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Structural and aerodynamic non‐linearities can lead to persistent oscillations in aeroelastic systems, which
allows the conversion of mechanical energy into electric power. Flexible beams represent an example of struc-
tures that can be used as energy harvesters. This work aims to model and analyze the non‐linearities induced by
the flow‐structure interaction of an energy harvester consisting of a laminated beam integrated with a piezo-
electric sensor. The cantilevered beam and the piezoelectric lamina are modeled using a nonlinear finite ele-
ment approach, while unsteady aerodynamic effects are described by a state‐space model that allows for
arbitrary nonlinear lift characteristics. Wind tunnel tests for a fluttering beam in a broad range of flow speeds
and preset angles of incidence were used to validate the electro‐aeroelastic model. The matching of experimen-
tal and computational results reveals the importance of appropriately modeling structural and aerodynamic
non‐linearities for reproducing the physical electro‐aeroelastic behavior of the system. These findings are of
practical and theoretical relevance, and are further supported by the model’s complete inability to reproduce
experimental results when either of the non‐linearities are “switched off”.
1. Introduction

The interaction between fluids and structures may lead to interest-
ing dynamic behaviors. In the case of bodies immersed in airflows, var-
ious aeroelastic phenomena can be observed – such as divergence,
buffeting, flutter, galloping – depending on the characteristics of the
structure under consideration and the flow conditions. The structural
and aerodynamic non‐linearities in such problems usually play a sig-
nificant role in the response of the system, thereby enabling limit cycle
oscillations, bifurcations or even chaotic motions [1]. In particular, the
analysis of highly flexible wings has gained considerable attention in
the aeroelastic community due to the increasing interest in high‐
altitude, long‐endurance (HALE) aircraft where such wings are typi-
cally used. Previous studies demonstrated that the large displacements
associated with these wings may significantly affect the aerodynamic
loads, flutter speed and aeroelastic responses [2], potentially leading
to limit cycle oscillations [3–5].

Much effort has been exerted towards exploiting persistent, stable
limit cycle oscillations by converting their kinetic energy into usable
electrical power. Energy harvesting schemes have recently been
applied to several systems and the resulting harvested power may feed
microelectromechanical systems or actuators [6]. As a matter of fact,
the interest for harvesting energy from the environment has grown
in the past decades and various solutions have been proposed for the
development of harvesters [7–9]. In this sense, aeroelastic vibrations
can also be employed for energy harvesting purposes. Galloping of
prismatic structures [10] and vortex‐induced vibrations of cylinders
[11] have been addressed as possibilities for harvesting power from
aeroelastic oscillations. Stable and persistent oscillations of airfoils
beyond the flutter onset were also demonstrated by Marques et al.
[9] as a possible option for energy harvesters. Similarly, the post‐
flutter behavior of plates has been investigated as a means to harvest
power [12]. Zakaria et al. [13] experimentally quantified the power
harvested from aeroelastic vibrations of a laminated beam during its
post‐flutter response. The beam was clamped perpendicularly to the
airflow with a preset angle of incidence, and a piezoelectric lamina
was employed for the conversion of kinetic energy into electric power.
The harvester was able to generate energy when oscillating at a
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specific frequency bandwidth constrained by structural and aerody-
namic interactions.

From a modeling standpoint, there are basically two philosophies
to tackle problems. The first is to use adopt a high‐fidelity computa-
tional model such as the Navier–Stokes equations for the fluid flow
and the equations of solid elasticity for the structure. However, the
underlying computational burden is substantial and often ends up
restricting the analysis to very few cases and flow conditions. The
other philosophy relies on taking advantage of the special behavior
of a certain system in particular conditions to develop a phenomeno-
logical reduced‐order model. For instance, depending on load levels
and dimensions, it may be possible to reduce three‐dimensional solid
models to shell, plate or beam models. This was done, for example,
by Amini et al. [14], who used the Navier–Stokes equations for the
flow field, but adopted the classic linear Euler–Bernoulli beam theory
for the structure.

Also from the aerodynamic side there are several modeling possi-
bilities. For low‐speed laminar flows at low angles of incidence with
respect to a slender body, linear potential theory is normally sufficient
for predicting the main aerodynamic loads. For hypersonic and high‐
supersonic flows past plates or shells, piston theory has been successful
for decades to account for aerodynamic forces [15,16], more recently
in combination with piezoelectric excitation [17]. Exploiting the spe-
cial aeroelastic behavior of flexible wings with high aspect ratio, Dun-
nmon et al. [18] and de Marqui Jr. et al. [19] analyzed energy
harvesting from cantilevered beams attached to the trailing edge of
airfoils, employing nonlinear modeling for structural dynamics and
the unsteady vortex lattice method (UVLM) for the aerodynamics
loads.

The approaches briefly mentioned above are only few of many
methods that can circumvent the need for computing entire flow fields
when one is interested only in the loads over the structure. While they
typically yield a lower fidelity than continuum‐based methods, they
are capable of reproducing the main features of a coupled system’s
response, at a computational cost which is orders of magnitude lower.
This is crucial in preliminary design stages where numerous design
alternatives must be considered. In this context, a novel approach is
presented here for modeling the energy harvesting of beams under
low‐speed aerodynamic loads. The appropriate modeling of such
electro‐aeroelastic behavior remains a somewhat open problem. In
the present work, a finite element discretization of a nonlinear beam
theory is coupled with a state‐space model for the unsteady nonlinear
aerodynamics to analyze the electro‐aeroelastic behavior of can-
tilevered composite beams. Then, the theoretical predictions are com-
pared to experimental measurements from the aeroelastic energy
harvesting set up by Zakaria et al. [13]. The results reveal good agree-
ment between model and experiments, and offer important insights
into the role of structural and aerodynamic non‐linearities in the
electro‐aeroelastic response. From a modeling perspective, this is the
first time that the Kirchhoff flow model [20] is coupled to the
state‐space model proposed by Taha et al. [21]. Besides, another con-
tribution of this work is bringing both structural and aerodynamic
non‐linearities together. Most efforts in the literature tend to focus
on either source of nonlinearity, but seldom both. In fact, one of the
main highlights in the present work is to show, through experimental
validation, that both non‐linearities must be considered if one wishes
to accurately model and predict the electro‐aeroelastic behavior of the
system under consideration.
Fig. 1. Degrees of freedom of the composite beam.
2. Structural model

The fluttering beam has a carbon‐epoxy composite as a substrate
and a piezoelectric layer attached to this substrate. As a conse-
quence, the structural model needs to account for the different
behavior associated with the composite substrate and the piezoelec-
2

tric layer, as well as the electro‐mechanical coupling of the
piezoelectric.

2.1. Composite beam model

The Timoshenko model is used for the beam, thereby allowing for
moderately large width‐to‐length ratios. In order to account for large
vertical displacements w, the von Kármán strain‐displacement rela-
tions are employed, namely,
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in which θ and ϕ are the torsion and bending angles, respectively.
Direction z is upward vertical, and y is the airflow direction – both orig-
inating at the cross‐sectional centroid, as indicated in Fig. 1. This geo-
metrically nonlinear model accounts for large displacements but not for
large strains, i.e., it assumes that the material still behaves in the linear
elastic regime. Details on the material and kinematic modeling of lam-
inated beams can be found in References [22,23].

2.2. Piezoelectric model

Similarly, the piezoelectric MFC is modeled as a Timoshenko beam
eccentric to the main composite beam. Only axial strain due to bend-
ing is considered since rotational effects are assumed to be negligible
near the beam root. It should be noted that the electric field also con-
tributes to the material stresses on the piezoelectric MFC. Moreover,
the electric field in the piezoelectric layer can be expressed as a func-
tion of the electric potential difference, v, between the top and the bot-
tom of the layer. By assuming this variation to be linear, the electric
field is then �v=hp and the axial stress in the piezoelectric is written
as [24]

σxp ¼ cE11ɛxp þ cE11d31
v
hp

¼ cE11 ðe� zÞ @ϕ
@x

þ d31
v
hp
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; ð2Þ

where cE11 is the elastic modulus of the piezoceramic layer, d31 is the
piezoelectric strain constant and e is the eccentricity between the piezo-
electric and composite beam middle lines. From the constitutive equa-
tions of the piezoelectric, the electric displacement, Dz, is given by [24]:

Dz ¼ cE11d31ɛx � ɛ33
v
hp

; ð3Þ

where ɛ33 is the permittivity constant.

3. Aerodynamic model

The structural dynamics of the beam can be properly represented
through the finite element model. On the other hand, aeroelastic anal-
yses also require an appropriate modeling of the aerodynamic loads.
For that goal, the state‐space model for unsteady aerodynamics pro-
posed by Taha et al. [21] offers an appropriate way to compute the
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aerodynamic loads during pitch and plunge excursions of each beam
section.

3.1. State-space model for unsteady aerodynamics

Potential flow models for unsteady aerodynamics are very well
known in the frequency domain due to the work of Theodorsen
[25]. Other works also investigated the frequency response of airfoil
aerodynamics [26,27]. On the other hand, by applying Duhamel’s
principle to the indicial lift response, also known as the Wagner
response, Taha et al. [21] developed a state‐space model for unsteady
aerodynamics. The main advantage of the model of Taha et al. [21] in
comparison to the previously developed state space models (e.g., by
Leishman and his colleagues [28–31]) is its generalization of the Duha-
mel principle by considering the input to the potential flow lift dynam-
ics to be the quasi‐steady circulation (not the angle of attack or the
airfoil normal velocity), relying on von Kármán and Sears’ formulation
[32]. By the applying the Duhamel superposition principle to the
quasi‐steady circulation as the aerodynamic input to Wagner’s lift indi-
cial response, the model of Taha et al. [21] allows arbitrary nonlinear
steady lift curves, in contrast to the classical 2π sin α that is exclusively
allowed in the previous state space models.

Given the quasi‐steady circulation ΓQSðtÞ, circulatory lift is written
as [21]:

lcðtÞ ¼ ρV1 ð1� A1 � A2ÞΓQS þ x1 þ x2½ �; ð4Þ
where ρ is the air density, V1 is the wind speed, and xi (i ¼ 1;2) are
first‐order aerodynamic states described by

_xiðtÞ ¼ 2biV1
c

½�xiðtÞ þ AiΓQSðtÞ�; ð5Þ

with A1 ¼ 0:165;A2 ¼ 0:335; b1 ¼ 0:0455 and b2 ¼ 0:3 being the con-
stants used for the Jones approximation of the Wagner function [33]
and c is the chord length. Moreover, ΓQS is defined as:

ΓQSðtÞ ¼ c
2
V1clðαeffðtÞÞ þ π

c2

2
ð0:5� aÞ _θðtÞ; ð6Þ

where a is the dimensionless distance between the elastic axis and the
mid‐chord and clðαeffðtÞÞ is the two‐dimensional static lift coefficient at
the effective angle of attack αeffðtÞ. In the case where the beam under-
goes pitch‐plunge oscillations with an initial preset angle of incidence,
αeffðtÞ ¼ α0 þ θðtÞ � tan�1ð _w

V1
Þ, with α0 being the preset angle of inci-

dence of the beam, θ is the structural rotation (twist angle) with respect
to the equilibrium position and w is the vertical (bending) displacement
of the beam.

On the other hand, the non‐circulatory lift is computed by the rela-
tion given by Yan et al. [34]:

lncðtÞ ¼ πρ
c2

4
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where αðtÞ ¼ α0 þ θðtÞ is the local geometric angle of attack, which dif-
fers from the effective angle of attack αeffðtÞ ¼ αðtÞ � tan�1ð _w

V1
Þ; the lat-

ter accounts for plunging effects. Similarly, the non‐circulatory moment
at the elastic axis is written as [34]:
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and the circulatory component of moment at the elastic axis is given by
[35]:

mcðtÞ ¼ πρ
c2

4
V1 _w cos α� V1 sinα� c

2
1
2
� a
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þmf ; ð9Þ

where mf is the moment caused by the circulatory lift considering the
distance between the elastic axis and the aerodynamic center at the
3

quarter chord. In the potential flow theory mf ¼ 1=4þ a=2ð ÞlcðtÞc.
However, in the analyses of this work, effects of flow separation may
be taken into account due to the occurrence of moderately high angles
of attack.

3.2. Nonlinear model for separated flows

The unsteady state space model of Taha et al. [21], described
above, requires a prior knowledge of the steady lift curve. Here, the
classical potential flow relation cl ¼ 2π sin α is not assumed. Rather,
the Kirchhoff nonlinear aerodynamic model for separated flows [36]
is adopted. Using such a model, Thwaites [20] showed that the nonlin-
ear lift coefficient of a flat plate at angle of attack α is given by

clðαÞ ¼ 0:25cpl ðαÞ 1þ ffiffiffi
f

p� 	2
, where cpl is the attached‐flow lift coeffi-

cient and f is the chord‐normalized location of the separation point.
That is, for an attached flow, f ¼ 1; hence, cl ¼ cpl . Typically, the
attached flow lift coefficient is taken as cpl ¼ 2π sin α. However, this
relation results in a lift coefficient that is maximum at α ¼ 90�, which
is not physically plausible. Rather, we use the formula proposed by
Wang et al. [37]: cpl ¼ π sin2α. As such, we write the steady nonlinear
lift characteristics as

clðαÞ ¼ π sinð2αÞ 1þ ffiffiffi
f

p
2

 !2

: ð10Þ

In addition, the Beddoes–Leishman (BL) model [38] offers a suitable
empirical representation for f ðαÞ, that is:

f ðαÞ ¼ 1� 0:3e
αj j�α1
s1 if αj j ⩽ α1

0:04þ 0:66e
α1� αj j

s2 if αj j > α1

8<
: ; ð11Þ

where α1; s1 and s2 are empirical constants to be determined from the
static lift curve as a function of the angle of attack.

As for the aerodynamic moment, the BL model [38] proposed the
use of an empirical relation between the static normal force and the
moment mf at the quarter chord accounting for flow separation, which
is extended here by using the lift coefficient without loss of accuracy,
according to:

mf

lcc
ðαÞ ¼ K0 þ K1ð1� f Þ þ K2 sinðπf 2Þ þ 1

4
þ a
2

� �
; ð12Þ

where K0;K1 and K2 are constants to be determined from the static
curve of moment at the quarter chord as a function of the angle of
attack. The value of mf is applied in Eq. (9).

For a flat plate at Re≈104 and thickness around 1% of the chord
length, such as in the current experiment, Okamoto et al. [39] mea-
sured the lift coefficient for angles of attack up to 20°, as shown in
Fig. 2(a). Under similar conditions, Amandolese et al. [40] assessed
the moment coefficient about the mid‐chord of a flat plate, cmea , as pre-
sented in Fig. 2(b). These curves allowed the calibration of the semi‐
empirical parameters in Eqs. (11) and (12), as illustrated in Fig. 2.
The resulting steady lift characteristics (10) is then used to determine
the quasi‐steady circulation according to (6), which is then fed to the
state space model (4) and (5) to determine the circulatory lift lc.
Finally, the total lift and moment per beam section are given, respec-
tively, by: l ¼ lc þ lnc and m ¼ mc þmnc.
4. Discretization and solution

4.1. Principle of virtual work

The coupling of aerodynamics with the electro‐structural system is
done via the Principal of Virtual Work (PVW). It states that the virtual
work due to external forces must be fully converted into the variation
of the system’s virtual internal energy, for any compatible virtual



Fig. 2. Calibration of parameters for the Beddoes–Leishman model for a flat plate at Re≈104. Experimental lift from Okamoto et al. [39] and moment coefficient
from Amandolese et al. [40].

C.R. dos Santos et al. Composite Structures 255 (2021) 112968
displacement field. For the aeroelastic problem (no piezoelectricity),
this balance can be written asZ
Ω

ρs €wδwþ z2€θδθ þ y2€ϕδϕ
� �þ δɛCɛ

� �
dΩ ¼

Z L

0
lδwþmδθ dx; ð13Þ

in which δ represents virtual quantities, Ω is the beam’s domain, L is its
length, C is the laminate’s constitutive matrix [22,23] and l;mð Þ are the
aerodynamic forces (total lift and moment). When there is one or more
piezoelectric laminae, the virtual energy due to the additional compo-
nents can be simply added to the left‐hand side of Eq. (13).

4.2. Spatial discretization

The spatial discretization is done using standard first‐order Lagran-
gian finite elements. Using the same finite element interpolants for the
virtual and real displacements in the PVW and enforcing the principle
for every compatible virtual field yields the nonlinear ODE system

M€Uþ K0 þHðUÞ½ �U� Θv ¼ F U; _U; €U
� �

;

Cp _vþ v
R þ ΘT _U ¼ 0;

(
ð14Þ

where U is the vector of nodal degrees of freedom (DOFs), F is the aero-
dynamic force vector, M is the mass matrix, and K0 and H are the stiff-
ness matrices coming from the linear and nonlinear structural
contributions, respectively (details on the construction of the finite ele-
ment matrices can be found in References [41,42]). Note that the sec-
ond equation corresponds to the electrodynamics of the piezoelectric
sensor. The electro‐mechanical coupling matrix is denoted by Θ;R is
the external load resistance and Cp is the piezoelectric capacitance.
More details on the matrices related to the piezoelectric discretization
can be found in Reference [43].

4.3. Temporal discretization

A Newmark‐type scheme is used for integrating the nonlinear ODE

system (14) in time. The solution Uðkþ1Þ
nþ1 at the ðkþ 1Þ‐th iteration of

the ðnþ 1Þ‐th time step is found by solving [44]

K̂Uðkþ1Þ
nþ1 ¼ F̂ðkÞ

nþ1 �
Δt2

4
H UðkÞ

nþ1

� 	h i
UðkÞ

nþ1; ð15Þ
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and

K̂ ¼ ~Mþ Δt
2

~Gþ Δt2

4
~K; ð17Þ

where

~M ¼ M 0
0 0
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; ~G ¼ 0 0
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0 1=R
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; ~F ¼ F

0
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When the iterations reach the desired convergence, the velocity and
acceleration vectors are updated as

_Unþ1 ¼ � _Un þ 2
Δt

Unþ1 � Unð Þ; ð19Þ

€Unþ1 ¼ �€Un þ 4
Δt2

Unþ1 � Un � Δt _Un
� �

: ð20Þ

A schematic of the whole computational model is presented in
Fig. 3. As for the PVW, aerodynamic loads contribute to the virtual
external work. The computation of these loads start with the assess-
ment of f ðαÞ according to the BL model, which is applied to the calcu-
lation of the static lift coefficient considering separation effects. This
static lift and the local kinematics define the quasi‐steady circulation
that is input for the state‐space model proposed by Taha et al. [21].
The state‐space model delivers the circulatory lift, also input for the
circulatory moment at each beam section. Non‐circulatory loads
depend on the local kinematics only and their sum with circulatory
quantities give the total lift and moment per beam section. On the
other side, the virtual internal work depends on the laminate’s consti-
tutive matrix, which comes from the stress–strain relations obtained
through the Timoshenko beam theory considering piezoelectricity,
the laminate theory and the von Kármán strain. The equivalence
between external and internal virtual works discretized through the
finite element method results in differential equations that are numer-
ically integrated by Newmark’s method.



Fig. 3. Schematic of the computational model.

Fig. 4. Cantilevered beam as set in the center of the roof of the test section
[13].

C.R. dos Santos et al. Composite Structures 255 (2021) 112968
5. Experimental setup

A composite beam was fabricated and exposed to the airflow of a
suction‐type wind tunnel with an open circuit. The composite beam
was manufactured with three layers of plain weave SGP196 (IM7‐
GP) carbon fiber fabric organized as 90°. Two thermoset polymers
were employed for the matrix: the PR 2032 (resin), and the PH3665
(hardener). A piezoelectric macro‐fiber composite (MFC) was attached
to the beam 5 mm below the fixed end. The output voltage of the MFC
was acquired at a rate of 2000 Hz. A resistor box was connected to the
output wire of the MFC and the effects in the harvested power of dif-
ferent electrical loads were analyzed. Important parameters of the
composite beam and of the piezoelectric MFC are depicted in Table 1,
such as previously measured by Zakaria et al. [13].

The beam was attached at the roof of the test chamber to a stepper
motor that sets a specific angle of incidence α0 between the chord and
the airflow. The test chamber had a cross section of 520 � 520 mm.
The tests were performed by varying the wind speed and the angle α0

with the aid of a stepper motor. Fig. 4 shows the experimental setup.
Limit cycle oscillations were observed for wind speeds beyond

7 m/s and energy was harvested through the piezoelectric layer.
Fig. 5 shows the peaks and valleys of the output voltage that was har-
vested during the stable oscillations considering two different preset
angles for the initial incidence of the beam with respect to the free-
stream velocity and a resistance R ¼ 106 Ω.

6. Results

The structural modes and natural frequencies can be computed
from the linear matrices of the finite element method. The beam was
Table 1
Beam and piezoelectric properties [13].

Parameter Symbol Value (unit)

Beam Density ρ 1550 (kg/m3)
Length L 260 (mm)

Thickness h 0.49 (mm)
Chord c 20 (mm)

Tensile moduli E11 29 (GPa)
E22 2.9 (GPa)

Poison’s ratio ν12 0.332
Shear moduli G12 1.69 (GPa)

G13 1.69 (GPa)
G23 1.27 (GPa)

Piezoelectric Density ρp 7800 (kg/m3)
Piezoelectric constant d31 −190 (Pm/V)
Strain permittivity ɛ33 15.9 (nF/m)

Active length Lp 40 (mm)
Active width cp 10 (mm)
Thickness hp 0.26 (mm)

Young’s modulus Ep 66 (Gpa)
Fig. 5. Maximum and minimum values of the output voltage measured
experimentally.

5
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discretized with 65 elements, in the following way: 5 elements from
the root to the beginning of the piezoelectric, 10 elements along the
piezoelectric region and 50 elements in the remaining length. Consid-
ering a mesh with 10 times more elements, the maximum difference in
the natural frequency was 0.07%, in the second bending mode. There-
fore, the selected grid with 65 elements is already converged for aeroe-
lastic analyses. In the case with an open circuit, the natural frequencies
are compared to those experimentally measured, as in Fig. 6. The max-
imum difference between computational and experimental results is
observed for the second bending mode, where the computational
method predicts a natural frequency 5.8% lower than the experimental
value. This small difference between computational and experimental
results is most likely associated with imperfections in manufacturing
and idealizations in modeling. In this sense, the alignment of the plies,
the distribution of epoxy along the beam, the variation of temperature
throughout the curing time, among others, are sources of imprecision
in the final product. Therefore, the structural modeling of the compos-
ite beam with the piezoelectric device is in accordance with the exper-
imental measurements. Moreover, no torsion is observed in the
bending modes and the structural torsion of the first torsional mode
in the piezoelectric region is only 3.6% of the maximum torsional
angle, which is observed at the beam tip. In addition, the relative tor-
sion between the extremities of the piezoelectric is only 0.03% of the
tip torsion. Therefore, the assumption that torsional effects are negligi-
ble to the energy harvesting is valid in the case of interest.

From the aerodynamic point of view, the function clðαeffðtÞÞ in Eq.
(6) is able to account for any non‐linearity in the lift coefficient as a
function of the angle of attack. However, a first logical essay to the
aerodynamic model is the case when clðαeffðtÞÞ ¼ 2παeffðtÞ, which
recovers the classical unsteady potential flow theory. In this case, as
shown in Fig. 7 for V1 ¼ 8 m/s and α0 ¼ 5:4�, the oscillations are
damped and an equilibrium position is reached by the beam. Such a
behavior is observed whether considering the linear or the complete
nonlinear beam model. These results are not in accordance with exper-
imental observations because limit cycle oscillations were expected
under the same conditions, as indicated in Fig. 5. Since the structural
dynamics were previously captured with good accuracy, the impossi-
bility of matching experimental results must be associated with the
unsteady aerodynamic model. Other efforts also pointed the limitation
of the classical unsteady potential flow theory on predicting the flutter
onset in some cases [45,46] due to the controversial unsteady Kutta
condition (see the recent article by Taha and Rezaei [47] for a detailed
discussion on the topic and a viscous extension of the theory that cor-
rects for the Kutta’s lift). Besides, Fig. 7(b) suggests that high angles of
Fig. 6. First three modes of the composite beam.
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attack may be attained during the beam motion, thereby indicating the
need for an aerodynamic model that is able to capture aerodynamic
effects at high angles of attack, such as the flow separation. Further-
more, Fig. 7(a) illustrates the importance of using the complete nonlin-
ear structural model since the linear model predicts an extremely high
tip displacement that violates the hypothesis of low displacements
adopted on its formulation.

Feeding the nonlinear model for separated flows into the unsteady
state space model of Taha et al. [21], and coupling the developed
unsteady nonlinear aerodynamic model with the nonlinear structural
model, the aeroelastic behavior of the composite beam was revaluated.
Limit cycle oscillations were observed in computational results in the
range of wind speeds of the experiments. Fig. 8 shows the output volt-
age from the piezoelectric layer for two different wind speeds and pre-
set angles. The resistance in this case is R ¼ 106 Ω. A good agreement
between experimental and computational results is observed. Some
phase difference is observed for the case of V1 ¼ 8 m/s and
α0 ¼ 7:2�, where numerical results predict oscillations with reduced
frequency k ¼ 0:317 and experimental data show oscillations with
reduced frequency k ¼ 0:262.

Larger differences in amplitude and phase are identified in Fig. 9
for lower wind speeds. Besides the imprecision during the beam man-
ufacturing, these differences are attributed to the relatively low‐
fidelity modeling of the aerodynamic characteristics of the beam, at
this critical condition during stall; the electric behavior of the output
circuit, as well as uncertainties in experimental measurements. In this
sense, due to the sensitivity of the system in relation to these effects,
small variations in the aerodynamic characteristics or structural fea-
tures may modify the flutter onset, amplitudes and phases of oscilla-
tions in the post‐flutter behavior. Moreover, uncertainties in the
wind speed measurements also contribute to any unmatching between
computational and experimental results. In addition, the computa-
tional results for α0 ¼ 7:2� are in better agreement with the experimen-
tal data. Interestingly, this preset angle makes the system to oscillate
mostly in the nonlinear aerodynamic regime, as inferred from Fig. 2.
Such conclusion reinforces the argument that the use of two states
per node may reduce the precision of the computations if the wing
is going in and out of the stall regime (i.e., akin to dynamic stall),
but it is sufficient when the wing operates in the nonlinear regime.
Finally, it should be noted that despite the small discrepancies in some
cases, the main picture of the output voltage dynamics is being cap-
tured by the computational model. It is worth noticing that the output
voltage is the ultimate measurement of the harvest dynamics because
it depends on the interaction between structural, aerodynamic, and
electrical characteristics of the system. Therefore, the presented results
reinforce the model capability on capturing the main features of the
energy harvesting from the fluttering beam.

One legitimate question that arises from the result presented in
Fig. 8 is the reason why the unsteady model of [21] fed by the nonlin-
ear flow model predicts the post‐flutter behavior in agreement with
experimental observations, whereas the classical unsteady potential
flow theory is not able to indicate the flutter occurrence under the
same conditions. To answer this question, the following investigation
is conducted in Fig. 10. The aeroelastic response of the beam tip for
the case of V1 ¼ 10 m/s and α0 ¼ 5:4� (whose voltage output is pre-
sented in Fig. 8(b)) is fed to the unsteady model of [21] to compute
the circulatory lift using two steady lift characteristics: the potential
flow linear model steady lift 2πα and the Kirchhoff nonlinear model.
The lift response (cf Fig. 10(a)) using the nonlinear model is almost
constant during the whole excursion while the potential flow model
predicts higher and hysteretical forces. On the other hand, the moment
coefficient (cf Fig. 10(b)) exhibits a more important difference
between both models: while the nonlinear model predicts negative val-
ues during the whole motion that decrease as the effective angle of
attack increases, the unsteady potential flow theory predicts small val-



Fig. 7. Tip displacement and effective angle of attack at V1 ¼ 8 m/s and α0 ¼ 5:4� with potential unsteady aerodynamics.

Fig. 8. Comparison of the output voltage from experimental and the computational results for different speeds and preset angles.

Fig. 9. Fast Fourier transform of the output voltage from the simulations and experiments with R ¼ 106 Ω.
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Fig. 10. Circulatory loads at the elastic axis for V1 ¼ 10 m/s and α0 ¼ 5:4�.
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ues for the moment coefficient around 0 and even positive. As a con-
sequence, the moment coefficient predicted by the potential model is
not able to overcome the structural restoring moment and the flutter
onset was still not reached at V1 ¼ 10 m/s.
6.1. Effects of structural non-linearities

Fig. 7 clearly shows that the linear structural model is not able to
predict flutter along with the unsteady potential flow theory. Further-
more, analysis of the post‐flutter behavior of the beam in Fig. 8
employed the nonlinear beam model and nonlinear lift characteristics.
Therefore, it may be interesting to study the electro‐aeroelastic behav-
ior if the nonlinear flow model is applied to the linear structural
model. Doing so, the flutter onset was still not observed within the
wind speeds of the experimental data (7 ⩽ V1 ⩽ 10 m/s), although
extremely high tip displacements are predicted, which violates the
assumption of low displacements for the linear structural model. In
conclusion, the use of a nonlinear structural model in the simulation
of the electro‐aeroelastic behavior of the fluttering beam is crucial
for the determination of the flutter boundary. Some other attempts
to model the fluttering beam have also been tested but failed to cap-
ture the flutter onset observed in experimental results. For example,
applying the Kirchhoff correction f to the lift only (cf Eq. 10) or to
the moment only (cf Eq. 12) did not result in a fluttering beam. Table 2
presents a summary of all these approaches by showing when the post‐
flutter regime is attained within the wind speeds of the experimental
data.
7. Conclusions

In this work, the effects of structural and aerodynamic non‐
linearities on the modeling of a cantilevered composite beam with a
piezoelectric layer intended for energy harvesting purposes are inves-
tigated. The experiments conducted have revealed that limit cycle
Table 2
Summary of the methods employed in this work.
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oscillations are achieved in the post‐flutter behavior of the beam,
and that power can be harvested for wind speeds between 7 and
10 m/s. For the numerical simulations, the Timoshenko beam model
is employed for obtaining the governing equations for the structural
dynamics of the beam and the piezoelectric lamina, as well as the gov-
erning equation for the electric circuit. A finite element method was
applied to discretize such equations. The structural model imple-
mented for the beam can assume linear or nolinear strain‐
displacement relations. On the other hand, unsteady aerodynamics
were computed through a state‐space model whose input is the
quasi‐steady circulation to allow for arbitrary nonlinear lift character-
istics. The nonlinear aerodynamic effect is represented with the aid of
the Kirchhoff model for separated flows. The unsteady potential flow
theory was not able to predict flutter within the wind speeds of the
experiments, but the unsteady state space model supplied by the Kirch-
hoff correction coupled with the nonlinear structural model delivered
good predictions of the energy harvested in the post‐flutter regime of
the beam, in comparison to experimental results. Such a difference is
mainly due to the moment coefficient predicted by the unsteady non-
linear model, which is negative during the limit cycle oscillations
while the moment predicted by the potential theory fluctuates around
zero and is sometimes positive, thereby preventing aerodynamic loads
from overcoming the restoring structural moment and mitigating the
occurrence of flutter. The results presented here, especially the com-
parison between model and experiment, have demonstrated that an
appropriate modeling of both flow and structural dynamics is crucial
in order to accurately describe the complex physics involved in the
phenomenon. Future developments include a nonlinear kinematic
description of the beam displacements in order to account for large
rotations.

8. Data availability

The raw data required to reproduce these findings are available to
download from Mendeley Data.
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