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Abstract—Interconnected power systems with large-scale pene-
tration of photovoltaic (PV) power introduce frequency and tie-
line power flow fluctuations. This is due to the variability and
uncertainty characteristics of PV power. This makes automatic
generation control (AGC) to be more challenging. In other words,
maintaining system frequencies and tie-line power flows at the
desired values, also known as “tie-line bias control” is difficult.
In this paper, an enhanced tie-line bias control method is pro-
posed by predicting PV power generation and bus frequencies.
A cyber-physical two-area power system with a large PV plant
consisting of phasor measurement units (PMUs) is studied. The
use of synchrophasor networks consisting of PMUs can enable
smooth power system operations overcoming the challenges of PV
power variability and uncertainty. However, the use of PMUs in
power system control creates vulnerabilities for cyber-attacks that
could jeopardize the power system operations. It is shown that
the frequency prediction using a virtual synchrophasor network
(VSN) can mitigate the impact(s) of denial of service (DoS) attacks
on physical PMUs. Enhanced AGC performance is investigated
under different weather and load conditions including a weather
profile during the “Great American Eclipse” of August21st, 2017.
Typical results indicate that the enhanced AGC structure pro-
vides a resilient and sustainable tie-line bias control in uncertain
environments.

Index Terms—cyber-physical systems, cellular computational
network, echo state network, frequency predictions, PV power
predictions, resilient systems, PMUs, tie-line bias control, virtual
synchrophasor network.

I. INTRODUCTION

ACCORDING to the solar energy industries association
(SEIA), United States have installed 3.6 GW of solar

PV capacity in Q1 2020, reaching more than 81 GW of total
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installed capacity, capable of powering up to 15.7 million homes
[1]. During the last decade, solar power has experienced annual
average growth rate of 49%. The use of solar energy is increasing
worldwide due to the strong policies, rapidly declining costs,
and increasing demand across the private and public sector for
clean electricity. However, increasing penetration levels of solar
energy introduces challenges in power system control and oper-
ation. Solar photovoltaic (PV) power has variable and uncertain
characteristics, which introduce obstacles in maintaining re-
siliency of the power system. When the power system consists of
interconnected areas, the maintenance of frequency regulations
and tie-line power flow deviations is important for the resiliency
of the system. The process of preserving area frequencies and
tie-line power flows under desired system values (tie-line bias
control) is performed by automatic generation control (AGC)
[2]. AGC has become challenging with the integration of solar
PV power into the power system [3].

It is important to have advanced control techniques to
overcome the challenges in variable renewable energy (VRE)
sources. Many studies have demonstrated the value of different
strategies to improve the AGC performance in the presence of
VRE sources [4]. Recent studies include an optimal mileage
based dispatch (OMD) algorithm [5], a lazy reinforcement
learning method [6], a predictive optimal PID plus second order
derivative method [7] and, a coordinated active power control
strategy [8]. The use of synchrophsor networks consisting of
phasor measurement units (PMUs), can improve AGC perfor-
mance to mitigate the challenges of integrating VRE. Improved
AGC strategies are introduced by utilizing PMU measurements
and sensor data [9]–[11]. In this paper, the importance of PV
power and frequency predictions for improved tie-line bias
control is explored. Predictions are obtained by exploiting PMU
data of the power system synchrophasor network.

Synchrophasor networks need to be secure to ensure relia-
bility in smart grid operation and control. Delayed or missing
measurements from PMUs in real-time power system applica-
tions lead to power system frequency instability. Although, the
use of virtual private networks (VPNs) eliminate many security
vulnerabilities, VPNs are still vulnerable to denial of service
(DoS) attacks that exploits side-channels [10].

Accurate predictions of system dynamics can overcome the
challenges presented by PV power integration. Computational
intelligence (CI) paradigms can address the computational chal-
lenges of PV power integration. CI paradigms are bio-inspired,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

interdisciplinary computational methods and include artificial
neural networks (ANNs), fuzzy logic, evolutionary computation
and swarm intelligence. CI based methods have been widely
applied in smart grid applications in handling VRE sources
integrated environments [12], [13].

Very short-term PV power prediction, in the order of seconds
to minutes, is a challenging task under dynamic and uncertain
weather conditions. PV power prediction is a big data analytics
problem and has been predicted using statistical and numerical
techniques [14], [15] and ANNs including echo state networks
(ESNs) [13], [16]. Similarly, numerous prediction techniques
have been used for power system frequency prediction. Neural
network based cellular computational networks (CCNs), state
space model [17], support vector regression [18] and total least
squares method [19] are different methods used in predicting
power system frequency. ANN has been widely used in predic-
tions, which is capable of learning from past occurrences.

ESN is a single hidden layer recurrent neural network (RNN),
which consists of a rich dynamic reservoir to make the RNN
learning process faster [20]. Conventional RNN learning al-
gorithms adapt all the weights (input, hidden, backward and
output). Therefore, these learning algorithms are slow, cum-
bersome, and convergence cannot be guaranteed. In contrast,
ESN learning process is fast, easy to implement, has the adap-
tive learning ability and provides better results for non-linear
systems. A comparison of ESN and improved versions with
several versions of RNNs is given in [21]. ESNs show lowest
computation time and better accuracy compared to RNNs.

CCN is a distributed and scalable computational framework
for large dynamic systems [22]. CCN consists of interconnected
cells, each of which represents an individual component or a
measurement unit in the system. A cell consists of a computa-
tional unit, a learning unit and a communication unit [23]. The
computational unit produces an output based on the information
available to the cell. The learning unit allows a cell to learn
by experience in which the computational units performance
is improved with time. The learning can be attained through
supervised, unsupervised or reinforcement methods. The com-
munication unit interacts with the neighboring/interconnected
cells and utilizes that information in the computational process.
This allows each cell to be updated about the neighboring
components and use the information to adjust its own output.
Communication unit and component measurements provide dy-
namic input-output data into a cell. Using ESN as the compu-
tational unit of CCN results in a cellular computational echo
state network (CCESN). CCESN combines the advantages of
both CCN and ESN, which provides a resilient and sustainable
computational framework to handle the changing dynamics in
power system operation.

The main contributions of this paper are:
� A virtual synchrophasor network (VSN) based on a cellular

computational echo state network has been developed and
implemented. The VSN provides resiliency to the physical
synchrophasor network.

� Very short term photovoltaic power prediction using an
echo state network has been developed and implemented.

� With PV power predictions and VSN included in
AGC operations, a resilient and sustainable tie-line bias
control is achievable under uncertain environments, includ-
ing changing weather and load conditions.

� The VSN based on CCESN can mitigate the impact(s) of
denial of service attacks on the physical synchrophasor
network.

The cyber-physical power system studied in this paper con-
sists of four layers namely; power system, AGC, prediction
models, and cyber-security as shown in Fig. 1. The remainder of
this paper is organized as follows; The power system and AGC
layers are described in Section II. The prediction models layer
is described in Section III. Descriptions of cyber-security layer,
resiliency metrics, typical results and discussions are presented
in Section IV. Finally, conclusions are given in Section V.

II. CYBER-PHYSICAL POWER SYSTEM

A diagram of the cyber-physical power system studied for
resilient and sustainable tie-line bias control is given in Fig. 1.
The system consists of four layers, power system (two-area
four machine power system and synchrophasor network), AGC
(Area-1 AGC and Area-2 AGC), prediction models (PV power
predictor and VSN frequency predictor) and cyber-security (DoS
attack countermeasures). Detailed descriptions of power system,
synchrophasor network, AGCs and tie-line bias control are given
in following subsections.

A. Two-Area Four-Machine Power System

The power system consists of two areas connected by two
parallel transmission lines, each area has two synchronous
generators, all rated at 900 MVA (Fig. 1). Generators G1 and
G2 are in Area-1 and G3 and G4 are in Area-2. All of the
generators in Fig. 1 are equipped with their primary controllers,
including turbine governors, automatic voltage regulators and
power system stabilizers (PSSs). The PSS structure used in this
power system is a second order lead-lag compensator as shown in
Fig. A.16. The PSS uses the generators’ speed deviation signal
(Δω) to generate a supplementary control signal (Vpss). The
PSS parameters (TWss, Tpss1, Tpss2, Tpss3, Tpss4) are taken
from [24]. The generators’ ratings and the load values are given
in Fig. 1.

The power system is developed and simulated on a real-time
digital simulator (RTDS). The experimental setup consisting of
the RTDS, weather station, synchrophasor network, and predic-
tion models is given in Fig. A.17.

B. PV Power Plant

A large PV plant of capacity 210 MW is installed at Bus
12, a 230 kV utility transmission grid bus in Area-2 of the
power system [25]. Real-time weather profiles, solar irradiance
(Irr(t)) and temperature (Temp(t)) are used to emulate the
PV plant generation. The weather profiles are monitored at the
Real-Time power and Intelligent Systems (RTPIS) laboratory,
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Fig. 1. Cyber-physical system consisting of the power system, AGCs, prediction models, and cyber-security layers.

Clemson University, SC, USA. Real-time weather profiles are
integrated with RTDS to simulate the PV power plant.

C. Synchrophasor Network

Analogue voltages and current values are transmitted from the
RTDS simulation to physical PMUs. Physical PMUs are placed
at each bus of the system to to measure the bus frequencies,
generator power outputs, tie-line power flow and PV plant power
generation. A dedicated communication synchrophasor network
is used to transmit PMU measurements to upper level layers

(Fig. 1). The synchrophasor network configuration given in
[10] is used for this study. The network consists of secured
subnets, which are connected by a dedicated network with
a security gateway protecting each secured subnet. The use
of security gateways reduce the risk and cost of transmitting
critical information securely through a long distance network,
eliminating many vulnerabilities such as packet sniffing, data
spoofing, malicious code injection, and replay attacks. VPN
tunnels are established between each of the security gateways.
The traffic transmitted through VPN tunnels is encrypted by
the security gateway. This configuration with security gateways
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eliminate many vulnerabilities but still vulnerable to DoS attacks
that exploits side-channel vulnerability. Phasor data concentra-
tor (PDC) produces time-aligned output data streams by time-
synchronizing phasor data receive from multiple PMUs. There
are two PDCs, each located at a secured subnet. The PMUs
located at Area-1 are sending measurement to a system PDC
and the PMUs located at Area-2 are sending measurement to
Area PDC. The system PDC also collects measurements from
Area PDC. OpenPDC is an open source synchrophasor data
concentrator software, which is used as the PDC in this study.

D. Automatic Generation Control and Tie-Line Bias Control

AGC is an important control process in interconnected power
system operation, which constantly operates to balance the
system generation and loads and losses at a minimum cost [3].
AGC is responsible for maintaining frequency regulations and
power interchange, also known as tie-line bias control.

The block diagram for the AGCs in Area-1 and Area-2
(AGC-1 and AGC-2) are given in Fig. 1. AGCs are designed
with proportional-integral (PI) controllers. Corresponding AGC
parameters are given in Table A.7. The objective of each area’s
AGC is to maintain the frequency at the nominal value (f7ref).
In addition, the AGC-1 also changes the tie-line power flow
based on the information received from the PMU at the PV
plant in Area-2. The objective is to adjust the power outputs of
generators G1 and G2 to make the ACE equal to zero. The PV
power generation in Area-2 offsets the power outputs of G1 and
G2, thus enabling maximum PV power generation utilization in
supplying the load demand in Area-2. The scheduled interchange
value (reference tie-line power flow ((P ′)ref)) is adjusted in
real-time based on the PV power generation.

ACE calculation is given in (1).

ACE = ΔPtie − λR ×Δf (1)

where Δf is the frequency deviation corresponding to nomi-
nal frequency and ΔPtie is the tie-line power flow deviation
corresponding to reference power (P ′

ref). λR is the balancing
authority’s bias factor measured in MW/0.1Hz [2].

PV power generation and corresponding tie-line power vari-
ation obtained with AGC-1 operation on the “Great American
Eclipse” of August 21st, 2017 is shown in Fig. 2. Under normal
operating conditions (when the PV power generation is 0 MW),
a 400 MW(Pref) tie-line power flow from Area-1 to Area-2 is
observed.

The AGC adjusts the respective generators’ governor refer-
ences at every one second interval. However, the sum of the
response times of AGC and generator governor is greater than
one second. In other words, the inputs to the AGC at time t
provides consequent changes in the system at time t+Δt. The
time delay (Δt > 1) is the response time (frequency bandwidth)
of the AGC and governor. The tie-line power reference (P ′

ref) of
the AGC-1 changes dynamically with respect to the current PV
power generation, without considering this time delay. There-
fore, the deviation in tie-line power flow (Ptie_line) from its
commanded reference value (P ′

ref) due to the response time of
AGC and governor is minimized by predicting the PV plant

Fig. 2. During the “Great American Eclipse” of August 21st, 2017. (a) PV
Power generation. (b) Tie-line power flow

power output, “Predicted PV power”. The prediction time step
is synchronized with the optimal frequency bandwidth (response
time (Δt)) of the AGC-1 and governors of generators G1 and
G2. The optimal prediction time step is determined to minimize
the tie-line power flow deviation, which is founded to be ap-
proximately 30s for this study [26]. This performance is further
enhanced by predicting Area-1 frequency “Predicted frequency”
by considering response time for frequency. The frequency
prediction time step is determined to minimize the frequency
deviation, which is 1s for this study. Two prediction parameters
are shown in highlighted dash circles in Fig. 1. “Predicted PV
power (P̂pv(t+Δt))” and “Predicted Frequency (f̂7(t+Δt))”
values are applied instead of measured PV power and frequency,
respectively. A detailed comparison of AGC-1 performance with
and without the use of prediction models is given in Section IV.

III. PV POWER AND FREQUENCY PREDICTIONS

Real-time PMU measurements are communicated to the pre-
diction models layer (Fig. 1) for predicting PV power and power
system bus frequencies. An ESN is used as the basic prediction
CI algorithm for both PV power and bus frequency predictions.
The ESN and CCESN prediction models, input parameters
and prediction accuracy metrics are explained in the following
subsections.

A. PV Power Predictions

PV power is predicted using the ESN prediction model as
shown in Fig. 1. ESN connections are initialized, so that it has
a large hidden layer with coupled oscillators [20]. The hidden
layer is also known as “reservoir”. Input, output and hidden
layer variables at time t are represented by U(t), Y (t) and X(t)
respectively. The network connections, input to hidden layer
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weights (Win), hidden to hidden layer weights (W ) and output to
hidden layer or feedback weights (Wfb) are randomly initialized
and kept fixed throughout the process. The connections from
the hidden layer (reservoir) to the output weights (Wout) are
only learned. This makes the ESN learning process simpler and
faster than conventional RNNs.

The activation for reservoir units at the (t+ 1)th time step is
expressed in (2).

X(t+ 1) = f(Win × U(t) +W ×X(t) +Wfb × Y (t)) (2)

where f(.) is the activation function usually chosen to be the
hyperbolic tangent (tanh(.)) function.

Inputs to the ESN are PV power at time t (Ppv(t)), two time de-
layed previous PV power values (Ppv(t−Δt), Ppv(t− 2Δt))
and solar irradiance at time t (Irr(t)) given in (3). Predicted PV
power is represented in P̂pv(t+Δt).

U(t) = [Ppv(t), Ppv(t−Δt), PV (t− 2Δt), Irr(t)] (3)

It is important to initialize the random weights appropriately
for developing an effective ESN. Hidden to hidden layer weights
(W ) need to be initialized, so that the activation of the reservoir
state matrix (X(t)) remains around the same value after each
iteration. This allows the input to echo around the network for
a long time, which is also known as the echo state property in
an ESN [20]. This is obtained by selecting an optimal spectral
radius (maximum eigenvalue) for the hidden to hidden layer
weights [27]. Sparse connectivity of W is important to generate
large sets of loosely coupled oscillators, which allows informa-
tion to reside in one part of the network without propagating to
other parts of the network very quickly. Additionally, the input
to hidden layer connections (Win) and output to hidden layer
connections (Wfb) must be scaled properly, which must drive the
loosely coupled oscillators without erasing the information from
the past. It is important to experiment different spectral radius,
reservoir size and scaling parameters in obtaining optimal ESN
performance.

In this study, ESN is learned using recursive least squared
approach [28], which allows online model adaption. This ap-
proach is more suitable for predicting the dynamic behavior of
PV power and bus frequencies in a power system.

B. Bus Frequency Predictions

An ESN based CCN, a CCESN is implemented to predict the
frequencies at each bus of the system. Two-area four machine
power system is modeled as a CCESN by considering each bus of
the system as a cell/VPMU for the purpose of predicting the bus
frequencies. CCESN based frequency predictor implemented is
given in Fig. 1. Each cell of the CCESN is acting as a virtual PMU
(VPMU), creating a virtual synchrophasor network. Frequency
predicted at the ith bus by the ith cell of the CCESN is given
below.

f̂i(t+Δt) = f(fi(t), fi(t−Δt), fi(t− 2Δt), f̂j(t)) (4)

where fi(t) is the frequency at ith cell and j is the neighboring
cell number. For the power system in Fig. 1, the neighboring cells
vary from 4 - 7 and the cell connectivity is topology depended.

C. Prediction Accuracy Metrics

The accuracy of the prediction models needs to be validated
with standard metrics. In this study, accuracy is measured by
calculating skill factor. Skill factor (SF ) / forecast skill met-
ric is used to measure PV power (SFPV ) and bus frequency
(SFFrequency) prediction performance as given in (5) and (6)
respectively. These are defined in terms of mean square error
(MSE) and are given in (7) and (8) for PV power (MSEPV )
and frequency (MSEFrequency) respectively.

SFPV =

(
1− MSEPV −forecast

MSEPV −ref

)
× 100% (5)

SFFrequency =

(
1− MSEFrequency-forecast

MSEFrequency-ref

)
× 100% (6)

MSEPV =
1

n

n∑
i=1

(P̂pv(t)− Ppv(t))
2 (7)

MSEFrequency =
1

n

n∑
i=1

(f̂(t)− f(t))2 (8)

where n is the size of the data set, MSEPV −forecast

and MSEFrequency−forecast are the MSEs obtained for
PV and frequency prediction models and MSEPV −ref and
MSEFrequency−ref are the MSEs obtained for PV and fre-
quency reference models. Persistence model is the simplest
method of forecasting which assumes that the current value does
not change at the forecast time and is used as the reference model
[29]. Thus, the skill factor expresses the accuracy of the model
in comparison to persistence model. Skill factor has the range
[−∞, 100] where a positive SF indicates the prediction model
is better than the persistence model.

Additionally, absolute percentage error (APE) and mean ab-
solute percentage error (MAPE), given in (9) and (10), are
calculated to analyze the error percentage.

APEi =| T̂ (i)− T (i))

T (i)
| ×100% (9)

MAPE =
1

n

n∑
i=1

APEi (10)

where T (i) is the actual value and T̂ (i) is the predicted value.

IV. RESULTS AND DISCUSSION

A. PV Power Predictions

The optimal PV power prediction time step for the best AGC
performance is found by studying different prediction time steps
[26]. Best AGC performance is observed when the prediction
time step (Δt) is 30 seconds. PV power predictions observed are
given in Fig. 3(a). Figs. 3(b) and 3(c) are zoomed-in versions
for the time periods 11:55-12:00 and 16:00-16:05, respectively.
Figures indicate the accuracy of the ESN prediction model
compared to persistence based reference model. According to
the prediction accuracy values given in Table I, ESN prediction
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Fig. 3. (a) Actual and predicted PV power, (b) Actual and predicted PV power
at 11:55-12:00, and (c) Actual and predicted PV power at 16:00-16:05.

TABLE I
PV POWER AND BUS FREQUENCY PREDICTION ACCURACIES

model has 22% higher accuracy compared to persistence model.
ESNs’ MSE, MAPE values are considerably small.

B. Bus Frequency Predictions

Similar to PV power predictions, the optimal prediction time
step for bus frequency predictions is identified by studying mul-
tiple time steps. The optimal prediction time step is identified as
1 second. Frequency predictions at Bus 7 observed from CCESN
and reference models are given in Fig. 4(a). Figs. 4(b) and 4(c)

Fig. 4. (a) Actual and predicted Frequency at Bus 7, (b) Actual and predicted
Frequency at Bus 7 from 12:00 to 12:01, and (c) Actual and predicted Frequency
at Bus 7 from 12:25 to 12:26.

are zoomed-in versions for the time periods 12:00 to 12:01 and
12:25 to 12:26, respectively. Fig. 4 indicates higher accuracy for
the CCESN based predictions compared to the reference model.
As observed in Table I, bus frequency prediction accuracy is 77%
higher with CCESN compared to the reference model. CCESNs’
MSE and MAPE values are considerably small.

C. Performance of AGCs and Tie-Line Bias Control

It is important to measure the resiliency in tie-line bias control
using a standard performance metric. North American Electric
Reliability Corporation (NERC) defines control performance
standard 1 (CPS1) to measure the steady-state interconnection
frequency in balancing authorities. Control performance stan-
dard 2 (CPS2) is introduced as a safety metric for CPS1. If
CPS1was the only control performance standard, the balancing
authority could excessively increase or decrease the generation
and obtain a very good CPS1, yet impact its’ neighbors with
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excessive power flows [2]. In this study, CPS1, CPS2 and
related measures are used as the performance metrics.

Tie-line bias control performance is analyzed under four dif-
ferent test cases, including under real-time variable weather con-
ditions, under severe load and weather changes, under weather
conditions obtained on the “Great American Eclipse” on August
21st, 2017, and under denial of service (DoS) attacks performed
on physical PMUs (described in Section IV-D).

The definition for CPS1 is given in (11)–(13)

CPS1 = (2− CF )× 100% (11)

CF =
(CF1min)12months

(ε)2
(12)

CF1min =
(ACE1min)

−λR
×Δf1min (13)

where ACE1min is the average ACE within a minute, Δf1min

is the averageΔf within a minute andCF1min is the averageCF
within a minute and (CF1min)12months is the CF1min obtained
over 12 months. In this study, ε is considered as 18 mHz, NERC
defined value for Eastern Interconnection. This is the benchmark
frequency noise calculated by root mean square error of one
minute averages of frequency.

If the one minute average ofACE and frequency deviation are
“out of phase”, then the CPS1 is greater than 200%. Therefore,
obtaining small positive CF1min or larger negative CF1min

indicates better performance of the system.
CPS2 related metrics are given in (14)–(16)

CPS210min =
periods without violations

total periods over the month
× 100%

(14)

periods without violations =
∑

non-violatedACE (15)

non-violatedACE =

{
1 , if ACE10min < L10

0 , otherwise
(16)

where ACE10min is the average ACE within 10 minutes and
L10 is decided based on the balancing authority size [2], in this
paper L10 = 30.4667, calculated based on the Table IV in [2]
assuming the balancing authority size of each Area is 1800 MW.
Equation (14) is modified to consider “ total periods over the
simulation”, instead of “total periods over the month” due to the
availability of test data.

Additionally, CPS2 related metrics (CPS24s and CPS21s)
are calculated by considering average ACE within 4 seconds
(ACE4s) and 1 seconds (ACE1s) for the better comparison of
performance. The calculations are performed as given in (14)–
(16). Total number of ACE violations observed for ACE4s and
ACE1s are also calculated as given in (17) – (20).

total-violatedACE4s
=

∑
violatedACE4s (17)

violatedACE4s =

{
1 , if ACE4s > L10

0 , otherwise
(18)

total-violatedACE1s
=

∑
violatedACE1s (19)

Fig. 5. (a) PV power, (b) Tie-line Power, and (c) CF1min observed when PV
power increases from 0 MW to 80 MW.

violatedACE1s =

{
1 , if ACE1s > L10

0 , otherwise
(20)

The performance of the test cases are investigated in the
following subsections.

1) Real-Time Variable Weather: Tie-line bias control perfor-
mance is analyzed under different weather conditions. The anal-
ysis results are categorized based on four PV power variations.
PV power generation, tie-line power and CF1min calculated
with and without predictions obtained under four PV power
variation categories are shown in Figs. 5–8. Positive and negative
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Fig. 6. (a) PV power, (b) Tie-line Power, and (c) CF1min observed when PV
power decreases from 200 MW to 50 MW.

CF1min counts, Accumulated CF1min, CPS1, CPS210min,
CPS24s andCPS21s values calculated are recorded in Table II.
All four PV power variation categories have high negative
CF1min counts and less positive CF1min counts when pre-
dictions are applied, which indicates better performance with
predictions compared to without predictions. Although, the dif-
ferences between Accumulated CF1min and CPS1 values are
very small over one hour time periods analyzed in this study, long
term execution of prediction algorithm increases the differences
between performance metrics, indicating the usefulness of the
prediction algorithm in improving AGC performance. CPS2

Fig. 7. (a) PV power, (b) Tie-line Power, and (c) CF1min observed when PV
power decreases from 200 MW to 30 MW.

values observed for ACEs averaged within 10 minutes, 4 sec-
onds and 1 second time periods are 100% for both test cases,
indicating no under generation or over generation due to CPS1
improvements.

2) Load Profiles With Variable Weather: The system behav-
ior is studied under severe weather and load changes. Simu-
lated PV power and area load profiles are given in Fig. 9(a).
Changing load profiles include loads ramping up and down in
order of 10% and 20%, as shown in Fig. 9(a). The PV power
is concurrently varied in maximum order of 80% with the load
changes. The AGC is tested with PV power predictions (30s



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JAYAWARDENE et al.: RESILIENT AND SUSTAINABLE TIE-LINE BIAS CONTROL FOR A POWER SYSTEM IN UNCERTAIN ENVIRONMENTS 9

TABLE II
PERFORMANCE COMPARISON UNDER VARIABLE WEATHER CONDITIONS

TABLE III
PERFORMANCE COMPARISON UNDER WEATHER AND LOAD CHANGES

ahead and 4s ahead) and 1s ahead Area-1 frequency predictions.
AGC performance with prediction cases are compared with that
of conventional AGC including measured parameters. Obtained
performance metrics including positive and negative CF1min

counts, accumulatedCF1min,CPS1,CPS2 and total violated
ACE values are given in Table III. Two main test cases are
considered, Area-1 load changes with concurrently changing
PV power generation and Both Area-1 and Area-2 loads change
with concurrently changing PV power. Better performances
are observed for AGC with 30s ahead PV power predictions
and 1s ahead bus frequency predictions for both test cases.
The comparison of tie-line power flow deviation, CF1min,
and Area-1 ACEs observed with and without application of
predictions are given in Figs. 9(b)–9(d). However, 4s ahead PV
power predictions does not show any enhanced performance,
which justify the importance of selecting optimal prediction
time step. Although the CPS210min is 100% for all the sce-
narios, CPS24s, CPS21s and total violated ACE counts show
better values for the AGC with optimal prediction time step.
Higher ACE values are expected with the non-confirming load
changes. Fig. 11 shows an over-frequency condition caused by
load decreasing concurrently with PV power increasing (tie-line
power flow is decreased). Fig. 12 shows an under-frequency
condition caused by load increasing concurrently with PV power
decreasing (tie-line power flow is increased). The improvements
in tie-line power flow deviation, frequency deviations and ACEs

TABLE IV
PERFORMANCE COMPARISON UNDER ECLIPSE DAY WEATHER CONDITIONS

observed with predictions at these scenarios as shown in Figs. 11
and 12.

3) The “Great American Eclipse” of August 21st, 2017: The
system resiliency is also analyzed with weather data observed
on the “Great American Eclipse” of August 21st, 2017. PV
power generation, tie-line power flow and calculated CF1min

with and without predictions are shown in Fig. 10. Positive
and negative CF1min counts, Accumulated CF1min, CPS1
and CPS2 values are given in Table IV. Similar results are
observed as in variable weather conditions described in section
1), indicating improvements under predictions. However, long
term application of prediction algorithm can guarantee higher
percentage of accuracy.
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Fig. 8. (a) PV power, (b) Tie-line Power, and (c) CF1min observed when PV
power increases from 160 MW to 140 MW.

D. Resilience to Denial of Service (DoS) Attacks

The dedicated synchrophasor network studied in this paper
consists of security gateways and VPNs, eliminates many vul-
nerabilities but still vulnerable to denial of service (DoS) attacks.
Therefore, the proposed resilient and sustainable tie-line bias
control is analyzed under DoS attacks performed on the primary
PMU of the system (PMU at Bus 7), on PMUs at Buses 6 and
7, and on PMUs at Buses 6, 7 and 8, where Buses 6 and 8 are
the neighbors of Bus 7.

1) DoS Attack Detection: In OpenPDC, the time required
to arrive all the data for a particular time frame is measured

Fig. 9. (a) PV power, Area-1 load and Area-2 load profiles, (b) Tie-line Power,
(c) CF1min, and (d) ACE observed under load changes with variable weather.

by a parameter called “Lag Time (δt)”. If the measurements
are expected but not received within the δt time window, the
OpenPDC recognizes these measurements as missing/delayed
data. These missing data positions are filled in order to keep the
format of the aligned data packet fixed. A flag in the aligned
data packet is set to indicate the data is invalid [30]. The missing
data positions are often set to zeros. When a DoS attack is
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Fig. 10. (a) PV power, (b) Tie-line Power, and (c) CF1min observed on the
“Great American Eclipse” of August 21st, 2017.

performed, that is when the attacker drops all measurement data
from a PMU without interrupting the connection, PMU mea-
surement packets are not delivered to PDC within the expected
time window (“Lag Time (δt)”). The PDC set the invalid flag
for the aligned data packet and send zeros instead of missing
measurements.

2) Countermeasures: In this paper, PMU 7 located at Bus 7
(Fig. 1), is used to provide frequency measurement (f7(t)) to the
AGC in Area-1, which is the primary PMU of the system. Flow
chart for the possible scenarios during a DoS attack on PMU 7

is given in Fig. 1, “Denial of Service Attack Countermeasures”
layer. At each time step t, the PDC waits for δt time window
until the PMU measurements are arrived. Then at t+ δt, PMU
packet flag status is checked to detect if there is an attack.
Based on the flag status, multiple test scenarios are performed
[10].
� Scenario 1: If the packet is arrived at t+ δt, set the flag =

0 and the measured value f7(t) is sent to AGC control
� Scenario 2: If the packet is not arrived t+ δt, set the flag
= 0 and the PDC filled data value (typically 0) is sent to
AGC control

� Scenario 3: If the packet is not arrived t+ δt, set the flag
= 1 and countermeasure A (Last received valid data point)
is sent to AGC control

� Scenario 4: If the packet is not arrived t+ δt, set the flag
= 2 and countermeasure B (Estimated frequency ˆf7(t)) is
sent to AGC control

� Scenario 5: If the packet is not arrived t+ δt, set the flag
= 3 and countermeasure C (CCESN based VSN predicted
frequency ˆf7(t+Δt)) is sent to AGC control

Scenarios for flag=0, 1, 2 (normal condition, countermeasure
A and countermeasure B) have been discussed in [10]. In this
paper, flag = 3 (countermeasure C) scenario is introduced.

3) Multiple DoS Attacks: According to the topology of the
power system (Fig. 1), Bus 6 and 8 are the neighboring cells of
the Bus 7. CCESN based frequency prediction results observed
when Bus 7 PMU is attacked, when both Bus 7 and Bus 6 PMUs
are attacked, when all three PMUs (Bus 6, 7 and 8) are attacked
are given in Figs. 13, 14, and 15 respectively. Prediction accuracy
measures are presented in Table V. A three phase-to-ground fault
is performed at Bus 8 (the tie-line power connecting Bus) while
PMUs (at Bus 7, Bus 6, and Bus 8) are blocked. According to the
Figs. 13–15 and Table V, VSN provides good prediction results
although the neighboring cell PMUs are blocked. Frequency
measurements among neighboring cells are related due to the
network topology. Therefore, VSN cells can use neighboring
PMU measurements to approximate missing data. However,
prediction accuracies are degrading when the number of dropped
PMU count is increased. However, it is still possible to use the
predicted frequencies for AGC operation.

Tie-line bias control performance is analyzed under DoS
attacks with the weather and load profiles given in Fig. 9(a).
PMUs are blocked around 12:13, where PV power is increased
from 50 MW to 150 MW and area loads are decreased by
10%. Performance metrics calculated are given in Table VI. A
negative CPS1 value is observed for Scenario 2, indicating the
system vulnerability to DoS attack. Scenarios 3 and 4 (with
countermeasures A and B respectively) shows better CPS1
values, however the CPS24s and CPS21s values are low for
both cases compared to scenario 5 (countermeasure C). Lower
total − violatedACE4s

and total − violatedACE1s
values are

observed for countermeasure C compared countermeasures A
and B. Three cases under countermeasure C include when PMU
7 is attacked, when PMUs 6 and 7 are attacked, and when
PMUs 6, 7, and 8 are attacked. Improved CPS1, CPS2 and
total violated ACE values are illustrated with countermeasure C.
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Fig. 11. (a) PV power, (b) Tie-line Power deviation, (c)Area-1 ACE, (d) Area-2 ACE, (e) Area-1 frequency deviation, and (f) Area-2 frequency deviation observed
when load is reduced by 20% and PV power increased by 50%.

Fig. 12. (a) PV power, (b) Tie-line Power deviation, (c)Area-1 ACE, (d) Area-2 ACE, (e) Area-1 frequency deviation, and (f) Area-2 frequency deviation observed
when load is increased by 20% and PV power decreased by 50%.

Fig. 13. Actual, CCN predicted, and reference model frequencies when PMU at Bus 7 is under attack.
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Fig. 14. Actual, CCN predicted, and reference model frequencies when PMUs at Bus 7 and Bus 6 are under attack.

Fig. 15. Actual, CCN predicted, and reference model frequencies when PMUs at Bus 7, Bus 6, and Bus 8 are under attack.

TABLE V
CCESN BASED FREQUENCY PREDICTION PERFORMANCE UNDER DOS ATTACK

TABLE VI
PERFORMANCE COMPARISON UNDER DOS ATTACK

However, the AGC performance is dropped with the increasing
number of PMUs are under attack. This is due to the degrading
accuracy of the VSN predictions.

V. CONCLUSION

In this paper, an enhanced tie-line bias control method is
proposed for a power system in uncertain environments. Tie-
line bias control is performed using an automatic generation

control with the introduction of PV power and bus frequency
predictions. Predictions are introduced to overcome the response
time of the AGC and governors of the system. PV power
predictions are obtained using an echo state network and bus
frequency predictions are obtained using a virtual synchrophasor
network (VSN). The VSN is based on cellular computational
echo state network. The cells of CCESN, virtual PMUs, provides
resiliency to physical PMUs. It is shown that the prediction
models provide better accuracies in predicting PV power and
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bus frequencies compared to state-of-art persistence model.
Application of the prediction models in AGC operation pro-
vides enhanced tie-line bias control for different weather and
load conditions. Furthermore, the VSN is capable of mitigating
impact(s) of denial of service attacks on physical PMUs. The tie-
line bias control performance is measured using NERC defined
standard performance metrics (CPS1 and CPS2) and related
metrics, which indicate this method can minimize the penalties
introduced by NERC for maintaining steady state interconnec-
tion frequency. Future work includes analyzing DoS attacks
on both physical and virtual PMUs and developing mitigation
strategies.

APPENDIX A

Fig. A.16. Power System Stabilizer (PSS).

TABLE A.7
AGC PARAMETERS

Fig. A.17. Experimental setup for tie-line bias control study.
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