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ABSTRACT

Nocturnal bow echoes can produce wind damage, even in situations where elevated
convection occurs. Accurate forecasts of wind potential tend to be more challenging for
operational forecasters than for daytime bows because of incomplete understanding of how
elevated convection interacts with the stable boundary layer. The present study compares the
differences in warm-season, nocturnal bow echo environments in which high intensity (>70
knots) severe winds (HS), low intensity (50-55 knots) severe winds (LS), and nonsevere winds
(NS) occurred. Using a sample of 132 events from 2010 to 2018, 43 forecast parameters from the
SPC mesoanalysis system were examined over a 120 x 120 km region centered on the strongest
storm report or most pronounced bowing convective segment. Severe composite parameters are
found to be among the best discriminators between all severity types, especially Derecho
Composite Parameter (DCP) and Significant Tornado Parameter (STP). Shear parameters are
significant discriminators only between severe and nonsevere cases, while Convective Available
Potential Energy (CAPE) parameters are significant discriminators only between HS and LS/NS
bow echoes. Convective Inhibition (CIN) is among the worst discriminators for all severity
types. The parameters providing the most predictive skill for HS bow echoes are STP and most
unstable CAPE, and for LS bow echoes are V wind component at best CAPE (VMXP) level,
STP, and Supercell Composite Parameter. Combinations of two parameters are shown to
improve forecasting skill further, with the combination of surface-based CAPE and 0 — 6 km U
shear component, and DCP and VMXP, providing the most skillful HS and LS forecasts,

respectively.

Accepted for publication in Weatherard Forecastifig!"DOF 1011 75/WAF2D120=0137: P50 PMuTe



mm Wondershare

Trial Version g PDFelement

46 1. Introduction

47

48 Bow echoes (Fujita 1978; Johns 1993; Weisman 1993; Przybylinski 1995), a subset of

49  mesoscale convective systems (MCSs), frequently generate damaging straight-line surface winds
50  (Fujita and Wakimoto 1981; Davis et al. 2004; Ashley and Mote 2005; Atkins et al. 2005;

51  Wheatley et al. 2006; Wakimoto et al. 2006). These events account for the majority of casualties
52 and damage resulting from convective nontornadic winds in the United States (Johns and Hirt

53 1987; Przybylinski 1995; Davis et al. 2004; Ashley and Mote 2005). Therefore, forecasting these
54 types of storms correctly is essential to reduce risk to lives and property.

55 Idealized simulations by Weisman (1993) suggested that severe, long-lived bow echoes

56  (i.e., derechos; see Corfidi et al. (2016) for the precise definition of a derecho) may be generated
57  in environments with Convective Available Potential Energy (CAPE) of at least 2000 m? s and
58  vertical wind shear of at least 20 m s! over the lowest 5 km above ground level (AGL). Coniglio
59  etal. (2004) stressed the importance of low-level moisture (James et al. 2006; Guastini and

60  Bosart 2016) and relatively dry conditions at midlevels, and the detrimental effect of low

61 instability and weak deep-layer shear on bow echoes. Contrary to Weisman (1993), Evans and
62  Doswell (2001), and Coniglio et al. (2004) found low-level (0-2.5 km) shear not skillful in

63  forecasting long-lived bow echoes. Evans and Doswell (2001) found high variation in the

64  ambient shear and instability (similar to Coniglio et al. 2004; Cohen et al. 2007), suggesting that,
65 alone, they are not sufficient to differentiate derecho environments from those associated with
66  nonsevere MCSs.

67 Cohen et al. (2007) investigated nonsevere MCSs, severe MCSs, and severe derecho-

68  producing MCSs and found that the best discriminators for distinguishing severe wind-producing
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MCSs from nonsevere MCSs were deep-layer wind shear and low- to upper-level wind speeds,
together with median 0-1 km system-relative wind speeds and midlevel environmental lapse
rates. Similar to Johns and Doswell (1992), they found that low-level (0-2 km) wind shear is a
worse discriminator compared to deep-layer (0—6 km and 0—10 km) shear. Moreover, they
observed that vertical differences in equivalent potential temperature and CAPE only
differentiate well between weak and severe/derecho MCS environments; environments
characterized by downdraft CAPE (DNCP; the maximum energy available to a descending
parcel) over 1000 J kg-1 are favorable for severe wind-producing mesoscale convective systems,
which agrees with Evans and Doswell (2001).

Despite the fact MCSs are common at night, it might be assumed that bow echoes with
damaging winds are rare at night, since these environments are often characterized by a
nocturnal stable boundary layer (SBL; Schultz et al. 2000). SBLs should hinder - or even impede
in certain cases — the generation of strong cold pools with tight temperature and pressure
gradients more so than what occurs during the daytime, and could potentially reduce momentum
transport to the ground within negatively buoyant downdrafts (Horgan et al. 2007). However,
bow echoes and intense derechos often occur at night (Johns and Hirt 1987; Bentley and Mote
1998; Bernardet and Cotton 1998; Davis et al. 2004; Wakimoto et al. 2006; Wheatley et al. 2006;
Adams-Selin and Johnson 2010; Coniglio et al. 2012; Adams-Selin and Johnson 2013; Guastini
and Bosart 2016). These nocturnal bow echoes, and more generally MCSs, are more poorly
forecast compared to daytime convective systems (Davis et al. 2003, Wilson and Roberts 2006;
Clark et al. 2007; Weisman et al. 2008; Hitchcock et al. 2019; Weckwerth et al. 2019), possibly
because nocturnal convection is often elevated, with forcing mechanisms above the ground, such

as convergence at the nose of the low-level jet (LLJ; e.g., Stull 1988), gravity waves, or bores,
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92  being more important than during the daytime. Therefore, the relative lack of observations above
93  the surface is more of a problem at night because it would be these observations that would show
94  the areas likely to produce sufficient lift to trigger elevated thunderstorms (Davis et al. 2003;
95  Clark et al. 2007; Hitchcock et al. 2019).
96 Nocturnal bow echo environments are often characterized by an SBL and a LLJ, which
97  provide an elevated source of moist and unstable air and creates a favorable environment for
98  MCSs (e.g., Corfidi et al. 2008; Schumacher and Johnson 2009; French and Parker 2010; Blake
99  etal. 2017). These nocturnal systems are often elevated (Colman 1990, Parker 2008), in
100  environments with considerable surface-based CIN (Convective Inhibition; SBCN), due to the
101  disconnect of the SBL and unstable air aloft, thus only ingesting air parcels located above the
102  SBL. While the regeneration of convective cells at the leading edge of a cold pool typically
103  maintains daytime MCSs (Rotunno et al. 1988), some studies have found that nocturnal MCSs
104  can also be cold-pool driven and surface-based despite it being more difficult for a strong cold
105  pool to develop at night (Parker 2008; Marsham et al. 2011; Peters and Schumacher 2016; Parker
106  etal. 2020), due to the strength of the SBL, increased temperature homogeneity, and/or reduced
107  evaporative cooling in the tropospheric layer just above the ground. However, other studies
108  indicate that bores (e.g., Crook 1988; Wilson and Roberts 2006; Haghi et al. 2017) or gravity
109  waves (e.g., Crook and Moncrieft 1988; Parker 2008; Marsham et al. 2010) generated by weak
110  cold pools play a key role to sustain nocturnal MCSs (Crook and Moncrieff 1988; Koch et al.
111 2008; Parker 2008; French and Parker 2010; Marsham et al. 2010; Marsham et al. 2011; Blake et
112 al. 2017; Parsons et al. 2019).
113 At the present time, shortcomings exist in our understanding of which processes allow

114  severe convective winds to reach the surface in stable environments. Parker (2008) investigated
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115  severe convective winds in stable environments and found that even in the absence of surface-
116  based CAPE, elevated convective systems could generate negatively-buoyant downdrafts strong
117  enough to reach the surface. Marsham et al. (2011) investigated an MCS, whose initial

118  convection triggered both gravity waves and bores, which initiated further convection ahead of
119  the cold pool that became surface based. Hitchcock et al. (2019) found that out of 13 MCSs

120  sampled by PECAN (Plains Elevated Convection at Night; Geerts et al. 2017), almost every

121 postconvective nocturnal sounding observed a surface cold pool, suggesting that the potential for
122 damaging surface winds associated with nocturnal MCSs may be higher than expected. Recently,
123 Parker et al. (2020) conducted an idealized simulation of the nocturnal PECAN MCS that

124 occurred on 26 June 2015 and observed that initially elevated convection became surface based,
125  and severe surface winds were produced. However, this binary distinction between surface-based
126  and elevated convection is relatively ambiguous, as nocturnal MCSs exist on a spectrum between
127  these two extremes, i.e., they may ingest SBL air from different source layers (Corfidi et al.

128 2008).

129 Considering the gaps in our understanding of how elevated convection interacts with the
130  SBL, nocturnal severe wind-producing storms can present a challenge for operational

131  forecasters. Being able to discriminate between environments in which a nocturnal bow echo

132 cannot generate intense surface winds from environments where it will produce severe winds is
133 an important societal and scientific question to answer. Although nocturnal bow echoes can

134 produce severe winds at the surface, there is a dearth of studies in the literature that specifically
135  analyze nocturnal bow echoes (Wakimoto et al. 2006). Therefore, the goal of this project is to
136  examine the differences in near-storm parameters between warm-season, nocturnal bow echoes

137  that produce severe winds and those that do not.
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138 A description of the data and methods is presented in the following section. Section 3
139  discusses single and multiple parameters results. General summary and conclusions are presented
140  in section 4.

141

142 2. Data and methodology

143

144  a. Data collection and classification

145

146 The analysis of the environmental conditions associated with bow echoes varying in
147  severity was conducted by selecting a sample of 132 warm-season, nocturnal bow echo events
148  occurring during the April-August period each year from 2010 to 2018 (see the online

149  supplemental material). In the present study, cases were considered nocturnal if a bowing

150  convective line was present between 02 UTC and 11 UTC. These events were chosen using
151  composite reflectivity data from the UCAR Image Archive browser

152 (https://www2.mmm.ucar.edu/imagearchive). A loop of composite reflectivity for the contiguous

153  United States was examined and, when bow echoes were noted, if the criteria explained below
154  were met, the cases were used in the study. Although a few bow echoes meeting the criteria may
155  have been missed, the majority of all relevant events were captured.

156 Included in this sample were 44 nonsevere cases (NS) in which there were no measured
157  severe winds or wind damage reports for at least six hours before and after the time of maximum
158  bow echo development (largest area within bow of reflectivity greater than 50 dBZ). Of the

159  remaining 88 cases, 41 were low-intensity severe wind cases (LS), where all wind reports were

160  in the range of 50-55 kt, and 47 were high-intensity severe winds cases (HS), where at least one
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161  severe wind report with a magnitude greater than 70 kt occurred. Therefore, this classification is
162  more focused on wind intensity than Cohen et al. (2007), who classified MCSs based on the

163  number of reports of severe winds rather than severity, and assumed that weak nonsevere MCSs
164  could have up to 5 storm reports. The present study, like Cohen et al. (2007), used both estimated
165 and measured wind reports. It is well known that deficiencies exist in the wind database, such as
166  the human tendency to overestimate wind speeds (Edwards et al., 2018). However, it was

167  necessary to include both types of reports to maintain a sufficient sample size for meaningful
168  analysis.

169 The analysis focuses on SPC mesoanalysis-derived proximity soundings to represent the
170  storm environment (Evans and Doswell 2001; Doswell and Evans 2003; Coniglio et al. 2004;
171  Cohen et al. 2007; Thompson et al. 2012; Reames 2017). The General Meteorology Package
172 (GEMPAK) software (desJardins et al. 1991) was used to obtain a set of 43 sounding-derived
173 parameters from the 40-km horizontal grid spacing SPC mesoanalysis system (Table 1; Bothwell
174  etal. 2002; Coniglio et al. 2012). This dataset is based upon the hourly 40-km RUC, and after
175  May 2012, 40-km RAP, analysis grids, adjusted using surface observations, which is known at
176  the Storm Prediction Center as SFCOA (surface objective analysis) and on the SPC website

177  as mesoanalysis. The selected parameters include measures of vertical wind shear, wind speed,
178  multiple thermodynamic properties and also four composite indices. These four indices are the
179  Supercell Composite Parameter (SCP; Thompson et al. 2004), a function of effective storm

180  relative helicity (SRH; based on Bunkers right supercell motion, Bunkers et al. 2000), most

181  unstable CAPE (MUCP), most unstable CIN (MUCN), and 0-6 km shear magnitude (S6MG);
182  Significant Tornado Parameter (STP; Thompson et al. 2012), using surface-based CAPE

183  (SBCP), 0-1 km SRH (SRH1), and S6MG; Derecho Composite Parameter (DCP; Evans and
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184  Doswell 2001), a function of downdraft CAPE (DNCP), MUCP, S6MG, and the 0-6 km mean
185  wind; and XTRN, the product of maximum mixing ratio (MXMX) and wind speed at the most
186  unstable parcel level (MUPL).

187 For severe cases, the mesoanalysis data at the nine grid points, a 3x3 grid, closest to the
188  wind report of the largest magnitude within the ranges specified earlier and using the analysis
189  hour immediately before the report occurred were averaged. To properly examine the

190  environment associated with bow echoes and prevent previous convection from skewing results,
191  if the storm report was within ten minutes after the analysis time, the previous hour (60-70

192  minutes earlier) was used instead. For NS cases, the mesoanalysis data were averaged from the
193 nine grid points, a 3x3 grid, closest to the apex of the bow (i.e., where the strongest winds

194  typically occur; Weisman 2003; Atkins and St. Laurent 2009), and at the analysis hour

195  immediately prior to the maximum bow echo development on radar, to avoid having prior

196  convection alter the environmental parameters. Additionally, earlier radar images were examined
197  for a 10-hour period over a roughly 200x200 km region ahead of the bow echo to ensure that the
198  environment was not influenced by prior unrelated convection. All storms occurred east of the
199  Rocky Mountains, and the three severity types were well spatially distributed across primarily
200  the central United States (Fig. 1), reducing the potential for regional biases. The seasonal

201  distribution of cases was also similar among the three severity types (not shown).

202

203  b. Statistical methods

204

205 To analyze forecast parameters, several graphical and statistical techniques were

206  employed. Means, medians, bias, interquartile distribution, box-and-whiskers plots, and scatter
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207  plots were used to obtain additional information and to easily visualize features in the data such
208 as clusters, trends, spread, and outliers. The significance of the differences among the parameter
209  distributions and the discriminatory ability of a specific variable were determined using

210  bootstrapped paired t-tests (Mendenhall and Sincich 2007) and non-parametric Wilcoxon signed
211  rank-sum tests (Wilks 2011). A significance level of p = 5% was used to determine if a test

212 statistic was statistically significant. Since the results of the two tests were very similar, with
213 only about 5% of parameters found to be significant with one test but not the other, only the

214  bootstrapped paired t-tests are presented in the results to follow.

215 Additionally, the Heidke Skill Score (hereafter HSS; Heidke 1926) and threshold values
216  were calculated to provide a more robust quantitative analysis about the forecasting skill of the
217  parameters. The HSS is defined as

ad — bc

218 B = e o+ D+ @ )b+ d)

219  where a, b, ¢, and d are the hits, false alarms, misses, and correct rejections, respectively. An

220  HSS of 1 indicates all forecasts are correct, 0 indicates that the forecast has no skill, and negative
221  wvalues indicate that a chance forecast is better.

222 Similar to Kuchera and Parker (2006) for severe convective winds and Reames (2017) for
223 tornadoes, optimal threshold values, Xopt,i, are obtained by maximizing the HSS. An HS event
224 would be forecast if the value of a forecast parameter is greater than Xopt,1, whereas for an NS

225  event it would be lower than Xopt,2; for the average relative humidity from LCL to 500 hPa

226  (RHCS) and from LCL to LFC (RHLC), the average kinematic vertical velocity between MUPL
227  and LCL (VKLC), the 3 km average relative humidity (3KRH), the relative humidity at 800 hPa
228  (RH80) and 700 hPa (RH70), the reverse is true for both severity types. An LS event would be

229  forecast if the value of a forecast parameter is between the range Xopt,3 and Xopt,4. The same

10
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230  method was used in the case of any combination of two parameters, with the addition that the
231  same condition needed to apply to both parameters: for instance, an HS event would be forecast
232 if both forecast parameters exceed the two new optimal thresholds Xopt,5s and Xopt,6 in the

233 appropriate direction (Reames 2017).

234 To analyze the two-dimensional severe weather parameter spaces, the Gaussian kernel
235  density estimation (GKDE; Scott 2015) was used, which was performed for two-dimensional
236  probability analyses considering combinations of multiple parameters. The GDKE is a method to
237  estimate the multivariate probability density function of two random variables in a non-

238  parametric way, which allows one to gain knowledge about the continuous distribution of data
239  where no observed data points exist. This method has also been implemented to create

240  continuous probabilistic fields of significant severe storm report locations (Smith et al. 2012),
241  tornadic near-storm environmental characteristics for convective mode (Thompson et al. 2012),
242 and tornadic environments in the two-dimensional convective parameter spaces (Reames 2017).
243 Many of the parameters examined in the present study have been shown to be useful in

244  distinguishing convective mode and observed severe weather (Johns et al. 1993; Brooks et al.
245  1994; Evans and Doswell 2001; Doswell and Evans 2003; Thompson et al. 2003; Kuchera and
246  Parker 2006; Thompson et al. 2012; Hampshire et al. 2017; Reames 2017).

247

248  3.Results

249

250 The following analyses compare the distributions of near-storm environmental

251  parameters and thermodynamic soundings between HS, LS, and NS nocturnal events. In the

252 results presented below, all differences to be discussed were found to be statistically significant

11
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253 unless otherwise noted. In addition, the skill of both single parameters and combinations of

254  parameters as forecasting tools in discriminating different severity types is evaluated.

255

256  a. Single parameter distributions

257

258 Many prior studies (e.g., Rotunno et al. 1988; Weisman and Rotunno 2004; Coniglio et
259  al. 2006; Cohen et al. 2007; Coniglio et al. 2012) have commented on the importance of vertical
260  wind shear on the initiation and maintenance of deep moist convection and bow echoes. We find
261  that shear, whether it is present in low levels or deeper levels, discriminates well between

262  nonsevere events and severe events (Fig. 2; Table 2). The differences in the mean values

263  between the shear variables can also be seen in Table 1. NS environments are associated with
264  significantly weaker low-level, mid-level, and upper-level wind shear than severe ones for all the
265  shear parameters examined. This is also true for low-level SRH by as much as 100 m? s2. When
266  discriminating between LS and HS environments, shear measures in the lowest layers (0-1 km
267  and 0-3 km) show rather minor insignificant differences (similar to Evans and Doswell 2001;
268  Cohen et al. 2007). As one considers deeper layers of shear (0-6 km and 0-8 km) there is more
269  separation between the medians shown in the boxplots (similar to Coniglio et al. 2006; Cohen et
270  al. 2007), but it is not statistically significant. An exception does exist for the 0-6 km (U6SV)
271  and 0-8 km pressure-weighted (U8SV) U shear components. Differences in these two parameters
272 were not significant at the 95% confidence level, but were significant at the 90% level (not

273 shown). The value of SOMG for HS events (41.1 kt; Table 1) is similar to that found for derecho-
274  producing MCSs by Cohen et al. (2007; about 43 kt) and Coniglio et al. (2004; around 40 kt),

275  while that for LS events is 36.9 kt. The U shear component in the 0-3 km layer does not differ

12
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276  much between severity types, but differs more noticeably for deeper 0-6 km and 0-8 km shear,
277  with the most intense nocturnal bow echo winds happening with the strongest zonal shear

278  component. As is shown later, this increasing zonal component to the shear is primarily due to
279  stronger zonal winds aloft. Additionally, the meridional component of the wind differs

280  significantly in the lowest layer between the nonsevere and severe events; however, the

281  differences among all three severity types were not significant in the deeper layers (and thus are
282  not plotted). VKLC is also a significant discriminator between severe and nonsevere cases

283  (figure not shown), and between HS and LS events at the 90% confidence level. Greater lift in
284  the near-storm environment has multiple effects: it can help cool the mid-troposphere increasing
285  the CAPE available for storms, and it may allow for longer sustenance of convection or provide
286  more favorable conditions for upscale growth. These factors may facilitate the occurrence of
287  severe winds.

288 Nocturnal HS bow echo environments are characterized by the highest values of SBCP
289 (1518 Jkg'), 100 hPa mean mixed CAPE (M1CP; 1605 J kg™'), MUCP (2363 J kg''), and DNCP
290 (1025 J kg!') compared to both the LS and NS ones, greater by nearly 1000 J kg! for SBCP and
291  MUCEP (Table 1), making them very good parameters for discriminating between HS and LS/NS
292 (Fig. 3; Table 2). In addition, we find that CAPE is not a good discriminator between NS and LS
293 environments. These findings somewhat contrast with those found by Cohen et al. (2007), who
294  found that CAPE can only discriminate well between weak and severe/derecho MCS

295  environments, but not severe vs derecho-producing MCSs. DNCP increases with increasing bow
296  echo intensity, as found by Evans and Doswell (2001) and Cohen et al. (2007); values greater
297  than 1000 J kg! have been associated with increasing potential for strong downdrafts and

298  damaging outflow winds (James et al. 2006). Increased values of CAPE and DNCP are found to

13
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299  be a distinctive trait of HS bow echoes, suggesting that the nocturnal SBL may not be as cool in
300 these events, making it easier for a cold pool to reach the ground and produce damaging winds
301  (Parker et al. 2020). However, for our sample of cases, CIN is among the worst discriminators
302  overall, as values among all severe environments are relatively similar (Fig. 3). Mean values
303  show that SBCN and MUCN are in fact highest for LS events (Table 1). The finding that CIN
304  does not distinguish well between the severity types may be consistent with the results of Parker
305 etal. (2020) and Hiris and Gallus (2020), who found that the presence of low-level stable layers
306 inidealized experiments using CM1 (Bryan and Fritsch 2002) does not prevent the formation of
307  cold pools nor upscale growth of convection. Furthermore, almost all observed MCSs during the
308 recent PECAN project contained at least a weak surface cold pool, even when a stable boundary
309 layer was also observed (Hitchcock et al. 2019).

310 Comparatively dry conditions characterize HS environments at 700 hPa (Fig. 4), agreeing
311  with prior works suggesting dry air around this level encourages evaporative cooling and strong
312 negative buoyancy, and thus is a favorable ingredient for strong downdrafts (e.g., Johns 1993).
313  While RH70 discriminates only between HS and LS/NS types, RH80 discriminates between HS
314 and LS, and RHCS between HS and NS. Relative humidity at the levels examined is not able to
315  differentiate between LS and NS events. The results for relative humidity suggest that the HS
316  events are the ones that may be most influenced by enhanced evaporative cooling and stronger
317  downdrafts that greatly accelerate the flow, whereas other processes may play a bigger role in
318  determining whether or not a storm produces weaker severe winds. The highest LCLs are

319  associated with HS environments (608 m), but differences compared to the other severity types
320  are not significant. Since LCL height is a function of the relative humidity in the layer closest to

321  the ground, and these events are nocturnal with SBLs present so that the relative humidity near

14

Accepted for publication in Weatherard Forecastifig!"DOF 1011 75/WAF2D120=0137: P50 PMuTe



mm Wondershare

Trial Version g PDFelement

322 the ground would likely be relatively high in all events, it is not surprising that LCL heights

323 would not differ significantly among the three severity types. While the maximum equivalent
324  potential temperature (theta-e) difference in lowest 3 km (TE3K) differentiates well between
325  severe and nonsevere environments, surface theta-e (STHE) differentiates best between HS and
326  LS/NS environments (Table 2).

327 As in Craven and Brooks (2004), lapse rates exceeding 7° C km™! are classified as steep
328 in the present study. The lapse rate from 850 to 500 hPa (LR85) and from 700 to 500 hPa (LR75)
329  discriminate significantly between severe and nonsevere cases (Table 2). In addition, LR75

330  performs well also when comparing HS (steep lapse rate, 7.27° C km™') and LS (6.89° C km™)
331  (Fig. 4), suggesting that steeper lapse rates in this layer contribute to the higher values of CAPE
332  parameters for HS events. Maximum mixing ratio (MXMX in Table 1) is highest for HS events,
333  also consistent with higher CAPE when considering the steeper lapse rates, and it discriminates
334  between HS vs NS/LS. The composite parameter XTRN differentiates well between severe and
335 nonsevere cases (figure not shown). We believe that this is mainly because stronger wind shear
336  leads to higher XTRN values, and as will be shown later, stronger winds are associated with
337  more intense convection.

338 The highest values of the severe composite parameters SCP, STP, and DCP occur in HS
339  environments (8.55, 1.11, 3.48 respectively), followed by LS, and then NS ones (Table 1).

340  Separation between all severity types is substantial (Fig. 5) and all parameters differentiate

341  significantly among all three severity types (Table 2). It is likely that SCP, STP, and DCP work
342 so well because they all include at least one parameter that discriminates significantly between
343  severe and nonsevere (e.g., shear, SRH), and at least one that discriminates well between HS and

344  LS/NS (e.g., CAPE). The DCP identifies favorable environments for cold-pool driven wind
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345  events (Evans and Doswell 2001, Lagerquist et al. 2017), and values greater than 2 favor the

346  development of derechos from existing MCSs (Lagerquist et al. 2017). We find that DNCP,

347  related to the potential for cold-pool production, LR75, SCP, STP, and DCP are the parameters
348  among the 43 examined that discriminate significantly among all three severity types. For

349  brevity, only parameters for which any comparison showed statistically significant differences
350 (31 of the 43 studied) are included in the analyses to follow. Removing parameters with p 2 5%
351  does not imply that a parameter is unimportant for distinguishing between bow echo severity
352  types, only that it cannot statistically differentiate between the types. For LS vs NS nocturnal
353  environments (Table 2), 21 parameters (48%) were retained after testing; for HS vs NS, 28

354  parameters (65%), and for HS vs LS, 12 parameters (27%) were retained.

355 Soundings averaged for all events in each severity class (Fig. 6) were computed using the
356  original 40-km RUC/RAP analyses, and thus some parameters may differ slightly from the SPC
357 mesoanalysis. In Fig. 6, the parcel trajectory for the most-unstable parcel is shown since MUCP
358  was found to differentiate the best among CAPE parameters between HS and LS/NS in the SPC
359  mesoanalyses. The soundings indicate that lower values of RH70 for HS and LS are due to both
360 a warmer and drier environment at that level. The soundings also show that the lower

361  troposphere is warmer and moister in HS events than in other events, likely the primary reason
362  for the higher CAPE values in those cases discussed earlier. Winds at 500 hPa are about 20 kt for
363 NS, 30 kt for LS, and 35 kt for HS environments, which is less than the 41 kt found by Johns and
364  Hirt (1987), and have a stronger southerly component for severe events. The average soundings
365  are shown using 950 hPa as an assumed surface point, since the average surface pressure of all
366  cases is 951 hPa (948.6 hPa for NS, 953.5 hPa for LS, and 953.6 for HS), and data are only

367 available every 25 hPa. The portion of the soundings nearest the ground should be interpreted
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368  with caution since the soundings used to create these average soundings have different surface
369 elevations. Therefore, to better examine differences in the SBL near the ground for different
370  severity types, a separate analysis of the depth of the SBL was performed (Fig. 7). The depth was
371  determined to be the top of the layer where the lapse rates were more stable than a moist

372  adiabatic lapse rate. This analysis supports the results found for CIN variables, in that the depths
373  of the SBLs do not differ among the three severity types. The majority (over 60%) of SBLs are
374  shallower than 50 hPa, less than 10% are deeper than 100 hPa, and only about 10% are unstable
375  for all severity types.

376 In summary, while many parameters involving shear, helicity, wind speeds, and

377  thermodynamics were found to differ significantly between NS events and severe ones, only a
378  few thermodynamic parameters and three composite indices differed significantly between the
379  HS and LS events. These results suggest that, while many kinematic, shear-based, and

380 thermodynamic quantities can help forecasters differentiate between severe and nonsevere

381  nocturnal bow echo environments, only severe composite indices and some thermodynamic
382  variables can help differentiate environments likely to produce bow echoes with high intensity
383  severe wind from ones that will only produce marginally-severe wind.

384

385  b. Nocturnal distribution analysis

386

387 The nocturnal frequency distribution by hour for each severity type used in the present
388  study (Fig. 8) peaks at 02 UTC for HS and LS types and at 03 UTC for NS types, and shows
389  that our dataset is relatively evenly distributed, with many events also occurring later in the

390 night. The single report at 01 UTC is due to a case where the report was within the ten
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391  minutes after the 02 UTC analysis time, and, as explained earlier, this meant that the 01 UTC
392  mesoanalysis information was used. To ensure that typical nocturnal trends in parameters are not
393  the primary cause of differences between the severity levels (such as would happen, for instance,
394  if HS cases occurred more frequently early in the evening when CAPE is higher, whereas NS
395  events dominated later at night when CAPE is lower), the sample was divided into two groups of
396  similar size: one before 05 UTC (late evening) and one after 05 UTC (early morning). The

397  analysis was repeated separately for the two subsets of cases, comprising 65 total events for late
398  evening, of which 23 were HS, 24 LS, and 18 NS, and 67 total events for early morning, of

399  which 24 were HS, 17 LS, and 26 NS. The two subsets are generally similarly distributed among
400 the three severity types. For late evening comparisons between LS and NS bow echo

401  environments 17 parameters were retained after bootstrap testing (39% of initial parameters),
402  while 14 (32%) were retained for early morning and 21 for the whole sample. For differences
403  between HS and NS 21 parameters were kept (49%) for late evening, while 25 (58%) were for
404  early morning and 28 for the whole night. For differences between HS and LS, 13 parameters
405  were retained (30%), while 6 (14%) were for early morning and 12 for the whole dataset. In the
406  following analysis, the surface V wind component (VWND), U component at the top of the

407  eftective inflow layer (UEIL), and RH80 are not shown since no statistically significant

408  differences were found for any of the three comparisons between severity types for either time
409  period.

410 When separated into the two different time periods (Table 3), the majority of SRH and
411  shear parameters behave as they did for the full sample and remain good discriminators between
412  severe and nonsevere types, regardless of the time period chosen (Table 4), with substantial

413  separation in the distributions of values (Fig. 9). None of the kinematic parameters differentiate
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414  between HS and LS types (except for VKLC during late evening). The fact that kinematic

415  parameters do not differentiate between the intensity of the winds in severe cases, but relative
416  humidity did, again implies the important role that evaporative cooling might play in the creation
417  of downdrafts that are able to substantially accelerate the flow in HS events. The 0-3 km U

418  (U3SV) and V (V3SV) shear components are good discriminators between severe and nonsevere
419  types only during early morning. SOMG, U6SV, and U8SV discriminate between LS and NS

420  events only during late evening, but distinguish between HS and NS for both time periods. All
421  HS SRH and shear mean values are larger during early morning than late evening, possibly

422  reflecting the fact that the nocturnal LLJ typically peaks in intensity during this period, and that
423  the surface layer would be most likely to be decoupled from the flow aloft in the early morning.
424 As would be expected, since CAPE is a function of low-level temperature and the lower
425  troposphere still possesses some of the warming from the solar radiation prior to sunset, mean
426  values for all CAPE parameters are higher during late evening than in early morning (Table 3),
427  with the differences being statistically significant for SBCP and DNCP for HS cases. Differences
428  between the periods before and after 05 UTC grow larger as severity increases, with the biggest
429  differences being for HS SBCP and MUCP of about 1000 J kg! and 500 J kg™!, respectively.

430  SBCP, MUCP, and M1CP differentiate between HS and the other two severity types for both late
431  evening and early morning (Fig. 10; Table 4). DNCP can discriminate between all types before
432 05 UTC, and only between HS and NS after 05 UTC; however, relatively good separation

433  between HS and the other two types can be seen (Fig. 10). CIN parameters were tested but no
434  significant differences were found between the severity types. Therefore, CAPE and CIN results

435  are analogous to those obtained considering the whole dataset.
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436 During early morning, all severity types are characterized by smaller TE3K, particularly
437  for LS (more than 4 K less than during late evening), and smaller STHE (with the differences for
438  HS cases between the two datasets being statistically significant). RH parameters, both at 800
439  hPa, 700 hPa, and between LCL and 500 hPa perform worse than what was found using the

440  whole dataset, especially during early morning where no differences between severity types are
441  statistically significant (Table 4). RH70 for HS environments is drier after 05 UTC than before
442 05 UTC, but the opposite is true for LS environments. Before 05 UTC both HS and LS RH70
443  mean values are similar (Table 3). LR85 and LR75 mean values are higher for HS during late
444  evening (with the differences for LR85 for HS cases being statistically significant), whereas for
445 LS and NS they are larger during early morning. It is not clear why the changes in lapse rates
446  between the two periods in these layers behave differently among the severity types. Prior

447  daytime heating may explain a warmer 850 hPa temperature, and thus greater LR85, in the late
448  evening than in the early morning, although this impact would be smaller at 700 hPa. The

449  nocturnal LLJ also is a source for heat and moisture that might increase lapse rates at night, so it
450  1s possible that differences in the behavior of the LLJ among the cases might explain these trends
451  1in lapse rates. Both lapse rate parameters differentiate among all severity types only during late
452  evening, similar to the results obtained using the full sample, with large separation (Fig. 11) in
453  the distributions between severity types. On the other hand, LR75 differentiates only between HS
454  and NS during early morning (Table 4). The four severe composite parameters behave similarly
455  for both time periods and similar to the previous results, with the exception that SCP does not
456  differentiate between HS and LS for either time period. This result may be consistent with the
457  previous finding that kinematic parameters, which play a strong role in the formation of

458  supercells, do not differentiate either between HS and LS events. XTRN only discriminates
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459  between severe and nonsevere as well; but, contrary to the other three severe composite

460  parameters, during early morning it shows higher mean values for severe types, with better

461  separation between severity types than it does during the late evening (Fig. 11). Because XTRN
462  is a function of the maximum mixing ratio and wind speed at the level of the most unstable

463  parcel, it is likely particularly sensitive to the strength of the LLJ which supplies moisture and
464  often has its peak intensity near the level of the most unstable parcel. The LLJ often peaks in
465 intensity during the early morning period, which might explain the better separation of XTRN
466  among severity types in the early morning. STP and DCP differentiate among all types for all
467  time periods. During late evening, SCP is greater for all severity types, while STP and DCP are
468  greater only for severe events (Table 3), and show larger separation between severity types (Fig.
469  12). This behavior is consistent with these composite parameters’ dependence on either CAPE or
470  steepness of low-level lapse rates, which would be greater earlier in the night than later.

471 For the two subsets a separate analysis of the SBL was performed as well (figure not
472  shown). The depths of the SBL during late evening are generally shallower than those found
473  using the whole dataset for all severity types, with almost 80% of all SBLs less than 50 hPa deep
474  and less than 10% of the lower tropospheric temperature profiles conditionally unstable. Early
475  morning SBL depths vary more: the majority (about 30%) are in the range 25-50 hPa, while

476  about 18% are below 25 hPa and about 18% in the range 50-75 hPa; about 14% of all lower

477  tropospheric temperature profiles are conditionally unstable. The increased variation happens
478  among all severity types. Of all the parameters shown in Table 4, statistically significant

479  differences between the values before and after 05 UTC are present only for the parameters

480  SBCP, DNCP, STHE, and LR85 for HS only (not shown). These are all related to

481  thermodynamics, as one would expect due to typical nocturnal cooling in the lower troposphere.

21

Accepted for publication in Weatherard Forecastifig!"DOF 1011 75/WAF2D120=0137: P50 PMuTe



mm Wondershare

Trial Version g PDFelement

482 It is worth noting that for HS cases there are more robust differences before and after 05 UTC
483  than for the other two severity types.

484

485  c. Single-parameter forecast skill

486

487 In the previous discussion, it was found that only four parameters differ significantly
488  between the first and second part of the night; therefore, the following two sections examining
489  the skill of using the parameters to forecast severity focus on the whole dataset. Although the
490 previous analyses are important to evaluate which forecast parameters have the best

491  discriminatory ability between severity types, the use of thresholds and an analysis of the skill
492  associated with them is needed to determine the usefulness of each parameter in forecasting. For
493  this reason, HSS values were calculated to assess each parameter’s suitability for predicting the
494  severity level of nocturnal bow echoes.

495 The ten parameters with the highest HSS for forecasting each severity class, along with
496  the threshold yielding that HSS value, are shown in Table 5. The four composite parameters,
497  XTRN, SCP, STP, and DCP, are among the most highly skilled for all severity types. They have
498  the highest HSS scores for NS environments (0.51 — 0.6), and some of the highest for LS (0.31 —
499  0.38) and HS (0.36 — 0.45). These results are consistent with what was found earlier, as

500  composite parameters are functions of parameters that discriminate significantly between severe
501  and nonsevere (shear, SRH), and at least one differing between HS and LS/NS (e.g., CAPE). In
502  fact, considering NS cases, which do not produce severe winds at the surface, the two most

503  skillful parameters were STP (HSS of 0.6), with a maximum threshold of 0.039 (meaning that

504  values less than 0.039 indicate an NS event will occur), followed by SCP (0.59) and DCP (0.59),
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505  with maximum thresholds of 1.77 and 0.64 respectively. These thresholds are relatively small
506  (Thompson et al. 2012; Lagerquist et al. 2017) and should capture the large majority of

507  nonsevere events. The V wind component at best CAPE level (VMXP; 0.38), where best CAPE
508 is the maximum 50 hPa mean layer CAPE or essentially a layer averaged MUCP, is the most
509  skillful parameter for LS environments, with lower and upper thresholds of 12.82 kt and 27.39 kt
510  respectively (i.e., LS events are forecast when VMXP is between these values). The parameters
511  with the next highest HSS values are STP (0.35) and SCP (0.35), with higher threshold ranges
512 than those found for NS of 0.157 — 0.905 and 1.77 — 8.0, respectively. Finally, STP (0.45) and
513 MUCP (0.44) are the best parameters for HS events when minimum thresholds are 0.59 and
514  1949.4 J kg, respectively. This result confirms both the usefulness of composite parameters in
515  distinguishing significantly between all severity types as well as the crucial and intrinsic

516  discriminating nature of large CAPE for HS environments.

517 Together with the aforementioned four composite parameters, SRH and shear parameters
518  make up the other six most skillful parameters for NS events. A combination of kinematic and
519  thermodynamic parameters are the others having highest skill for LS events, and mostly severe
520  composite parameters together with CAPE parameters work best for HS environments. It is

521  possible that CAPE parameters are skilled at differentiating between HS and LS/NS

522 environments because stronger CAPE can lead to heavier precipitation cores and possible cold
523  pools. These conditions can subsequently favor the creation of strong winds due to downdrafts
524  bringing potentially cooler air down from aloft and wet-bulbing from evaporation of rain and
525  latent cooling near the surface. Higher CAPE may also lead to stronger pressure perturbations
526  due to the stronger updrafts, leading to stronger storm-scale jets (Adams-Selin and Johnson

527  2013).
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528

529  d. Two-parameter space analysis

530

531 Studies have shown that a multiparameter forecasting method often proves more skillful
532 than single-parameter counterparts (e.g., Reames 2017). To assess whether combinations of

533  parameters can provide better forecasts of severe wind potential in nocturnal bow echoes than
534  single parameters, the forecast skill of various combinations of two parameters was analyzed in a
535  manner similar to that used for single parameters. The combinations were created by combining
536  each thermodynamic parameter with every kinematic and composite parameter, each kinematic
537  parameter with every composite parameter, and the four composite parameters with each other.
538  This yields 245 combinations. Table 6 shows the five combinations of parameters that have the
539  best HSS scores for prediction of each severity class, along with the associated thresholds

540 intervals. In general, multiparameter forecasting skill is greater than single-parameter forecasting
541  skill for each severity class, with HSS differences for the best performing parameters around
542 20% larger (compare Table 6 to Table 5). Out of the 245 combinations of parameters (those in
543  Table 4) analyzed, 44 have HSS values larger than the best score found for single-parameters for
544  HS cases, with one of the two parameters being almost always a CAPE or severe composite

545  parameter. For LS cases, 39 combinations have HSS values larger than the best score for any
546  single parameter, and for NS, 49 do. Generally for LS and consistently for NS events, a severe
547  composite parameter is one parameter of the combination. As one would expect for these two
548  severity types, combining the highly discriminatory composite parameters, which account for
549  multiple atmospheric conditions, with other kinematic or thermodynamic parameters results in

550  more skillful combinations than combining non-composite forecasting variables only. The best
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551  five parameters for NS have the highest scores among all severity types (0.67 —0.71), the best for
552 HS have the second highest (0.50 — 0.53) and for LS the third highest (0.45 — 0.50).

553 The combination of DCP and 0-3 km SRH (SRH3) earns the highest HSS values for NS
554  types with a score of 0.71 (Table 6), and upper thresholds of 1.3 and 243.7 m? s respectively.
555  The highly concentrated area of NS environments tends to be well separated from the other two
556  severity types and located toward smaller values of DCP and SRH3 (Fig. 13). The probability of
557  detection (POD) of the best-performing NS combination is 0.82 with a false alarm rate (FAR) of
558 0.2 (not shown). This combination is likely most effective for NS environments because lower
559  wvalues of DCP discern unfavorable conditions for cold pool-driven wind events, and lower

560  values of SRH3 suggest at best weak potential for cyclonic updraft rotation, and the resulting
561  storm scale jets that can be associated with supercell thunderstorms.

562 The most skillful parameter combination for LS is DCP and VMXP with a score of 0.5,
563  and threshold ranges of 0.671 —3.35 and 11.5 — 27.5 kt. The distribution of LS events is dense
564  and quite localized, well separated from NS types but it slightly overlaps with the broad HS

565  group (Fig. 14). The distribution of VMXP values for LS events is similar to HS events and

566  higher than NS, while the distribution of DCP values for LS events is lower than HS events and
567  higher than NS events. The POD for the most skillful LS multiparameter combination is 0.56
568  with a FAR of 0.28 (not shown). Although it is more difficult to explain why these combinations
569  provide the best skill for forecasting LS events since these events fall between the other two

570  types in terms of severity, with two thresholds applied to each parameter, it appears that a strong
571  southerly wind at the best CAPE level is important because it may help supply heat and moisture
572  to maintain strong buoyancy while DCP was designed to indicate the potential for cold pool-

573 driven severe surface winds.
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574 For HS events, SBCP with U6SV is the most skillful combination of forecast parameters
575  with a score of 0.53, and lower thresholds of 657 J kg'! and 29.8 kt respectively. With a POD of
576  0.62 and a FAR of 0.23, HS events are more broadly distributed with thinner Gaussian kernel
577  density estimation contours, but still well separated from the other two severity groupings,

578  especially NS ones (Fig. 15). It should be noted that the 0-6 km shear magnitude and its U

579  component are present in all top seven combinations for HS types, indicating that, combined
580  with CAPE parameters, they provide the most skillful forecasts for HS environments. The fact
581  that this combination works best for HS events is not surprising when considering what

582  parameters were found to work best in the creation of the DCP (Evans and Doswell 2001). That
583  study did not test SBCP or U6SV, but did find that two similar parameters, MUCP and the shear
584  magnitude in the 0-6 km layer, worked well to determine derecho environments.

585

586 4. Summary and conclusions

587

588 This work analyzes multiple meteorological variables and their ability to differentiate the
589  severity of thunderstorm winds produced in 132 warm-season, nocturnal bow echo

590  environments. Nocturnal bow echoes present an enhanced challenge because the typical

591  relatively cool SBL at night reduces both the momentum of downdrafts that can lead to severe
592  wind at the ground, and the intensity of low-level cold pools whose strong pressure gradients
593  might drive strong winds. These cases were classified into three severity types based on the

594  maximum severe wind or damage reports: 44 nonsevere cases (NS), 41 low-intensity severe

595  wind cases (LS), and 47 high-intensity severe winds cases (HS). A total of 43 forecast

596  parameters were obtained from the SPC mesoanalysis system and analyzed for both the
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597  overnight and in the subperiods of late evening and early morning. These parameters included
598  measures of wind shear in different layers, SRH, instability, buoyancy, lapse rates, relative

599  humidity, severe composite parameters, and other variables.

600 Results indicate that parameters able to discriminate between LS and NS events tend to
601  be kinematic-based (shear, SRH) and severe composite parameters; while parameters that

602  differentiate between HS and LS include some that are thermodynamic-based, mostly CAPE, and
603  severe composite. Large values of buoyancy are found to be a distinctive trait of HS bow echoes,
604  especially during late evening. In addition, DNCP is a good discriminator for all severity types
605  only for late evening environments, but it does discriminate between severe and nonsevere in the
606  other time periods. Similar to Kuchera and Parker (2006) who looked at nontornadic severe

607  winds from long-lived convective windstorms, CIN variables are among the worst

608  discriminators: this is supported by the fact that the nocturnal SBLs analyzed do not differ

609  among the three severity types.

610 Midlevel dry air entrainment has often been identified as a favorable ingredient for

611  downdraft initiation (e.g., Johns 1993), and we found drier conditions at midlevels (Coniglio et
612 al. 2004) and significantly steeper midlevel lapse rates as severity increased. However, when
613  separated into two nocturnal time periods, midlevel relative humidity parameters are poor

614  discriminators for both time periods. As found by Cohen et al. (2007) for MCSs, the present

615  study found that midlevel lapse rates were good discriminators for bow echo severity for the full
616  sample of nocturnal events, but when examining sub-periods, they were not good discriminators
617  for the early morning period. Severe composite parameters, especially DCP and STP, were

618  shown to be among the most skillful discriminators between all severity types. The generally

619  good discriminatory ability of composite parameters that take into account both the strength of

27

Accepted for publication in Weatherard Forecastifig!"DOF 1011 75/WAF2D120=0137: P50 PMuTe



mm Wondershare

Trial Version @™ pprelement

620  shear and buoyancy is consistent with the idea that bow echoes are often a function of small-
621  scale kinematic and thermodynamic processes, so that many single mesoanalysis parameters
622  representing the larger near-storm environment will not work as well for the prediction of winds
623  in bow echoes.

624 The two single parameters with the highest HSS values when used to forecast HS bow
625  echoes are STP and MUCP, and for LS bow echoes VMXP together with STP and SCP are best.
626 A multiparameter forecasting method produced improved forecast skill compared with single-
627  parameter skill. The combination that was found to be best suited in discriminating HS bow

628  echoes is SBCP and 0 — 6 km U shear component, while for LS bow echoes it was DCP and

629  VMXP. Considering these two combinations, HSS values were comparable to those found in a
630  similar study of tornado environments by Reames (2017), and should provide forecasters with
631  improved guidance on forecasting warm-season, nocturnal bow echo severity. However, if the
632  event is not pristine and convection may be altering the environment ahead of the bow echo, the
633  skill of this technique may be reduced since it was developed using pristine events.

634 Future work should examine a larger sample of cases, and perhaps use multiple hours
635  from each event. One of the limitations to the findings in the present study might be that they are
636  not based on observed soundings, but on model-derived soundings adjusted using surface

637  observations. Therefore, the dataset used in this study has somewhat lower vertical resolution
638  compared to radiosonde data and is subject to biases and errors. Future studies should perform a
639  similar analysis using a dataset comprising observed soundings that were taken in or near bow
640  echo inflow regions. In addition, reanalysis data with a finer horizontal resolution could also be
641  investigated. Furthermore, because the average soundings in the present study suggested stronger

642  mid-level flow with the more severe events, future work should examine the components of flow
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643  relative to the bow echo orientation to explore the relationship between the magnitude of bow-
644  perpendicular mid-level flow and intensity of the winds. Future research should assess single-
645  parameter and multiparameter forecasting skill for the different portions of the night because
646  threshold intervals would likely change. A separate test set of cases should be used with the

647  thresholds and parameters found in the present study to see if the forecasting skill remains high.
648  Finally, future studies could use the parameter results in the present study for different severity
649  types to create environmental soundings to initialize an idealized model, such as CM1, to better
650  understand the physical processes most important in determining how strong the winds become
651  within nocturnal bow echoes in differing environments. A similar analysis could also be applied
652  to multiple types of nocturnal MCSs (similar to Cohen et al. 2007) to compare and analyze

653  differences in forecast parameters between different morphologies. Nonetheless, the results of
654  the present study are encouraging and suggest that the intensity of winds in nocturnal bow

655  echoes can be predicted rather well, despite the usual presence of a SBL that might suggest more
656  difficulty in the forecasting process.

657

658  Data availability statement

659

660 The data that supports the findings of this work are available from the UCAR Image

661  Archive browser (https://www2.mmm.ucar.edu/imagearchive) and the NOAA/NCEI website

662  (https://www.ncdc.noaa.gov/). The SPC mesoanalysis data (Bothwell et al. 2002) for the period

663  examined in the present study is available from the corresponding author upon request.
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904 Tables

905  Table 1: Name, description, and mean values of the parameters examined (the highest absolute
906  values for each parameter are in bold), categorized as kinematic, thermodynamic, and composite.

Name Description NS LS HS
Kinematic parameters
SIMG (kt) 0-1 km shear magnitude 16.0 254 25.3
SRHI1 (m? s?) 0-1 km storm relative helicity 102 215 206
SRH3 (m? s?) 0-3 km storm relative helicity 163 307 295
U3SV (kt) 0-3 km U shear component 15.19 23.71 21.94
V3SV (kt) 0-3 km V shear component 3.08 7.70 12.6
UPMW (kt) 0-6 km pressure-weighted U component 8.73 14.2 12.4
VPMW (kt) 0-6 km pressure-weighted V component 5.90 13.6 14.4
S6MG (kt) 0-6 km shear magnitude 27.4 36.9 41.1
U6SV (kt) 0-6 km U shear component 224 31.6 36.2
V6SV (kt) 0-6 km V shear component 2.90 5.99 8.91
U8SV (kt) 0-8 km pressure-weighted U component wind 26.4 35.0 39.8
V8SV (kt) 0-8 km pressure-weighted V component wind 4.94 5.32 5.33
VKLC (ub s!) Average kinematic vert vel (MUPL-LCL) -0.00253  -0.00490 -0.00674
UWND (kt) Surface U wind component -0.933 -1.42 -1.67
VWND (kt) Surface V wind component 0.139 1.38 0.902
UEIL (kt) U comp top of effective inflow layer 8.04 15.1 12.5
UMXP (kt) U wind component at best CAPE level 5.77 8.07 3.74
VEIL (kt) V comp top of effective inflow layer 5.76 13.6 14.1
VMXP (kt) V wind component at best CAPE level 9.74 20.4 17.6
Thermodynamic parameters
MICP (J kg!) 100 hPa mean mixed CAPE 712 949 1605
MICN (J kg 100 hPa mean mixed CIN -150 -140 -141
3KRH (%) 3 km average relative humidity 74.0 71.1 68.7
RHCS (%) Average relative humidity LCL to 500 hPa 67.0 65.2 59.5
RHLC (%) Average relative humidity LCL to LFC 77.4 75.4 73.3
ASRH (%) Average sub-cloud humidity 75.6 74.9 75.4
DNCP (J kg'h) Downdraft CAPE 746 878 1025
LR75 (C km™) Lapse Rate from 700 to 500 hPa 6.57 6.89 7.27
LR85 (C km™) Lapse Rate from 850 to 500 hPa 6.21 6.47 6.62
LLLR (C km™) Lower-level lapse rate surface to 3km AGL 5.06 5.29 5.33
TE3K (K) Max Theta-e difference in lowest 3 km 11.7 14.4 19.3
MXMX (g kg™h) Maximum mixing ratio 12.1 12.7 13.9
MUCP (J kg Most Unstable CAPE 1261 1564 2363
MUCN (J kg Most Unstable CIN -68.1 -71.4 -54.8
RH70 (%) Relative humidity 700 hPa 71.7 68.0 61.1
RHB80 (%) Relative humidity 800 hPa 75.9 76.6 72.2
SLCH (m) Sfc based LCL height 488 532 608
STHE (C) Surface equivalent potential temperature 338 340 345
SBCP (J kg") Surface-based CAPE 652 872 1518
SBCN (J kg™ Surface-based CIN -235 -244 -232
Composite parameters
XTRN (g kt kg™ (MXMX) * (wind speed at MUPL) 196 330 358
DCP (numeric) Derecho Composite Parameter 0.676 1.57 3.48

41

Accepted for publication in Weatherard Forecastifig!"DOF 1011 75/WAF2D120=0137: P50 PMuTe



mm Wondershare
PDFelement

Trial Version g

STP (numeric) Sig Tornado Parameter-Fixed Layer 0.159 0.467 1.11
SCP (numeric) Supercell Composite Parameter-Effective Layer 1.37 5.32 8.55
907
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908  Table 2: Results from bootstrapped paired t-tests (given in %) for all comparisons between two
909  severity types. P-values greater than 5% are not shown. Parameters for which no test was
910 statistically significant for any of the three pairs are not shown.

Parameter p (%) LS -NS p (%) HS -NS p (%)HS -LS
VWND (kt) 2.45 — —
SRH1 (m? s?) <0.02 <0.02 —
SIMG (kt) <0.02 <0.02 —
SRH3 (m? s?) <0.02 <0.02 —
U3SV (kt) <0.02 0.32 —
V38V (kt) — 0.03 —
S6MG (kt) 0.06 <0.02 —
U6SV (kt) 0.11 <0.02 —
UPMW (kt) 0.27 2.96 —
VPMW (kt) <0.02 <0.02 —
USSV (kt) 0.32 <0.02 —
VMXP (kt) <0.02 0.32 —
UEIL (kt) 0.45 — —
VEIL (kt) 0.03 0.55 —
VKLC (ub s™) 0.27 <0.02 —
SBCP (J kg!) — <0.02 0.07
MUCP (J kgh) — <0.02 <0.02
MICP (J kg!) — <0.02 0.08
DNCP (J kg'!) 3.16 <0.02 2.95
STHE (C) — 0.44 1.20
TE3K (K) 4.02 1.14 —
RHS0 (%) — — 3.29
RH70 (%) — 3.88 1.57
RHCS (%) — 3.29 —
LR85 (C km™) 3.17 0.05 —
LR75 (C km™) 4.92 <0.02 2.62
MXMX (g kg™ — 0.29 3.31
XTRN (g kt kg™ <0.02 <0.02 —
SCP (numeric) 0.04 <0.02 1.81
STP (numeric) 0.22 <0.02 0.04
DCP (numeric) <0.02 <0.02 0.13
911
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Table 3: Mean values for late evening (before 05 UTC) and early morning (after 05 UTC) for
parameters found to differ significantly between at least two severity types for at least one time
period. Parameters for which no differences between any of the three severity types were
statistically significant for either time period are not shown. Highest absolute values for each

parameter are in bold.

Before 5Z After 5Z
Parameter NS LS HS NS LS HS
SRH1 (m? s2) 85.7 204 191 112 229 220
SIMG (kt) 15.0 24.5 24.7 16.7 26.7 25.9
SRH3 (m? s2) 169 306 282 160 309 308
U3SV (kt) 16.0 22.8 21.5 14.6 25.0 224
V3SV (kt) 5.62 8.27 10.34 1.32 6.88 14.82
S6MG (kt) 25.8 38.9 40.2 28.6 34.2 42.0
U6SV (kt) 18.7 32.2 35.8 25.0 30.8 36.7
UPMW (kt) 7.32 13.33 11.87 9.71 15.38 12.91
VPMW (kt) 7.13 14.00 13.89 5.05 13.01 14.90
U8SV (kt) 22.3 34.5 38.6 29.2 35.7 40.9
VMXP (kt) 11.4 20.3 15.6 8.57 20.6 19.5
VEIL (kt) 7.00 12.7 14.6 4,97 15.0 13.4
VKLC (ub s -0.00253  -0.00438 -0.00712| -0.00253 -0.00563 -0.00638
SBCP (J kg!) 755 1071 2005 580 591 1052
MUCP (J kg'h) 1250 1661 2617 1269 1429 2119
MICP (J kg!) 744 1058 1838 689 796 1380
DNCP (J kg'!) 776 909 1133 726 836 922
STHE (C) 342 341 348 335 339 342
TE3K (K) 13.6 16.0 20.9 10.6 11.7 17.5
RH70 (%) 70.3 64.9 63.5 72.6 73.2 58.4
RHCS5 (%) 68.4 62.0 57.3 66.1 69.6 61.6
LR85 (C km™) 6.06 6.46 6.89 6.30 6.48 6.36
LR75 (C km™) 6.39 6.80 7.36 6.70 7.01 7.18
MXMX (g kg™!) 12.7 12.8 13.8 11.7 12.6 13.9
XTRN (g kt kg™ 203 324 329 191 339 385
SCP (numeric) 1.58 5.83 9.70 1.22 4.60 7.45
STP (numeric) 0.0778 0.556 1.32 0.215 0.342 0.906
DCP (numeric) 0.524 1.75 3.96 0.782 1.32 3.03
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918  Table 4: As in Table 2, but for all events grouped between before and after 05 UTC.

Before 05 UTC - p (%) After 05 UTC - p (%)
Parameter LS-NS HS-NS HS-LS | LS-NS HS-NS HS-LS
SRHI (m? s?) <0.02 1.08 — 0.31 0.22 —
SIMG (kt) 0.03 0.39 — 0.03 0.07 —
SRH3 (m? s?) 0.23 3.12 — 0.03 0.02 —
U3SV (kt) — — — 0.07 0.83 —
V3SV (kt) — — — — <0.02 —
S6MG (kt) 0.09 0.06 — — <0.02 —
U6SV (kt) 0.11 0.08 — — 0.14 —
UPMW (kt) 3.07 — — 4.69 — —
VPMW (kt) 2.22 — — 0.34 0.36 —
U8SV (kt) 0.48 0.10 — — 0.26 —
VMXP (kt) 0.41 — — 0.02 0.26 —
VEIL (kt) — — — 4.42 2.31 —
VKLC (ub s™) — 0.07 3.90 2.54 1.37 —
SBCP (J kg!) — <0.02 0.16 — 0.52 3.90
MUCP (J kg'h) — <0.02 0.38 — 0.25 1.03
MICP (J kg'h) — 0.05 1.28 — 0.20 4.16
DNCP (J kg'!) 3.07 0.02 0.60 — 3.77 —
STHE (C) — — 1.20 — — —
TE3K (K) — — 4.92 — 0.07 3.90
RH70 (%) 2.22 — — — — —
RHCS5 (%) — 2.23 — — — —
LR85 (C km™) 4.46 <0.02 1.20 — — —
LR75 (C km™) 4.51 0.03 3.33 — 2.31 —
MXMX (g kgt — — — — 0.83 —
XTRN (g kt kg™ 0.05 0.63 — 0.02 <0.02 —
SCP (numeric) <0.02 <0.02 — 0.10 <0.02 —
STP (numeric) <0.02 <0.02 0.78 0.79 <0.02 0.64
DCP (numeric) <0.02 <0.02 0.22 3.47 <0.02 3.66
919
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Severity Parameter Threshold Range HSS
STP (numeric) <0.039 0.6
SCP (numeric) <1.77 0.59
DCP (numeric) <0.64 0.59
XTRN (g kt kg™ <260.18 0.51
NS SRH3 (m? %) <167.09 0.48
S6MG (kt) <33.21 0.44
SIMG (kt) <14.77 0.43
SRHI1 (m? s?) <148.75 0.42
U6SV (kt) <24.36 0.42
VMXP (kt) <12.82 0.39
Severity Parameter Threshold Range HSS
VMXP (kt) 12.82 —-27.39 0.38
STP (numeric) 0.157 -0.905 0.35
SCP (numeric) 1.77-8.0 0.35
XTRN (g kt kg™) 242.67 - 382.77 0.33
LS U3SV (kt) 22.50 — 35.33 0.32
DCP (numeric) 0.64 —3.18 0.31
VPMW (kt) 9.39 -25.30 0.3
SRH1 (m? s) 148.75 —495.23 0.29
STHE (C) 324.43 - 335.79 0.28
MICP (J kg 122.98 — 614.88 0.27
Severity Parameter Threshold Range HSS
STP (numeric) >0.59 0.45
MUCP (J kg'h) >1949.4 0.44
DCP (numeric) >1.78 0.42
SCP (numeric) >3.64 0.42
HS MICP (J kg!) >1147.8 0.42
SBCP (J kg > 657.35 0.39
TE3K (K) >22.85 0.37
XTRN (g kt kg™h) >289.37 0.36
U6SV (kt) >35.14 0.35
DNCP (J kg!) >1162.6 0.33
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923  Table 6: The five highest HSS values and their corresponding optimal threshold ranges for all
924  two-parameter Heidke skill score tests for each severity type.

Severity Combination Xopt,1 Range Xopt,2 Range HSS
DCP + SRH3 <1.27 <244 (m?s?) 0.71
DCP + U3SV <0.892 <21.9 (kt) 0.68
NS SCP + XTRN <1.77 <289 (gktkgh) 0.67
DCP + S6MG <0.892 <35.7 (kt) 0.67
STP + SCP <0.157 <1.77 0.67
Severity Combination Xopt,1 Range Xopt,2 Range HSS
DCP + VMXP 0.671 —3.35 11.5-27.5 (kt) 0.50
SCP + VMXP 1.54-114 11.5-27.5 (kt) 0.46
LS XTRN + SCP 252 - 467 (gktkg!) 1.54-8.10 0.46
MI1CP + VMXP 216-2373 Tkg')  11.5-27.5 (kt) 0.45
SCP + DCP 1.54-114 0.671 —3.35 0.45
Severity Combination Xopt,1 Range Xopt,2 Range HSS
SBCP + U6SV > 657 (Jkgh) >29.8 (kt) 0.53
SBCP + S6MG > 657 (Jkgh) >25.6 (kt) 0.53
HS MICP + S6MG > 738 (J kg) > 24.4 (kt) 0.52
MUCP + S6MG > 1401 (J kg™ > 24.4 (kt) 0.51
STHE + U6SV >336 (° C) >29.8 (kt) 0.50
925
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926  List of Figures

927  Fig. 1. Location of all the high-intensity severe (HS; orange), low-intensity severe (LS; green),

928 and nonsevere (NS; blue) nocturnal bow echo events for the period 2010 — 18 used in the
929 present study.
930

931  Fig. 2. Box-and-whiskers plots for all cases of SRH1 and SHR3 (values plotted along the left

932 axis), and SIMG, U3SV, V35SV, U6SV, S6MG, and USSV (values plotted along the right
933 axis). Each color-filled box represents the results for NS (blue), LS (green), and HS

934 (orange). The whiskers span the interval from the 10th to 90th percentiles and the boxes
935 enclose the 25th to 75th percentiles. Outliers, or points outside the whiskers, are not

936 plotted.

937

938  Fig. 3. Asin Fig. 1, but for SBCP, MUCP, M1CP, DNCP (values plotted along the left axis), and
939 SBCN, MUCN, and M1CN (values plotted along the right axis).

940

941  Fig. 4. Asin Fig. 1, but for RH80, RH70, and RHCS (values plotted along the left axis), and

942 LR85 and LR75 (values plotted along the right axis).

943

944  Fig. 5. Asin Fig. 1, but for SCP (values plotted along the left axis), and STP and DCP (values
945 plotted along the right axis).

946

947  Fig. 6. Skew T-Logp sounding diagrams for (a) NS, (b) LS, and (c) HS environments, created

948 by averaging all cases for each type. Temperature (red), dewpoint (green), and most
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949 unstable parcel (black) profiles are plotted, along with winds on the right side, dry

950 adiabats (dashed red), moist adiabats (dashed blue), and constant mixing ratio lines
951 (dashed green). MUCAPE and MUCIN are indicated by the shaded red and blue areas,
952 respectively.

953

954  Fig. 7. Frequency of occurrence (in %) of SBLs of specified depth (in hPa) for all severity

955 categories. For each interval the largest depth is inclusive, while the lowest is exclusive.
956 Percentages are calculated with respect to the total number of NS (blue), LS (green), and
957 HS (orange) events, and the total sum of all cases (yellow), respectively.

958

959  Fig. 8. Nocturnal distribution of NS (blue), LS (green), and HS (orange) events by hour of
960 mesoanalysis data used.
961

962 Fig. 9. Asin Fig. 2, but for SRH1 and SHR3 (values plotted along the left axis), and SIMG,

963 U3SV, S6MG, and U8SV (values plotted along the right axis) for (a) late evening and
964 (b) early morning.
965

966  Fig. 10. Asin Fig. 3, but only for SBCP, MUCP, M1CP, and DNCP for (a) late evening and (b)
967 early morning.

968

969 Fig. 11. Asin Fig. 4, but only for XTRN (values plotted along the left axis), and LR85 and

970 LR75 (values plotted along the right axis), for (a) late evening and (b) early morning.

971
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972  Fig. 12. Asin Fig. 5, but for (a) late evening and (b) early morning.
973

974  Fig. 13. Scatter plot of DCP vs SRH3 with GDKE (Gaussian kernel density estimation)

975 contours overlaid for all severity types (NS in blue, LS in green, and HS in orange).
976 The three GKDE contours for each severity type encompass the top 10% (innermost
977 contour), top 25%, and top 75% (outermost contour) densest points. The vertical and
978 horizontal blue lines indicate the two optimal thresholds associated with the highest
979 HSS values for prediction of NS events for DCP and SRH3, respectively.

980

981 Fig. 14. Asin Fig. 13, but for DCP vs VMXP. The vertical and horizontal lines indicate the two

982 optimal lower and upper thresholds associated with the highest HSS values for
983 prediction of LS events for DCP and VMXP, respectively.
984

985  Fig. 15. Asin Fig. 13, but for SBCP vs U6SV. The vertical and horizontal lines indicate the two

986 optimal thresholds associated with the highest HSS values for prediction of HS events
987 for SBCP and U6SV, respectively.
988
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989  Figures

990

991  Figure 1: Location of all the high-intensity severe (HS; orange), low-intensity severe (LS; green),
992  and nonsevere (NS; blue) nocturnal bow echo events for the period 2010 — 2018 used in the

993  present study. The plotted points indicate the locations of the storm reports used for severe cases
994  and the points closest to the apex of the bow for nonsevere.

995
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997  Figure 2: Box-and-whiskers plots for all cases of SRH1 and SHR3 (values plotted along the left

998  axis), and SIMG, U3SV, V3SV, U6SV, S6MG, and U8SV (values plotted along the right axis).

999  Each color-filled box represents the results for NS (blue), LS (green), and HS (orange). The
1000  whiskers span the interval from the 10th to 90th percentiles and the boxes enclose the 25th to
1001  75th percentiles. Outliers, or points outside the whiskers, are not plotted.
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1004  Figure 3: As in Fig. 1, but for SBCP, MUCP, M1CP, DNCP (values plotted along the left axis),
1005  and SBCN, MUCN, and MICN (values plotted along the right axis).
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Figure 4: As in Fig. 1, but for RH80, RH70, and RHCS5 (values plotted along the left axis), and
LR85 and LR75 (values plotted along the right axis).
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Figure 5: As in Fig. 1, but for SCP (values plotted along the left axis), and STP and DCP (values
plotted along the right axis).
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Figure 6: Skew T-Logp sounding diagrams for (a) NS, (b) LS, and (c) HS environments, created
by averaging all cases for each type. Temperature (red), dewpoint (green), and most unstable
parcel (black) profiles are plotted, along with winds on the right side, dry adiabats (dashed red),
moist adiabats (dashed blue), and constant mixing ratio lines (dashed green). MUCAPE and
MUCIN are indicated by the shaded red and blue areas, respectively.
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1030  Figure 7: Frequency of occurrence (in %) of SBLs of specified depth (in hPa) for all severity
1031  categories. For each interval the largest depth is inclusive, while the lowest is exclusive.
1032 Percentages are calculated with respect to the total number of NS (blue), LS (green), and HS
1033 (orange) events, and the total sum of all cases (yellow), respectively.
1034
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Figure 8: Nocturnal distribution of NS (blue), LS (green), and HS (orange) events by hour of
mesoanalysis data used.
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1039  Figure 9: As in Fig. 2, but for SRH1 and SHR3 (values plotted along the left axis), and SIMG,
1040  U3SV, S6MG, and USSV (values plotted along the right axis) for (a) late evening and (b) early
1041  morning.
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Figure 10: As in Fig. 3, but only for SBCP, MUCP, M1CP, and DNCP for (a) late evening and

(b) early morning.

60

Accepted for publication in Weatherand Forecastirig!"DOF 10 117 5/WAF2D220=0137.120 FMuTe



mm Wondershare

Trial Version g PDFelement

Late Evening Early Morning
600 | 13.8 600 i 13.8
Severity Severity
() - (b) —h
[ ey T . LS
B HS B HS
500 11.5 500 11.5
a a
1 1
2 g
& 400 9.2 & 400 9.2
= 2
g T8 T
) £ > £
= = = =
© g °
g 300 6.9 ; E 300 6.9 E
g € g o
2 i 2 4
2 s L
s E
Y 200 4.6 ¥ 200 4.6
b . x .
= =
X X
= =
100 2.3 100 2.3
1] T v T 0.0 0 T v T 0.0
XTRN LR85 LR75 XTRN LR85 LR75

1046  Figure 11: As in Fig. 4, but only for XTRN (values plotted along the left axis), and LR85 and
1047  LR75 (values plotted along the right axis), for (a) late evening and (b) early morning.
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1049  Figure 12: As in Fig. 5, but for (a) late evening and (b) early morning.
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1052 Figure 13: Scatter plot of DCP vs SRH3 with GDKE (Gaussian kernel density estimation)

1053  contours overlaid for all severity types (NS in blue, LS in green, and HS in orange). The three

1054  GKDE contours for each severity type encompass the top 10% (innermost contour), top 25%,

1055  and top 75% (outermost contour) densest points. The vertical and horizontal blue lines indicate

1056  the two optimal thresholds associated with the highest HSS values for prediction of NS events

1057  for DCP and SRH3, respectively.
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Figure 14: As in Fig. 13, but for DCP vs VMXP. The vertical and horizontal green lines indicate
the two optimal lower and upper thresholds associated with the highest HSS values for prediction

of LS events for DCP and VMXP, respectively.
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Figure 15: As in Fig. 13, but for SBCP vs U6SV. The vertical and horizontal orange lines
indicate the two optimal thresholds associated with the highest HSS values for prediction of HS
events for SBCP and U6SV, respectively.
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