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Abstract—Online identification of power system network
branches is critical in modern electric power system operation.
Availability of phasor measurement units (PMUs) can be used to
identify branch events. Due to complexity of the power system,
a distributed cellular computational network (CCN) is proposed.
Comparison of centralized and distributed neural network based
power system network branch events identification is studied.
IEEE 12-bus benchmark power system is simulated on real-time
digital simulator platform for this study. CCN based distributed
neural network approach is computationally efficient compared
to centralized approach.

Index Terms—Cellular Computational Network, Neural Net-
works, Phasor Measurement Units, Real-time Digital Simulator,
Transmission Network Branch Events

I. INTRODUCTION

Power system becomes a major focus in research for the
past few decades. The electric power grid is the critical
infrastructure of all infrastructures. New developments of other
infrastructures adds complexity for the power demand. To
satisfy these complex and dynamic demands, traditional power
system is being changed. Traditional power system is upgraded
to a modern power system with addition of renewable, de-
mand response (DR) programs, distributed energy resources ,
intelligent controls and high speed communication back-born
connects all nodes. Still the storage technology is not up-
to the level. Thus, the grid is responsible of balancing the
demand and losses with generation in real-time. Apart from
that, Computation burden is increased with all the information
flowing in for analysis from latest integration of smart sensors,
advance metering infrastructures, DRs, electric vehicle charg-
ing, etc. Introduction of Phasor Measurement Units (PMUs)
assists in implementing an efficient power network monitoring
system [1]. PMU collects voltage, current phasor, frequency
and rate of change of frequency data at a higher rate of 30Hz,
up to 240Hz in the latest versions. These measurements are
synchronized with time using the Global Positioning System
(GPS). These time-tagged measurements transmitted to the
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Phasor Data Concentrator (PDC). These synchronized mea-
surements of the geographically distributed power system is
highly useful in data analytics and intelligent decision making.
Intelligent decisions based controls are implemented to control
the dynamics in the power system to maintain the reliable &
quality power supply.

Transmission network is the intermediate connection be-
tween generation and distribution. Bulk power delivery de-
pends on the reliable transmission network. In time iden-
tification of transmission network branch events is crucial
in restoration and rerouting the power to avoid any system
failures. All these branches are equipped with relays that
will notify if, an event occurs in the branch. But having a
redundant method of online event identification based on the
PMU measurements is always an advantage. PMUs are already
in use and implementing in the network. Use of available PMU
measurements for identification of branch events is practically
feasible.

The power system is evolving into a complex, non-linear
system. Traditional linear mathematical approaches are not
effective in solving power system problems [2]. As a result,
Application of Artificial Intelligence (Al) in power system is
emerged several decades ago to solve more complex problems
[3]. Artificial Neural Network (ANN) is one popular technique
under Al. Basic single, centralized neural network is efficient
for real-time applications when it comes to smaller systems. If
we consider largely distributed application like power system,
system decentralization is a promising solution. Computational
load can be distributed among several clients under specific
clustering approach and the efficiency can be improved. The
Cellular Computational Network (CCN) is such an architecture
[4].

The available PMU measurements are used for identifying
events in the transmission network. This can be used to
verify the existing relay signal based event identification. In
this study centralized single neural network and CCN based
distributed neural network approaches are applied on IEEE
12-bus benchmark power system [5] simulated on real-time
digital simulator (RTDS).

In the paper, Section II, background of the study is ex-
plained. Section III, experiment of branch event identification
with single neural network and cellular multilayer perceptron
network architectures is expressed. Section IV, results of
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the identification and performance comparison is expressed.
Section V concludes the study.

II. BACKGROUND
A. Transmission Network Branch Events

Typically the power system is designed to operate under
(N-1) contingency level. Transmission network events can be
caused by an physical disturbance, an equipment failure or
a cyber-attack. The present power system is interconnected
by high speed communication network. These channels are
mostly dedicated secured connections. Yet, these communi-
cation infrastructure can be infiltrated. The 2015 Ukraine
Blackout is such an example [6]. Thus, validation method of
the existing system is beneficial for cyber-security as well.

B. Cellular Computational Network (CCN)

ANN is a mathematical model based on human nervous
system. It consists of layers of nodes that are connected with
each other. These connections are called neurons or weights.
This component refers to the significance of the particular
connection between two layers. There are two main models,
feed-forward neural network and recurrent neural network [3].
Feed-forward neural network uses the inputs to infer the output
based on the trained identifier. The recurrent neural network
uses both inputs and the outputs from the previous time steps
to infer the latest output based on the trained identifier. Neural
networks are trained based on supervised, unsupervised or
reinforcement learning. In this study, feed-forward multilayer
perceptron neural network is used. The neural networks are
trained by supervised learning method.

CCN framework decentralizes the complex problem and
links the pieces of the system to establish a fully connected
system to produce accurate results with less complexity.
CCN implements a distributed artificial neural network system
which can also be expressed as a sparsely connected cell
network. Each cell includes a simplified neural network that
solves the local problem, a communication unit is established
to transmit data from sensor measurement concentrator to cells
and event information from the cells to the visualization tool
in this study.

III. EXPERIMENT

IEEE 12-bus, three area benchmark power system serves as
the experimental system for this study, which is designed on
RSCAD, a power system simulation software and simulated
on the RTDS.

IEEE 12-bus benchmark system, includes three generators at
bus two, three and six, and eleven branches (eight transmission
lines and three transformers). Designed RSCAD simulation is
integrated with software PMUs, Which measures voltage pha-
sor and current phasor at both ends of each branch. The online
measurements directly feeds to the computational platform for
identification. The identification tool procedure is shown in
Fig. 1. The system is simulated in RTDS and the measurements
are transmitted to the computational platform (MATLAB).
The first approach uses single multilayer perceptron (MLP)
neural network. The second approach uses a cellular multilayer
perceptron (CMLP) neural network.

A. Single Neural Network

Layer configuration for MLP is shown in Fig. 2. The MLP
for this case contains 62 PMU measurement inputs, ten hidden
neurons and the eleven branch status. Sums up to total of 730
weights. The system is trained with 3600 PMU measurement
frames, collected from a series of random system branch
events of the test case.

B. Cellular Computational Network (CCN)

In the first stage of CMLP, measurements are arranged
in a data structure. The purpose of the data structure is
to distribute the PMU data frame through the distributed
algorithm efficiently. CMLP can be accommodated to any
other test case by simply updating the data structure. While
MLP is required neural network configuration update.

TABLE I
SIZE OF EACH CELL WITH NUMBER OF WEIGHT IN THE CMLP
Cell ID | No: Inputs | No: Hidden | No: Outputs | No: Weights
1 10 3 4 42
2 6 3 2 24
3 8 3 3 33
4 10 3 4 42
5 6 3 2 24
6 6 3 2 24
7 6 3 2 24
8 6 3 2 24
9 4 3 1 15
Total 62 27 22 252

The system contains 12 buses. Three buses are integrated
into generation plant blocks. The rest of the nine buses are used
as reference for CCN. CCN is setup analogue to the physical
bus topology of the test case as shown in Fig. 1. Each cell ID
is similar to the respective bus ID. The phasor measurements
of each branch connected to a particular bus are inputs to
the neural network of that particular cell. The 62 inputs of
the single MLP neural network is distributed among the cells
according to the defined data structure. Layer configuration for
CMLP is shown in Fig. 3. The weights distribution of CMLP
can be referred from the TABLE L

Each branch status is identified by two cells in the CMLP
approach. For an example, in Fig. 1, branch three status is
identified by cell one and cell nine. This is shown in the Fig.
3 CMLP configuration as well. This is an advantage compared
to MLP. Which only identified a branch status once. Output
branch status from the two separate cells in CMLP is used for
validation of the identification tool itself.

IV. RESULTS & DISCUSSION

The results of the two identification approaches for a defined
set of events is shown in Fig. 4. Status = 1 indicates that
transmission line or transformer is connected (closed breaker)
and the status = 0O indicates that it is disconnected (opened
breaker). Both approaches are capable of identifying the
network branch events successfully. The event identification
accuracy of both approaches for the tested cases were 100%.
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Fig. 1. Experiment procedure.

But it can be seen that the MLP identification is comparatively
better compares to CMLP from Fid. 4. This is due to in
MLP, data from neighbor buses includes in the training and
identification, which enforce the event identification of each
branch. i.e. There is a secondary layer of data assists for the
identification in MLP approach. CMLP identification is only
based on the data of the particular branch at the respective
bus. Computational time for MLP is calculated by taking the
average of 50 simulations to identify eleven events shown in
Figure 4. Computational time statistics for CMLP is estimated
by running 50 simulations to identify eleven events by all

nine cells. The averaged maximum computational time is
5.905ms for cell 1 and minimum is 5.632ms for cell 9. The
computational time of each cell in CMLP is less than the
MLP. In a distributed implementation or centralized parallel
processing this is an advantage. This is due to the less number
of weight calculations are required in the CMLP. In CMLP
totally 252 weights are calculated in each event identification
compares to 730 weights in MLP for the same identification.
Thus, computation burden of MLP is higher compares to
CMLP. This is really important when it comes to large power
networks. The most important factor is the process distribution.
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Fig. 2. Configuration of the single neural network for branch event identifi-
cation.

The power network is itself complex and the availability of
data for different stakeholders is limited. When it comes to
multi-utility operation, availability of the measurements of all
nodes of the selected network might not possible. Thus, having
a distributed architecture such as CMLP is useful and more
practical in the actual operation.

V. CONCLUSION

PMU measurements based identification of power system
network branch events was considered. Two neural network
based event identification approaches are established and
tested on IEEE 12-bus, three area benchmark power system.
Two approaches are i) single multilayer perceptron neural
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Fig. 3. Configuration of the CCN for branch event identification.

nt" Branch status.

TABLE II

COMPARISON OF MLP AND CMLP

Factors MLP CMLP
Surety High High
Complexity High Medium
Computational time for Process A*| 6.12 -
single event identification (ms) | Process B? - 5.772 + 0.075
Distributed Processing No Yes
Parallel Circuit Yes Yes
separate identification
Number of weights 730 252

2 Single node is used to process.
b Nine separate nodes is used to process.

network (MLP) and ii) cellular multilayer perceptron neural
network (CMLP). The current and voltage phasor measure-
ments of both ends of each branch is used as inputs for both
approaches. MLP used the direct PMU measurement frame
as input to the neural network and CMLP distributed PMU
measurement frame according to the defined data structure
among cells. The CMLP shows higher potential compares to
MLP in an practical integration. The distributed processing and
multiple event status identification for a single branch from
different cells are notable advantages of the CMLP.

Future research should involves extension of the study for a
large power system. More efficient intelligent approaches can
be investigated. Furthermore the approach should be modified
to identify the branch events with less number of measurement
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Fig. 4. Branch Events.

data considering the fact that every node in the network is not
equipped with PMUs. This study only investigates the (N-1)
contingency level. Thus, higher level of contingency scenarios
should be considered.
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