Specific Humidity Equivalent Potential Temperature Displacement

Obs-inflow WRF700mb-inflow Obs-inflow WRF700mb-inflow

t-0 t-3 t-0 t-3 t-0 t-3 t-0 t-3
Full Layer 0.15 0.433 0.55 0.733 0.233 0.633 0.333 0.517
Total
Lower Layer 0.417 0767 0583 08 0.2 0.9 05 056 o
Displacement
Upper Layer -0.117  0.167 0.467 0.65 -0.217 0.45 0.15 0.45
Full Layer  0.367 0.633 0.167 0217 0.417 0.667 0.15 -0.033
Lower Layer 0.533 0.567 0.5 0.4 0.433 0.667 0.3 0.1 X-Component

Upper Layer  -0.05 0.5 -0.017 0.15 -0.15 0.683 -0.333  -0.167
Full Layer  0.117 -0.0167 0.617 0.633 0.133 0417 0.35 0.433

Lower Layer 0.0833 0.35 0.75 0.617 0.05 0.683 0.467 0.4 Y-Component

Upper Layer 0.1 -0.05 0.5 0.617 0.15 0.15 0.167 0.433

For the WRF700mb-inflow region, positive S values for specific humidity were observed at all
layers with respect to the total displacement and its Y-component, and were significant at nearly all
times. There were also positive S values in the lower layer for its X-component, which are nearly
identical to those observed using the YSU scheme. 6, did not show as strong of correlations as
specific humidity, but it also showed correlations were most significant at the earliest time, 3 hours
prior to initiation. However, significant positive correlations occurred at most times for the full layer
with respect to the total displacement, as well as the lower layer for both the total displacement and
its Y-component. Overall, the correlations for the MY] runs were stronger in the lower layer than in
the upper layer, while for the YSU runs, there was less difference in correlations between the two
layers. Also, almost all S values were positive, signifying that simulated MCSs were displaced
relatively consistently to the right and downstream when errors for both variables were negative,
with larger displacements for larger errors. Although there was some variability in the S values with
respect to each layer and inflow region used, the fact that the MY]J runs had the most significant
correlations confined to the lowest layer is consistent with the fact that the MY] scheme is known to
produce shallower PBLs than the YSU scheme, and these shallower PBLs are often cooler and more
moist than those produced when the YSU scheme is used [67,68,53].

3.3 Type A with YSU Scheme
Table 3 shows the S values of correlations present for Type A cases that were simulated using

the YSU scheme. The total displacement and its Y-component had significant positive correlations at
most times within the full layer, but only the total displacement had significant positive correlations
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within the lower layer. This again agrees with results previously discussed for Type C cases that
utilized both the YSU and MY] schemes. However, significant negative correlations occurred within
the full and upper layers with respect to the X-component. At most times, negative correlations
were not observed in almost any Type C cases. These correlations are nearly mirrored for 8,, apart
from the full layer not showing statistically significant correlations for the X-component. The
additional significant negative correlations occurred at most times. Within the WRF700mb-inflow
region, the only significant correlations occurred for the X-component, and they were negative
everywhere for both variables. Correlations were small and inconsistent for total displacements and
Y-component distances. The negative correlations for the X-component were unexpected and are not
addressed by the hypothesis. These negative correlations were associated with small negative
moisture errors and large displacements to the right of the initiation location, and large negative
moisture errors with little to no displacement to the right or left of the initiation location with respect
to the inflow direction.

Table 3. As in Table 1 except for Type A cases.

Layer Specific Humidity Equivalent Potential Temperature Displacement

Obs-inflow WRF700mb-inflow Obs-inflow WRF700mb-inflow
t-0 t-3 t-0 t-3 t-0 t-3 t-0 t-3
Full Layer 0.5 0.433 0.05 -0.383 0417 0.483 0.017 -0.167

Lower Layer 0.517 0.5  0.183 -0.133 0583 055 0033  0.067 Total

Displacement

Upper Layer ~ 0.25 0.117  -0.067 -0.583  0.233 0.167 -0.1 -0.517
Full Layer  -0.33 -0.517 -0.783 -0.517 -0.333 -0.417 -0.65 -0.55

Lower Layer -0.217  -0.133 -0.8 -0.65 -0.283  -0.183  -0.683 -0.733  X-Component

Upper Layer  -0.55 -0.783 -0.633 -0417 -0.517 -0.733 -0.617 -0.517
Full Layer 0.48 0.467 0.267 -0.2 0.367 0.55 0.2 0

Lower Layer 0.467 0.367 0.383 0.033 0.583 0.5 0.25 0.25 Y-Component

Upper Layer 0.217 0.317 0.117 -0.367  0.183 0.417 0.067 -0.267

The negative correlation with respect to the X-component was present for a majority of the Type
A cases, with a good example depicted in Figure 5. Additional analysis was performed to try to
understand why these negative correlations were present. Because Squitieri and Gallus [22]
discovered some relationships between QPF skill and the depth and magnitude of the LLJ, these flow
variables within the inflow regions, as well as MUCAPE, MUCIN, and LFC, were explored (Figures
6 and 7). Six cases were considered, three containing small negative moisture errors but a large
rightward displacement (group 1), and three cases containing large negative moisture errors but little
to no left or right displacement (group 2). Little difference was found in the LL] variables between
the two groups (Figure 6), and these results are mirrored in the other 3 inflow regions (figures not
shown). Likewise, no differences were found in MUCAPE, MUCIN, and LFC between the two groups
(Figure 7). These results are again mirrored by the other 3 inflow regions (figures not shown). Model
errors in flow aloft, which would likely be veered from that used to define the inflow boxes in the
present study, were also studied as these might influence the X-component displacements. A
preliminary analysis of 500 mb flow errors did not find systematic differences in the errors. In
addition, the majority of surface maps for all Type A cases at 0000 UTC contained a nearby stationary
front, usually with an east-west orientation, with southerly warm air blowing north towards colder
air with easterly winds. Because Type A events are not associated with strong synoptic forcing, a
variety of smaller-scale factors likely strongly influences the initiation and upscale growth of MCSs
in those cases, and interactions between these factors may be complex. A detailed understanding of
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402 the reasons for the negative correlation would require a larger sample of cases and additional analysis
403  beyond the scope of the present study.
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406  Figure 5. As in Figure 4, but for a Type A case on 05 June 2012 at 0000 UTC, and showing the X-
407  component error instead of the total displacement error.
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410  Figure 6. Low-level wind magnitude (ms™') and direction within the Obs-inflow region for six Type
411 A cases (month, day, and year shown below each panel). Cross-section taken across the entire region
412 from west to east at the halfway position from north to south across domain. Top row are cases that
413  contained a small X-component distance error, yet a large specific humidity mean error, while the
414  bottom are cases that contained a large X-component distance error, yet a small specific humidity
415  mean error. Speeds indicated with color bar on the right.
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Figure 7. Same set of cases as in Figure 6, with top row of Figure 6 represented by the leftmost three
dates, and bottom row represented by the rightmost three dates.

'1,"5‘:J
A7

'1,"’7:L

'1,"-‘7}
-

o7
Qr

3.4 Type A with MY] Scheme

Type A cases simulated with MY] had the smallest number of significant S values in comparison
to the other 3 scenarios examined (Table 4). For the Obs-inflow region, the lower layer contained
significant positive S values at most times with respect to the total displacement. For the X-
component, both the full and upper layers contained significant negative S values at most times, as
was seen with the YSU output, and the results are mirrored identically for 8,. The WRF700mb-inflow
region contained almost no significant correlations for both variables. Individual times may have
significant S values, but they do not remain consistent over the time period examined. The only strong
correlation that existed at most times was for specific humidity with significant negative S values for
the full layer with respect to the X-component.

Table 4. As in Table 2 except for Type A cases.
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Layer Specific Humidity Equivalent Potential Temperature Displacement
Obs-inflow WRF700mb-inflow Obs-inflow WRF700mb-inflow
t-0 t-3 t-0 t-3 t-0 t-3 t-0 t-3
Full Layer ~ 0.283 0.183 0.1 -0.583 0.25 0.0833 -0.033 -0.517

Total
Lower Layer 0.483  0.433 0283 -0.133 055 045 0033 -0133 . @
Displacement
Upper Layer -0.0333 005 -0  -0.75  0.133 00333 -0.117 -0.617
Full Layer -0.567  -0.6  -0.517 -0.05 0.6  -045  -045 0017

Lower Layer -0.183  -0.183 -0.583 -0.317 -0.267 -0.0167 -04 -0.25 X-Component
Upper Layer -0.883  -0.683 -0.6 0.117 -0.817 -0.5 -0.517 0.15
Full Layer = 0.267 0.267 0.217 -0.5 0.283 0.133 0.017  -0.517

Lower Layer 0.283 0.2 0.417 -0.05 0.4 0.183 0.1 -0.15  Y-Component
436 Upper Layer 0.2 0.283 0 -0.683  0.367 0.2 -0.083  -0.65
437
438 3.5 Application to Forecasting
439
440 Because positive correlations were common and often significant for Type C cases, even when

441 an inflow domain was chosen based on the simulated MCS initiation location, forecasters may be
442 able to use the information to anticipate a few hours ahead of time the displacement errors likely to
443 be present for MCS initiation for these types of events. Table 5 shows the layer and time with the
444  most significantly positive value of S for specific humidity and 6,, as this would be the best
445  information for forecasters to use. Unfortunately, no systematic significant correlations dominated
446  for Type A events using inflow determined from the simulated MCS initiation, so the present study
447  cannot identify useful guidance for forecasters to anticipate displacement errors in advance for those
448  events. Of note, since positive significant S values did exist at some times for some layers when
449  using an inflow domain based on the observed MCS initiation, the general hypothesis still seems to
450  be valid in these events, but none of the techniques tested in the present study was able to identify
451  aninflow box that forecasters could use in advance of MCS initiation to predict displacement errors.
452  The domain positions relative to the simulated initiating MCSs that worked well for Type C cases did
453  not work for Type A cases.

454

455  Table5. Largest positive Spearman rank correlation coefficients simulated in Type C cases using both
456 MY] and YSU schemes. S values were taken from the WRF700mb_inflow region and are shown for
457  each displacement along with the time when valid.

458
Type Moisture Variable Displaceent S Value Layer Time
Type C Specific Humidity Total Displacement 0.8 Full, Lower t-1,t3
X-Component 0.5 Lower t-0, t-2
Y-Component 0.8 Upper t-3
Equivalent Potential Total Displacement 0.767 Lower t-0
Temperature
X-Component 0.467 Lower t-1
Y-Component 0.767 Lower t-0
459
460
461

462 4. Discussion and Conclusions

463
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A set of 18 MCS events was examined to determine if errors in some thermodynamic variables
within the inflow regions of MCSs were correlated well with spatial displacement errors present in
the initiation stage of the MCSs. The MCSs were classified into two synoptic environments, Type C
and A, based on the presence of strong and weak synoptic forcing, respectively. Prior studies [22,24]
had found correlations that could assist forecasters were more common for Type C LL] cases than for
Type A LL]J cases, and forecast skill was greater for Type C events. Four inflow regions were used
in the present study, with one based on the observed MCS initiation location and three others on the
WRF simulated MCS initiation location. Three layers were examined, 250-750 m AGL, 1000-1500 m
AGL, and 250-1500 m AGL. To determine the errors within the inflow region, WRF output was
compared to RUC analyses. Correlations were then determined between these errors and the spatial
displacements of the MCS initiations as well as their X and Y-components using a coordinate system
defined by the direction of the inflow.

In Type C cases, as negative moisture errors increased, MCSs were displaced further
downstream, agreeing with the findings of Peters et al. [40] for one PECAN case, and with the
hypothesis that the location of MCS development is largely related to the level at which saturation
would be reached within a broad ascending inflow layer. Significant positive correlations were
observed for total displacement and its Y-component (in direction of the wind flow) for most of the
Type C cases, and for the inflow region upstream of the observed MCS initiation for Type A cases.
These results suggest that for Type C cases, forecasters may be able to use information on moisture
errors a few hours prior to MCS initiation to estimate the displacement errors likely to be present for
MCS initiation.

The strongest correlations for Type A cases were present for its X-component of displacement
values, and the correlations were negative. These negative correlations mean that the larger the
negative moisture errors, the closer the simulated MCS initiation was to the observed MCS initiation
with respect to the left or right of the inflow direction. For a small negative moisture error, the
simulated MCS initiation was displaced far to the right of the observed initiating MCS. An analysis
of multiple weather parameters was unable to explain the negative correlations. Due to the important
role that numerous smaller-scale triggers play for Type A MCS initiation with the lack of strong
synoptic forcing, it is difficult to identify a particular cause for the significant negative X-component
correlation. Itis also possible that with the small sample size, the negative correlations found in the
present study may be more of a coincidence and may not be generalizable.

The present study also revealed the potential importance of the 700 mb flow in influencing the
displacement of the simulated MCSs. It was recognized that to assist forecasters, an inflow region
would need to be based on the simulated MCS initiation location and not that of the observed one.
However, the WRF750m-inflow region location performed much more poorly than Obs-inflow,
without many significant correlations between errors there and the spatial displacement errors of the
systems. An inflow box making use of the average displacement error from this small set of cases
performed better. Because the average displacement direction matched rather well with the flow at
700 mb, an inflow box using 700 mb flow was also tested and found to result in the most significant
correlations of all four regions explored. The fact that 700 mb worked well is consistent with the
finding by Cotton et al. [69] that MCS initiation tends to occur in the region of maximum 700 mb
warm air advection. Inflow boxes based on the 500 mb flow and flow at 1500 m AGL also were
explored, but yielded less significant correlations and smaller S values.

Some concerns may arise from the subjective approach to identifying the four inflow regions
used in the present study. Regions were placed upstream of the MCS initiation location based on the
direction of flow at several levels, and although areas of convective echoes were excluded, it is
possible that convection altered some fields just outside these areas of reflectivity. Future work
should more systematically examine a broader range of domain sizes, positions and layers to find the
best correlations. It is possible that an inflow domain could be found that would also provide
forecasters with some ability to predict displacement errors for Type A cases. In addition, wind
directions within the inflow box occasionally varied, such that there was some uncertainty in how to
define the X and Y axes. Also, some of the cases in the present study occurred during the PECAN
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516  project in 2015 and a more thorough analysis could be performed in the future, using the high-
517  temporal-frequency radiosonde launches from PECAN as done in Peters et al. [40] instead of RUC
518  analyses alone. In addition, the present study focused on the initiation stage of an MCS. A similar
519  study could be performed at a later stage in the life cycle of MCSs, perhaps when the inflow region
520  truly represents the flow of a well-developed LL]. Would displacement errors for mature MCSs
521  correlate well with errors within the strong LLJs? Although documentation of such a relationship
522 may be less useful to forecasters prior to the time of MCS initiation, if such a relationship exists,
523 forecasters might be able to use analyses during the time the LL] develops to adjust model predictions
524 of where an MCS would be during its mature stage, based on moisture errors, for instance, that are
525  showing up within the LL] during its development. This information may also be useful to flood
526  forecasters since a large portion of rainfall happens during the mature stage of an MCS.
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