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ABSTRACT  24 

 25 

Nocturnal bow echoes can produce wind damage, even in situations where elevated 26 

convection occurs. Accurate forecasts of wind potential tend to be more challenging for 27 

operational forecasters than for daytime bows because of incomplete understanding of how 28 

elevated convection interacts with the stable boundary layer. The present study compares the 29 

differences in warm-season, nocturnal bow echo environments in which high intensity (>70 30 

knots) severe winds (HS), low intensity (50-55 knots) severe winds (LS), and nonsevere winds 31 

(NS) occurred. Using a sample of 132 events from 2010 to 2018, 43 forecast parameters from the 32 

SPC mesoanalysis system were examined over a 120 x 120 km region centered on the strongest 33 

storm report or most pronounced bowing convective segment. Severe composite parameters are 34 

found to be among the best discriminators between all severity types, especially Derecho 35 

Composite Parameter (DCP) and Significant Tornado Parameter (STP). Shear parameters are 36 

significant discriminators only between severe and nonsevere cases, while Convective Available 37 

Potential Energy (CAPE) parameters are significant discriminators only between HS and LS/NS 38 

bow echoes. Convective Inhibition (CIN) is among the worst discriminators for all severity 39 

types. The parameters providing the most predictive skill for HS bow echoes are STP and most 40 

unstable CAPE, and for LS bow echoes are V wind component at best CAPE (VMXP) level, 41 

STP, and Supercell Composite Parameter. Combinations of two parameters are shown to 42 

improve forecasting skill further, with the combination of surface-based CAPE and 0 – 6 km U 43 

shear component, and DCP and VMXP, providing the most skillful HS and LS forecasts, 44 

respectively.  45 
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1. Introduction 46 

 47 

Bow echoes (Fujita 1978; Johns 1993; Weisman 1993; Przybylinski 1995), a subset of 48 

mesoscale convective systems (MCSs), frequently generate damaging straight-line surface winds 49 

(Fujita and Wakimoto 1981; Davis et al. 2004; Ashley and Mote 2005; Atkins et al. 2005; 50 

Wheatley et al. 2006; Wakimoto et al. 2006). These events account for the majority of casualties 51 

and damage resulting from convective nontornadic winds in the United States (Johns and Hirt 52 

1987; Przybylinski 1995; Davis et al. 2004; Ashley and Mote 2005). Therefore, forecasting these 53 

types of storms correctly is essential to reduce risk to lives and property.  54 

Idealized simulations by Weisman (1993) suggested that severe, long-lived bow echoes 55 

(i.e., derechos; see Corfidi et al. (2016) for the precise definition of a derecho) may be generated 56 

in environments with Convective Available Potential Energy (CAPE) of at least 2000 m2 s-2 and 57 

vertical wind shear of at least 20 m s-1 over the lowest 5 km above ground level (AGL). Coniglio 58 

et al. (2004) stressed the importance of low-level moisture (James et al. 2006; Guastini and 59 

Bosart 2016) and relatively dry conditions at midlevels, and the detrimental effect of low 60 

instability and weak deep-layer shear on bow echoes. Contrary to Weisman (1993), Evans and 61 

Doswell (2001), and Coniglio et al. (2004) found low-level (0-2.5 km) shear not skillful in 62 

forecasting long-lived bow echoes. Evans and Doswell (2001) found high variation in the 63 

ambient shear and instability (similar to Coniglio et al. 2004; Cohen et al. 2007), suggesting that, 64 

alone, they are not sufficient to differentiate derecho environments from those associated with 65 

nonsevere MCSs. 66 

Cohen et al. (2007) investigated nonsevere MCSs, severe MCSs, and severe derecho-67 

producing MCSs and found that the best discriminators for distinguishing severe wind-producing 68 
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MCSs from nonsevere MCSs were deep-layer wind shear and low- to upper-level wind speeds, 69 

together with median 0-1 km system-relative wind speeds and midlevel environmental lapse 70 

rates. Similar to Johns and Doswell (1992), they found that low-level (0-2 km) wind shear is a 71 

worse discriminator compared to deep-layer (0–6 km and 0–10 km) shear. Moreover, they 72 

observed that vertical differences in equivalent potential temperature and CAPE only 73 

differentiate well between weak and severe/derecho MCS environments; environments 74 

characterized by downdraft CAPE (DNCP; the maximum energy available to a descending 75 

parcel) over 1000 J kg-1 are favorable for severe wind-producing mesoscale convective systems, 76 

which agrees with Evans and Doswell (2001). 77 

Despite the fact MCSs are common at night, it might be assumed that bow echoes with 78 

damaging winds are rare at night, since these environments are often characterized by a 79 

nocturnal stable boundary layer (SBL; Schultz et al. 2000). SBLs should hinder - or even impede 80 

in certain cases – the generation of strong cold pools with tight temperature and pressure 81 

gradients more so than what occurs during the daytime, and could potentially reduce momentum 82 

transport to the ground within negatively buoyant downdrafts (Horgan et al. 2007). However, 83 

bow echoes and intense derechos often occur at night (Johns and Hirt 1987; Bentley and Mote 84 

1998; Bernardet and Cotton 1998; Davis et al. 2004; Wakimoto et al. 2006; Wheatley et al. 2006; 85 

Adams-Selin and Johnson 2010; Coniglio et al. 2012; Adams-Selin and Johnson 2013; Guastini 86 

and Bosart 2016). These nocturnal bow echoes, and more generally MCSs, are more poorly 87 

forecast compared to daytime convective systems (Davis et al. 2003, Wilson and Roberts 2006; 88 

Clark et al. 2007; Weisman et al. 2008; Hitchcock et al. 2019; Weckwerth et al. 2019), possibly 89 

because nocturnal convection is often elevated, with forcing mechanisms above the ground, such 90 

as convergence at the nose of the low-level jet (LLJ; e.g., Stull 1988), gravity waves, or bores, 91 
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being more important than during the daytime. Therefore, the relative lack of observations above 92 

the surface is more of a problem at night because it would be these observations that would show 93 

the areas likely to produce sufficient lift to trigger elevated thunderstorms (Davis et al. 2003; 94 

Clark et al. 2007; Hitchcock et al. 2019).  95 

Nocturnal bow echo environments are often characterized by an SBL and a LLJ, which 96 

provide an elevated source of moist and unstable air and creates a favorable environment for 97 

MCSs (e.g., Corfidi et al. 2008; Schumacher and Johnson 2009; French and Parker 2010; Blake 98 

et al. 2017). These nocturnal systems are often elevated (Colman 1990, Parker 2008), in 99 

environments with considerable surface-based CIN (Convective Inhibition; SBCN), due to the 100 

disconnect of the SBL and unstable air aloft, thus only ingesting air parcels located above the 101 

SBL. While the regeneration of convective cells at the leading edge of a cold pool typically 102 

maintains daytime MCSs (Rotunno et al. 1988), some studies have found that nocturnal MCSs 103 

can also be cold-pool driven and surface-based despite it being more difficult for a strong cold 104 

pool to develop at night (Parker 2008; Marsham et al. 2011; Peters and Schumacher 2016; Parker 105 

et al. 2020), due to the strength of the SBL, increased temperature homogeneity, and/or reduced 106 

evaporative cooling in the tropospheric layer just above the ground. However, other studies 107 

indicate that bores (e.g., Crook 1988; Wilson and Roberts 2006; Haghi et al. 2017) or gravity 108 

waves (e.g., Crook and Moncrieff 1988; Parker 2008; Marsham et al. 2010) generated by weak 109 

cold pools play a key role to sustain nocturnal MCSs (Crook and Moncrieff 1988; Koch et al. 110 

2008; Parker 2008; French and Parker 2010; Marsham et al. 2010; Marsham et al. 2011; Blake et 111 

al. 2017; Parsons et al. 2019). 112 

At the present time, shortcomings exist in our understanding of which processes allow 113 

severe convective winds to reach the surface in stable environments. Parker (2008) investigated 114 
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severe convective winds in stable environments and found that even in the absence of surface-115 

based CAPE, elevated convective systems could generate negatively-buoyant downdrafts strong 116 

enough to reach the surface. Marsham et al. (2011) investigated an MCS, whose initial 117 

convection triggered both gravity waves and bores, which initiated further convection ahead of 118 

the cold pool that became surface based. Hitchcock et al. (2019) found that out of 13 MCSs 119 

sampled by PECAN (Plains Elevated Convection at Night; Geerts et al. 2017), almost every 120 

postconvective nocturnal sounding observed a surface cold pool, suggesting that the potential for 121 

damaging surface winds associated with nocturnal MCSs may be higher than expected. Recently, 122 

Parker et al. (2020) conducted an idealized simulation of the nocturnal PECAN MCS that 123 

occurred on 26 June 2015 and observed that initially elevated convection became surface based, 124 

and severe surface winds were produced. However, this binary distinction between surface-based 125 

and elevated convection is relatively ambiguous, as nocturnal MCSs exist on a spectrum between 126 

these two extremes, i.e., they may ingest SBL air from different source layers (Corfidi et al. 127 

2008). 128 

Considering the gaps in our understanding of how elevated convection interacts with the 129 

SBL, nocturnal severe wind-producing storms can present a challenge for operational 130 

forecasters. Being able to discriminate between environments in which a nocturnal bow echo 131 

cannot generate intense surface winds from environments where it will produce severe winds is 132 

an important societal and scientific question to answer. Although nocturnal bow echoes can 133 

produce severe winds at the surface, there is a dearth of studies in the literature that specifically 134 

analyze nocturnal bow echoes (Wakimoto et al. 2006). Therefore, the goal of this project is to 135 

examine the differences in near-storm parameters between warm-season, nocturnal bow echoes 136 

that produce severe winds and those that do not. 137 
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A description of the data and methods is presented in the following section. Section 3 138 

discusses single and multiple parameters results. General summary and conclusions are presented 139 

in section 4. 140 

 141 

2. Data and methodology 142 

 143 

a. Data collection and classification 144 

 145 

The analysis of the environmental conditions associated with bow echoes varying in 146 

severity was conducted by selecting a sample of 132 warm-season, nocturnal bow echo events 147 

occurring during the April-August period each year from 2010 to 2018 (see the online 148 

supplemental material). In the present study, cases were considered nocturnal if a bowing 149 

convective line was present between 02 UTC and 11 UTC. These events were chosen using 150 

composite reflectivity data from the UCAR Image Archive browser 151 

(https://www2.mmm.ucar.edu/imagearchive). A loop of composite reflectivity for the contiguous 152 

United States was examined and, when bow echoes were noted, if the criteria explained below 153 

were met, the cases were used in the study. Although a few bow echoes meeting the criteria may 154 

have been missed, the majority of all relevant events were captured.  155 

Included in this sample were 44 nonsevere cases (NS) in which there were no measured 156 

severe winds or wind damage reports for at least six hours before and after the time of maximum 157 

bow echo development (largest area within bow of reflectivity greater than 50 dBZ). Of the 158 

remaining 88 cases, 41 were low-intensity severe wind cases (LS), where all wind reports were 159 

in the range of 50-55 kt, and 47 were high-intensity severe winds cases (HS), where at least one 160 
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severe wind report with a magnitude greater than 70 kt occurred. Therefore, this classification is 161 

more focused on wind intensity than Cohen et al. (2007), who classified MCSs based on the 162 

number of reports of severe winds rather than severity, and assumed that weak nonsevere MCSs 163 

could have up to 5 storm reports. The present study, like Cohen et al. (2007), used both estimated 164 

and measured wind reports. It is well known that deficiencies exist in the wind database, such as 165 

the human tendency to overestimate wind speeds (Edwards et al., 2018). However, it was 166 

necessary to include both types of reports to maintain a sufficient sample size for meaningful 167 

analysis.  168 

The analysis focuses on SPC mesoanalysis-derived proximity soundings to represent the 169 

storm environment (Evans and Doswell 2001; Doswell and Evans 2003; Coniglio et al. 2004; 170 

Cohen et al. 2007; Thompson et al. 2012; Reames 2017). The General Meteorology Package 171 

(GEMPAK) software (desJardins et al. 1991) was used to obtain a set of 43 sounding-derived 172 

parameters from the 40-km horizontal grid spacing SPC mesoanalysis system (Table 1; Bothwell 173 

et al. 2002; Coniglio et al. 2012). This dataset is based upon the hourly 40-km RUC, and after 174 

May 2012, 40-km RAP, analysis grids, adjusted using surface observations, which is known at 175 

the Storm Prediction Center as SFCOA  (surface objective analysis) and on the SPC website 176 

as mesoanalysis. The selected parameters include measures of vertical wind shear, wind speed, 177 

multiple thermodynamic properties and also four composite indices. These four indices are the 178 

Supercell Composite Parameter (SCP; Thompson et al. 2004), a function of effective storm 179 

relative helicity (SRH; based on Bunkers right supercell motion, Bunkers et al. 2000), most 180 

unstable CAPE (MUCP), most unstable CIN (MUCN), and 0-6 km shear magnitude (S6MG); 181 

Significant Tornado Parameter (STP; Thompson et al. 2012), using surface-based CAPE 182 

(SBCP), 0-1 km SRH (SRH1), and S6MG; Derecho Composite Parameter (DCP; Evans and 183 
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Doswell 2001), a function of downdraft CAPE (DNCP), MUCP, S6MG, and the 0-6 km mean 184 

wind; and XTRN, the product of maximum mixing ratio (MXMX) and wind speed at the most 185 

unstable parcel level (MUPL).  186 

For severe cases, the mesoanalysis data at the nine grid points, a 3x3 grid, closest to the 187 

wind report of the largest magnitude within the ranges specified earlier and using the analysis 188 

hour immediately before the report occurred were averaged. To properly examine the 189 

environment associated with bow echoes and prevent previous convection from skewing results, 190 

if the storm report was within ten minutes after the analysis time, the previous hour (60-70 191 

minutes earlier) was used instead. For NS cases, the mesoanalysis data were averaged from the 192 

nine grid points, a 3x3 grid, closest to the apex of the bow (i.e., where the strongest winds 193 

typically occur; Weisman 2003; Atkins and St. Laurent 2009), and at the analysis hour 194 

immediately prior to the maximum bow echo development on radar, to avoid having prior 195 

convection alter the environmental parameters. Additionally, earlier radar images were examined 196 

for a 10-hour period over a roughly 200x200 km region ahead of the bow echo to ensure that the 197 

environment was not influenced by prior unrelated convection. All storms occurred east of the 198 

Rocky Mountains, and the three severity types were well spatially distributed across primarily 199 

the central United States (Fig. 1), reducing the potential for regional biases. The seasonal 200 

distribution of cases was also similar among the three severity types (not shown).  201 

 202 

b. Statistical methods 203 

 204 

To analyze forecast parameters, several graphical and statistical techniques were 205 

employed. Means, medians, bias, interquartile distribution, box-and-whiskers plots, and scatter 206 
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plots were used to obtain additional information and to easily visualize features in the data such 207 

as clusters, trends, spread, and outliers. The significance of the differences among the parameter 208 

distributions and the discriminatory ability of a specific variable were determined using 209 

bootstrapped paired t-tests (Mendenhall and Sincich 2007) and non-parametric Wilcoxon signed 210 

rank-sum tests (Wilks 2011). A significance level of p = 5% was used to determine if a test 211 

statistic was statistically significant. Since the results of the two tests were very similar, with 212 

only about 5% of parameters found to be significant with one test but not the other, only the 213 

bootstrapped paired t-tests are presented in the results to follow. 214 

Additionally, the Heidke Skill Score (hereafter HSS; Heidke 1926) and threshold values 215 

were calculated to provide a more robust quantitative analysis about the forecasting skill of the 216 

parameters. The HSS is defined as 217 

𝐻𝑆𝑆 = 2
𝑎𝑑 − 𝑏𝑐

(𝑎 + 𝑐)(𝑐 + 𝑑) + (𝑎 + 𝑏)(𝑏 + 𝑑)
 218 

where a, b, c, and d are the hits, false alarms, misses, and correct rejections, respectively. An 219 

HSS of 1 indicates all forecasts are correct, 0 indicates that the forecast has no skill, and negative 220 

values indicate that a chance forecast is better.  221 

Similar to Kuchera and Parker (2006) for severe convective winds and Reames (2017) for 222 

tornadoes, optimal threshold values, xopt,i, are obtained by maximizing the HSS. An HS event 223 

would be forecast if the value of a forecast parameter is greater than xopt,1, whereas for an NS 224 

event it would be lower than xopt,2; for the average relative humidity from LCL to 500 hPa 225 

(RHC5) and from LCL to LFC (RHLC), the average kinematic vertical velocity between MUPL 226 

and LCL (VKLC), the 3 km average relative humidity (3KRH), the relative humidity at 800 hPa 227 

(RH80) and 700 hPa (RH70), the reverse is true for both severity types. An LS event would be 228 

forecast if the value of a forecast parameter is between the range xopt,3 and xopt,4. The same 229 
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method was used in the case of any combination of two parameters, with the addition that the 230 

same condition needed to apply to both parameters: for instance, an HS event would be forecast 231 

if both forecast parameters exceed the two new optimal thresholds xopt,5 and xopt,6 in the 232 

appropriate direction (Reames 2017). 233 

To analyze the two-dimensional severe weather parameter spaces, the Gaussian kernel 234 

density estimation (GKDE; Scott 2015) was used, which was performed for two-dimensional 235 

probability analyses considering combinations of multiple parameters. The GDKE is a method to 236 

estimate the multivariate probability density function of two random variables in a non-237 

parametric way, which allows one to gain knowledge about the continuous distribution of data 238 

where no observed data points exist. This method has also been implemented to create 239 

continuous probabilistic fields of significant severe storm report locations (Smith et al. 2012), 240 

tornadic near-storm environmental characteristics for convective mode (Thompson et al. 2012), 241 

and tornadic environments in the two-dimensional convective parameter spaces (Reames 2017). 242 

Many of the parameters examined in the present study have been shown to be useful in 243 

distinguishing convective mode and observed severe weather (Johns et al. 1993; Brooks et al. 244 

1994; Evans and Doswell 2001; Doswell and Evans 2003; Thompson et al. 2003; Kuchera and 245 

Parker 2006; Thompson et al. 2012; Hampshire et al. 2017; Reames 2017). 246 

 247 

3. Results 248 

 249 

The following analyses compare the distributions of near-storm environmental 250 

parameters and thermodynamic soundings between HS, LS, and NS nocturnal events. In the 251 

results presented below, all differences to be discussed were found to be statistically significant 252 
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unless otherwise noted. In addition, the skill of both single parameters and combinations of 253 

parameters as forecasting tools in discriminating different severity types is evaluated. 254 

 255 

a. Single parameter distributions 256 

 257 

Many prior studies (e.g., Rotunno et al. 1988; Weisman and Rotunno 2004; Coniglio et 258 

al. 2006; Cohen et al. 2007; Coniglio et al. 2012) have commented on the importance of vertical 259 

wind shear on the initiation and maintenance of deep moist convection and bow echoes. We find 260 

that shear, whether it is present in low levels or deeper levels, discriminates well between 261 

nonsevere events and severe events (Fig. 2; Table 2). The differences in the mean values 262 

between the shear variables can also be seen in Table 1. NS environments are associated with 263 

significantly weaker low-level, mid-level, and upper-level wind shear than severe ones for all the 264 

shear parameters examined. This is also true for low-level SRH by as much as 100 m2 s-2. When 265 

discriminating between LS and HS environments, shear measures in the lowest layers (0-1 km 266 

and 0-3 km) show rather minor insignificant differences (similar to Evans and Doswell 2001; 267 

Cohen et al. 2007). As one considers deeper layers of shear (0-6 km and 0-8 km) there is more 268 

separation between the medians shown in the boxplots (similar to Coniglio et al. 2006; Cohen et 269 

al. 2007), but it is not statistically significant. An exception does exist for the 0-6 km (U6SV) 270 

and 0-8 km pressure-weighted (U8SV) U shear components. Differences in these two parameters 271 

were not significant at the 95% confidence level, but were significant at the 90% level (not 272 

shown). The value of S6MG for HS events (41.1 kt; Table 1) is similar to that found for derecho-273 

producing MCSs by Cohen et al. (2007; about 43 kt) and Coniglio et al. (2004; around 40 kt), 274 

while that for LS events is 36.9 kt. The U shear component in the 0-3 km layer does not differ 275 
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much between severity types, but differs more noticeably for deeper 0-6 km and 0-8 km shear, 276 

with the most intense nocturnal bow echo winds happening with the strongest zonal shear 277 

component. As is shown later, this increasing zonal component to the shear is primarily due to 278 

stronger zonal winds aloft. Additionally, the meridional component of the wind differs 279 

significantly in the lowest layer between the nonsevere and severe events; however, the 280 

differences among all three severity types were not significant in the deeper layers (and thus are 281 

not plotted). VKLC is also a significant discriminator between severe and nonsevere cases 282 

(figure not shown), and between HS and LS events at the 90% confidence level. Greater lift in 283 

the near-storm environment has multiple effects: it can help cool the mid-troposphere increasing 284 

the CAPE available for storms, and it may allow for longer sustenance of convection or provide 285 

more favorable conditions for upscale growth. These factors may facilitate the occurrence of 286 

severe winds. 287 

Nocturnal HS bow echo environments are characterized by the highest values of SBCP 288 

(1518 J kg-1), 100 hPa mean mixed CAPE (M1CP; 1605 J kg-1), MUCP (2363 J kg-1), and DNCP 289 

(1025 J kg-1) compared to both the LS and NS ones, greater by nearly 1000 J kg-1 for SBCP and 290 

MUCP (Table 1), making them very good parameters for discriminating between HS and LS/NS 291 

(Fig. 3; Table 2). In addition, we find that CAPE is not a good discriminator between NS and LS 292 

environments. These findings somewhat contrast with those found by Cohen et al. (2007), who 293 

found that CAPE can only discriminate well between weak and severe/derecho MCS 294 

environments, but not severe vs derecho-producing MCSs. DNCP increases with increasing bow 295 

echo intensity, as found by Evans and Doswell (2001) and Cohen et al. (2007); values greater 296 

than 1000 J kg-1 have been associated with increasing potential for strong downdrafts and 297 

damaging outflow winds (James et al. 2006). Increased values of CAPE and DNCP are found to 298 
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be a distinctive trait of HS bow echoes, suggesting that the nocturnal SBL may not be as cool in 299 

these events, making it easier for a cold pool to reach the ground and produce damaging winds 300 

(Parker et al. 2020). However, for our sample of cases, CIN is among the worst discriminators 301 

overall, as values among all severe environments are relatively similar (Fig. 3). Mean values 302 

show that SBCN and MUCN are in fact highest for LS events (Table 1). The finding that CIN 303 

does not distinguish well between the severity types may be consistent with the results of Parker 304 

et al. (2020) and Hiris and Gallus (2020), who found that the presence of low-level stable layers 305 

in idealized experiments using CM1 (Bryan and Fritsch 2002) does not prevent the formation of 306 

cold pools nor upscale growth of convection. Furthermore, almost all observed MCSs during the 307 

recent PECAN project contained at least a weak surface cold pool, even when a stable boundary 308 

layer was also observed (Hitchcock et al. 2019). 309 

Comparatively dry conditions characterize HS environments at 700 hPa (Fig. 4), agreeing 310 

with prior works suggesting dry air around this level encourages evaporative cooling and strong 311 

negative buoyancy, and thus is a favorable ingredient for strong downdrafts (e.g., Johns 1993). 312 

While RH70 discriminates only between HS and LS/NS types, RH80 discriminates between HS 313 

and LS, and RHC5 between HS and NS. Relative humidity at the levels examined is not able to 314 

differentiate between LS and NS events. The results for relative humidity suggest that the HS 315 

events are the ones that may be most influenced by enhanced evaporative cooling and stronger 316 

downdrafts that greatly accelerate the flow, whereas other processes may play a bigger role in 317 

determining whether or not a storm produces weaker severe winds. The highest LCLs are 318 

associated with HS environments (608 m), but differences compared to the other severity types 319 

are not significant. Since LCL height is a function of the relative humidity in the layer closest to 320 

the ground, and these events are nocturnal with SBLs present so that the relative humidity near 321 
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the ground would likely be relatively high in all events, it is not surprising that LCL heights 322 

would not differ significantly among the three severity types. While the maximum equivalent 323 

potential temperature (theta-e) difference in lowest 3 km (TE3K) differentiates well between 324 

severe and nonsevere environments, surface theta-e (STHE) differentiates best between HS and 325 

LS/NS environments (Table 2). 326 

As in Craven and Brooks (2004), lapse rates exceeding 7° C km-1 are classified as steep 327 

in the present study. The lapse rate from 850 to 500 hPa (LR85) and from 700 to 500 hPa (LR75) 328 

discriminate significantly between severe and nonsevere cases (Table 2). In addition, LR75 329 

performs well also when comparing HS (steep lapse rate, 7.27° C km-1) and LS (6.89° C km-1) 330 

(Fig. 4), suggesting that steeper lapse rates in this layer contribute to the higher values of CAPE 331 

parameters for HS events. Maximum mixing ratio (MXMX in Table 1) is highest for HS events, 332 

also consistent with higher CAPE when considering the steeper lapse rates, and it discriminates 333 

between HS vs NS/LS. The composite parameter XTRN differentiates well between severe and 334 

nonsevere cases (figure not shown). We believe that this is mainly because stronger wind shear 335 

leads to higher XTRN values, and as will be shown later, stronger winds are associated with 336 

more intense convection.  337 

The highest values of the severe composite parameters SCP, STP, and DCP occur in HS 338 

environments (8.55, 1.11, 3.48 respectively), followed by LS, and then NS ones (Table 1). 339 

Separation between all severity types is substantial (Fig. 5) and all parameters differentiate 340 

significantly among all three severity types (Table 2). It is likely that SCP, STP, and DCP work 341 

so well because they all include at least one parameter that discriminates significantly between 342 

severe and nonsevere (e.g., shear, SRH), and at least one that discriminates well between HS and 343 

LS/NS (e.g., CAPE). The DCP identifies favorable environments for cold-pool driven wind 344 
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events (Evans and Doswell 2001, Lagerquist et al. 2017), and values greater than 2 favor the 345 

development of derechos from existing MCSs (Lagerquist et al. 2017). We find that DNCP, 346 

related to the potential for cold-pool production, LR75, SCP, STP, and DCP are the parameters 347 

among the 43 examined that discriminate significantly among all three severity types. For 348 

brevity, only parameters for which any comparison showed statistically significant differences 349 

(31 of the 43 studied) are included in the analyses to follow. Removing parameters with p ≥ 5% 350 

does not imply that a parameter is unimportant for distinguishing between bow echo severity 351 

types, only that it cannot statistically differentiate between the types. For LS vs NS nocturnal 352 

environments (Table 2), 21 parameters (48%) were retained after testing; for HS vs NS, 28 353 

parameters (65%), and for HS vs LS, 12 parameters (27%) were retained.  354 

Soundings averaged for all events in each severity class (Fig. 6) were computed using the 355 

original 40-km RUC/RAP analyses, and thus some parameters may differ slightly from the SPC 356 

mesoanalysis. In Fig. 6, the parcel trajectory for the most-unstable parcel is shown since MUCP 357 

was found to differentiate the best among CAPE parameters between HS and LS/NS in the SPC 358 

mesoanalyses. The soundings indicate that lower values of RH70 for HS and LS are due to both 359 

a warmer and drier environment at that level. The soundings also show that the lower 360 

troposphere is warmer and moister in HS events than in other events, likely the primary reason 361 

for the higher CAPE values in those cases discussed earlier. Winds at 500 hPa are about 20 kt for 362 

NS, 30 kt for LS, and 35 kt for HS environments, which is less than the 41 kt found by Johns and 363 

Hirt (1987), and have a stronger southerly component for severe events. The average soundings 364 

are shown using 950 hPa as an assumed surface point, since the average surface pressure of all 365 

cases is 951 hPa (948.6 hPa for NS, 953.5 hPa for LS, and 953.6 for HS), and data are only 366 

available every 25 hPa. The portion of the soundings nearest the ground should be interpreted 367 
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with caution since the soundings used to create these average soundings have different surface 368 

elevations. Therefore, to better examine differences in the SBL near the ground for different 369 

severity types, a separate analysis of the depth of the SBL was performed (Fig. 7). The depth was 370 

determined to be the top of the layer where the lapse rates were more stable than a moist 371 

adiabatic lapse rate. This analysis supports the results found for CIN variables, in that the depths 372 

of the SBLs do not differ among the three severity types. The majority (over 60%) of SBLs are 373 

shallower than 50 hPa, less than 10% are deeper than 100 hPa, and only about 10% are unstable 374 

for all severity types. 375 

In summary, while many parameters involving shear, helicity, wind speeds, and 376 

thermodynamics were found to differ significantly between NS events and severe ones, only a 377 

few thermodynamic parameters and three composite indices differed significantly between the 378 

HS and LS events. These results suggest that, while many kinematic, shear-based, and 379 

thermodynamic quantities can help forecasters differentiate between severe and nonsevere 380 

nocturnal bow echo environments, only severe composite indices and some thermodynamic 381 

variables can help differentiate environments likely to produce bow echoes with high intensity 382 

severe wind from ones that will only produce marginally-severe wind. 383 

 384 

b. Nocturnal distribution analysis 385 

 386 

The nocturnal frequency distribution by hour for each severity type used in the present 387 

study (Fig. 8) peaks at 02 UTC for HS and LS types and at 03 UTC for NS types, and shows 388 

that our dataset is relatively evenly distributed, with many events also occurring later in the 389 

night. The single report at 01 UTC is due to a case where the report was within the ten 390 
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minutes after the 02 UTC analysis time, and, as explained earlier, this meant that the 01 UTC 391 

mesoanalysis information was used. To ensure that typical nocturnal trends in parameters are not 392 

the primary cause of differences between the severity levels (such as would happen, for instance, 393 

if HS cases occurred more frequently early in the evening when CAPE is higher, whereas NS 394 

events dominated later at night when CAPE is lower), the sample was divided into two groups of 395 

similar size: one before 05 UTC (late evening) and one after 05 UTC (early morning). The 396 

analysis was repeated separately for the two subsets of cases, comprising 65 total events for late 397 

evening, of which 23 were HS, 24 LS, and 18 NS, and 67 total events for early morning, of 398 

which 24 were HS, 17 LS, and 26 NS. The two subsets are generally similarly distributed among 399 

the three severity types. For late evening comparisons between LS and NS bow echo 400 

environments 17 parameters were retained after bootstrap testing (39% of initial parameters), 401 

while 14 (32%) were retained for early morning and 21 for the whole sample. For differences 402 

between HS and NS 21 parameters were kept (49%) for late evening, while 25 (58%) were for 403 

early morning and 28 for the whole night. For differences between HS and LS, 13 parameters 404 

were retained (30%), while 6 (14%) were for early morning and 12 for the whole dataset. In the 405 

following analysis, the surface V wind component (VWND), U component at the top of the 406 

effective inflow layer (UEIL), and RH80 are not shown since no statistically significant 407 

differences were found for any of the three comparisons between severity types for either time 408 

period. 409 

When separated into the two different time periods (Table 3), the majority of SRH and 410 

shear parameters behave as they did for the full sample and remain good discriminators between 411 

severe and nonsevere types, regardless of the time period chosen (Table 4), with substantial 412 

separation in the distributions of values (Fig. 9). None of the kinematic parameters differentiate 413 
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between HS and LS types (except for VKLC during late evening). The fact that kinematic 414 

parameters do not differentiate between the intensity of the winds in severe cases, but relative 415 

humidity did, again implies the important role that evaporative cooling might play in the creation 416 

of downdrafts that are able to substantially accelerate the flow in HS events. The 0-3 km U 417 

(U3SV) and V (V3SV) shear components are good discriminators between severe and nonsevere 418 

types only during early morning. S6MG, U6SV, and U8SV discriminate between LS and NS 419 

events only during late evening, but distinguish between HS and NS for both time periods. All 420 

HS SRH and shear mean values are larger during early morning than late evening, possibly 421 

reflecting the fact that the nocturnal LLJ typically peaks in intensity during this period, and that 422 

the surface layer would be most likely to be decoupled from the flow aloft in the early morning.  423 

As would be expected, since CAPE is a function of low-level temperature and the lower 424 

troposphere still possesses some of the warming from the solar radiation prior to sunset, mean 425 

values for all CAPE parameters are higher during late evening than in early morning (Table 3), 426 

with the differences being statistically significant for SBCP and DNCP for HS cases. Differences 427 

between the periods before and after 05 UTC grow larger as severity increases, with the biggest 428 

differences being for HS SBCP and MUCP of about 1000 J kg-1 and 500 J kg-1, respectively. 429 

SBCP, MUCP, and M1CP differentiate between HS and the other two severity types for both late 430 

evening and early morning (Fig. 10; Table 4). DNCP can discriminate between all types before 431 

05 UTC, and only between HS and NS after 05 UTC; however, relatively good separation 432 

between HS and the other two types can be seen (Fig. 10). CIN parameters were tested but no 433 

significant differences were found between the severity types. Therefore, CAPE and CIN results 434 

are analogous to those obtained considering the whole dataset.  435 
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During early morning, all severity types are characterized by smaller TE3K, particularly 436 

for LS (more than 4 K less than during late evening), and smaller STHE (with the differences for 437 

HS cases between the two datasets being statistically significant). RH parameters, both at 800 438 

hPa, 700 hPa, and between LCL and 500 hPa perform worse than what was found using the 439 

whole dataset, especially during early morning where no differences between severity types are 440 

statistically significant (Table 4). RH70 for HS environments is drier after 05 UTC than before 441 

05 UTC, but the opposite is true for LS environments. Before 05 UTC both HS and LS RH70 442 

mean values are similar (Table 3).  LR85 and LR75 mean values are higher for HS during late 443 

evening (with the differences for LR85 for HS cases being statistically significant), whereas for 444 

LS and NS they are larger during early morning. It is not clear why the changes in lapse rates 445 

between the two periods in these layers behave differently among the severity types. Prior 446 

daytime heating may explain a warmer 850 hPa temperature, and thus greater LR85, in the late 447 

evening than in the early morning, although this impact would be smaller at 700 hPa. The 448 

nocturnal LLJ also is a source for heat and moisture that might increase lapse rates at night, so it 449 

is possible that differences in the behavior of the LLJ among the cases might explain these trends 450 

in lapse rates.  Both lapse rate parameters differentiate among all severity types only during late 451 

evening, similar to the results obtained using the full sample, with large separation (Fig. 11) in 452 

the distributions between severity types. On the other hand, LR75 differentiates only between HS 453 

and NS during early morning (Table 4). The four severe composite parameters behave similarly 454 

for both time periods and similar to the previous results, with the exception that SCP does not 455 

differentiate between HS and LS for either time period. This result may be consistent with the 456 

previous finding that kinematic parameters, which play a strong role in the formation of 457 

supercells, do not differentiate either between HS and LS events.  XTRN only discriminates 458 
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between severe and nonsevere as well; but, contrary to the other three severe composite 459 

parameters, during early morning it shows higher mean values for severe types, with better 460 

separation between severity types than it does during the late evening (Fig. 11).  Because XTRN 461 

is a function of the maximum mixing ratio and wind speed at the level of the most unstable 462 

parcel, it is likely particularly sensitive to the strength of the LLJ which supplies moisture and 463 

often has its peak intensity near the level of the most unstable parcel.  The LLJ often peaks in 464 

intensity during the early morning period, which might explain the better separation of XTRN 465 

among severity types in the early morning.  STP and DCP differentiate among all types for all 466 

time periods. During late evening, SCP is greater for all severity types, while STP and DCP are 467 

greater only for severe events (Table 3), and show larger separation between severity types (Fig. 468 

12). This behavior is consistent with these composite parameters’ dependence on either CAPE or 469 

steepness of low-level lapse rates, which would be greater earlier in the night than later. 470 

For the two subsets a separate analysis of the SBL was performed as well (figure not 471 

shown). The depths of the SBL during late evening are generally shallower than those found 472 

using the whole dataset for all severity types, with almost 80% of all SBLs less than 50 hPa deep 473 

and less than 10% of the lower tropospheric temperature profiles conditionally unstable. Early 474 

morning SBL depths vary more: the majority (about 30%) are in the range 25-50 hPa, while 475 

about 18% are below 25 hPa and about 18% in the range 50-75 hPa; about 14% of all lower 476 

tropospheric temperature profiles are conditionally unstable. The increased variation happens 477 

among all severity types. Of all the parameters shown in Table 4, statistically significant 478 

differences between the values before and after 05 UTC are present only for the parameters 479 

SBCP, DNCP, STHE, and LR85 for HS only (not shown). These are all related to 480 

thermodynamics, as one would expect due to typical nocturnal cooling in the lower troposphere. 481 
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It is worth noting that for HS cases there are more robust differences before and after 05 UTC 482 

than for the other two severity types. 483 

 484 

c. Single-parameter forecast skill 485 

 486 

In the previous discussion, it was found that only four parameters differ significantly 487 

between the first and second part of the night; therefore, the following two sections examining 488 

the skill of using the parameters to forecast severity focus on the whole dataset. Although the 489 

previous analyses are important to evaluate which forecast parameters have the best 490 

discriminatory ability between severity types, the use of thresholds and an analysis of the skill 491 

associated with them is needed to determine the usefulness of each parameter in forecasting. For 492 

this reason, HSS values were calculated to assess each parameter’s suitability for predicting the 493 

severity level of nocturnal bow echoes.  494 

The ten parameters with the highest HSS for forecasting each severity class, along with 495 

the threshold yielding that HSS value, are shown in Table 5. The four composite parameters, 496 

XTRN, SCP, STP, and DCP, are among the most highly skilled for all severity types. They have 497 

the highest HSS scores for NS environments (0.51 – 0.6), and some of the highest for LS (0.31 – 498 

0.38) and HS (0.36 – 0.45). These results are consistent with what was found earlier, as 499 

composite parameters are functions of parameters that discriminate significantly between severe 500 

and nonsevere (shear, SRH), and at least one differing between HS and LS/NS (e.g., CAPE). In 501 

fact, considering NS cases, which do not produce severe winds at the surface, the two most 502 

skillful parameters were STP (HSS of 0.6), with a maximum threshold of 0.039 (meaning that 503 

values less than 0.039 indicate an NS event will occur), followed by SCP (0.59) and DCP (0.59), 504 
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with maximum thresholds of 1.77 and 0.64 respectively. These thresholds are relatively small 505 

(Thompson et al. 2012; Lagerquist et al. 2017) and should capture the large majority of 506 

nonsevere events. The V wind component at best CAPE level (VMXP; 0.38), where best CAPE 507 

is the maximum 50 hPa mean layer CAPE or essentially a layer averaged MUCP, is the most 508 

skillful parameter for LS environments, with lower and upper thresholds of 12.82 kt and 27.39 kt 509 

respectively (i.e., LS events are forecast when VMXP is between these values). The parameters 510 

with the next highest HSS values are STP (0.35) and SCP (0.35), with higher threshold ranges 511 

than those found for NS of 0.157 – 0.905 and 1.77 – 8.0, respectively. Finally, STP (0.45) and 512 

MUCP (0.44) are the best parameters for HS events when minimum thresholds are 0.59 and 513 

1949.4 J kg-1, respectively. This result confirms both the usefulness of composite parameters in 514 

distinguishing significantly between all severity types as well as the crucial and intrinsic 515 

discriminating nature of large CAPE for HS environments.  516 

Together with the aforementioned four composite parameters, SRH and shear parameters 517 

make up the other six most skillful parameters for NS events. A combination of kinematic and 518 

thermodynamic parameters are the others having highest skill for LS events, and mostly severe 519 

composite parameters together with CAPE parameters work best for HS environments. It is 520 

possible that CAPE parameters are skilled at differentiating between HS and LS/NS 521 

environments because stronger CAPE can lead to heavier precipitation cores and possible cold 522 

pools. These conditions can subsequently favor the creation of strong winds due to downdrafts 523 

bringing potentially cooler air down from aloft and wet-bulbing from evaporation of rain and 524 

latent cooling near the surface. Higher CAPE may also lead to stronger pressure perturbations 525 

due to the stronger updrafts, leading to stronger storm-scale jets (Adams-Selin and Johnson 526 

2013). 527 
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 528 

d. Two-parameter space analysis 529 

 530 

Studies have shown that a multiparameter forecasting method often proves more skillful 531 

than single-parameter counterparts (e.g., Reames 2017). To assess whether combinations of 532 

parameters can provide better forecasts of severe wind potential in nocturnal bow echoes than 533 

single parameters, the forecast skill of various combinations of two parameters was analyzed in a 534 

manner similar to that used for single parameters. The combinations were created by combining 535 

each thermodynamic parameter with every kinematic and composite parameter, each kinematic 536 

parameter with every composite parameter, and the four composite parameters with each other. 537 

This yields 245 combinations. Table 6 shows the five combinations of parameters that have the 538 

best HSS scores for prediction of each severity class, along with the associated thresholds 539 

intervals. In general, multiparameter forecasting skill is greater than single-parameter forecasting 540 

skill for each severity class, with HSS differences for the best performing parameters around 541 

20% larger (compare Table 6 to Table 5). Out of the 245 combinations of parameters (those in 542 

Table 4) analyzed, 44 have HSS values larger than the best score found for single-parameters for 543 

HS cases, with one of the two parameters being almost always a CAPE or severe composite 544 

parameter. For LS cases, 39 combinations have HSS values larger than the best score for any 545 

single parameter, and for NS, 49 do. Generally for LS and consistently for NS events, a severe 546 

composite parameter is one parameter of the combination. As one would expect for these two 547 

severity types, combining the highly discriminatory composite parameters, which account for 548 

multiple atmospheric conditions, with other kinematic or thermodynamic parameters results in 549 

more skillful combinations than combining non-composite forecasting variables only. The best 550 
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five parameters for NS have the highest scores among all severity types (0.67 – 0.71), the best for 551 

HS have the second highest (0.50 – 0.53) and for LS the third highest (0.45 – 0.50). 552 

 The combination of DCP and 0-3 km SRH (SRH3) earns the highest HSS values for NS 553 

types with a score of 0.71 (Table 6), and upper thresholds of 1.3 and 243.7 m2 s-2 respectively. 554 

The highly concentrated area of NS environments tends to be well separated from the other two 555 

severity types and located toward smaller values of DCP and SRH3 (Fig. 13). The probability of 556 

detection (POD) of the best-performing NS combination is 0.82 with a false alarm rate (FAR) of 557 

0.2 (not shown). This combination is likely most effective for NS environments because lower 558 

values of DCP discern unfavorable conditions for cold pool-driven wind events, and lower 559 

values of SRH3 suggest at best weak potential for cyclonic updraft rotation, and the resulting 560 

storm scale jets that can be associated with supercell thunderstorms.  561 

The most skillful parameter combination for LS is DCP and VMXP with a score of 0.5, 562 

and threshold ranges of 0.671 – 3.35 and 11.5 – 27.5 kt. The distribution of LS events is dense 563 

and quite localized, well separated from NS types but it slightly overlaps with the broad HS 564 

group (Fig. 14). The distribution of VMXP values for LS events is similar to HS events and 565 

higher than NS, while the distribution of DCP values for LS events is lower than HS events and 566 

higher than NS events. The POD for the most skillful LS multiparameter combination is 0.56 567 

with a FAR of 0.28 (not shown). Although it is more difficult to explain why these combinations 568 

provide the best skill for forecasting LS events since these events fall between the other two 569 

types in terms of severity, with two thresholds applied to each parameter, it appears that a strong 570 

southerly wind at the best CAPE level is important because it may help supply heat and moisture 571 

to maintain strong buoyancy while DCP was designed to indicate the potential for cold pool-572 

driven severe surface winds.  573 
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For HS events, SBCP with U6SV is the most skillful combination of forecast parameters 574 

with a score of 0.53, and lower thresholds of 657 J kg-1 and 29.8 kt respectively. With a POD of 575 

0.62 and a FAR of 0.23, HS events are more broadly distributed with thinner Gaussian kernel 576 

density estimation contours, but still well separated from the other two severity groupings, 577 

especially NS ones (Fig. 15). It should be noted that the 0-6 km shear magnitude and its U 578 

component are present in all top seven combinations for HS types, indicating that, combined 579 

with CAPE parameters, they provide the most skillful forecasts for HS environments. The fact 580 

that this combination works best for HS events is not surprising when considering what 581 

parameters were found to work best in the creation of the DCP (Evans and Doswell 2001).  That 582 

study did not test SBCP or U6SV, but did find that two similar parameters, MUCP and the shear 583 

magnitude in the 0-6 km layer, worked well to determine derecho environments.  584 

 585 

4. Summary and conclusions 586 

 587 

This work analyzes multiple meteorological variables and their ability to differentiate the 588 

severity of thunderstorm winds produced in 132 warm-season, nocturnal bow echo 589 

environments. Nocturnal bow echoes present an enhanced challenge because the typical 590 

relatively cool SBL at night reduces both the momentum of downdrafts that can lead to severe 591 

wind at the ground, and the intensity of low-level cold pools whose strong pressure gradients 592 

might drive strong winds. These cases were classified into three severity types based on the 593 

maximum severe wind or damage reports: 44 nonsevere cases (NS), 41 low-intensity severe 594 

wind cases (LS), and 47 high-intensity severe winds cases (HS). A total of 43 forecast 595 

parameters were obtained from the SPC mesoanalysis system and analyzed for both the 596 
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overnight and in the subperiods of late evening and early morning. These parameters included 597 

measures of wind shear in different layers, SRH, instability, buoyancy, lapse rates, relative 598 

humidity, severe composite parameters, and other variables.  599 

Results indicate that parameters able to discriminate between LS and NS events tend to 600 

be kinematic-based (shear, SRH) and severe composite parameters; while parameters that 601 

differentiate between HS and LS include some that are thermodynamic-based, mostly CAPE, and 602 

severe composite. Large values of buoyancy are found to be a distinctive trait of HS bow echoes, 603 

especially during late evening. In addition, DNCP is a good discriminator for all severity types 604 

only for late evening environments, but it does discriminate between severe and nonsevere in the 605 

other time periods. Similar to Kuchera and Parker (2006) who looked at nontornadic severe 606 

winds from long-lived convective windstorms, CIN variables are among the worst 607 

discriminators: this is supported by the fact that the nocturnal SBLs analyzed do not differ 608 

among the three severity types.  609 

Midlevel dry air entrainment has often been identified as a favorable ingredient for 610 

downdraft initiation (e.g., Johns 1993), and we found drier conditions at midlevels (Coniglio et 611 

al. 2004) and significantly steeper midlevel lapse rates as severity increased. However, when 612 

separated into two nocturnal time periods, midlevel relative humidity parameters are poor 613 

discriminators for both time periods. As found by Cohen et al. (2007) for MCSs, the present 614 

study found that midlevel lapse rates were good discriminators for bow echo severity for the full 615 

sample of nocturnal events, but when examining sub-periods, they were not good discriminators 616 

for the early morning period. Severe composite parameters, especially DCP and STP, were 617 

shown to be among the most skillful discriminators between all severity types. The generally 618 

good discriminatory ability of composite parameters that take into account both the strength of 619 
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shear and buoyancy is consistent with the idea that bow echoes are often a function of small-620 

scale kinematic and thermodynamic processes, so that many single mesoanalysis parameters 621 

representing the larger near-storm environment will not work as well for the prediction of winds 622 

in bow echoes. 623 

The two single parameters with the highest HSS values when used to forecast HS bow 624 

echoes are STP and MUCP, and for LS bow echoes VMXP together with STP and SCP are best. 625 

A multiparameter forecasting method produced improved forecast skill compared with single-626 

parameter skill. The combination that was found to be best suited in discriminating HS bow 627 

echoes is SBCP and 0 – 6 km U shear component, while for LS bow echoes it was DCP and 628 

VMXP. Considering these two combinations, HSS values were comparable to those found in a 629 

similar study of tornado environments by Reames (2017), and should provide forecasters with 630 

improved guidance on forecasting warm-season, nocturnal bow echo severity. However, if the 631 

event is not pristine and convection may be altering the environment ahead of the bow echo, the 632 

skill of this technique may be reduced since it was developed using pristine events. 633 

Future work should examine a larger sample of cases, and perhaps use multiple hours 634 

from each event. One of the limitations to the findings in the present study might be that they are 635 

not based on observed soundings, but on model-derived soundings adjusted using surface 636 

observations. Therefore, the dataset used in this study has somewhat lower vertical resolution 637 

compared to radiosonde data and is subject to biases and errors. Future studies should perform a 638 

similar analysis using a dataset comprising observed soundings that were taken in or near bow 639 

echo inflow regions. In addition, reanalysis data with a finer horizontal resolution could also be 640 

investigated. Furthermore, because the average soundings in the present study suggested stronger 641 

mid-level flow with the more severe events, future work should examine the components of flow 642 
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relative to the bow echo orientation to explore the relationship between the magnitude of bow-643 

perpendicular mid-level flow and intensity of the winds. Future research should assess single-644 

parameter and multiparameter forecasting skill for the different portions of the night because 645 

threshold intervals would likely change. A separate test set of cases should be used with the 646 

thresholds and parameters found in the present study to see if the forecasting skill remains high. 647 

Finally, future studies could use the parameter results in the present study for different severity 648 

types to create environmental soundings to initialize an idealized model, such as CM1, to better 649 

understand the physical processes most important in determining how strong the winds become 650 

within nocturnal bow echoes in differing environments. A similar analysis could also be applied 651 

to multiple types of nocturnal MCSs (similar to Cohen et al. 2007) to compare and analyze 652 

differences in forecast parameters between different morphologies. Nonetheless, the results of 653 

the present study are encouraging and suggest that the intensity of winds in nocturnal bow 654 

echoes can be predicted rather well, despite the usual presence of a SBL that might suggest more 655 

difficulty in the forecasting process. 656 

 657 
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Tables 904 

Table 1: Name, description, and mean values of the parameters examined (the highest absolute 905 
values for each parameter are in bold), categorized as kinematic, thermodynamic, and composite. 906 

Name Description NS LS  HS  
Kinematic parameters  

S1MG (kt) 0-1 km shear magnitude 16.0 25.4 25.3 
SRH1 (m2 s-2) 0-1 km storm relative helicity 102 215 206 
SRH3 (m2 s-2) 0-3 km storm relative helicity 163 307 295 
U3SV (kt) 0-3 km U shear component 15.19 23.71 21.94 
V3SV (kt) 0-3 km V shear component 3.08 7.70 12.6 
UPMW (kt) 0-6 km pressure-weighted U component 8.73 14.2 12.4 
VPMW (kt) 0-6 km pressure-weighted V component 5.90 13.6 14.4 
S6MG (kt) 0-6 km shear magnitude 27.4 36.9 41.1 
U6SV (kt) 0-6 km U shear component 22.4 31.6 36.2 
V6SV (kt) 0-6 km V shear component 2.90 5.99 8.91 
U8SV (kt) 0-8 km pressure-weighted U component wind 26.4 35.0 39.8 
V8SV (kt) 0-8 km pressure-weighted V component wind 4.94 5.32 5.33 
VKLC (ub s-1) Average kinematic vert vel (MUPL-LCL) -0.00253 -0.00490 -0.00674 
UWND (kt) Surface U wind component -0.933 -1.42 -1.67 
VWND (kt) Surface V wind component 0.139 1.38 0.902 
UEIL (kt) U comp top of effective inflow layer 8.04 15.1 12.5 
UMXP (kt) U wind component at best CAPE level 5.77 8.07 3.74 
VEIL (kt) V comp top of effective inflow layer 5.76 13.6 14.1 
VMXP (kt) V wind component at best CAPE level 9.74 20.4 17.6 

Thermodynamic parameters 
M1CP (J kg-1) 100 hPa mean mixed CAPE 712 949 1605 
M1CN (J kg-1) 100 hPa mean mixed CIN -150 -140 -141 
3KRH (%) 3 km average relative humidity 74.0 71.1 68.7 
RHC5 (%) Average relative humidity LCL to 500 hPa 67.0 65.2 59.5 
RHLC (%) Average relative humidity LCL to LFC 77.4 75.4 73.3 
ASRH (%) Average sub-cloud humidity 75.6 74.9 75.4 
DNCP (J kg-1) Downdraft CAPE 746 878 1025 
LR75 (C km-1)  Lapse Rate from 700 to 500 hPa 6.57 6.89 7.27 
LR85 (C km-1) Lapse Rate from 850 to 500 hPa 6.21 6.47 6.62 
LLLR (C km-1) Lower-level lapse rate surface to 3km AGL 5.06 5.29 5.33 
TE3K (K) Max Theta-e difference in lowest 3 km 11.7 14.4 19.3 
MXMX (g kg-1) Maximum mixing ratio 12.1 12.7 13.9 
MUCP (J kg-1) Most Unstable CAPE 1261 1564 2363 
MUCN (J kg-1) Most Unstable CIN -68.1 -71.4 -54.8 
RH70 (%) Relative humidity 700 hPa 71.7 68.0 61.1 
RH80 (%) Relative humidity 800 hPa 75.9 76.6 72.2 
SLCH (m) Sfc based LCL height 488 532 608 
STHE (C) Surface equivalent potential temperature 338 340 345 
SBCP (J kg-1) Surface-based CAPE 652 872 1518 
SBCN (J kg-1) Surface-based CIN -235 -244 -232 

Composite parameters 
XTRN (g kt kg-1) (MXMX) * (wind speed at MUPL) 196 330 358 
DCP (numeric) Derecho Composite Parameter 0.676 1.57 3.48 

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-20-0137.1.Brought to you by IOWA STATE UNIVERSITY | Unauthenticated | Downloaded 12/14/20 08:30 PM UTC



42 
 

  907 

STP (numeric) Sig Tornado Parameter-Fixed Layer 0.159 0.467 1.11 
SCP (numeric) Supercell Composite Parameter-Effective Layer 1.37 5.32 8.55 
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Table 2: Results from bootstrapped paired t-tests (given in %) for all comparisons between two 908 
severity types. P-values greater than 5% are not shown. Parameters for which no test was 909 
statistically significant for any of the three pairs are not shown. 910 

  911 

Parameter  p (%) LS - NS p (%) HS - NS p (%) HS - LS  
VWND (kt) 2.45 — — 
SRH1 (m2 s-2) ≤0.02 ≤0.02 — 
S1MG (kt) ≤0.02 ≤0.02 — 
SRH3 (m2 s-2) ≤0.02 ≤0.02 — 
U3SV (kt) ≤0.02 0.32 — 
V3SV (kt) — 0.03 — 
S6MG (kt) 0.06 ≤0.02 — 
U6SV (kt) 0.11 ≤0.02 — 
UPMW (kt) 0.27 2.96 — 
VPMW (kt) ≤0.02 ≤0.02 — 
U8SV (kt) 0.32 ≤0.02 — 
VMXP (kt) ≤0.02 0.32 — 
UEIL (kt) 0.45 — — 
VEIL (kt) 0.03 0.55 — 
VKLC (ub s-1) 0.27 ≤0.02 — 
SBCP (J kg-1) — ≤0.02 0.07 
MUCP (J kg-1) — ≤0.02 ≤0.02 
M1CP (J kg-1) — ≤0.02 0.08 
DNCP (J kg-1) 3.16 ≤0.02 2.95 
STHE (C) — 0.44 1.20 
TE3K (K) 4.02 1.14 — 
RH80 (%) — — 3.29 
RH70 (%) — 3.88 1.57 
RHC5 (%) — 3.29 — 
LR85 (C km-1) 3.17 0.05 — 
LR75 (C km-1) 4.92 ≤0.02 2.62 
MXMX (g kg-1) — 0.29 3.31 
XTRN (g kt kg-1) ≤0.02 ≤0.02 — 
SCP (numeric) 0.04 ≤0.02 1.81 
STP (numeric) 0.22 ≤0.02 0.04 
DCP (numeric) ≤0.02 ≤0.02 0.13 
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Table 3: Mean values for late evening (before 05 UTC) and early morning (after 05 UTC) for 912 
parameters found to differ significantly between at least two severity types for at least one time 913 
period. Parameters for which no differences between any of the three severity types were 914 
statistically significant for either time period are not shown. Highest absolute values for each 915 
parameter are in bold. 916 

Before 5Z After 5Z  

Parameter  NS LS  HS  NS LS  HS  
SRH1 (m2 s-2) 85.7 204 191 112 229 220 
S1MG (kt) 15.0 24.5 24.7 16.7 26.7 25.9 
SRH3 (m2 s-2) 169 306 282 160 309 308 
U3SV (kt) 16.0 22.8 21.5 14.6 25.0 22.4 
V3SV (kt) 5.62 8.27 10.34 1.32 6.88 14.82 
S6MG (kt) 25.8 38.9 40.2 28.6 34.2 42.0 
U6SV (kt) 18.7 32.2 35.8 25.0 30.8 36.7 
UPMW (kt) 7.32 13.33 11.87 9.71 15.38 12.91 
VPMW (kt) 7.13 14.00 13.89 5.05 13.01 14.90 
U8SV (kt) 22.3 34.5 38.6 29.2 35.7 40.9 
VMXP (kt) 11.4 20.3 15.6 8.57 20.6 19.5 
VEIL (kt) 7.00 12.7 14.6 4.97 15.0 13.4 
VKLC (ub s-1) -0.00253 -0.00438 -0.00712 -0.00253 -0.00563 -0.00638 
SBCP (J kg-1) 755 1071 2005 580 591 1052 
MUCP (J kg-1) 1250 1661 2617 1269 1429 2119 
M1CP (J kg-1) 744 1058 1838 689 796 1380 
DNCP (J kg-1) 776 909 1133 726 836 922 
STHE (C) 342 341 348 335 339 342 
TE3K (K) 13.6 16.0 20.9 10.6 11.7 17.5 
RH70 (%) 70.3 64.9 63.5 72.6 73.2 58.4 
RHC5 (%) 68.4 62.0 57.3 66.1 69.6 61.6 
LR85 (C km-1) 6.06 6.46 6.89 6.30 6.48 6.36 
LR75 (C km-1) 6.39 6.80 7.36 6.70 7.01 7.18 
MXMX (g kg-1) 12.7 12.8 13.8 11.7 12.6 13.9 
XTRN (g kt kg-1) 203 324 329 191 339 385 
SCP (numeric) 1.58 5.83 9.70 1.22 4.60 7.45 
STP (numeric) 0.0778 0.556 1.32 0.215 0.342 0.906 
DCP (numeric) 0.524 1.75 3.96 0.782 1.32 3.03 
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Table 4: As in Table 2, but for all events grouped between before and after 05 UTC. 918 
 Before 05 UTC - p (%)  After 05 UTC - p (%)  

Parameter  LS - NS HS - NS HS - LS  LS - NS HS - NS HS - LS  

SRH1 (m2 s-2) ≤0.02 1.08 — 0.31 0.22 — 
S1MG (kt) 0.03 0.39 — 0.03 0.07 — 
SRH3 (m2 s-2) 0.23 3.12 — 0.03 0.02 — 
U3SV (kt) — — — 0.07 0.83 — 
V3SV (kt) — — — — ≤0.02 — 
S6MG (kt) 0.09 0.06 — — ≤0.02 — 
U6SV (kt) 0.11 0.08 — — 0.14 — 
UPMW (kt) 3.07 — — 4.69 — — 
VPMW (kt) 2.22 — — 0.34 0.36 — 
U8SV (kt) 0.48 0.10 — — 0.26 — 
VMXP (kt) 0.41 — — 0.02 0.26 — 
VEIL (kt) — — — 4.42 2.31 — 
VKLC (ub s-1) — 0.07 3.90 2.54 1.37 — 
SBCP (J kg-1) — ≤0.02 0.16 — 0.52 3.90 
MUCP (J kg-1) — ≤0.02 0.38 — 0.25 1.03 
M1CP (J kg-1) — 0.05 1.28 — 0.20 4.16 
DNCP (J kg-1) 3.07 0.02 0.60 — 3.77 — 
STHE (C) — — 1.20 — — — 
TE3K (K) — — 4.92 — 0.07 3.90 
RH70 (%) 2.22 — — — — — 
RHC5 (%) — 2.23 — — — — 
LR85 (C km-1) 4.46 ≤0.02 1.20 — — — 
LR75 (C km-1) 4.51 0.03 3.33 — 2.31 — 
MXMX (g kg-1) — — — — 0.83 — 
XTRN (g kt kg-1) 0.05 0.63 — 0.02 ≤0.02 — 
SCP (numeric) ≤0.02 ≤0.02 — 0.10 ≤0.02 — 
STP (numeric) ≤0.02 ≤0.02 0.78 0.79 ≤0.02 0.64 
DCP (numeric) ≤0.02 ≤0.02 0.22 3.47 ≤0.02 3.66 
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Table 5: The ten highest HSS values and their corresponding optimal threshold range for all 920 
single-parameter Heidke skill score tests for each severity type. 921 

  922 

Severity Parameter  Threshold Range  HSS  

NS 

STP (numeric) < 0.039 0.6 
SCP (numeric) < 1.77 0.59 
DCP (numeric) < 0.64 0.59 
XTRN (g kt kg-1) < 260.18 0.51 
SRH3 (m2 s-2) < 167.09 0.48 
S6MG (kt) < 33.21 0.44 
S1MG (kt) < 14.77 0.43 
SRH1 (m2 s-2) < 148.75 0.42 
U6SV (kt) < 24.36 0.42 
VMXP (kt) < 12.82 0.39 

Severity Parameter  Threshold Range HSS  

LS  

VMXP (kt) 12.82 – 27.39 0.38 
STP (numeric) 0.157 – 0.905 0.35 
SCP (numeric) 1.77 – 8.0 0.35 
XTRN (g kt kg-1) 242.67 – 382.77 0.33 
U3SV (kt) 22.50 – 35.33 0.32 
DCP (numeric) 0.64 – 3.18 0.31 
VPMW (kt) 9.39 – 25.30 0.3 
SRH1 (m2 s-2) 148.75 – 495.23 0.29 
STHE (C) 324.43 – 335.79 0.28 
M1CP (J kg-1) 122.98 – 614.88 0.27 

Severity Parameter  Threshold Range HSS  

HS  

STP (numeric) > 0.59 0.45 
MUCP (J kg-1) > 1949.4 0.44 
DCP (numeric) > 1.78 0.42 
SCP (numeric) > 3.64 0.42 
M1CP (J kg-1) > 1147.8 0.42 
SBCP (J kg-1) > 657.35 0.39 
TE3K (K) > 22.85 0.37 
XTRN (g kt kg-1) > 289.37 0.36 
U6SV (kt) > 35.14 0.35 
DNCP (J kg-1) > 1162.6 0.33 
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Table 6: The five highest HSS values and their corresponding optimal threshold ranges for all 923 
two-parameter Heidke skill score tests for each severity type. 924 

  925 

Severity Combination  xopt,1 Range xopt,2 Range HSS  

NS 

DCP + SRH3 < 1.27 < 244 (m2 s-2) 0.71 
DCP + U3SV < 0.892 < 21.9 (kt) 0.68 
SCP + XTRN < 1.77 < 289 (g kt kg-1) 0.67 
DCP + S6MG < 0.892 < 35.7 (kt) 0.67 
STP + SCP < 0.157 < 1.77 0.67 

Severity Combination  xopt,1 Range xopt,2 Range HSS  

LS  

DCP + VMXP 0.671 – 3.35 11.5 – 27.5 (kt) 0.50 
SCP + VMXP 1.54 – 11.4 11.5 – 27.5 (kt) 0.46 
XTRN + SCP 252 – 467 (g kt kg-1) 1.54 – 8.10 0.46 
M1CP + VMXP 216 – 2373 (J kg-1) 11.5 – 27.5 (kt) 0.45 
SCP + DCP 1.54 – 11.4 0.671 – 3.35 0.45 

Severity Combination  xopt,1 Range xopt,2 Range HSS  

HS  

SBCP + U6SV > 657 (J kg-1) > 29.8 (kt) 0.53 
SBCP + S6MG > 657 (J kg-1) > 25.6 (kt) 0.53 
M1CP + S6MG > 738 (J kg-1) > 24.4 (kt) 0.52 
MUCP + S6MG > 1401 (J kg-1) > 24.4 (kt) 0.51 
STHE + U6SV > 336 (° C) > 29.8 (kt) 0.50 
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List of Figures  926 

Fig. 1.  Location of all the high-intensity severe (HS; orange), low-intensity severe (LS; green), 927 

and nonsevere (NS; blue) nocturnal bow echo events for the period 2010 – 18 used in the 928 

present study. 929 

 930 

Fig. 2. Box-and-whiskers plots for all cases of SRH1 and SHR3 (values plotted along the left 931 

axis), and S1MG, U3SV, V3SV, U6SV, S6MG, and U8SV (values plotted along the right 932 

axis). Each color-filled box represents the results for NS (blue), LS (green), and HS 933 

(orange). The whiskers span the interval from the 10th to 90th percentiles and the boxes 934 

enclose the 25th to 75th percentiles. Outliers, or points outside the whiskers, are not 935 

plotted. 936 

 937 

Fig. 3.  As in Fig. 1, but for SBCP, MUCP, M1CP, DNCP (values plotted along the left axis), and 938 

SBCN, MUCN, and M1CN (values plotted along the right axis). 939 

 940 

Fig. 4.  As in Fig. 1, but for RH80, RH70, and RHC5 (values plotted along the left axis), and 941 

LR85 and LR75 (values plotted along the right axis). 942 

 943 

Fig. 5.  As in Fig. 1, but for SCP (values plotted along the left axis), and STP and DCP (values 944 

plotted along the right axis). 945 

 946 

Fig. 6.   Skew T-Logp sounding diagrams for (a) NS, (b) LS, and (c) HS environments, created 947 

by averaging all cases for each type. Temperature (red), dewpoint (green), and most 948 
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unstable parcel (black) profiles are plotted, along with winds on the right side, dry 949 

adiabats (dashed red), moist adiabats (dashed blue), and constant mixing ratio lines 950 

(dashed green). MUCAPE and MUCIN are indicated by the shaded red and blue areas, 951 

respectively. 952 

 953 

Fig. 7.   Frequency of occurrence (in %) of SBLs of specified depth (in hPa) for all severity 954 

categories. For each interval the largest depth is inclusive, while the lowest is exclusive. 955 

Percentages are calculated with respect to the total number of NS (blue), LS (green), and 956 

HS (orange) events, and the total sum of all cases (yellow), respectively. 957 

 958 

Fig. 8.   Nocturnal distribution of NS (blue), LS (green), and HS (orange) events by hour of 959 

mesoanalysis data used. 960 

 961 

Fig. 9.   As in Fig. 2, but for SRH1 and SHR3 (values plotted along the left axis), and S1MG, 962 

U3SV, S6MG, and U8SV (values plotted along the right axis) for (a) late evening and 963 

(b) early morning. 964 

 965 

Fig. 10.  As in Fig. 3, but only for SBCP, MUCP, M1CP, and DNCP for (a) late evening and (b) 966 

early morning. 967 

 968 

Fig. 11.  As in Fig. 4, but only for XTRN (values plotted along the left axis), and LR85 and 969 

LR75 (values plotted along the right axis), for (a) late evening and (b) early morning. 970 

 971 
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Fig. 12.  As in Fig. 5, but for (a) late evening and (b) early morning. 972 

 973 

Fig. 13. Scatter plot of DCP vs SRH3 with GDKE (Gaussian kernel density estimation) 974 

contours overlaid for all severity types (NS in blue, LS in green, and HS in orange). 975 

The three GKDE contours for each severity type encompass the top 10% (innermost 976 

contour), top 25%, and top 75% (outermost contour) densest points. The vertical and 977 

horizontal blue lines indicate the two optimal thresholds associated with the highest 978 

HSS values for prediction of NS events for DCP and SRH3, respectively. 979 

 980 

Fig. 14. As in Fig. 13, but for DCP vs VMXP. The vertical and horizontal lines indicate the two 981 

optimal lower and upper thresholds associated with the highest HSS values for 982 

prediction of LS events for DCP and VMXP, respectively. 983 

 984 

Fig. 15. As in Fig. 13, but for SBCP vs U6SV. The vertical and horizontal lines indicate the two 985 

optimal thresholds associated with the highest HSS values for prediction of HS events 986 

for SBCP and U6SV, respectively. 987 

  988 
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Figures 989 

 990 

Figure 1: Location of all the high-intensity severe (HS; orange), low-intensity severe (LS; green), 991 
and nonsevere (NS; blue) nocturnal bow echo events for the period 2010 – 2018 used in the 992 
present study. The plotted points indicate the locations of the storm reports used for severe cases 993 
and the points closest to the apex of the bow for nonsevere. 994 

 995 
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 996 

Figure 2: Box-and-whiskers plots for all cases of SRH1 and SHR3 (values plotted along the left 997 
axis), and S1MG, U3SV, V3SV, U6SV, S6MG, and U8SV (values plotted along the right axis). 998 
Each color-filled box represents the results for NS (blue), LS (green), and HS (orange). The 999 
whiskers span the interval from the 10th to 90th percentiles and the boxes enclose the 25th to 1000 
75th percentiles. Outliers, or points outside the whiskers, are not plotted. 1001 

  1002 
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 1003 

Figure 3: As in Fig. 1, but for SBCP, MUCP, M1CP, DNCP (values plotted along the left axis), 1004 
and SBCN, MUCN, and M1CN (values plotted along the right axis). 1005 

  1006 
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 1007 

Figure 4: As in Fig. 1, but for RH80, RH70, and RHC5 (values plotted along the left axis), and 1008 
LR85 and LR75 (values plotted along the right axis). 1009 

  1010 
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 1011 
 1012 
Figure 5: As in Fig. 1, but for SCP (values plotted along the left axis), and STP and DCP (values 1013 
plotted along the right axis). 1014 
  1015 
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 1016 

 1017 

 1018 

 1019 

 1020 

 1021 

 1022 

 1023 

Figure 6: Skew T-Logp sounding diagrams for (a) NS, (b) LS, and (c) HS environments, created 1024 
by averaging all cases for each type. Temperature (red), dewpoint (green), and most unstable 1025 
parcel (black) profiles are plotted, along with winds on the right side, dry adiabats (dashed red), 1026 
moist adiabats (dashed blue), and constant mixing ratio lines (dashed green). MUCAPE and 1027 
MUCIN are indicated by the shaded red and blue areas, respectively. 1028 

 1029 

a) b) 

c) 
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Figure 7: Frequency of occurrence (in %) of SBLs of specified depth (in hPa) for all severity 1030 
categories. For each interval the largest depth is inclusive, while the lowest is exclusive. 1031 
Percentages are calculated with respect to the total number of NS (blue), LS (green), and HS 1032 
(orange) events, and the total sum of all cases (yellow), respectively. 1033 
 1034 
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1035 
Figure 8: Nocturnal distribution of NS (blue), LS (green), and HS (orange) events by hour of 1036 
mesoanalysis data used. 1037 

  1038 
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Figure 9: As in Fig. 2, but for SRH1 and SHR3 (values plotted along the left axis), and S1MG, 1039 
U3SV, S6MG, and U8SV (values plotted along the right axis) for (a) late evening and (b) early 1040 
morning. 1041 

  1042 

(a) (b) 
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Figure 10: As in Fig. 3, but only for SBCP, MUCP, M1CP, and DNCP for (a) late evening and 1043 
(b) early morning. 1044 

  1045 

(a) (b) 
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Figure 11: As in Fig. 4, but only for XTRN (values plotted along the left axis), and LR85 and 1046 
LR75 (values plotted along the right axis), for (a) late evening and (b) early morning. 1047 

  1048 

(a) (b) 
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Figure 12: As in Fig. 5, but for (a) late evening and (b) early morning. 1049 

 1050 

(a) (b) 
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 1051 
Figure 13: Scatter plot of DCP vs SRH3 with GDKE (Gaussian kernel density estimation) 1052 
contours overlaid for all severity types (NS in blue, LS in green, and HS in orange). The three 1053 
GKDE contours for each severity type encompass the top 10% (innermost contour), top 25%, 1054 
and top 75% (outermost contour) densest points. The vertical and horizontal blue lines indicate 1055 
the two optimal thresholds associated with the highest HSS values for prediction of NS events 1056 
for DCP and SRH3, respectively. 1057 
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1058 
Figure 14: As in Fig. 13, but for DCP vs VMXP. The vertical and horizontal green lines indicate 1059 
the two optimal lower and upper thresholds associated with the highest HSS values for prediction 1060 
of LS events for DCP and VMXP, respectively. 1061 

  1062 
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1063 
Figure 15: As in Fig. 13, but for SBCP vs U6SV. The vertical and horizontal orange lines 1064 
indicate the two optimal thresholds associated with the highest HSS values for prediction of HS 1065 
events for SBCP and U6SV, respectively. 1066 
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