

1 **Differences Between Severe and Nonsevere Warm -Season, Nocturnal Bow Echo**
2 **Environments**
3

4 Ezio L. Mauri and William A. Gallus, Jr.

5 *Department of Geological and Atmospheric Sciences*

6 *Iowa State University*

7 *Ames, IA 50011*

8

9

10

11

12

13

14 Submitted to *Weather and Forecasting* on 5 August 2020

15 Revision submitted 14 November 2020

16

17

18

19

20 Corresponding author address : Ezio Luca Mauri, Iowa State University, 3018

21 Agronomy Hall, Ames, IA 50011

22

23 E-mail: emauri@iastate.edu

Early Online Release: This preliminary version has been accepted for publication in *Weather and Forecasting*, may be fully cited, and has been assigned DOI 10.1175/WAF-D-20-0137.1. The final typeset copyedited article will replace the EOR at the above DOI when it is published.

24

ABSTRACT

25

26 Nocturnal bow echoes can produce wind damage, even in situations where elevated
27 convection occurs. Accurate forecasts of wind potential tend to be more challenging for
28 operational forecasters than for daytime bows because of incomplete understanding of how
29 elevated convection interacts with the stable boundary layer. The present study compares the
30 differences in warm-season, nocturnal bow echo environments in which high intensity (>70
31 knots) severe winds (HS), low intensity (50-55 knots) severe winds (LS), and nonsevere winds
32 (NS) occurred. Using a sample of 132 events from 2010 to 2018, 43 forecast parameters from the
33 SPC mesoanalysis system were examined over a 120 x 120 km region centered on the strongest
34 storm report or most pronounced bowing convective segment. Severe composite parameters are
35 found to be among the best discriminators between all severity types, especially Derecho
36 Composite Parameter (DCP) and Significant Tornado Parameter (STP). Shear parameters are
37 significant discriminators only between severe and nonsevere cases, while Convective Available
38 Potential Energy (CAPE) parameters are significant discriminators only between HS and LS/NS
39 bow echoes. Convective Inhibition (CIN) is among the worst discriminators for all severity
40 types. The parameters providing the most predictive skill for HS bow echoes are STP and most
41 unstable CAPE, and for LS bow echoes are V wind component at best CAPE (VMXP) level,
42 STP, and Supercell Composite Parameter. Combinations of two parameters are shown to
43 improve forecasting skill further, with the combination of surface-based CAPE and 0 – 6 km U
44 shear component, and DCP and VMXP, providing the most skillful HS and LS forecasts,
45 respectively.

46 **1. Introduction**

47

48 Bow echoes (Fujita 1978; Johns 1993; Weisman 1993; Przybylinski 1995), a subset of
49 mesoscale convective systems (MCSs), frequently generate damaging straight-line surface winds
50 (Fujita and Wakimoto 1981; Davis et al. 2004; Ashley and Mote 2005; Atkins et al. 2005;
51 Wheatley et al. 2006; Wakimoto et al. 2006). These events account for the majority of casualties
52 and damage resulting from convective nontornadic winds in the United States (Johns and Hirt
53 1987; Przybylinski 1995; Davis et al. 2004; Ashley and Mote 2005). Therefore, forecasting these
54 types of storms correctly is essential to reduce risk to lives and property.

55 Idealized simulations by Weisman (1993) suggested that severe, long-lived bow echoes
56 (i.e., derechos; see Corfidi et al. (2016) for the precise definition of a derecho) may be generated
57 in environments with Convective Available Potential Energy (CAPE) of at least $2000 \text{ m}^2 \text{ s}^{-2}$ and
58 vertical wind shear of at least 20 m s^{-1} over the lowest 5 km above ground level (AGL). Coniglio
59 et al. (2004) stressed the importance of low-level moisture (James et al. 2006; Guastini and
60 Bosart 2016) and relatively dry conditions at midlevels, and the detrimental effect of low
61 instability and weak deep-layer shear on bow echoes. Contrary to Weisman (1993), Evans and
62 Doswell (2001), and Coniglio et al. (2004) found low-level (0-2.5 km) shear not skillful in
63 forecasting long-lived bow echoes. Evans and Doswell (2001) found high variation in the
64 ambient shear and instability (similar to Coniglio et al. 2004; Cohen et al. 2007), suggesting that,
65 alone, they are not sufficient to differentiate derecho environments from those associated with
66 nonsevere MCSs.

67 Cohen et al. (2007) investigated nonsevere MCSs, severe MCSs, and severe derecho-
68 producing MCSs and found that the best discriminators for distinguishing severe wind-producing

69 MCSs from nonsevere MCSs were deep-layer wind shear and low- to upper-level wind speeds,
70 together with median 0-1 km system-relative wind speeds and midlevel environmental lapse
71 rates. Similar to Johns and Doswell (1992), they found that low-level (0-2 km) wind shear is a
72 worse discriminator compared to deep-layer (0-6 km and 0-10 km) shear. Moreover, they
73 observed that vertical differences in equivalent potential temperature and CAPE only
74 differentiate well between weak and severe/derecho MCS environments; environments
75 characterized by downdraft CAPE (DNCP; the maximum energy available to a descending
76 parcel) over 1000 J kg^{-1} are favorable for severe wind-producing mesoscale convective systems,
77 which agrees with Evans and Doswell (2001).

78 Despite the fact MCSs are common at night, it might be assumed that bow echoes with
79 damaging winds are rare at night, since these environments are often characterized by a
80 nocturnal stable boundary layer (SBL; Schultz et al. 2000). SBLs should hinder - or even impede
81 in certain cases – the generation of strong cold pools with tight temperature and pressure
82 gradients more so than what occurs during the daytime, and could potentially reduce momentum
83 transport to the ground within negatively buoyant downdrafts (Horgan et al. 2007). However,
84 bow echoes and intense derechos often occur at night (Johns and Hirt 1987; Bentley and Mote
85 1998; Bernardet and Cotton 1998; Davis et al. 2004; Wakimoto et al. 2006; Wheatley et al. 2006;
86 Adams-Selin and Johnson 2010; Coniglio et al. 2012; Adams-Selin and Johnson 2013; Guastini
87 and Bosart 2016). These nocturnal bow echoes, and more generally MCSs, are more poorly
88 forecast compared to daytime convective systems (Davis et al. 2003, Wilson and Roberts 2006;
89 Clark et al. 2007; Weisman et al. 2008; Hitchcock et al. 2019; Weckwerth et al. 2019), possibly
90 because nocturnal convection is often elevated, with forcing mechanisms above the ground, such
91 as convergence at the nose of the low-level jet (LLJ; e.g., Stull 1988), gravity waves, or bores,

92 being more important than during the daytime. Therefore, the relative lack of observations above
93 the surface is more of a problem at night because it would be these observations that would show
94 the areas likely to produce sufficient lift to trigger elevated thunderstorms (Davis et al. 2003;
95 Clark et al. 2007; Hitchcock et al. 2019).

96 Nocturnal bow echo environments are often characterized by an SBL and a LLJ, which
97 provide an elevated source of moist and unstable air and creates a favorable environment for
98 MCSs (e.g., Corfidi et al. 2008; Schumacher and Johnson 2009; French and Parker 2010; Blake
99 et al. 2017). These nocturnal systems are often elevated (Colman 1990, Parker 2008), in
100 environments with considerable surface-based CIN (Convective Inhibition; SBCN), due to the
101 disconnect of the SBL and unstable air aloft, thus only ingesting air parcels located above the
102 SBL. While the regeneration of convective cells at the leading edge of a cold pool typically
103 maintains daytime MCSs (Rotunno et al. 1988), some studies have found that nocturnal MCSs
104 can also be cold-pool driven and surface-based despite it being more difficult for a strong cold
105 pool to develop at night (Parker 2008; Marsham et al. 2011; Peters and Schumacher 2016; Parker
106 et al. 2020), due to the strength of the SBL, increased temperature homogeneity, and/or reduced
107 evaporative cooling in the tropospheric layer just above the ground. However, other studies
108 indicate that bores (e.g., Crook 1988; Wilson and Roberts 2006; Haggi et al. 2017) or gravity
109 waves (e.g., Crook and Moncrieff 1988; Parker 2008; Marsham et al. 2010) generated by weak
110 cold pools play a key role to sustain nocturnal MCSs (Crook and Moncrieff 1988; Koch et al.
111 2008; Parker 2008; French and Parker 2010; Marsham et al. 2010; Marsham et al. 2011; Blake et
112 al. 2017; Parsons et al. 2019).

113 At the present time, shortcomings exist in our understanding of which processes allow
114 severe convective winds to reach the surface in stable environments. Parker (2008) investigated

115 severe convective winds in stable environments and found that even in the absence of surface-
116 based CAPE, elevated convective systems could generate negatively-buoyant downdrafts strong
117 enough to reach the surface. Marsham et al. (2011) investigated an MCS, whose initial
118 convection triggered both gravity waves and bores, which initiated further convection ahead of
119 the cold pool that became surface based. Hitchcock et al. (2019) found that out of 13 MCSs
120 sampled by PECAN (Plains Elevated Convection at Night; Geerts et al. 2017), almost every
121 postconvective nocturnal sounding observed a surface cold pool, suggesting that the potential for
122 damaging surface winds associated with nocturnal MCSs may be higher than expected. Recently,
123 Parker et al. (2020) conducted an idealized simulation of the nocturnal PECAN MCS that
124 occurred on 26 June 2015 and observed that initially elevated convection became surface based,
125 and severe surface winds were produced. However, this binary distinction between surface-based
126 and elevated convection is relatively ambiguous, as nocturnal MCSs exist on a spectrum between
127 these two extremes, i.e., they may ingest SBL air from different source layers (Corfidi et al.
128 2008).

129 Considering the gaps in our understanding of how elevated convection interacts with the
130 SBL, nocturnal severe wind-producing storms can present a challenge for operational
131 forecasters. Being able to discriminate between environments in which a nocturnal bow echo
132 cannot generate intense surface winds from environments where it will produce severe winds is
133 an important societal and scientific question to answer. Although nocturnal bow echoes can
134 produce severe winds at the surface, there is a dearth of studies in the literature that specifically
135 analyze nocturnal bow echoes (Wakimoto et al. 2006). Therefore, the goal of this project is to
136 examine the differences in near-storm parameters between warm-season, nocturnal bow echoes
137 that produce severe winds and those that do not.

138 A description of the data and methods is presented in the following section. Section 3
139 discusses single and multiple parameters results. General summary and conclusions are presented
140 in section 4.

141

142 **2. Data and methodology**

143

144 *a. Data collection and classification*

145

146 The analysis of the environmental conditions associated with bow echoes varying in
147 severity was conducted by selecting a sample of 132 warm-season, nocturnal bow echo events
148 occurring during the April-August period each year from 2010 to 2018 (see the online
149 supplemental material). In the present study, cases were considered nocturnal if a bowing
150 convective line was present between 02 UTC and 11 UTC. These events were chosen using
151 composite reflectivity data from the UCAR Image Archive browser
152 (<https://www2.mmm.ucar.edu/imagearchive>). A loop of composite reflectivity for the contiguous
153 United States was examined and, when bow echoes were noted, if the criteria explained below
154 were met, the cases were used in the study. Although a few bow echoes meeting the criteria may
155 have been missed, the majority of all relevant events were captured.

156 Included in this sample were 44 nonsevere cases (NS) in which there were no measured
157 severe winds or wind damage reports for at least six hours before and after the time of maximum
158 bow echo development (largest area within bow of reflectivity greater than 50 dBZ). Of the
159 remaining 88 cases, 41 were low-intensity severe wind cases (LS), where all wind reports were
160 in the range of 50-55 kt, and 47 were high-intensity severe winds cases (HS), where at least one

161 severe wind report with a magnitude greater than 70 kt occurred. Therefore, this classification is
162 more focused on wind intensity than Cohen et al. (2007), who classified MCSs based on the
163 number of reports of severe winds rather than severity, and assumed that weak nonsevere MCSs
164 could have up to 5 storm reports. The present study, like Cohen et al. (2007), used both estimated
165 and measured wind reports. It is well known that deficiencies exist in the wind database, such as
166 the human tendency to overestimate wind speeds (Edwards et al., 2018). However, it was
167 necessary to include both types of reports to maintain a sufficient sample size for meaningful
168 analysis.

169 The analysis focuses on SPC mesoanalysis-derived proximity soundings to represent the
170 storm environment (Evans and Doswell 2001; Doswell and Evans 2003; Coniglio et al. 2004;
171 Cohen et al. 2007; Thompson et al. 2012; Reames 2017). The General Meteorology Package
172 (GEMPAK) software (desJardins et al. 1991) was used to obtain a set of 43 sounding-derived
173 parameters from the 40-km horizontal grid spacing SPC mesoanalysis system (Table 1; Bothwell
174 et al. 2002; Coniglio et al. 2012). This dataset is based upon the hourly 40-km RUC, and after
175 May 2012, 40-km RAP, analysis grids, adjusted using surface observations, which is known at
176 the Storm Prediction Center as *SFCOA* (surface objective analysis) and on the SPC website
177 as *mesoanalysis*. The selected parameters include measures of vertical wind shear, wind speed,
178 multiple thermodynamic properties and also four composite indices. These four indices are the
179 Supercell Composite Parameter (SCP; Thompson et al. 2004), a function of effective storm
180 relative helicity (SRH; based on Bunkers right supercell motion, Bunkers et al. 2000), most
181 unstable CAPE (MUCP), most unstable CIN (MUCN), and 0-6 km shear magnitude (S6MG);
182 Significant Tornado Parameter (STP; Thompson et al. 2012), using surface-based CAPE
183 (SBCP), 0-1 km SRH (SRH1), and S6MG; Derecho Composite Parameter (DCP; Evans and

184 Doswell 2001), a function of downdraft CAPE (DNCP), MUCP, S6MG, and the 0-6 km mean
185 wind; and XTRN, the product of maximum mixing ratio (MXMX) and wind speed at the most
186 unstable parcel level (MUPL).

187 For severe cases, the mesoanalysis data at the nine grid points, a 3x3 grid, closest to the
188 wind report of the largest magnitude within the ranges specified earlier and using the analysis
189 hour immediately before the report occurred were averaged. To properly examine the
190 environment associated with bow echoes and prevent previous convection from skewing results,
191 if the storm report was within ten minutes after the analysis time, the previous hour (60-70
192 minutes earlier) was used instead. For NS cases, the mesoanalysis data were averaged from the
193 nine grid points, a 3x3 grid, closest to the apex of the bow (i.e., where the strongest winds
194 typically occur; Weisman 2003; Atkins and St. Laurent 2009), and at the analysis hour
195 immediately prior to the maximum bow echo development on radar, to avoid having prior
196 convection alter the environmental parameters. Additionally, earlier radar images were examined
197 for a 10-hour period over a roughly 200x200 km region ahead of the bow echo to ensure that the
198 environment was not influenced by prior unrelated convection. All storms occurred east of the
199 Rocky Mountains, and the three severity types were well spatially distributed across primarily
200 the central United States (Fig. 1), reducing the potential for regional biases. The seasonal
201 distribution of cases was also similar among the three severity types (not shown).

202

203 *b. Statistical methods*

204

205 To analyze forecast parameters, several graphical and statistical techniques were
206 employed. Means, medians, bias, interquartile distribution, box-and-whiskers plots, and scatter

207 plots were used to obtain additional information and to easily visualize features in the data such
208 as clusters, trends, spread, and outliers. The significance of the differences among the parameter
209 distributions and the discriminatory ability of a specific variable were determined using
210 bootstrapped paired t-tests (Mendenhall and Sincich 2007) and non-parametric Wilcoxon signed
211 rank-sum tests (Wilks 2011). A significance level of $p = 5\%$ was used to determine if a test
212 statistic was statistically significant. Since the results of the two tests were very similar, with
213 only about 5% of parameters found to be significant with one test but not the other, only the
214 bootstrapped paired t-tests are presented in the results to follow.

215 Additionally, the Heidke Skill Score (hereafter HSS; Heidke 1926) and threshold values
216 were calculated to provide a more robust quantitative analysis about the forecasting skill of the
217 parameters. The HSS is defined as

$$218 \quad HSS = 2 \frac{ad - bc}{(a + c)(c + d) + (a + b)(b + d)}$$

219 where a , b , c , and d are the hits, false alarms, misses, and correct rejections, respectively. An
220 HSS of 1 indicates all forecasts are correct, 0 indicates that the forecast has no skill, and negative
221 values indicate that a chance forecast is better.

222 Similar to Kuchera and Parker (2006) for severe convective winds and Reames (2017) for
223 tornadoes, optimal threshold values, $x_{opt,i}$, are obtained by maximizing the HSS. An HS event
224 would be forecast if the value of a forecast parameter is greater than $x_{opt,1}$, whereas for an NS
225 event it would be lower than $x_{opt,2}$; for the average relative humidity from LCL to 500 hPa
226 (RHC5) and from LCL to LFC (RHLC), the average kinematic vertical velocity between MUPL
227 and LCL (VKLC), the 3 km average relative humidity (3KRH), the relative humidity at 800 hPa
228 (RH80) and 700 hPa (RH70), the reverse is true for both severity types. An LS event would be
229 forecast if the value of a forecast parameter is between the range $x_{opt,3}$ and $x_{opt,4}$. The same

230 method was used in the case of any combination of two parameters, with the addition that the
231 same condition needed to apply to both parameters: for instance, an HS event would be forecast
232 if both forecast parameters exceed the two new optimal thresholds $x_{opt,5}$ and $x_{opt,6}$ in the
233 appropriate direction (Reames 2017).

234 To analyze the two-dimensional severe weather parameter spaces, the Gaussian kernel
235 density estimation (GKDE; Scott 2015) was used, which was performed for two-dimensional
236 probability analyses considering combinations of multiple parameters. The GDKE is a method to
237 estimate the multivariate probability density function of two random variables in a non-
238 parametric way, which allows one to gain knowledge about the continuous distribution of data
239 where no observed data points exist. This method has also been implemented to create
240 continuous probabilistic fields of significant severe storm report locations (Smith et al. 2012),
241 tornadic near-storm environmental characteristics for convective mode (Thompson et al. 2012),
242 and tornadic environments in the two-dimensional convective parameter spaces (Reames 2017).
243 Many of the parameters examined in the present study have been shown to be useful in
244 distinguishing convective mode and observed severe weather (Johns et al. 1993; Brooks et al.
245 1994; Evans and Doswell 2001; Doswell and Evans 2003; Thompson et al. 2003; Kuchera and
246 Parker 2006; Thompson et al. 2012; Hampshire et al. 2017; Reames 2017).

247

248 **3. Results**

249

250 The following analyses compare the distributions of near-storm environmental
251 parameters and thermodynamic soundings between HS, LS, and NS nocturnal events. In the
252 results presented below, all differences to be discussed were found to be statistically significant

253 unless otherwise noted. In addition, the skill of both single parameters and combinations of
254 parameters as forecasting tools in discriminating different severity types is evaluated.

255

256 *a. Single parameter distributions*

257

258 Many prior studies (e.g., Rotunno et al. 1988; Weisman and Rotunno 2004; Coniglio et
259 al. 2006; Cohen et al. 2007; Coniglio et al. 2012) have commented on the importance of vertical
260 wind shear on the initiation and maintenance of deep moist convection and bow echoes. We find
261 that shear, whether it is present in low levels or deeper levels, discriminates well between
262 nonsevere events and severe events (Fig. 2; Table 2). The differences in the mean values
263 between the shear variables can also be seen in Table 1. NS environments are associated with
264 significantly weaker low-level, mid-level, and upper-level wind shear than severe ones for all the
265 shear parameters examined. This is also true for low-level SRH by as much as $100 \text{ m}^2 \text{ s}^{-2}$. When
266 discriminating between LS and HS environments, shear measures in the lowest layers (0-1 km
267 and 0-3 km) show rather minor insignificant differences (similar to Evans and Doswell 2001;
268 Cohen et al. 2007). As one considers deeper layers of shear (0-6 km and 0-8 km) there is more
269 separation between the medians shown in the boxplots (similar to Coniglio et al. 2006; Cohen et
270 al. 2007), but it is not statistically significant. An exception does exist for the 0-6 km (U6SV)
271 and 0-8 km pressure-weighted (U8SV) U shear components. Differences in these two parameters
272 were not significant at the 95% confidence level, but were significant at the 90% level (not
273 shown). The value of S6MG for HS events (41.1 kt; Table 1) is similar to that found for derecho-
274 producing MCSs by Cohen et al. (2007; about 43 kt) and Coniglio et al. (2004; around 40 kt),
275 while that for LS events is 36.9 kt. The U shear component in the 0-3 km layer does not differ

276 much between severity types, but differs more noticeably for deeper 0-6 km and 0-8 km shear,
277 with the most intense nocturnal bow echo winds happening with the strongest zonal shear
278 component. As is shown later, this increasing zonal component to the shear is primarily due to
279 stronger zonal winds aloft. Additionally, the meridional component of the wind differs
280 significantly in the lowest layer between the nonsevere and severe events; however, the
281 differences among all three severity types were not significant in the deeper layers (and thus are
282 not plotted). VKLC is also a significant discriminator between severe and nonsevere cases
283 (figure not shown), and between HS and LS events at the 90% confidence level. Greater lift in
284 the near-storm environment has multiple effects: it can help cool the mid-troposphere increasing
285 the CAPE available for storms, and it may allow for longer sustenance of convection or provide
286 more favorable conditions for upscale growth. These factors may facilitate the occurrence of
287 severe winds.

288 Nocturnal HS bow echo environments are characterized by the highest values of SBCP
289 (1518 J kg^{-1}), 100 hPa mean mixed CAPE (M1CP; 1605 J kg^{-1}), MUCP (2363 J kg^{-1}), and DNCP
290 (1025 J kg^{-1}) compared to both the LS and NS ones, greater by nearly 1000 J kg^{-1} for SBCP and
291 MUCP (Table 1), making them very good parameters for discriminating between HS and LS/NS
292 (Fig. 3; Table 2). In addition, we find that CAPE is not a good discriminator between NS and LS
293 environments. These findings somewhat contrast with those found by Cohen et al. (2007), who
294 found that CAPE can only discriminate well between weak and severe/derecho MCS
295 environments, but not severe vs derecho-producing MCSs. DNCP increases with increasing bow
296 echo intensity, as found by Evans and Doswell (2001) and Cohen et al. (2007); values greater
297 than 1000 J kg^{-1} have been associated with increasing potential for strong downdrafts and
298 damaging outflow winds (James et al. 2006). Increased values of CAPE and DNCP are found to

299 be a distinctive trait of HS bow echoes, suggesting that the nocturnal SBL may not be as cool in
300 these events, making it easier for a cold pool to reach the ground and produce damaging winds
301 (Parker et al. 2020). However, for our sample of cases, CIN is among the worst discriminators
302 overall, as values among all severe environments are relatively similar (Fig. 3). Mean values
303 show that SBCN and MUCN are in fact highest for LS events (Table 1). The finding that CIN
304 does not distinguish well between the severity types may be consistent with the results of Parker
305 et al. (2020) and Hiris and Gallus (2020), who found that the presence of low-level stable layers
306 in idealized experiments using CM1 (Bryan and Fritsch 2002) does not prevent the formation of
307 cold pools nor upscale growth of convection. Furthermore, almost all observed MCSs during the
308 recent PECAN project contained at least a weak surface cold pool, even when a stable boundary
309 layer was also observed (Hitchcock et al. 2019).

310 Comparatively dry conditions characterize HS environments at 700 hPa (Fig. 4), agreeing
311 with prior works suggesting dry air around this level encourages evaporative cooling and strong
312 negative buoyancy, and thus is a favorable ingredient for strong downdrafts (e.g., Johns 1993).
313 While RH70 discriminates only between HS and LS/NS types, RH80 discriminates between HS
314 and LS, and RHC5 between HS and NS. Relative humidity at the levels examined is not able to
315 differentiate between LS and NS events. The results for relative humidity suggest that the HS
316 events are the ones that may be most influenced by enhanced evaporative cooling and stronger
317 downdrafts that greatly accelerate the flow, whereas other processes may play a bigger role in
318 determining whether or not a storm produces weaker severe winds. The highest LCLs are
319 associated with HS environments (608 m), but differences compared to the other severity types
320 are not significant. Since LCL height is a function of the relative humidity in the layer closest to
321 the ground, and these events are nocturnal with SBLs present so that the relative humidity near

322 the ground would likely be relatively high in all events, it is not surprising that LCL heights
323 would not differ significantly among the three severity types. While the maximum equivalent
324 potential temperature (theta-e) difference in lowest 3 km (TE3K) differentiates well between
325 severe and nonsevere environments, surface theta-e (STHE) differentiates best between HS and
326 LS/NS environments (Table 2).

327 As in Craven and Brooks (2004), lapse rates exceeding $7^{\circ}\text{ C km}^{-1}$ are classified as steep
328 in the present study. The lapse rate from 850 to 500 hPa (LR85) and from 700 to 500 hPa (LR75)
329 discriminate significantly between severe and nonsevere cases (Table 2). In addition, LR75
330 performs well also when comparing HS (steep lapse rate, $7.27^{\circ}\text{ C km}^{-1}$) and LS ($6.89^{\circ}\text{ C km}^{-1}$)
331 (Fig. 4), suggesting that steeper lapse rates in this layer contribute to the higher values of CAPE
332 parameters for HS events. Maximum mixing ratio (MXMX in Table 1) is highest for HS events,
333 also consistent with higher CAPE when considering the steeper lapse rates, and it discriminates
334 between HS vs NS/LS. The composite parameter XTRN differentiates well between severe and
335 nonsevere cases (figure not shown). We believe that this is mainly because stronger wind shear
336 leads to higher XTRN values, and as will be shown later, stronger winds are associated with
337 more intense convection.

338 The highest values of the severe composite parameters SCP, STP, and DCP occur in HS
339 environments (8.55, 1.11, 3.48 respectively), followed by LS, and then NS ones (Table 1).
340 Separation between all severity types is substantial (Fig. 5) and all parameters differentiate
341 significantly among all three severity types (Table 2). It is likely that SCP, STP, and DCP work
342 so well because they all include at least one parameter that discriminates significantly between
343 severe and nonsevere (e.g., shear, SRH), and at least one that discriminates well between HS and
344 LS/NS (e.g., CAPE). The DCP identifies favorable environments for cold-pool driven wind

345 events (Evans and Doswell 2001, Lagerquist et al. 2017), and values greater than 2 favor the
346 development of derechos from existing MCSs (Lagerquist et al. 2017). We find that DNCP,
347 related to the potential for cold-pool production, LR75, SCP, STP, and DCP are the parameters
348 among the 43 examined that discriminate significantly among all three severity types. For
349 brevity, only parameters for which any comparison showed statistically significant differences
350 (31 of the 43 studied) are included in the analyses to follow. Removing parameters with $p \geq 5\%$
351 does not imply that a parameter is unimportant for distinguishing between bow echo severity
352 types, only that it cannot statistically differentiate between the types. For LS vs NS nocturnal
353 environments (Table 2), 21 parameters (48%) were retained after testing; for HS vs NS, 28
354 parameters (65%), and for HS vs LS, 12 parameters (27%) were retained.

355 Soundings averaged for all events in each severity class (Fig. 6) were computed using the
356 original 40-km RUC/RAP analyses, and thus some parameters may differ slightly from the SPC
357 mesoanalysis. In Fig. 6, the parcel trajectory for the most-unstable parcel is shown since MUCP
358 was found to differentiate the best among CAPE parameters between HS and LS/NS in the SPC
359 mesoanalyses. The soundings indicate that lower values of RH70 for HS and LS are due to both
360 a warmer and drier environment at that level. The soundings also show that the lower
361 troposphere is warmer and moister in HS events than in other events, likely the primary reason
362 for the higher CAPE values in those cases discussed earlier. Winds at 500 hPa are about 20 kt for
363 NS, 30 kt for LS, and 35 kt for HS environments, which is less than the 41 kt found by Johns and
364 Hirt (1987), and have a stronger southerly component for severe events. The average soundings
365 are shown using 950 hPa as an assumed surface point, since the average surface pressure of all
366 cases is 951 hPa (948.6 hPa for NS, 953.5 hPa for LS, and 953.6 for HS), and data are only
367 available every 25 hPa. The portion of the soundings nearest the ground should be interpreted

368 with caution since the soundings used to create these average soundings have different surface
369 elevations. Therefore, to better examine differences in the SBL near the ground for different
370 severity types, a separate analysis of the depth of the SBL was performed (Fig. 7). The depth was
371 determined to be the top of the layer where the lapse rates were more stable than a moist
372 adiabatic lapse rate. This analysis supports the results found for CIN variables, in that the depths
373 of the SBLs do not differ among the three severity types. The majority (over 60%) of SBLs are
374 shallower than 50 hPa, less than 10% are deeper than 100 hPa, and only about 10% are unstable
375 for all severity types.

376 In summary, while many parameters involving shear, helicity, wind speeds, and
377 thermodynamics were found to differ significantly between NS events and severe ones, only a
378 few thermodynamic parameters and three composite indices differed significantly between the
379 HS and LS events. These results suggest that, while many kinematic, shear-based, and
380 thermodynamic quantities can help forecasters differentiate between severe and nonsevere
381 nocturnal bow echo environments, only severe composite indices and some thermodynamic
382 variables can help differentiate environments likely to produce bow echoes with high intensity
383 severe wind from ones that will only produce marginally-severe wind.

384

385 *b. Nocturnal distribution analysis*

386

387 The nocturnal frequency distribution by hour for each severity type used in the present
388 study (Fig. 8) peaks at 02 UTC for HS and LS types and at 03 UTC for NS types, and shows
389 that our dataset is relatively evenly distributed, with many events also occurring later in the
390 night. The single report at 01 UTC is due to a case where the report was within the ten

391 minutes after the 02 UTC analysis time, and, as explained earlier, this meant that the 01 UTC
392 mesoanalysis information was used. To ensure that typical nocturnal trends in parameters are not
393 the primary cause of differences between the severity levels (such as would happen, for instance,
394 if HS cases occurred more frequently early in the evening when CAPE is higher, whereas NS
395 events dominated later at night when CAPE is lower), the sample was divided into two groups of
396 similar size: one before 05 UTC (late evening) and one after 05 UTC (early morning). The
397 analysis was repeated separately for the two subsets of cases, comprising 65 total events for late
398 evening, of which 23 were HS, 24 LS, and 18 NS, and 67 total events for early morning, of
399 which 24 were HS, 17 LS, and 26 NS. The two subsets are generally similarly distributed among
400 the three severity types. For late evening comparisons between LS and NS bow echo
401 environments 17 parameters were retained after bootstrap testing (39% of initial parameters),
402 while 14 (32%) were retained for early morning and 21 for the whole sample. For differences
403 between HS and NS 21 parameters were kept (49%) for late evening, while 25 (58%) were for
404 early morning and 28 for the whole night. For differences between HS and LS, 13 parameters
405 were retained (30%), while 6 (14%) were for early morning and 12 for the whole dataset. In the
406 following analysis, the surface V wind component (VWND), U component at the top of the
407 effective inflow layer (UEIL), and RH80 are not shown since no statistically significant
408 differences were found for any of the three comparisons between severity types for either time
409 period.

410 When separated into the two different time periods (Table 3), the majority of SRH and
411 shear parameters behave as they did for the full sample and remain good discriminators between
412 severe and nonsevere types, regardless of the time period chosen (Table 4), with substantial
413 separation in the distributions of values (Fig. 9). None of the kinematic parameters differentiate

414 between HS and LS types (except for VKLC during late evening). The fact that kinematic
415 parameters do not differentiate between the intensity of the winds in severe cases, but relative
416 humidity did, again implies the important role that evaporative cooling might play in the creation
417 of downdrafts that are able to substantially accelerate the flow in HS events. The 0-3 km U
418 (U3SV) and V (V3SV) shear components are good discriminators between severe and nonsevere
419 types only during early morning. S6MG, U6SV, and U8SV discriminate between LS and NS
420 events only during late evening, but distinguish between HS and NS for both time periods. All
421 HS SRH and shear mean values are larger during early morning than late evening, possibly
422 reflecting the fact that the nocturnal LLJ typically peaks in intensity during this period, and that
423 the surface layer would be most likely to be decoupled from the flow aloft in the early morning.

424 As would be expected, since CAPE is a function of low-level temperature and the lower
425 troposphere still possesses some of the warming from the solar radiation prior to sunset, mean
426 values for all CAPE parameters are higher during late evening than in early morning (Table 3),
427 with the differences being statistically significant for SBCP and DNCP for HS cases. Differences
428 between the periods before and after 05 UTC grow larger as severity increases, with the biggest
429 differences being for HS SBCP and MUCP of about 1000 J kg^{-1} and 500 J kg^{-1} , respectively.
430 SBCP, MUCP, and M1CP differentiate between HS and the other two severity types for both late
431 evening and early morning (Fig. 10; Table 4). DNCP can discriminate between all types before
432 05 UTC, and only between HS and NS after 05 UTC; however, relatively good separation
433 between HS and the other two types can be seen (Fig. 10). CIN parameters were tested but no
434 significant differences were found between the severity types. Therefore, CAPE and CIN results
435 are analogous to those obtained considering the whole dataset.

436 During early morning, all severity types are characterized by smaller TE3K, particularly
437 for LS (more than 4 K less than during late evening), and smaller STHE (with the differences for
438 HS cases between the two datasets being statistically significant). RH parameters, both at 800
439 hPa, 700 hPa, and between LCL and 500 hPa perform worse than what was found using the
440 whole dataset, especially during early morning where no differences between severity types are
441 statistically significant (Table 4). RH70 for HS environments is drier after 05 UTC than before
442 05 UTC, but the opposite is true for LS environments. Before 05 UTC both HS and LS RH70
443 mean values are similar (Table 3). LR85 and LR75 mean values are higher for HS during late
444 evening (with the differences for LR85 for HS cases being statistically significant), whereas for
445 LS and NS they are larger during early morning. It is not clear why the changes in lapse rates
446 between the two periods in these layers behave differently among the severity types. Prior
447 daytime heating may explain a warmer 850 hPa temperature, and thus greater LR85, in the late
448 evening than in the early morning, although this impact would be smaller at 700 hPa. The
449 nocturnal LLJ also is a source for heat and moisture that might increase lapse rates at night, so it
450 is possible that differences in the behavior of the LLJ among the cases might explain these trends
451 in lapse rates. Both lapse rate parameters differentiate among all severity types only during late
452 evening, similar to the results obtained using the full sample, with large separation (Fig. 11) in
453 the distributions between severity types. On the other hand, LR75 differentiates only between HS
454 and NS during early morning (Table 4). The four severe composite parameters behave similarly
455 for both time periods and similar to the previous results, with the exception that SCP does not
456 differentiate between HS and LS for either time period. This result may be consistent with the
457 previous finding that kinematic parameters, which play a strong role in the formation of
458 supercells, do not differentiate either between HS and LS events. XTRN only discriminates

459 between severe and nonsevere as well; but, contrary to the other three severe composite
460 parameters, during early morning it shows higher mean values for severe types, with better
461 separation between severity types than it does during the late evening (Fig. 11). Because XTRN
462 is a function of the maximum mixing ratio and wind speed at the level of the most unstable
463 parcel, it is likely particularly sensitive to the strength of the LLJ which supplies moisture and
464 often has its peak intensity near the level of the most unstable parcel. The LLJ often peaks in
465 intensity during the early morning period, which might explain the better separation of XTRN
466 among severity types in the early morning. STP and DCP differentiate among all types for all
467 time periods. During late evening, SCP is greater for all severity types, while STP and DCP are
468 greater only for severe events (Table 3), and show larger separation between severity types (Fig.
469 12). This behavior is consistent with these composite parameters' dependence on either CAPE or
470 steepness of low-level lapse rates, which would be greater earlier in the night than later.

471 For the two subsets a separate analysis of the SBL was performed as well (figure not
472 shown). The depths of the SBL during late evening are generally shallower than those found
473 using the whole dataset for all severity types, with almost 80% of all SBLs less than 50 hPa deep
474 and less than 10% of the lower tropospheric temperature profiles conditionally unstable. Early
475 morning SBL depths vary more: the majority (about 30%) are in the range 25-50 hPa, while
476 about 18% are below 25 hPa and about 18% in the range 50-75 hPa; about 14% of all lower
477 tropospheric temperature profiles are conditionally unstable. The increased variation happens
478 among all severity types. Of all the parameters shown in Table 4, statistically significant
479 differences between the values before and after 05 UTC are present only for the parameters
480 SBCP, DNCP, STHE, and LR85 for HS only (not shown). These are all related to
481 thermodynamics, as one would expect due to typical nocturnal cooling in the lower troposphere.

482 It is worth noting that for HS cases there are more robust differences before and after 05 UTC
483 than for the other two severity types.

484

485 *c. Single-parameter forecast skill*

486

487 In the previous discussion, it was found that only four parameters differ significantly
488 between the first and second part of the night; therefore, the following two sections examining
489 the skill of using the parameters to forecast severity focus on the whole dataset. Although the
490 previous analyses are important to evaluate which forecast parameters have the best
491 discriminatory ability between severity types, the use of thresholds and an analysis of the skill
492 associated with them is needed to determine the usefulness of each parameter in forecasting. For
493 this reason, HSS values were calculated to assess each parameter's suitability for predicting the
494 severity level of nocturnal bow echoes.

495 The ten parameters with the highest HSS for forecasting each severity class, along with
496 the threshold yielding that HSS value, are shown in Table 5. The four composite parameters,
497 XTRN, SCP, STP, and DCP, are among the most highly skilled for all severity types. They have
498 the highest HSS scores for NS environments (0.51 – 0.6), and some of the highest for LS (0.31 –
499 0.38) and HS (0.36 – 0.45). These results are consistent with what was found earlier, as
500 composite parameters are functions of parameters that discriminate significantly between severe
501 and nonsevere (shear, SRH), and at least one differing between HS and LS/NS (e.g., CAPE). In
502 fact, considering NS cases, which do not produce severe winds at the surface, the two most
503 skillful parameters were STP (HSS of 0.6), with a maximum threshold of 0.039 (meaning that
504 values less than 0.039 indicate an NS event will occur), followed by SCP (0.59) and DCP (0.59),

505 with maximum thresholds of 1.77 and 0.64 respectively. These thresholds are relatively small
506 (Thompson et al. 2012; Lagerquist et al. 2017) and should capture the large majority of
507 nonsevere events. The V wind component at best CAPE level (VMXP; 0.38), where best CAPE
508 is the maximum 50 hPa mean layer CAPE or essentially a layer averaged MUCP, is the most
509 skillful parameter for LS environments, with lower and upper thresholds of 12.82 kt and 27.39 kt
510 respectively (i.e., LS events are forecast when VMXP is between these values). The parameters
511 with the next highest HSS values are STP (0.35) and SCP (0.35), with higher threshold ranges
512 than those found for NS of 0.157 – 0.905 and 1.77 – 8.0, respectively. Finally, STP (0.45) and
513 MUCP (0.44) are the best parameters for HS events when minimum thresholds are 0.59 and
514 1949.4 J kg⁻¹, respectively. This result confirms both the usefulness of composite parameters in
515 distinguishing significantly between all severity types as well as the crucial and intrinsic
516 discriminating nature of large CAPE for HS environments.

517 Together with the aforementioned four composite parameters, SRH and shear parameters
518 make up the other six most skillful parameters for NS events. A combination of kinematic and
519 thermodynamic parameters are the others having highest skill for LS events, and mostly severe
520 composite parameters together with CAPE parameters work best for HS environments. It is
521 possible that CAPE parameters are skilled at differentiating between HS and LS/NS
522 environments because stronger CAPE can lead to heavier precipitation cores and possible cold
523 pools. These conditions can subsequently favor the creation of strong winds due to downdrafts
524 bringing potentially cooler air down from aloft and wet-bulbing from evaporation of rain and
525 latent cooling near the surface. Higher CAPE may also lead to stronger pressure perturbations
526 due to the stronger updrafts, leading to stronger storm-scale jets (Adams-Selin and Johnson
527 2013).

528

529 *d. Two-parameter space analysis*

530

531 Studies have shown that a multiparameter forecasting method often proves more skillful
532 than single-parameter counterparts (e.g., Reames 2017). To assess whether combinations of
533 parameters can provide better forecasts of severe wind potential in nocturnal bow echoes than
534 single parameters, the forecast skill of various combinations of two parameters was analyzed in a
535 manner similar to that used for single parameters. The combinations were created by combining
536 each thermodynamic parameter with every kinematic and composite parameter, each kinematic
537 parameter with every composite parameter, and the four composite parameters with each other.
538 This yields 245 combinations. Table 6 shows the five combinations of parameters that have the
539 best HSS scores for prediction of each severity class, along with the associated thresholds
540 intervals. In general, multiparameter forecasting skill is greater than single-parameter forecasting
541 skill for each severity class, with HSS differences for the best performing parameters around
542 20% larger (compare Table 6 to Table 5). Out of the 245 combinations of parameters (those in
543 Table 4) analyzed, 44 have HSS values larger than the best score found for single-parameters for
544 HS cases, with one of the two parameters being almost always a CAPE or severe composite
545 parameter. For LS cases, 39 combinations have HSS values larger than the best score for any
546 single parameter, and for NS, 49 do. Generally for LS and consistently for NS events, a severe
547 composite parameter is one parameter of the combination. As one would expect for these two
548 severity types, combining the highly discriminatory composite parameters, which account for
549 multiple atmospheric conditions, with other kinematic or thermodynamic parameters results in
550 more skillful combinations than combining non-composite forecasting variables only. The best

551 five parameters for NS have the highest scores among all severity types (0.67 – 0.71), the best for
552 HS have the second highest (0.50 – 0.53) and for LS the third highest (0.45 – 0.50).

553 The combination of DCP and 0-3 km SRH (SRH3) earns the highest HSS values for NS
554 types with a score of 0.71 (Table 6), and upper thresholds of 1.3 and $243.7 \text{ m}^2 \text{ s}^{-2}$ respectively.
555 The highly concentrated area of NS environments tends to be well separated from the other two
556 severity types and located toward smaller values of DCP and SRH3 (Fig. 13). The probability of
557 detection (POD) of the best-performing NS combination is 0.82 with a false alarm rate (FAR) of
558 0.2 (not shown). This combination is likely most effective for NS environments because lower
559 values of DCP discern unfavorable conditions for cold pool-driven wind events, and lower
560 values of SRH3 suggest at best weak potential for cyclonic updraft rotation, and the resulting
561 storm scale jets that can be associated with supercell thunderstorms.

562 The most skillful parameter combination for LS is DCP and VMXP with a score of 0.5,
563 and threshold ranges of 0.671 – 3.35 and 11.5 – 27.5 kt. The distribution of LS events is dense
564 and quite localized, well separated from NS types but it slightly overlaps with the broad HS
565 group (Fig. 14). The distribution of VMXP values for LS events is similar to HS events and
566 higher than NS, while the distribution of DCP values for LS events is lower than HS events and
567 higher than NS events. The POD for the most skillful LS multiparameter combination is 0.56
568 with a FAR of 0.28 (not shown). Although it is more difficult to explain why these combinations
569 provide the best skill for forecasting LS events since these events fall between the other two
570 types in terms of severity, with two thresholds applied to each parameter, it appears that a strong
571 southerly wind at the best CAPE level is important because it may help supply heat and moisture
572 to maintain strong buoyancy while DCP was designed to indicate the potential for cold pool-
573 driven severe surface winds.

574 For HS events, SBCP with U6SV is the most skillful combination of forecast parameters
575 with a score of 0.53, and lower thresholds of 657 J kg^{-1} and 29.8 kt respectively. With a POD of
576 0.62 and a FAR of 0.23, HS events are more broadly distributed with thinner Gaussian kernel
577 density estimation contours, but still well separated from the other two severity groupings,
578 especially NS ones (Fig. 15). It should be noted that the 0-6 km shear magnitude and its U
579 component are present in all top seven combinations for HS types, indicating that, combined
580 with CAPE parameters, they provide the most skillful forecasts for HS environments. The fact
581 that this combination works best for HS events is not surprising when considering what
582 parameters were found to work best in the creation of the DCP (Evans and Doswell 2001). That
583 study did not test SBCP or U6SV, but did find that two similar parameters, MUCP and the shear
584 magnitude in the 0-6 km layer, worked well to determine derecho environments.

585

586 **4. Summary and conclusions**

587

588 This work analyzes multiple meteorological variables and their ability to differentiate the
589 severity of thunderstorm winds produced in 132 warm-season, nocturnal bow echo
590 environments. Nocturnal bow echoes present an enhanced challenge because the typical
591 relatively cool SBL at night reduces both the momentum of downdrafts that can lead to severe
592 wind at the ground, and the intensity of low-level cold pools whose strong pressure gradients
593 might drive strong winds. These cases were classified into three severity types based on the
594 maximum severe wind or damage reports: 44 nonsevere cases (NS), 41 low-intensity severe
595 wind cases (LS), and 47 high-intensity severe winds cases (HS). A total of 43 forecast
596 parameters were obtained from the SPC mesoanalysis system and analyzed for both the

597 overnight and in the subperiods of late evening and early morning. These parameters included
598 measures of wind shear in different layers, SRH, instability, buoyancy, lapse rates, relative
599 humidity, severe composite parameters, and other variables.

600 Results indicate that parameters able to discriminate between LS and NS events tend to
601 be kinematic-based (shear, SRH) and severe composite parameters; while parameters that
602 differentiate between HS and LS include some that are thermodynamic-based, mostly CAPE, and
603 severe composite. Large values of buoyancy are found to be a distinctive trait of HS bow echoes,
604 especially during late evening. In addition, DNCP is a good discriminator for all severity types
605 only for late evening environments, but it does discriminate between severe and nonsevere in the
606 other time periods. Similar to Kuchera and Parker (2006) who looked at nontornadic severe
607 winds from long-lived convective windstorms, CIN variables are among the worst
608 discriminators: this is supported by the fact that the nocturnal SBLs analyzed do not differ
609 among the three severity types.

610 Midlevel dry air entrainment has often been identified as a favorable ingredient for
611 downdraft initiation (e.g., Johns 1993), and we found drier conditions at midlevels (Coniglio et
612 al. 2004) and significantly steeper midlevel lapse rates as severity increased. However, when
613 separated into two nocturnal time periods, midlevel relative humidity parameters are poor
614 discriminators for both time periods. As found by Cohen et al. (2007) for MCSs, the present
615 study found that midlevel lapse rates were good discriminators for bow echo severity for the full
616 sample of nocturnal events, but when examining sub-periods, they were not good discriminators
617 for the early morning period. Severe composite parameters, especially DCP and STP, were
618 shown to be among the most skillful discriminators between all severity types. The generally
619 good discriminatory ability of composite parameters that take into account both the strength of

620 shear and buoyancy is consistent with the idea that bow echoes are often a function of small-
621 scale kinematic and thermodynamic processes, so that many single mesoanalysis parameters
622 representing the larger near-storm environment will not work as well for the prediction of winds
623 in bow echoes.

624 The two single parameters with the highest HSS values when used to forecast HS bow
625 echoes are STP and MUCP, and for LS bow echoes VMXP together with STP and SCP are best.
626 A multiparameter forecasting method produced improved forecast skill compared with single-
627 parameter skill. The combination that was found to be best suited in discriminating HS bow
628 echoes is SBCP and 0 – 6 km U shear component, while for LS bow echoes it was DCP and
629 VMXP. Considering these two combinations, HSS values were comparable to those found in a
630 similar study of tornado environments by Reames (2017), and should provide forecasters with
631 improved guidance on forecasting warm-season, nocturnal bow echo severity. However, if the
632 event is not pristine and convection may be altering the environment ahead of the bow echo, the
633 skill of this technique may be reduced since it was developed using pristine events.

634 Future work should examine a larger sample of cases, and perhaps use multiple hours
635 from each event. One of the limitations to the findings in the present study might be that they are
636 not based on observed soundings, but on model-derived soundings adjusted using surface
637 observations. Therefore, the dataset used in this study has somewhat lower vertical resolution
638 compared to radiosonde data and is subject to biases and errors. Future studies should perform a
639 similar analysis using a dataset comprising observed soundings that were taken in or near bow
640 echo inflow regions. In addition, reanalysis data with a finer horizontal resolution could also be
641 investigated. Furthermore, because the average soundings in the present study suggested stronger
642 mid-level flow with the more severe events, future work should examine the components of flow

643 relative to the bow echo orientation to explore the relationship between the magnitude of bow-
644 perpendicular mid-level flow and intensity of the winds. Future research should assess single-
645 parameter and multiparameter forecasting skill for the different portions of the night because
646 threshold intervals would likely change. A separate test set of cases should be used with the
647 thresholds and parameters found in the present study to see if the forecasting skill remains high.
648 Finally, future studies could use the parameter results in the present study for different severity
649 types to create environmental soundings to initialize an idealized model, such as CM1, to better
650 understand the physical processes most important in determining how strong the winds become
651 within nocturnal bow echoes in differing environments. A similar analysis could also be applied
652 to multiple types of nocturnal MCSs (similar to Cohen et al. 2007) to compare and analyze
653 differences in forecast parameters between different morphologies. Nonetheless, the results of
654 the present study are encouraging and suggest that the intensity of winds in nocturnal bow
655 echoes can be predicted rather well, despite the usual presence of a SBL that might suggest more
656 difficulty in the forecasting process.

657

658 *Data availability statement*

659

660 The data that supports the findings of this work are available from the UCAR Image
661 Archive browser (<https://www2.mmm.ucar.edu/imagearchive>) and the NOAA/NCEI website
662 (<https://www.ncdc.noaa.gov/>). The SPC mesoanalysis data (Bothwell et al. 2002) for the period
663 examined in the present study is available from the corresponding author upon request.

664

665 **5. Acknowledgments**

666

667 This work was supported by National Science Foundation grants AGS1624947 and
668 AGS2022888. The authors thank Daryl Herzmann and Lizzie Tirone for their help with
669 GEMPAK and data retrieval procedures, and Israel Jirak and Kent Knopfmeier for access to the
670 SPC mesoanalysis archive. We thank Daryl Herzmann again and Dave Flory for their assistance
671 with Iowa State University computational resources; and Jon Thielen for his assistance with
672 Python code. We acknowledge the importance of open source Python code and packages
673 (Matplotlib, NumPy, MetPy), which were used extensively during this study.

674

675 **6. References**

676

677 Adams-Selin, R.D. and R.H. Johnson, 2010: Mesoscale surface pressure and temperature
678 features associated with bow echoes. *Mon. Wea. Rev.*, **138**, 212–
679 227, <https://doi.org/10.1175/2009MWR2892.1>.

680 _____, and _____, 2013: Examination of gravity waves associated with the 13 March
681 2003 bow echo. *Mon. Wea. Rev.*, **141**, 3735–3756, <https://doi.org/10.1175/MWR-D-12-00343.1>.

683 Ashley, W. S., and T. L. Mote, 2005: Derecho hazards in the United States. *Bull. Amer. Meteor.*
684 *Soc.*, **86**, 1577–1592, <https://doi.org/10.1175/BAMS-86-11-1577>.

685 Atkins, N. T., C. S. Bouchard, R. W. Przybylinski, R. J. Trapp, and G. Schmocker, 2005:
686 Damaging surface wind mechanism within the 10 June 2003 Saint Louis bow echo
687 during BAMEX. *Mon. Wea. Rev.*, **133**, 2275–2296, <https://doi.org/10.1175/MWR2973.1>.

688 _____, and M. St. Laurent, 2009: Bow echo mesovortices. Part I: Processes that influence
689 their damaging potential. *Mon. Wea. Rev.*, **137**, 1497–1513,
690 <https://doi.org/10.1175/2008MWR2649.1>.

691 Bentley, M.L. and T.L. Mote, 1998: A climatology of derecho-producing mesoscale convective
692 systems in the central and eastern United States, 1986–95. Part I: Temporal and spatial
693 distribution. *Bull. Amer. Meteor. Soc.*, **79**, 2527–2540, [https://doi.org/10.1175/1520-0477\(1998\)079<2527:ACODPM>2.0.CO;2](https://doi.org/10.1175/1520-0477(1998)079<2527:ACODPM>2.0.CO;2).

694 695 Bernardet, L.R. and W.R. Cotton, 1998: Multiscale evolution of a derecho-producing mesoscale
696 convective system. *Mon. Wea. Rev.*, **126**, 2991–3015, [https://doi.org/10.1175/1520-0493\(1998\)126<2991:MEOADP>2.0.CO;2](https://doi.org/10.1175/1520-0493(1998)126<2991:MEOADP>2.0.CO;2).

697 698 Blake, B. T., D. B. Parsons, K. R. Haghi, and S. G. Castleberry, 2017: The structure, evolution,
699 and dynamics of a nocturnal convective system simulated using the WRF-ARW model.
700 *Mon. Wea. Rev.*, **145**, 3179–3201, <https://doi.org/10.1175/MWR-D-16-0360.1>.

701 702 Bothwell, P. D., J. A. Hart, and R. L. Thompson, 2002: An integrated three-dimensional
703 objective analysis scheme in use at the Storm Prediction Center. *Preprints, 21st Conf. on
704 Severe Local Storms*, San Antonio, TX, Amer. Meteor. Soc., JP3.1. [Available online
705 at https://ams.confex.com/ams/SLS_WAF_NWP/techprogram/paper_47482.htm.]

706 707 Bryan, G. H., J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical
708 models. *Mon. Wea. Rev.*, **130**, 2917–2928, [https://doi.org/10.1175/1520-0493\(2002\)130<2917:ABSFMN>2.0.CO;2](https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2).

709 710 Brooks, H. E., C. A. Doswell, and J. Cooper, 1994: On the environments of tornadic and
711 nontornadic mesocyclones. *Wea. Forecasting*, **9**, 606–618, [https://doi.org/10.1175/1520-0434\(1994\)009<0606:OTEOTA>2.0.CO;2](https://doi.org/10.1175/1520-0434(1994)009<0606:OTEOTA>2.0.CO;2).

711 Bunkers, M. J., B. A. Klimowski, J. W. Zeitler, R. L. Thompson, and M. L. Weisman, 2000:
712 Predicting supercell motion using a new hodograph technique. *Wea. Forecasting*, **15**, 61–
713 79, [https://doi.org/10.1175/1520-0434\(2000\)015<0061:PSMUAN>2.0.CO;2](https://doi.org/10.1175/1520-0434(2000)015<0061:PSMUAN>2.0.CO;2).

714
715 Clark, A. J., W. A. Gallus, and T. C. Chen, 2007: Comparison of the diurnal precipitation cycle
716 in convective-resolving and non-convection-resolving mesoscale models. *Mon. Wea.
717 Rev.*, **135**, 3456–3473, <https://doi.org/10.1175/MWR3467.1>.

718 Cohen, A.E., M.C. Coniglio, S.F. Corfidi, and S.J. Corfidi, 2007: Discrimination of mesoscale
719 convective system environments using sounding observations. *Wea.
720 Forecasting*, **22**, 1045–1062, <https://doi.org/10.1175/WAF1040.1>.

721 Colman, B. R., 1990: Thunderstorms above frontal surfaces in environments without positive
722 CAPE. Part I: A climatology. *Mon. Wea. Rev.*, **118**, 1103–1121,
723 [https://doi.org/10.1175/1520-0493\(1990\)118<1103:TAFSIE>2.0.CO;2](https://doi.org/10.1175/1520-0493(1990)118<1103:TSAFSIE>2.0.CO;2).

724 Coniglio, M. C., D. J. Stensrud, and M. B. Richman, 2004: An observational study of derecho-
725 producing convective systems. *Wea. Forecasting*, **19**, 320–
726 337, [https://doi.org/10.1175/1520-0434\(2004\)019<0320:AOSODC>2.0.CO;2](https://doi.org/10.1175/1520-0434(2004)019<0320:AOSODC>2.0.CO;2).

727 _____, _____, and L. J. Wicker, 2006: Effects of upper-level shear on the structure and
728 maintenance of strong quasi-linear mesoscale convective systems. *J. Atmos. Sci.*, **63**,
729 1231–1252, <https://doi.org/10.1175/JAS3681.1>.

730 _____, S. F. Corfidi, and J. S. Kain, 2012: Views on applying RKW theory: An illustration
731 using the 8 May 2009 derecho-producing convective system. *Mon. Wea. Rev.*, **140**, 1023–
732 1043, <https://doi.org/10.1175/MWR-D-11-00026.1>.

755 opportunities. *Bull. Amer. Meteor. Soc.*, **85**, 1075–1094, <https://doi.org/10.1175/BAMS-85-8-1075>.

756

757 desJardins, M. L., K. F. Brill, and S. S. Schotz, 1991: Use of GEMPAK on UNIX workstations.

758 *Proc. Seventh Int. Conf. on Interactive Information and Processing Systems for*

759 *Meteorology, Oceanography, and Hydrology*, New Orleans, LA, Amer. Meteor. Soc.,

760 449–453. [Google Scholar](#)

761 Doswell, C.A., III, and J.S. Evans, 2003: Proximity sounding analysis for derechos and

762 supercells: An assessment of similarities and differences. *Atmos. Res.*, **67–68**, 117–133,

763 [https://doi.org/10.1016/S0169-8095\(03\)00047-4](https://doi.org/10.1016/S0169-8095(03)00047-4).

764 Edwards, R., J. T. Allen, and G. W. Carbin, 2018: Reliability and Climatological Impacts of

765 Convective Wind Estimations. *J. Appl. Meteor. Climatol.*, **57**, 1825–

766 1845, <https://doi.org/10.1175/JAMC-D-17-0306.1>.

767 Evans, J.S. and C.A. Doswell III, 2001: Examination of derecho environments using proximity

768 soundings. *Wea. Forecasting*, **16**, 329–342, [https://doi.org/10.1175/1520-0434\(2001\)016<0329:EODEUP>2.0.CO;2](https://doi.org/10.1175/1520-0434(2001)016<0329:EODEUP>2.0.CO;2).

769

770 French, A. J., and M. D. Parker, 2010: The response of simulated nocturnal convective systems

771 to a developing low-level jet. *J. Atmos. Sci.*, **67**, 3384–3408,

772 <https://doi.org/10.1175/2010JAS3329.1>.

773 Fujita, T. T., 1978: Manual of downburst identification for project NIMROD. Satellite and

774 Mesometeorology Research Paper No 156, Department of Geophysical Sciences,

775 University of Chicago, 104 pp. [NTIS PB-286048] [Google Books](#)

776 _____ and R. M. Wakimoto, 1981: Five scales of airflow associated with a series of

777 downbursts of 16 July 1980. *Mon. Wea. Rev.*, **109**, 1438–1456,

778 [https://doi.org/10.1175/1520-0493\(1981\)109<1438:FSOAAW>2.0.CO;2](https://doi.org/10.1175/1520-0493(1981)109<1438:FSOAAW>2.0.CO;2).

779 Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Convection at Night field project.

780 *Bull. Amer. Meteor. Soc.*, **98**, 767–786, <https://doi.org/10.1175/BAMS-D-15-00257.1>.

781 Guastini, C.T. and L.F. Bosart, 2016: Analysis of a progressive derecho climatology and

782 associated formation environments. *Mon. Wea. Rev.*, **144**, 1363–1382,

783 <https://doi.org/10.1175/MWR-D-15-0256.1>.

784 Hagh, K. R., D. B. Parsons, and A. Shapiro, 2017: Bores observed during IHOP_2002: The

785 relationship of bores to the nocturnal environment. *Mon. Wea. Rev.*, **145**, 3929–

786 3946, <https://doi.org/10.1175/MWR-D-16-0415.1>.

787 Hampshire, N. L., R. M. Mosier, T.M. Ryan, and D.E. Cavanaugh, 2017: Relationship of low-

788 level instability and tornado damage rating based on observed soundings. *J. Operational*

789 *Meteor.*, **6**, 1–12, <https://doi.org/10.15191/nwajom.2018.0601>.

790 Heidke, P., 1926: Calculation of the success and goodness of strong wind forecasts in the storm

791 warning service. *Geogr. Ann.*, **8**, 301–349. [Google Scholar](#)

792 Hiris, Z. A. and W. A. Gallus, Jr., 2020: Factors Contributing to Upscale Convective Growth in

793 the Central Great Plains of the United States. *Mon. Wea. Rev.* (submitted).

794 Hitchcock, S. M., R. S. Schumacher, G. R. Herman, M. C. Coniglio, M. D. Parker, and C. L.

795 Ziegler, 2019: Evolution of pre- and postconvective environment profiles from mesoscale

796 convective systems during PECAN. *Mon. Wea. Rev.*, **147**, 2329–2354,

797 <https://doi.org/10.1175/MWR-D-18-0231.1>.

798 Horgan, K.L., D.M. Schultz, J.E. Hales, S.F. Corfidi, and R.H. Johns, 2007: A Five-Year

799 Climatology of Elevated Severe Convective Storms in the United States East of the

800 Rocky Mountains. *Wea. Forecasting*, **22**, 1031–
801 1044, <https://doi.org/10.1175/WAF1032.1>.

802 James, R.P., P.M. Markowski, and J.M. Fritsch, 2006: Bow echo sensitivity to ambient moisture
803 and cold pool strength. *Mon. Wea. Rev.*, **134**, 950–964,
804 <https://doi.org/10.1175/MWR3109.1>.

805 Johns, R.H., and W.D. Hirt, 1987: Derechos: Widespread convectively induced windstorms.
806 *Wea. Forecasting*, **2**, 32–49, [https://doi.org/10.1175/1520-0434\(1987\)002<0032:DWCIW>2.0.CO;2](https://doi.org/10.1175/1520-0434(1987)002<0032:DWCIW>2.0.CO;2).

807 _____, and C. A. Doswell III, 1992: Severe local storms forecasting. *Wea. Forecasting*, **7**,
809 588–612, [https://doi.org/10.1175/1520-0434\(1992\)007<0588:SLSF>2.0.CO;2](https://doi.org/10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2).

810 _____, 1993: Meteorological conditions associated with bow echo development in
811 convective storms. *Wea. Forecasting*, **8**, 294–299, [https://doi.org/10.1175/1520-0434\(1993\)008<0294:MCAWBE>2.0.CO;2](https://doi.org/10.1175/1520-0434(1993)008<0294:MCAWBE>2.0.CO;2).

813 Koch, S.E., W. Feltz, F. Fabry, M. Pagowski, B. Geerts, K. M. Bedka, D. O. Miller, and J. W.
814 Wilson, 2008: Turbulent mixing processes in atmospheric bores and solitary waves
815 deduced from profiling systems and numerical simulation. *Mon. Wea. Rev.*, **136**, 1373–
816 1400, <https://doi.org/10.1175/2007MWR2252.1>.

817 Kuchera, E.L. and M.D. Parker, 2006: Severe convective wind environments. *Wea. Forecasting*,
818 **21**, 595–612, <https://doi.org/10.1175/WAF931.1>.

819 Lagerquist, R., A. McGovern, and T. Smith, 2017: Machine learning for real-time prediction of
820 damaging straight-line convective wind. *Wea. Forecasting*, **32**, 2175–
821 2193, <https://doi.org/10.1175/WAF-D-17-0038.1>.

822 Marsham, J. H., K. A. Browning, J. C. Nicol, D. J. Parker, E. G. Norton, A. M. Blyth, U.

823 Corsmeier, and F. M. Perry, 2010: Multi-sensor observations of a wave beneath an
824 impacting rear-inflow jet in an elevated mesoscale convective system. *Quart. J. Roy.*
825 *Meteor. Soc.*, **136**, 1788–1812, <https://doi.org/10.1002/qj.669>.

826 _____, S. B. Trier, T. M. Weckwerth, and J. W. Wilson, 2011: Observations of elevated
827 convection initiation leading to a surface based squall line during 13 June IHOP_2002.
828 *Mon. Wea. Rev.*, **139**, 247–271, <https://doi.org/10.1175/2010MWR3422.1>.

829 Mendenhall, W. M., and T. L. Sincich, 2007: *Statistics for Engineering and the Sciences*. CRC
830 Press, 1072 pp. [Google Scholar](#)

831 Parker, M. D., 2008: Response of simulated squall lines to low-level cooling. *J. Atmos. Sci.*, **65**,
832 1323–1341, <https://doi.org/10.1175/2007JAS2507.1>.

833 _____, B.S. Borchardt, R.L. Miller, and C.L. Ziegler, 2020: Simulated evolution and severe
834 wind production by the 25–26 June 2015 nocturnal MCS from PECAN. *Mon. Wea. Rev.*,
835 **148** 183–209, <https://doi.org/10.1175/MWR-D-19-0072.1>.

836 Parsons, D. B., K. R. Haghi, K. T. Halbert, B. Elmer, and J. Wang, 2019: The potential role of
837 atmospheric bores and gravity waves in the initiation and maintenance of nocturnal
838 convection over the southern great plains. *J. Atmos. Sci.*, **76**, 43–68,
839 <https://doi.org/10.1175/JAS-D-17-0172.1>.

840 Peters, J. M., and R. S. Schumacher, 2016: Dynamics governing a simulated mesoscale
841 convective system with a training convective line. *J. Atmos. Sci.*, **73**, 2643–2664,
842 <https://doi.org/10.1175/JAS-D-15-0199.1>.

843 Przybylinski, R., 1995: The bow echo: Observations, numerical simulations, and severe weather
844 detection methods. *Wea. Forecasting*, **10**, 203–218, [https://doi.org/10.1175/1520-0434\(1995\)010<0203:TBEONS>2.0.CO;2](https://doi.org/10.1175/1520-0434(1995)010<0203:TBEONS>2.0.CO;2).

846 Reames, L. J., 2017: Diurnal variations in severe weather forecast parameters of Rapid Update
847 Cycle-2 tornado proximity environments. *Wea. Forecast.* , **32**, 743–761,
848 <https://doi.org/10.1175/WAF-D-16-0029.1>.

849 Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines.
850 *J. Atmos. Sci.* , **45**, 463–485, [https://doi.org/10.1175/1520-0469\(1988\)045<463:ATFSLL>2.0.CO;2](https://doi.org/10.1175/1520-0469(1988)045<463:ATFSLL>2.0.CO;2).

851 Schultz, D. M., P. N. Schumacher, and C. A. Doswell III, 2000: The intricacies of instabilities.
852 *Mon. Wea. Rev.* , **128**, 4143–4148, [https://doi.org/10.1175/1520-0493\(2000\)129<4143:TIOI>2.0.CO;2](https://doi.org/10.1175/1520-0493(2000)129<4143:TIOI>2.0.CO;2).

853 Schumacher, R. S., and R. H. Johnson, 2009: Quasi-stationary, extreme-rain-producing
854 convective systems associated with midlevel cyclonic circulations. *Wea. Forecasting* , **24**,
855 555–574, <https://doi.org/10.1175/2008WAF2222173.1>.

856 Scott, DW., 2015: *Multivariate density estimation: theory, practice, and visualization*. 2nd
857 edition, the first is from 1992. New Jersey: Wiley. [Google Scholar](#)

858 Smith, B.T., R.L. Thompson, J.S. Grams, C. Broyles, and H.E. Brooks, 2012: Convective modes
859 for significant severe thunderstorms in the contiguous United States. Part I: Storm
860 classification and climatology. *Wea. Forecasting* , **27**, 1114–1135,
861 <https://doi.org/10.1175/WAF-D-11-00115.1>.

862 Stull, R. B., 1988: *An Introduction to Boundary Layer Meteorology* . Kluwer Academic, 666 pp.
863 [Google Scholar](#)

864 Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close
865 proximity soundings within supercell environments obtained from the Rapid Update

868 Cycle. *Wea. Forecasting*, **18**, 1243–1261, [https://doi.org/10.1175/1520-0434\(2003\)018<1243:CPSWSE>2.0.CO;2](https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2).

869

870 _____, _____, and C. M. Mead, 2004: An update to the supercell composite and
871 significant tornado parameters. Preprints, 22nd Conf. Severe Local Storms, Hyannis,
872 MA, Amer. Meteor. Soc., P8.1. [Available online at
873 https://ams.confex.com/ams/11aram22sls/techprogram/paper_82100.htm.]

874 _____, B. T. Smith, J. S. Grams, A. R. Dean, and C. Broyles, 2012: Convective modes for
875 significant severe thunderstorms in the contiguous United States. Part II: Supercell and
876 QLCS tornado environments. *Wea. Forecasting*, **27**, 1136–1154,
877 <https://doi.org/10.1175/WAF-D-11-00116.1>.

878 Wakimoto, R.M., H.V. Murphey, A. Nester, D.P. Jorgensen, and N.T. Atkins, 2006: High winds
879 generated by bow echoes. Part I: Overview of the Omaha bow echo 5 July 2003 storm
880 during BAMEX. *Mon. Wea. Rev.*, **134**, 2793–2812, <https://doi.org/10.1175/MWR3215.1>.

881 Weckwerth, T.M., J. Hanesiak, J.W. Wilson, S.B. Trier, S.K. Degelia, W.A. Gallus, R.D.
882 Roberts, and X. Wang, 2019: Nocturnal convection initiation during PECAN 2015. *Bull.
883 Amer. Meteor. Soc.*, **100**, 2223–2239, <https://doi.org/10.1175/BAMS-D-18-0299.1>.

884 Weisman, M. L., 1993: The genesis of severe, long-lived bow echoes. *J. Atmos. Sci.*, **50**, 645–
885 670, [https://doi.org/10.1175/1520-0469\(1993\)050<0645:TGOSLL>2.0.CO;2](https://doi.org/10.1175/1520-0469(1993)050<0645:TGOSLL>2.0.CO;2).

886 _____, and R.J. Trapp, 2003: Low-level mesovortices within squall lines and bow echoes.
887 Part I: Overview and dependence on environmental shear. *Mon. Wea. Rev.*, **131**, 2779–
888 2803, [https://doi.org/10.1175/1520-0493\(2003\)131<2779:LMWSLA>2.0.CO;2](https://doi.org/10.1175/1520-0493(2003)131<2779:LMWSLA>2.0.CO;2).

889 _____, and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. *J.
890 Atmos. Sci.*, **61**, 361–382, [https://doi.org/10.1175/1520-0469\(2004\)061<0361:ATFSLS>2.0.CO;2](https://doi.org/10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2).

891 _____, C. Davis, W. Wang, K. W. Manning, and J. B. Klemp, 2008: Experiences with 0–36-
892 h explicit convective forecasts with the WRF-ARW model. *Wea. Forecasting*, **23**, 407–
893 437, <https://doi.org/10.1175/2007WAF2007005.1>.

894 Wheatley, D.M., R.J. Trapp, and N.T. Atkins, 2006: Radar and damage analysis of severe bow
895 echoes observed during BAMEX. *Mon. Wea. Rev.*, **134**, 791–806,
896 <https://doi.org/10.1175/MWR3100.1>.

897 Wilks, D. S., 2011: *Statistical Methods in the Atmospheric Sciences*. 3rd ed. International
898 Geophysics Series, Vol. 100, Academic Press, 704 pp. [Google Scholar](#)

899 Wilson, J. W., and R. D. Roberts, 2006: Summary of convective storm initiation and evolution
900 during IHOP: Observational and modeling perspective. *Mon. Wea. Rev.*, **134**, 23–47,
901 <https://doi.org/10.1175/MWR3069.1>.

902

903

904 **Tables**905 Table 1: Name, description, and mean values of the parameters examined (the highest absolute
906 values for each parameter are in bold), categorized as kinematic, thermodynamic, and composite.

Name	Description	NS	LS	HS
Kinematic parameters				
S1MG (kt)	0-1 km shear magnitude	16.0	25.4	25.3
SRH1 ($\text{m}^2 \text{ s}^{-2}$)	0-1 km storm relative helicity	102	215	206
SRH3 ($\text{m}^2 \text{ s}^{-2}$)	0-3 km storm relative helicity	163	307	295
U3SV (kt)	0-3 km U shear component	15.19	23.71	21.94
V3SV (kt)	0-3 km V shear component	3.08	7.70	12.6
UPMW (kt)	0-6 km pressure-weighted U component	8.73	14.2	12.4
VPMW (kt)	0-6 km pressure-weighted V component	5.90	13.6	14.4
S6MG (kt)	0-6 km shear magnitude	27.4	36.9	41.1
U6SV (kt)	0-6 km U shear component	22.4	31.6	36.2
V6SV (kt)	0-6 km V shear component	2.90	5.99	8.91
U8SV (kt)	0-8 km pressure-weighted U component wind	26.4	35.0	39.8
V8SV (kt)	0-8 km pressure-weighted V component wind	4.94	5.32	5.33
VKLC (ub s^{-1})	Average kinematic vert vel (MUPL-LCL)	-0.00253	-0.00490	-0.00674
UWND (kt)	Surface U wind component	-0.933	-1.42	-1.67
VWND (kt)	Surface V wind component	0.139	1.38	0.902
UEIL (kt)	U comp top of effective inflow layer	8.04	15.1	12.5
UMXP (kt)	U wind component at best CAPE level	5.77	8.07	3.74
VEIL (kt)	V comp top of effective inflow layer	5.76	13.6	14.1
VMXP (kt)	V wind component at best CAPE level	9.74	20.4	17.6
Thermodynamic parameters				
M1CP (J kg^{-1})	100 hPa mean mixed CAPE	712	949	1605
M1CN (J kg^{-1})	100 hPa mean mixed CIN	-150	-140	-141
3KRH (%)	3 km average relative humidity	74.0	71.1	68.7
RHC5 (%)	Average relative humidity LCL to 500 hPa	67.0	65.2	59.5
RHLC (%)	Average relative humidity LCL to LFC	77.4	75.4	73.3
ASRH (%)	Average sub-cloud humidity	75.6	74.9	75.4
DNCP (J kg^{-1})	Downdraft CAPE	746	878	1025
LR75 (C km^{-1})	Lapse Rate from 700 to 500 hPa	6.57	6.89	7.27
LR85 (C km^{-1})	Lapse Rate from 850 to 500 hPa	6.21	6.47	6.62
LLLR (C km^{-1})	Lower-level lapse rate surface to 3km AGL	5.06	5.29	5.33
TE3K (K)	Max Theta-e difference in lowest 3 km	11.7	14.4	19.3
MXMX (g kg^{-1})	Maximum mixing ratio	12.1	12.7	13.9
MUCP (J kg^{-1})	Most Unstable CAPE	1261	1564	2363
MUCN (J kg^{-1})	Most Unstable CIN	-68.1	-71.4	-54.8
RH70 (%)	Relative humidity 700 hPa	71.7	68.0	61.1
RH80 (%)	Relative humidity 800 hPa	75.9	76.6	72.2
SLCH (m)	Sfc based LCL height	488	532	608
STHE (C)	Surface equivalent potential temperature	338	340	345
SBCP (J kg^{-1})	Surface-based CAPE	652	872	1518
SBCN (J kg^{-1})	Surface-based CIN	-235	-244	-232
Composite parameters				
XTRN (g kt kg^{-1})	(MXMX) * (wind speed at MUPL)	196	330	358
DCP (numeric)	Derecho Composite Parameter	0.676	1.57	3.48

907

STP (numeric)	Sig Tornado Parameter-Fixed Layer	0.159	0.467	1.11
SCP (numeric)	Supercell Composite Parameter-Effective Layer	1.37	5.32	8.55

908 Table 2: Results from bootstrapped paired t-tests (given in %) for all comparisons between two
 909 severity types. P-values greater than 5% are not shown. Parameters for which no test was
 910 statistically significant for any of the three pairs are not shown.

Parameter	p (%) LS - NS	p (%) HS - NS	p (%) HS - LS
VWND (kt)	2.45	—	—
SRH1 ($m^2 s^{-2}$)	≤ 0.02	≤ 0.02	—
S1MG (kt)	≤ 0.02	≤ 0.02	—
SRH3 ($m^2 s^{-2}$)	≤ 0.02	≤ 0.02	—
U3SV (kt)	≤ 0.02	0.32	—
V3SV (kt)	—	0.03	—
S6MG (kt)	0.06	≤ 0.02	—
U6SV (kt)	0.11	≤ 0.02	—
UPMW (kt)	0.27	2.96	—
VPMW (kt)	≤ 0.02	≤ 0.02	—
U8SV (kt)	0.32	≤ 0.02	—
VMXP (kt)	≤ 0.02	0.32	—
UEIL (kt)	0.45	—	—
VEIL (kt)	0.03	0.55	—
VKLC ($ub s^{-1}$)	0.27	≤ 0.02	—
SBCP ($J kg^{-1}$)	—	≤ 0.02	0.07
MUCP ($J kg^{-1}$)	—	≤ 0.02	≤ 0.02
M1CP ($J kg^{-1}$)	—	≤ 0.02	0.08
DNCP ($J kg^{-1}$)	3.16	≤ 0.02	2.95
STHE (C)	—	0.44	1.20
TE3K (K)	4.02	1.14	—
RH80 (%)	—	—	3.29
RH70 (%)	—	3.88	1.57
RHC5 (%)	—	3.29	—
LR85 ($C km^{-1}$)	3.17	0.05	—
LR75 ($C km^{-1}$)	4.92	≤ 0.02	2.62
MXMX ($g kg^{-1}$)	—	0.29	3.31
XTRN ($g kt kg^{-1}$)	≤ 0.02	≤ 0.02	—
SCP (numeric)	0.04	≤ 0.02	1.81
STP (numeric)	0.22	≤ 0.02	0.04
DCP (numeric)	≤ 0.02	≤ 0.02	0.13

911

912 Table 3: Mean values for late evening (before 05 UTC) and early morning (after 05 UTC) for
 913 parameters found to differ significantly between at least two severity types for at least one time
 914 period. Parameters for which no differences between any of the three severity types were
 915 statistically significant for either time period are not shown. Highest absolute values for each
 916 parameter are in bold.

Parameter	Before 5Z			After 5Z		
	NS	LS	HS	NS	LS	HS
SRH1 ($\text{m}^2 \text{s}^{-2}$)	85.7	204	191	112	229	220
S1MG (kt)	15.0	24.5	24.7	16.7	26.7	25.9
SRH3 ($\text{m}^2 \text{s}^{-2}$)	169	306	282	160	309	308
U3SV (kt)	16.0	22.8	21.5	14.6	25.0	22.4
V3SV (kt)	5.62	8.27	10.34	1.32	6.88	14.82
S6MG (kt)	25.8	38.9	40.2	28.6	34.2	42.0
U6SV (kt)	18.7	32.2	35.8	25.0	30.8	36.7
UPMW (kt)	7.32	13.33	11.87	9.71	15.38	12.91
VPMW (kt)	7.13	14.00	13.89	5.05	13.01	14.90
U8SV (kt)	22.3	34.5	38.6	29.2	35.7	40.9
VMXP (kt)	11.4	20.3	15.6	8.57	20.6	19.5
VEIL (kt)	7.00	12.7	14.6	4.97	15.0	13.4
VKLC (ub s^{-1})	-0.00253	-0.00438	-0.00712	-0.00253	-0.00563	-0.00638
SBCP (J kg^{-1})	755	1071	2005	580	591	1052
MUCP (J kg^{-1})	1250	1661	2617	1269	1429	2119
M1CP (J kg^{-1})	744	1058	1838	689	796	1380
DNCP (J kg^{-1})	776	909	1133	726	836	922
STHE (C)	342	341	348	335	339	342
TE3K (K)	13.6	16.0	20.9	10.6	11.7	17.5
RH70 (%)	70.3	64.9	63.5	72.6	73.2	58.4
RHC5 (%)	68.4	62.0	57.3	66.1	69.6	61.6
LR85 (C km^{-1})	6.06	6.46	6.89	6.30	6.48	6.36
LR75 (C km^{-1})	6.39	6.80	7.36	6.70	7.01	7.18
MXMX (g kg^{-1})	12.7	12.8	13.8	11.7	12.6	13.9
XTRN (g kt kg^{-1})	203	324	329	191	339	385
SCP (numeric)	1.58	5.83	9.70	1.22	4.60	7.45
STP (numeric)	0.0778	0.556	1.32	0.215	0.342	0.906
DCP (numeric)	0.524	1.75	3.96	0.782	1.32	3.03

917

918 Table 4: As in Table 2, but for all events grouped between before and after 05 UTC.

Parameter	Before 05 UTC - p (%)			After 05 UTC - p (%)		
	LS - NS	HS - NS	HS - LS	LS - NS	HS - NS	HS - LS
SRH1 ($\text{m}^2 \text{s}^{-2}$)	≤ 0.02	1.08	—	0.31	0.22	—
S1MG (kt)	0.03	0.39	—	0.03	0.07	—
SRH3 ($\text{m}^2 \text{s}^{-2}$)	0.23	3.12	—	0.03	0.02	—
U3SV (kt)	—	—	—	0.07	0.83	—
V3SV (kt)	—	—	—	—	≤ 0.02	—
S6MG (kt)	0.09	0.06	—	—	≤ 0.02	—
U6SV (kt)	0.11	0.08	—	—	0.14	—
UPMW (kt)	3.07	—	—	4.69	—	—
VPMW (kt)	2.22	—	—	0.34	0.36	—
U8SV (kt)	0.48	0.10	—	—	0.26	—
VMXP (kt)	0.41	—	—	0.02	0.26	—
VEIL (kt)	—	—	—	4.42	2.31	—
VKLC (ub s^{-1})	—	0.07	3.90	2.54	1.37	—
SBCP (J kg^{-1})	—	≤ 0.02	0.16	—	0.52	3.90
MUCP (J kg^{-1})	—	≤ 0.02	0.38	—	0.25	1.03
M1CP (J kg^{-1})	—	0.05	1.28	—	0.20	4.16
DNCP (J kg^{-1})	3.07	0.02	0.60	—	3.77	—
STHE (C)	—	—	1.20	—	—	—
TE3K (K)	—	—	4.92	—	0.07	3.90
RH70 (%)	2.22	—	—	—	—	—
RHC5 (%)	—	2.23	—	—	—	—
LR85 (C km^{-1})	4.46	≤ 0.02	1.20	—	—	—
LR75 (C km^{-1})	4.51	0.03	3.33	—	2.31	—
MXMX (g kg^{-1})	—	—	—	—	0.83	—
XTRN (g kt kg^{-1})	0.05	0.63	—	0.02	≤ 0.02	—
SCP (numeric)	≤ 0.02	≤ 0.02	—	0.10	≤ 0.02	—
STP (numeric)	≤ 0.02	≤ 0.02	0.78	0.79	≤ 0.02	0.64
DCP (numeric)	≤ 0.02	≤ 0.02	0.22	3.47	≤ 0.02	3.66

919

920 Table 5: The ten highest HSS values and their corresponding optimal threshold range for all
 921 single-parameter Heidke skill score tests for each severity type.

Severity	Parameter	Threshold Range	HSS
NS	STP (numeric)	< 0.039	0.6
	SCP (numeric)	< 1.77	0.59
	DCP (numeric)	< 0.64	0.59
	XTRN (g kt kg ⁻¹)	< 260.18	0.51
	SRH3 (m ² s ⁻²)	< 167.09	0.48
	S6MG (kt)	< 33.21	0.44
	S1MG (kt)	< 14.77	0.43
	SRH1 (m ² s ⁻²)	< 148.75	0.42
	U6SV (kt)	< 24.36	0.42
	VMXP (kt)	< 12.82	0.39
Severity	Parameter	Threshold Range	HSS
LS	VMXP (kt)	12.82 – 27.39	0.38
	STP (numeric)	0.157 – 0.905	0.35
	SCP (numeric)	1.77 – 8.0	0.35
	XTRN (g kt kg ⁻¹)	242.67 – 382.77	0.33
	U3SV (kt)	22.50 – 35.33	0.32
	DCP (numeric)	0.64 – 3.18	0.31
	VPMW (kt)	9.39 – 25.30	0.3
	SRH1 (m ² s ⁻²)	148.75 – 495.23	0.29
	STHE (C)	324.43 – 335.79	0.28
	M1CP (J kg ⁻¹)	122.98 – 614.88	0.27
Severity	Parameter	Threshold Range	HSS
HS	STP (numeric)	> 0.59	0.45
	MUCP (J kg ⁻¹)	> 1949.4	0.44
	DCP (numeric)	> 1.78	0.42
	SCP (numeric)	> 3.64	0.42
	M1CP (J kg ⁻¹)	> 1147.8	0.42
	SBCP (J kg ⁻¹)	> 657.35	0.39
	TE3K (K)	> 22.85	0.37
	XTRN (g kt kg ⁻¹)	> 289.37	0.36
	U6SV (kt)	> 35.14	0.35
	DNCP (J kg ⁻¹)	> 1162.6	0.33

922

923 Table 6: The five highest HSS values and their corresponding optimal threshold ranges for all
 924 two-parameter Heidke skill score tests for each severity type.

Severity	Combination	$x_{opt,1}$ Range	$x_{opt,2}$ Range	HSS
NS	DCP + SRH3	< 1.27	< 244 ($\text{m}^2 \text{s}^{-2}$)	0.71
	DCP + U3SV	< 0.892	< 21.9 (kt)	0.68
	SCP + XTRN	< 1.77	< 289 (g kt kg^{-1})	0.67
	DCP + S6MG	< 0.892	< 35.7 (kt)	0.67
	STP + SCP	< 0.157	< 1.77	0.67
Severity	Combination	$x_{opt,1}$ Range	$x_{opt,2}$ Range	HSS
LS	DCP + VMXP	0.671 – 3.35	11.5 – 27.5 (kt)	0.50
	SCP + VMXP	1.54 – 11.4	11.5 – 27.5 (kt)	0.46
	XTRN + SCP	252 – 467 (g kt kg^{-1})	1.54 – 8.10	0.46
	M1CP + VMXP	216 – 2373 (J kg^{-1})	11.5 – 27.5 (kt)	0.45
	SCP + DCP	1.54 – 11.4	0.671 – 3.35	0.45
Severity	Combination	$x_{opt,1}$ Range	$x_{opt,2}$ Range	HSS
HS	SBCP + U6SV	> 657 (J kg^{-1})	> 29.8 (kt)	0.53
	SBCP + S6MG	> 657 (J kg^{-1})	> 25.6 (kt)	0.53
	M1CP + S6MG	> 738 (J kg^{-1})	> 24.4 (kt)	0.52
	MUCP + S6MG	> 1401 (J kg^{-1})	> 24.4 (kt)	0.51
	STHE + U6SV	> 336 ($^{\circ}\text{C}$)	> 29.8 (kt)	0.50

925

926 **List of Figures**

927 Fig. 1. Location of all the high-intensity severe (HS; orange), low-intensity severe (LS; green),
928 and nonsevere (NS; blue) nocturnal bow echo events for the period 2010 – 18 used in the
929 present study.

930

931 Fig. 2. Box-and-whiskers plots for all cases of SRH1 and SHR3 (values plotted along the left
932 axis), and S1MG, U3SV, V3SV, U6SV, S6MG, and U8SV (values plotted along the right
933 axis). Each color-filled box represents the results for NS (blue), LS (green), and HS
934 (orange). The whiskers span the interval from the 10th to 90th percentiles and the boxes
935 enclose the 25th to 75th percentiles. Outliers, or points outside the whiskers, are not
936 plotted.

937

938 Fig. 3. As in Fig. 1, but for SBCP, MUCP, M1CP, DNCP (values plotted along the left axis), and
939 SBCN, MUCN, and M1CN (values plotted along the right axis).

940

941 Fig. 4. As in Fig. 1, but for RH80, RH70, and RHC5 (values plotted along the left axis), and
942 LR85 and LR75 (values plotted along the right axis).

943

944 Fig. 5. As in Fig. 1, but for SCP (values plotted along the left axis), and STP and DCP (values
945 plotted along the right axis).

946

947 Fig. 6. Skew T- $\log p$ sounding diagrams for (a) NS, (b) LS, and (c) HS environments, created
948 by averaging all cases for each type. Temperature (red), dewpoint (green), and most

949 unstable parcel (black) profiles are plotted, along with winds on the right side, dry
950 adiabats (dashed red), moist adiabats (dashed blue), and constant mixing ratio lines
951 (dashed green). MUCAPE and MUCIN are indicated by the shaded red and blue areas,
952 respectively.

953

954 Fig. 7. Frequency of occurrence (in %) of SBLs of specified depth (in hPa) for all severity
955 categories. For each interval the largest depth is inclusive, while the lowest is exclusive.
956 Percentages are calculated with respect to the total number of NS (blue), LS (green), and
957 HS (orange) events, and the total sum of all cases (yellow), respectively.

958

959 Fig. 8. Nocturnal distribution of NS (blue), LS (green), and HS (orange) events by hour of
960 mesoanalysis data used.

961

962 Fig. 9. As in Fig. 2, but for SRH1 and SHR3 (values plotted along the left axis), and S1MG,
963 U3SV, S6MG, and U8SV (values plotted along the right axis) for (a) late evening and
964 (b) early morning.

965

966 Fig. 10. As in Fig. 3, but only for SBCP, MUCP, M1CP, and DNCP for (a) late evening and (b)
967 early morning.

968

969 Fig. 11. As in Fig. 4, but only for XTRN (values plotted along the left axis), and LR85 and
970 LR75 (values plotted along the right axis), for (a) late evening and (b) early morning.

971

972 Fig. 12. As in Fig. 5, but for (a) late evening and (b) early morning.

973

974 Fig. 13. Scatter plot of DCP vs SRH3 with GDKE (Gaussian kernel density estimation)

975 contours overlaid for all severity types (NS in blue, LS in green, and HS in orange).

976 The three GKDE contours for each severity type encompass the top 10% (innermost

977 contour), top 25%, and top 75% (outermost contour) densest points. The vertical and

978 horizontal blue lines indicate the two optimal thresholds associated with the highest

979 HSS values for prediction of NS events for DCP and SRH3, respectively.

980

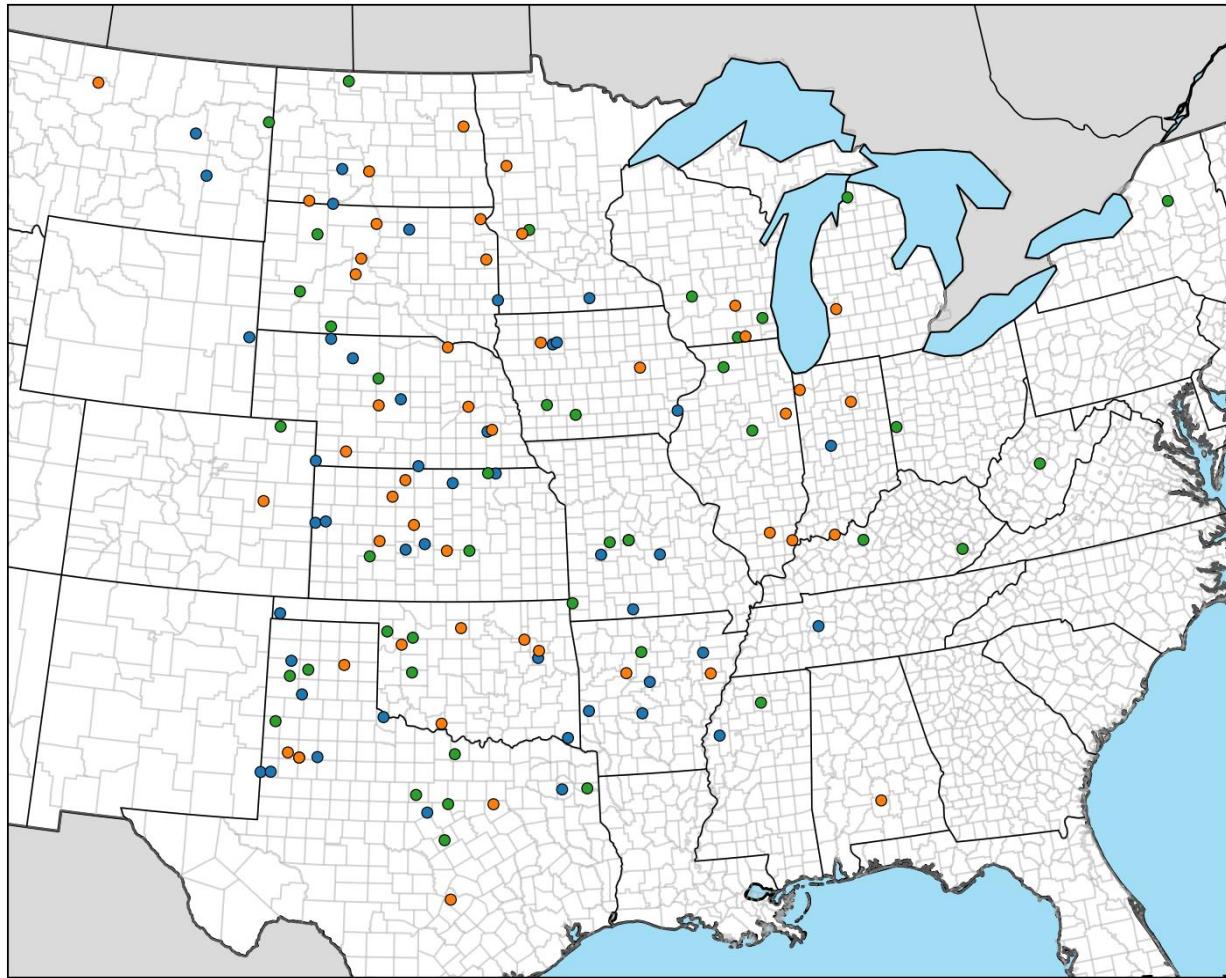
981 Fig. 14. As in Fig. 13, but for DCP vs VMXP. The vertical and horizontal lines indicate the two

982 optimal lower and upper thresholds associated with the highest HSS values for

983 prediction of LS events for DCP and VMXP, respectively.

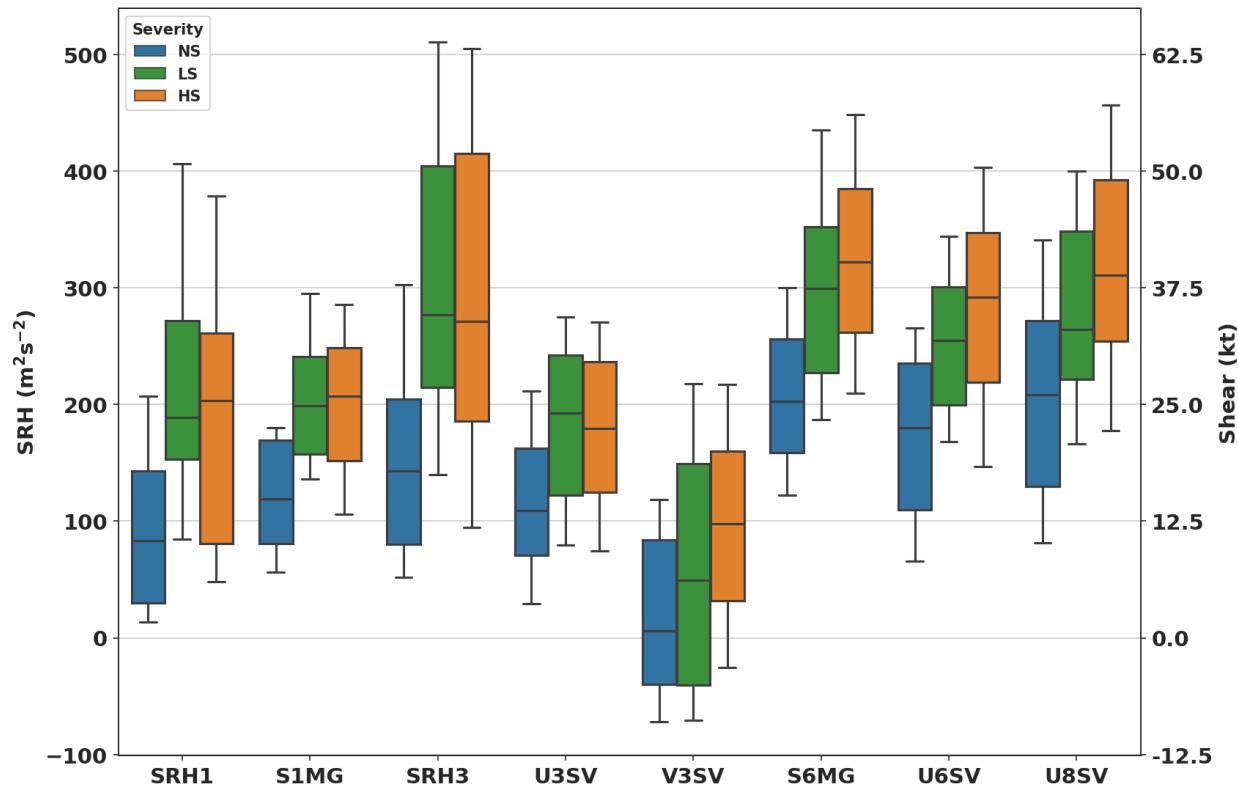
984

985 Fig. 15. As in Fig. 13, but for SBCP vs U6SV. The vertical and horizontal lines indicate the two


986 optimal thresholds associated with the highest HSS values for prediction of HS events

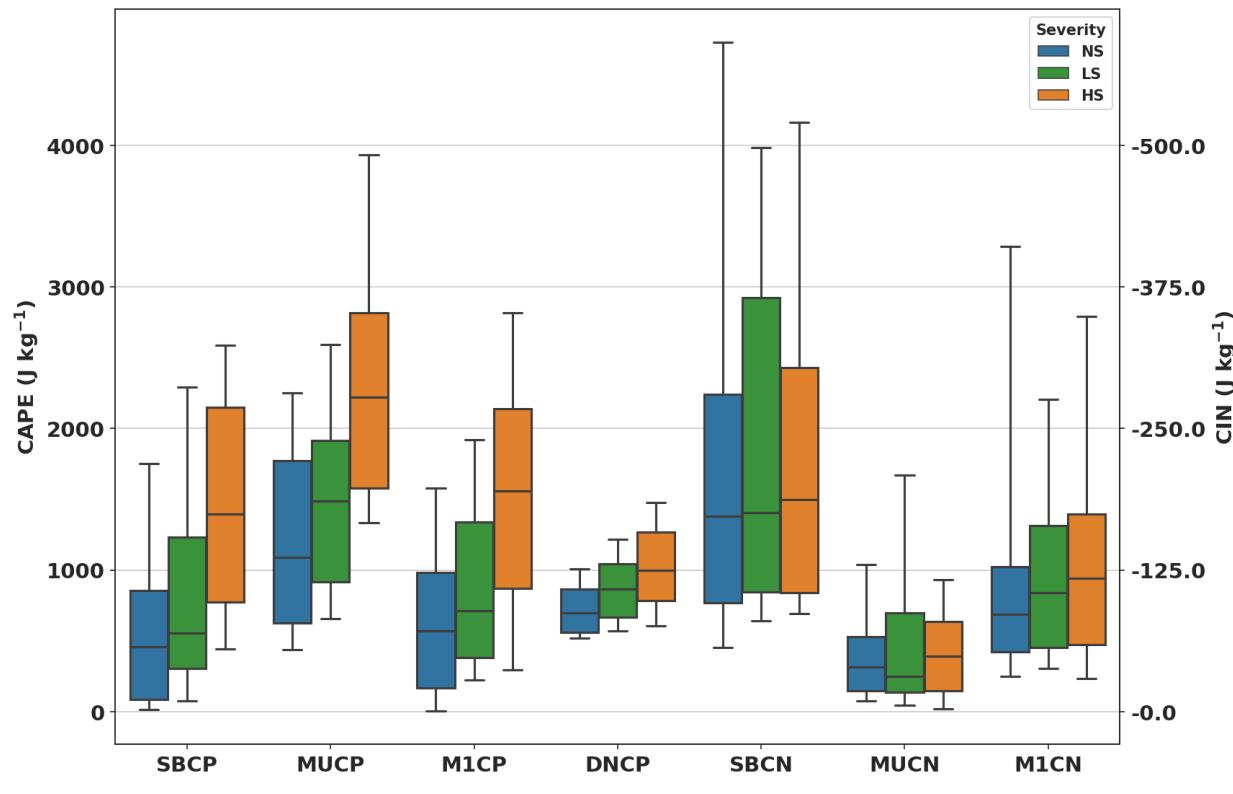
987 for SBCP and U6SV, respectively.

988


989 **Figures**

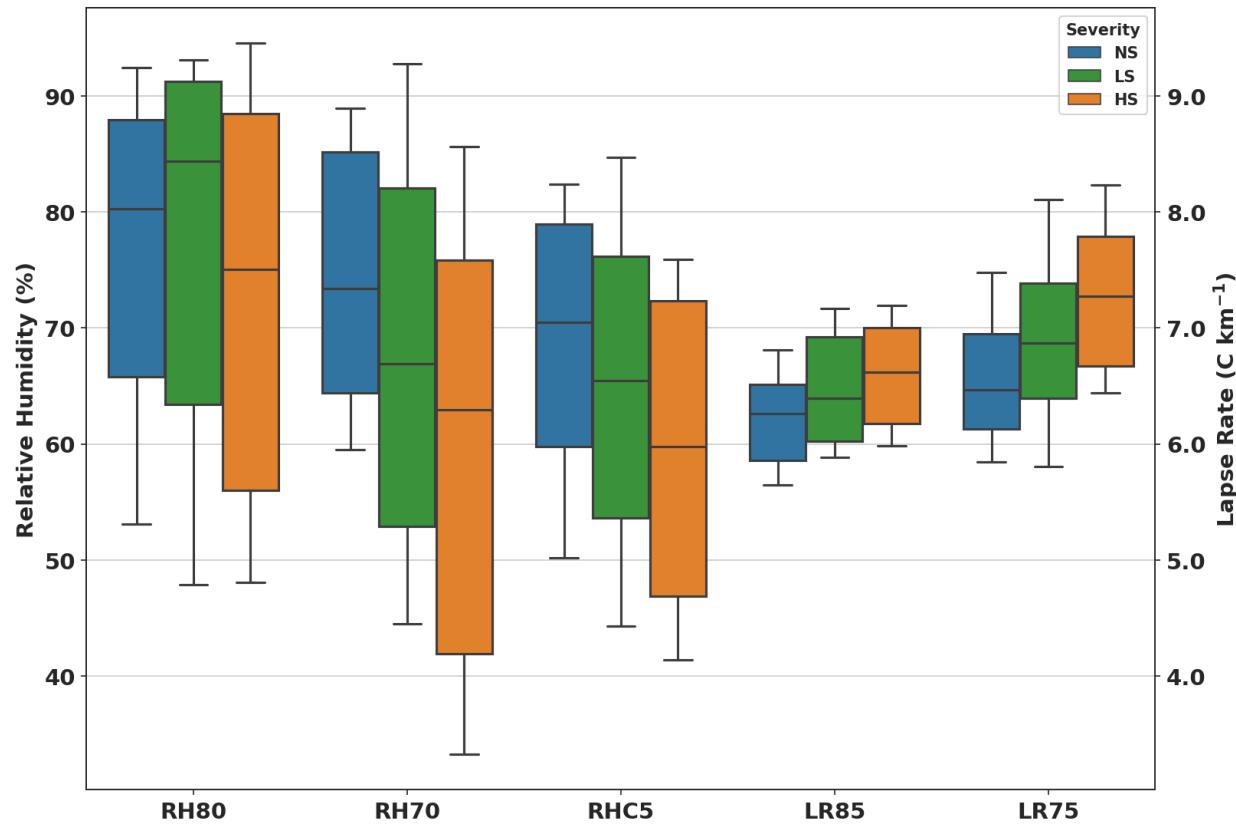
990

991 Figure 1: Location of all the high-intensity severe (HS; orange),
992 low-intensity severe (LS; green),
993 and nonsevere (NS; blue) nocturnal bow echo events for the period 2010 – 2018 used in the
994 present study. The plotted points indicate the locations of the storm reports used for severe cases
and the points closest to the apex of the bow for nonsevere.


995

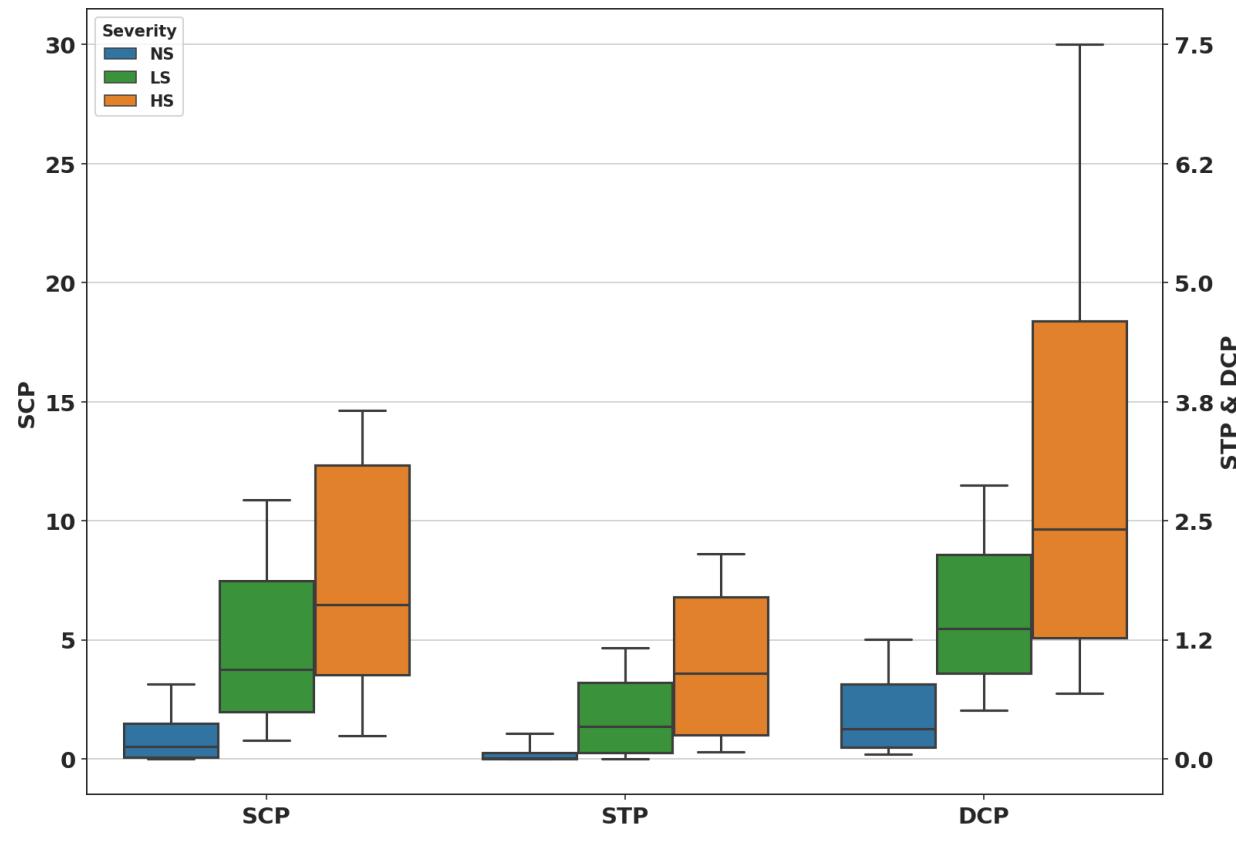
996

997 Figure 2: Box-and-whiskers plots for all cases of SRH1 and SRH3 (values plotted along the left
 998 axis), and S1MG, U3SV, V3SV, U6SV, S6MG, and U8SV (values plotted along the right axis).
 999 Each color-filled box represents the results for NS (blue), LS (green), and HS (orange). The
 1000 whiskers span the interval from the 10th to 90th percentiles and the boxes enclose the 25th to
 1001 75th percentiles. Outliers, or points outside the whiskers, are not plotted.

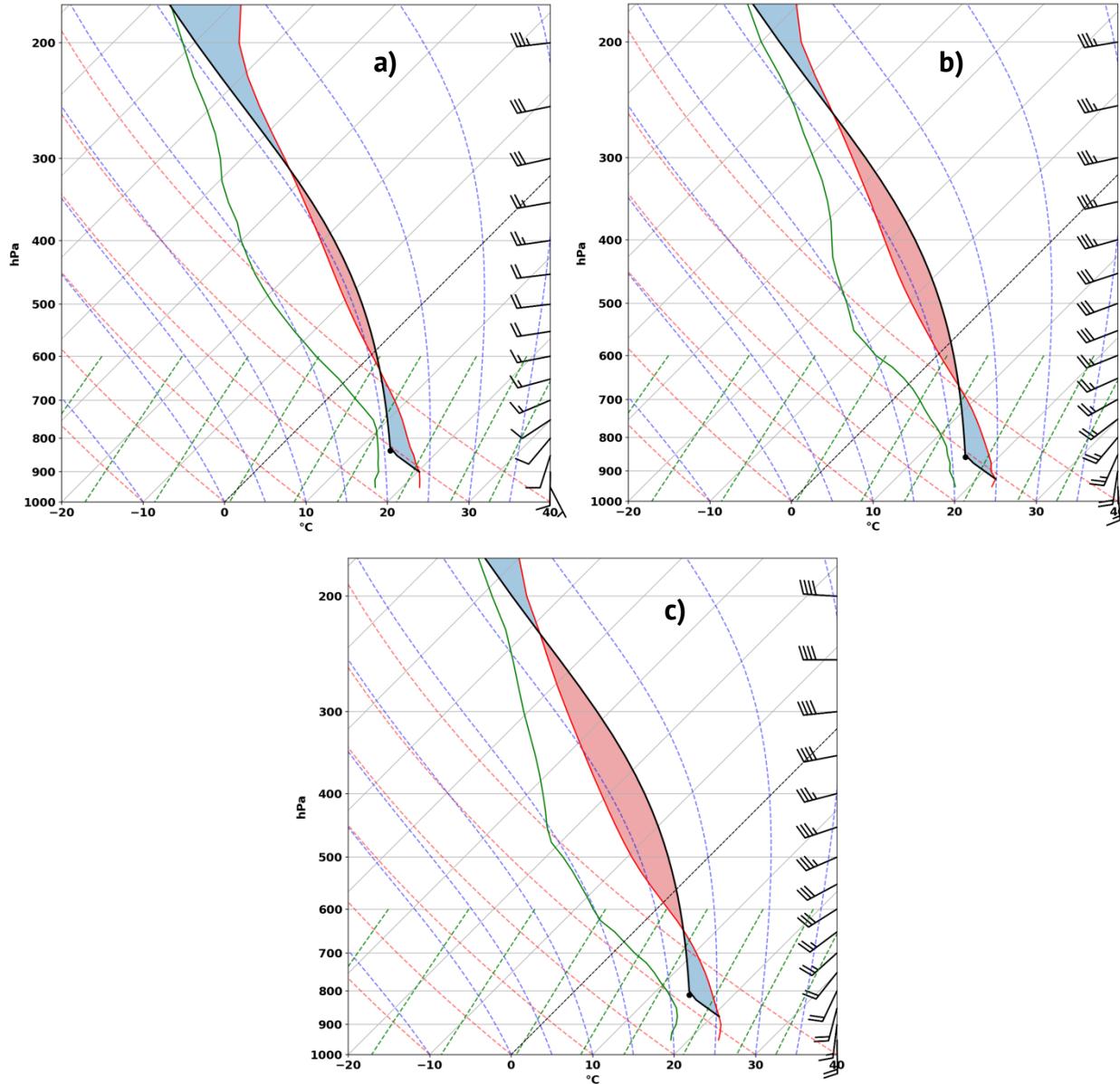

1002

1003

1004 Figure 3: As in Fig. 1, but for SBCP, MUCP, M1CP, DNCP (values plotted along the left axis),
 1005 and SBCN, MUCN, and M1CN (values plotted along the right axis).


1006

1007


1008 Figure 4: As in Fig. 1, but for RH80, RH70, and RHC5 (values plotted along the left axis), and
1009 LR85 and LR75 (values plotted along the right axis).

1010

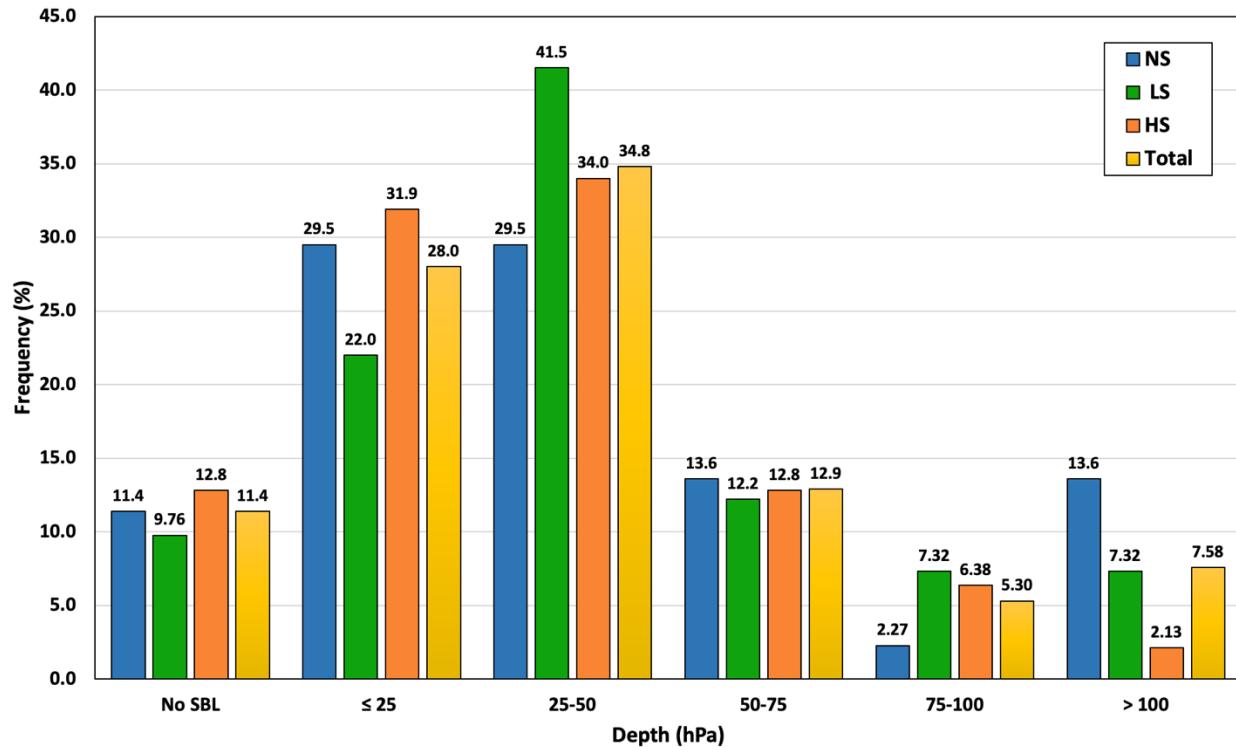
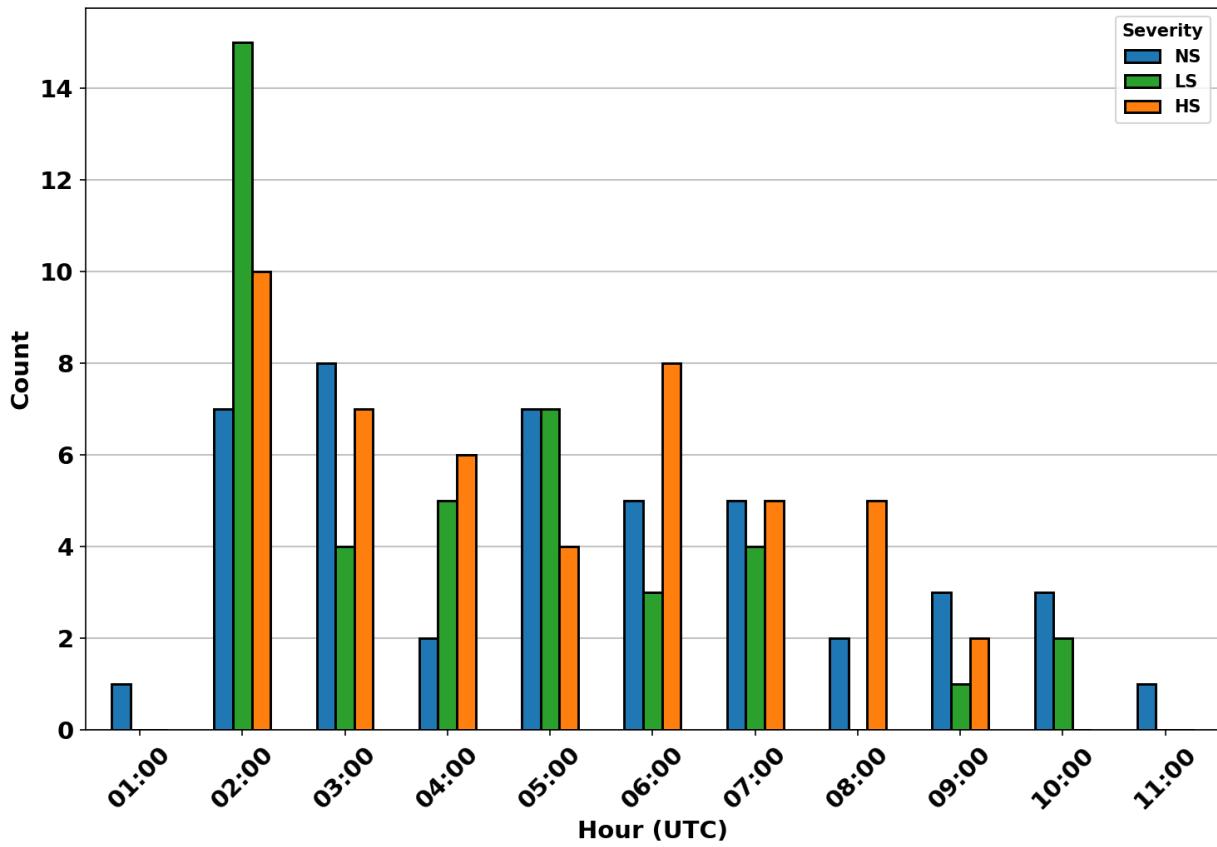
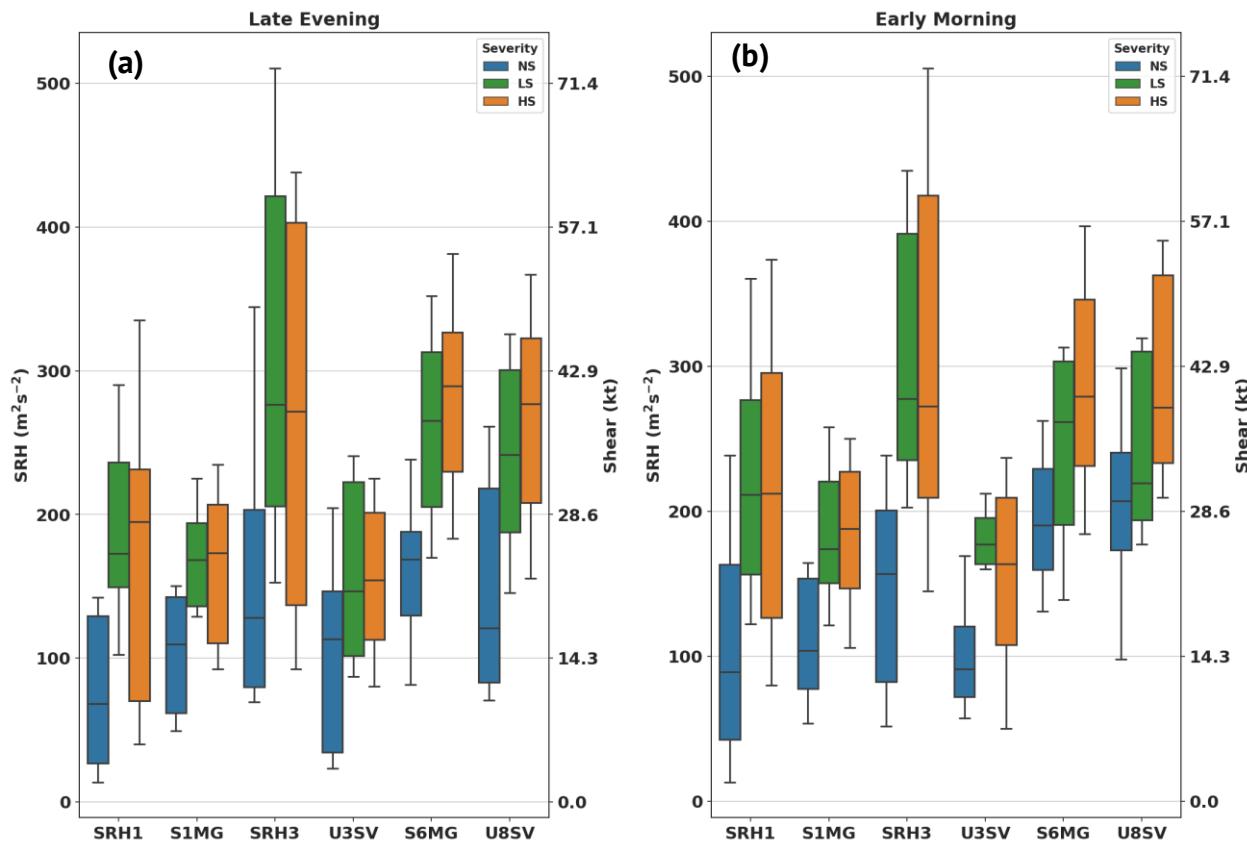

1011
1012
1013
1014
1015

Figure 5: As in Fig. 1, but for SCP (values plotted along the left axis), and STP and DCP (values plotted along the right axis).

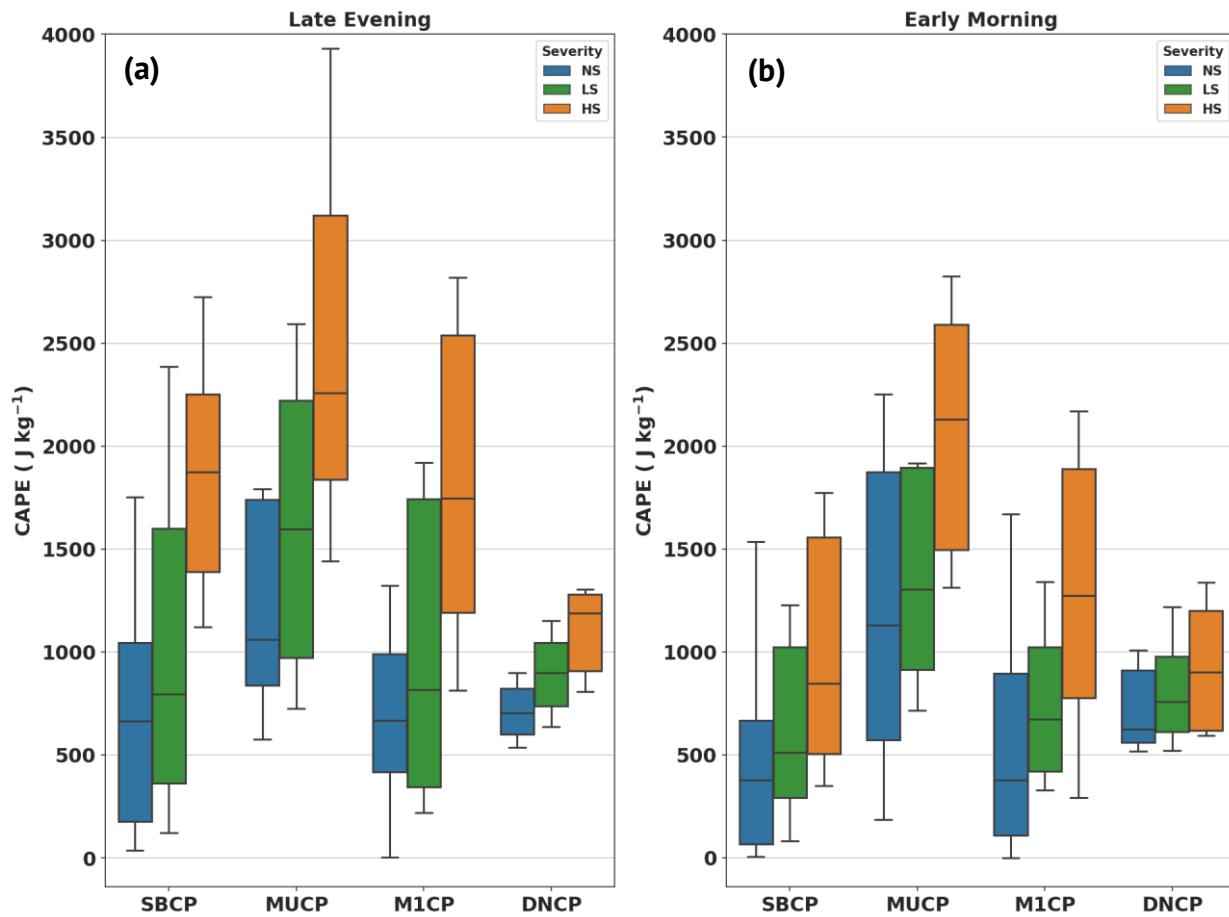


1024 Figure 6: Skew T-Log p sounding diagrams for (a) NS, (b) LS, and (c) HS environments, created
 1025 by averaging all cases for each type. Temperature (red), dewpoint (green), and most unstable
 1026 parcel (black) profiles are plotted, along with winds on the right side, dry adiabats (dashed red),
 1027 moist adiabats (dashed blue), and constant mixing ratio lines (dashed green). MUCAPE and
 1028 MUCIN are indicated by the shaded red and blue areas, respectively.

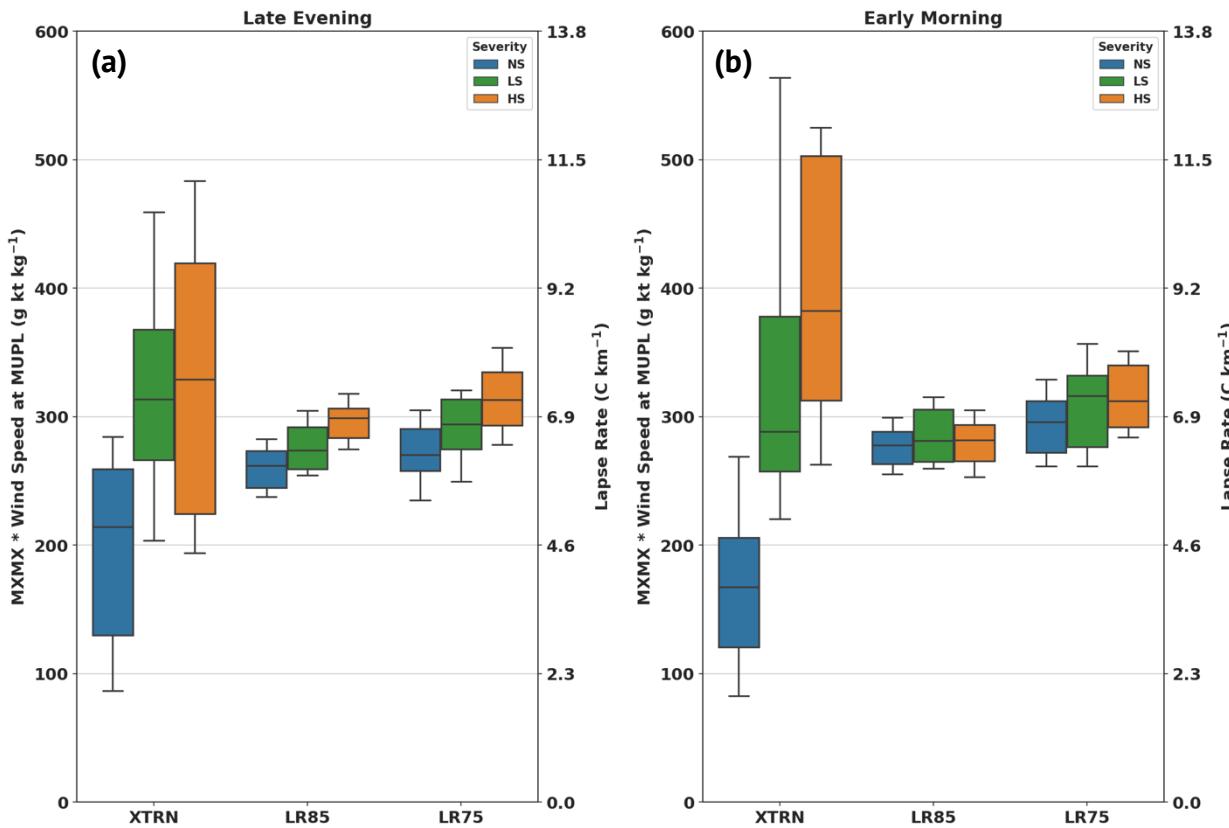
1029


1030 Figure 7: Frequency of occurrence (in %) of SBLs of specified depth (in hPa) for all severity
 1031 categories. For each interval the largest depth is inclusive, while the lowest is exclusive.
 1032 Percentages are calculated with respect to the total number of NS (blue), LS (green), and HS
 1033 (orange) events, and the total sum of all cases (yellow), respectively.
 1034

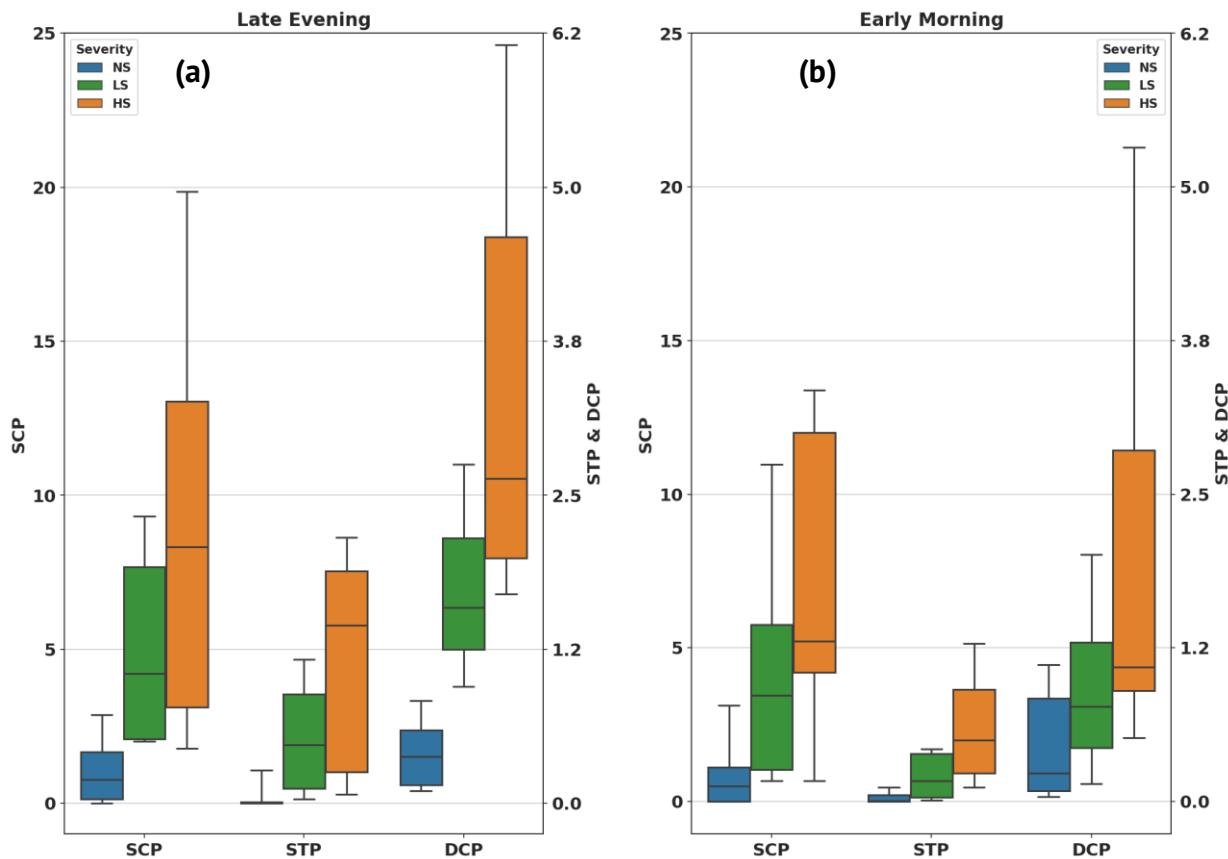
1035
1036
1037


Figure 8: Nocturnal distribution of NS (blue), LS (green), and HS (orange) events by hour of mesoanalysis data used.

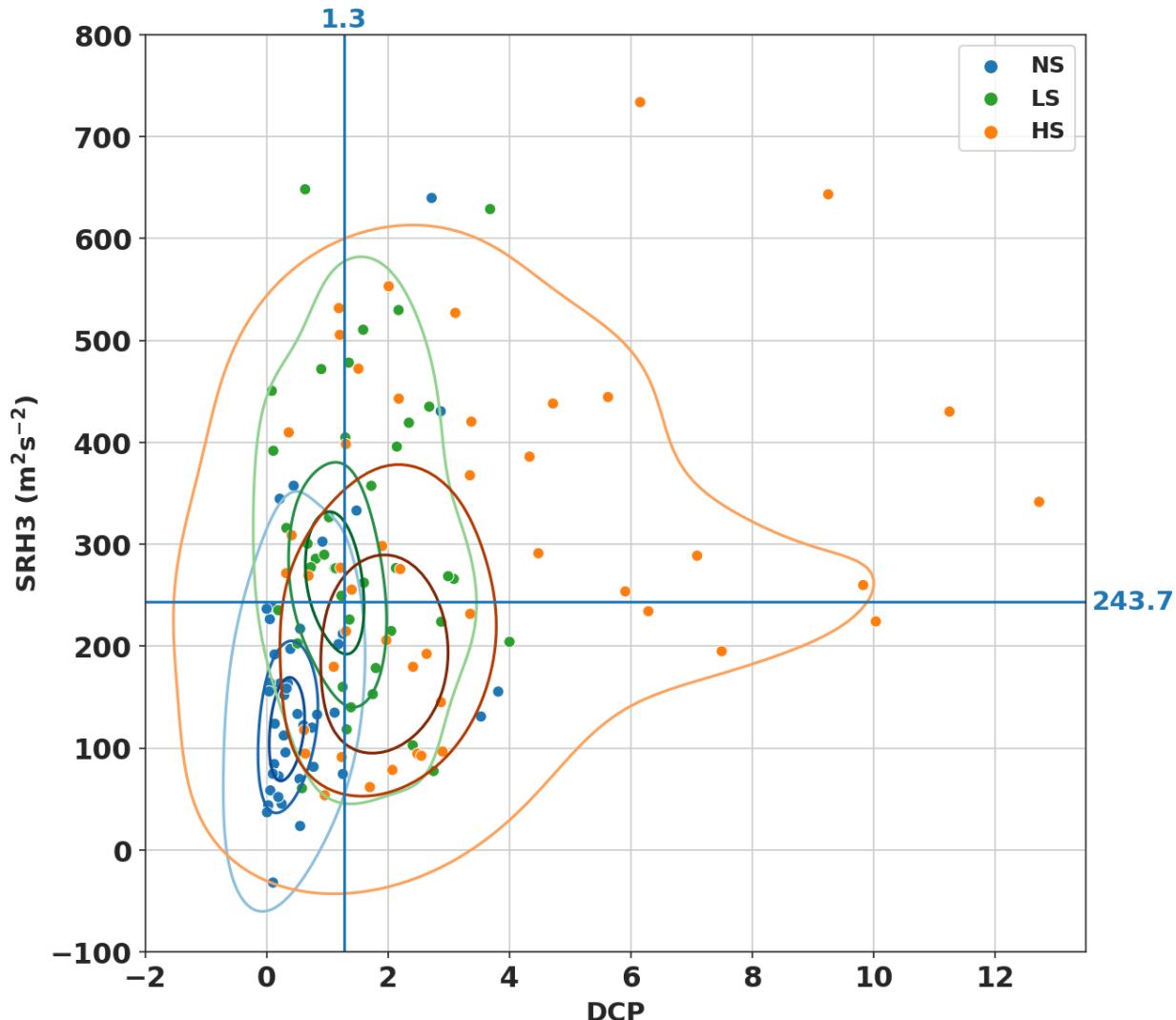
1038


1039 Figure 9: As in Fig. 2, but for SRH1 and SRH3 (values plotted along the left axis), and S1MG,
1040 U3SV, S6MG, and U8SV (values plotted along the right axis) for (a) late evening and (b) early
1041 morning.

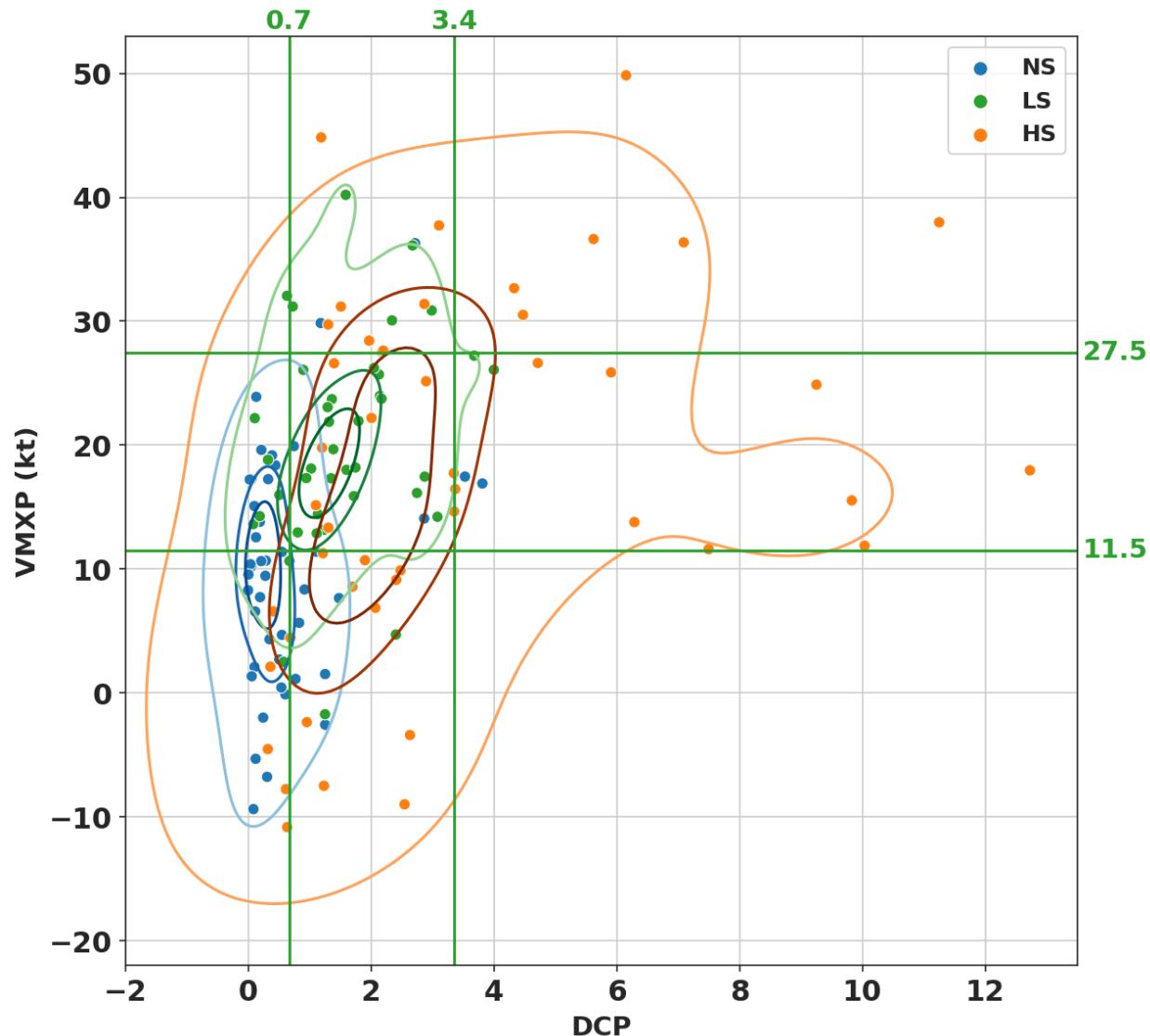
1042


1043 Figure 10: As in Fig. 3, but only for SBCP, MUCP, M1CP, and D1CP for (a) late evening and
 1044 (b) early morning.

1045

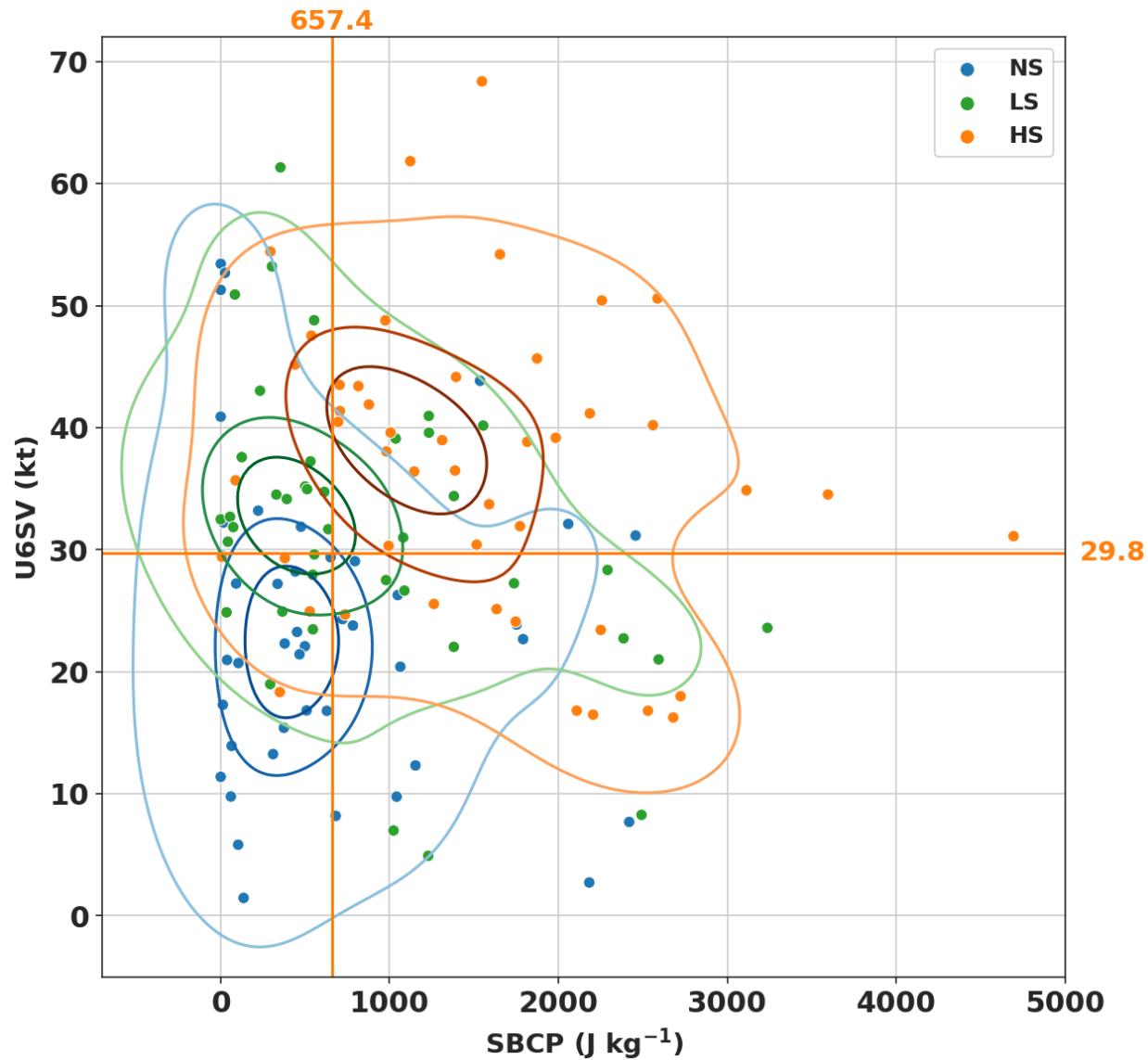

1046 Figure 11: As in Fig. 4, but only for XTRN (values plotted along the left axis), and LR85 and
1047 LR75 (values plotted along the right axis), for (a) late evening and (b) early morning.

1048


1049 Figure 12: As in Fig. 5, but for (a) late evening and (b) early morning.

1050

1051
1052
1053
1054
1055
1056
1057


Figure 13: Scatter plot of DCP vs SRH3 with GDKE (Gaussian kernel density estimation) contours overlaid for all severity types (NS in blue, LS in green, and HS in orange). The three KDE contours for each severity type encompass the top 10% (innermost contour), top 25%, and top 75% (outermost contour) densest points. The vertical and horizontal blue lines indicate the two optimal thresholds associated with the highest HSS values for prediction of NS events for DCP and SRH3, respectively.

1058
1059
1060
1061

Figure 14: As in Fig. 13, but for DCP vs VMXP. The vertical and horizontal green lines indicate the two optimal lower and upper thresholds associated with the highest HSS values for prediction of LS events for DCP and VMXP, respectively.

1062

1063
1064
1065
1066

Figure 15: As in Fig. 13, but for SBCP vs U6SV. The vertical and horizontal orange lines indicate the two optimal thresholds associated with the highest HSS values for prediction of HS events for SBCP and U6SV, respectively.