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Abstract— Integration of large-scale renewable energy plants to 

the power system is a challenge as the power generation is 

variable, and energy management systems require accurate 

prediction of weather parameters applicable to the sustainable 

generation of the renewable resources. Frequency control, 

economic dispatch and unit commitment problems in power 

system operations depend on forecasted renewable energy 

generation and power consumption as the renewable energy 

penetration increases. The weather measurements for this study 

were taken from four weather stations located on Clemson 

University buildings. Due to the lack of sustaining winds, wind 

power is not an option in the area. Therefore, solar irradiance and 

temperature are considered as the parameters that affect the 

power system operation. In this paper, computational approaches 

implemented in Cellular Computational Networks (CCNs) are 

discussed. CCN is effective in weather parameter estimation due 

to its capability to simultaneously capture spatial-temporal 

characteristics of the respective weather parameter. CCN 

predictions are compared against their temporal counterparts. In 

this paper, particle swarm optimization (PSO) based 

computational unit input selection is discussed. 

Index Terms— Cellular computational networks, spatial-

temporal characteristics, solar irradiance prediction, 

temperature prediction  

I. INTRODUCTION 

Weather predictions are required for operations that are 
affected by weather variations such as agriculture and power 
system control. For agriculture, long term predictions are more 
suitable and short term variations does not create a huge impact 
unless it is an emergency weather condition. However, the 
power system control function is both affected by long term and 
short term weather variations. Weather parameters such as 
rainfall, wind speed and solar irradiation affect the power 
system functions such as annual generator maintenance 
schedule and power generation planning in long-term. With the 

increased weather dependent renewable energy generation in 
the power system, the impact of short term weather variations 
to the power system reliability has become high.  

A study done by National Renewable Energy Laboratory 
(NREL) [1] on the impacts of variability and uncertainty of 
solar photovoltaic generation has shown that the improved day-
ahead PV forecast reduces production costs with only a little 
effect on the load-generation balance. The NREL report further 
concludes that a faster dispatch (5-minute) frequency can 
provide more economic gain in solar PV integration than 
conventional 1-hour intervals. Therefore, short term predictions 
have a stronger impact to the power system with the uncertainty 
in weather parameters. Temperature is also an important 
weather parameter for energy management function of the 
power system. This is due to its impact on the load. The heating 
and cooling loads of the power system depends on the ambient 
temperature. Solar irradiance and temperature are increasingly 
becoming important weather parameters in load centers. The 
‘duck-curve’ [2] is one of the challenging consequence of 
increasing solar power penetration. Therefore, predictability of 
solar power generation and ambient temperature related electric 
load consumption could be advantageous for the energy 
management of load centers with a high solar power 
penetration.  

Physical model based weather parameter predictions such 
as Numerical Weather Prediction (NWP) and statistical 
methodologies such as neural networks are used in literature to 
develop weather prediction tools. In [3], 1 minute rain 
distribution is predicted with numerical weather prediction 
data. Challenges in NWP in complex terrains are discussed in 
[4]. In [5], weather forecasting analysis of different 
connectionist and statistical models is done. The authors have 
implemented multi-layer perceptron (MLP), elman recurrent 
neural network (ERNN) and radial basis function network 
(RBNN) to analyze the efficiencies of wind speed and 
temperature forecast.  

NWP based forecasts evaluates physical properties of the 
terrain in a fine resolution in order to infer predicted weather 
parameters. However, a typical statistical weather prediction 
does not use sufficient spatial information to improve 
predictions. This drawback can be compensated by the use of a 
cellular computational networks (CCN) [6,7] which can 
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integrate a number of weather prediction stations effectively. It 
can communicate spatial data among the stations in the network 
in order to increase the spatial awareness.  

In [8], prediction of solar irradiance of utility scale solar PV 
plants are discussed. An echo state network (ESN) based CCN 
of the solar irradiance sensors is used to predict the solar 
irradiance for very short term predictions. In [9, 10], the authors 
describe a number of computational approaches entailing the 
use of neural networks including CCNs for wind speed 
prediction using spatio-temporal wind speed and wind 
direction. The authors analyzed wind speed predictions of 15 
minute, 30 minute and one hour ahead for possible applications 
in economic dispatch of power systems with wind plants. Wind 
speed predictions are done using multilayer perceptron and 
recurrent neural networks as computational units of the CCN. 

Human brain consists of billions of neurons without 
permanent connections. Our learning involves making and 
breaking of synaptic links among neurons in our brain. 
Researchers have made effort in demonstrating this 
phenomenon in learning systems. In [11], author discusses a 
number of learning systems which possess evolving 
connections as oppose to permanent synaptic weights. An 
evolving self-organizing map is discussed in [12]. In [13],  
evolving fuzzy neural networks are introduced and they are 
capable of adapting the network structure and the functionality. 

CCN based short term solar irradiance and temperature 
predictions are presented in this paper. Multilayer perceptron 
neural network architecture is used in developing CCN. The 
rest of this paper is structured as follows. CCN architecture is 
discussed in Section II. The hardware setup of the weather 
stations located around Clemson University is discussed in 
Section III. Computational units of the CCN is presented in 
Section IV. In Section V, particle swarm optimization based 
CCN input optimization approach is discussed.  Results and 
discussions are provided in Section VI and concluding remarks 
are made in Section VII. 

The main contributions of this paper are as follows: 
1. Multi-time horizon solar irradiance and 

temperature predictions using CCN  
2. Input selection of the CCN using PSO.  

 

II. CELLULAR COMPUTATIONAL NETWORK (CCN) 

Cellular computational network is a distributed and scalable 
architecture for studying complex interconnected systems [6]-
[7]. Spatially distributed large solar power plants and weather 
dependent power system load can be modeled using CCN in 
predicting weather, energy generation and power consumption. 
The CCN utilizes spatial-temporal information of the power 
stations in predicting solar irradiance and temperature. 

  A CCN consists of connected cells, where each cell 
represents a distinct component in the system. A cell consist of 
a computational unit, a learning unit and a communication unit. 
The computational unit is chosen based on the purpose of the 
CCN designed. Computational intelligence (CI) paradigms 
such as, neural networks, fuzzy logic, swarm intelligence and 
evolutionary algorithm approaches are more suitable in 
implementing the computational unit.  

The purpose of the computational unit is to produce an 
output by utilizing available information. The learning unit 
improve the performance with time by learning from historic 

data. The communication unit facilitates the communication 
among interconnected cells. The unit includes input/output 
interface for sending and receiving information from the other 
cells. The connectivity among the cells is defined based on the 
structure of the system.  

In this study, two CCNs are implemented to predict the solar 
irradiance and temperature in spatially distributed weather 
stations. Neural networks have been used as the computational 
unit of each cell. Section IV describes the neural network 
architectures implemented in CCNs.   

 

III. HARDWARE SETUP 

Weather stations are located in four locations around 
Clemson University and broadcast weather information to real-
time power and intelligent systems (RTPIS) laboratory through 
internet. In RTPIS lab the weather prediction is done using 
CCN framework. Each weather station sends the following 
weather data: 

 
where 𝐿𝑖(𝑡), 𝐼𝑟𝑖(𝑡), 𝑇𝑖(𝑡), 𝑊𝑖(𝑡) and 𝐷𝑖(𝑡) are weather 
parameters, solar irradiance, temperature, wind speed and wind 
direction of location 𝑖 at time 𝑡 respectively.  

    Fig. 1 shows the hardware setup of weather stations using 
TCP/IP protocol and the stacked predictions of solar irradiance 
and temperature. Spatial distribution of the weather stations is 
also depicted. Wind speed prediction is infeasible due to the 
erratic nature in measurements. 

IV. COMPUTATIONAL UNITS IN CCN 

The computational units are homogeneous [6] in 

construction for the purpose of multi-location weather 

predictions. The inputs of all the computational units of a 

weather parameter are common and comprises of spatial and 

temporal information of the respective weather parameter. The 

proposed framework can easily be scaled up to a higher 

number of weather stations as each cell is capable of learning 

spatial dynamics without the knowledge of the internal units of 

the neighboring cells. Only respective weather parameters of 

the neighboring cells are used to extract spatial dynamics. 

In this study, the performance of two neural architectures 

are compared, namely, multilayer perceptron (MLP) and 

Elman recurrent neural network. The MLP neural network is 

designed to have two time delayed inputs addition to the 

current time inputs to constitute the temporal information in 

the network. In Fig. 1, the neural network computational unit 

of a weather parameter prediction of site 1, when all the cells 

are connected with all the neighbors, is depicted. The 

computational unit is implemented as a multilayer perceptron 

with ten hidden layer neurons. The inputs are indicated at each 

input neuron. 𝑦̂𝑖(𝑘) is the predicted parameter for location 𝑖  at 

discrete time 𝑘,  𝑦𝑖(𝑘) is the measured parameter for location 

𝑖  at discrete time 𝑘 and ∆ is the prediction horizon. 

It could be inefficient to use all the cells as neighbors due to 

potential uncorrelated cells and added computational burden. 

Therefore, measures are taken to optimize the cell inputs as 

discussed in the next section.  

 

𝐿𝑖(𝑡) = [𝐼𝑟(𝑡)𝑖 , 𝑇𝑖(𝑡), 𝑊𝑖(𝑡), 𝐷𝑖(𝑡)]                      (1) 
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V. CCN CONFIGURATION OPTIMIZATION  

The communication unit of cells configure the input/ output 

connectivity of the CCN framework. In [9,10], a homogeneous 

cell connectivity is considered. It could be effective for small 

amount of cells. However, as the cell population grows, it 

could be ineffective in prediction accuracy as well as 

inefficient in computations. Therefore, a heterogeneous cell 

network is studied in this paper. 

In a cellular network with 𝑛 cells and 𝑚 possible input 

parameters, there are 2𝑚×𝑛×(𝑛−1) possible input combinations 

for all the cells. It is challenging to determine the optimal cell 

configuration when 𝑛 𝑎𝑛𝑑 𝑚 increase. In this study, a binary 

particle swarm optimization (BPSO) algorithm [14] is 

implemented to choose the optimum network connections.  

 

 

 

Figure 1.  Spatial distribution of the weather stations.  

BPSO[15] algorithm is an adaptation of the Particle Swarm 

Optimization algorithm for the discrete scenario. PSO is a 

nature-inspired algorithm that mimics a flock of birds to carry 

out its optimization. BPSO employs a set of particles spread 

through the search space each of which computes the objective 

value at its current location. These particles would move 

through the search space at each iteration according to two 

main equations of PSO.  

A particle would initiate itself at a random location of the 

search space initially and would retain two major pieces of 

information as it moves. First, it would memorize the ‘personal 

best’, the best objective value the particle has calculated during 

all iterations so far and its location. Second, it would maintain 

a ‘velocity’ using which, the next location of the particle in its 

next iteration to be decided. The velocity of each particle is 

calculated using the following formula: 

 

𝑉𝑑,𝑡+1
𝑘 =  𝑤𝑡

𝑘 × 𝑉𝑑,𝑡
𝑘 + 𝑐1 × 𝑟𝑎𝑛𝑑1,𝑑,𝑡

𝑘 (𝑋𝑝,𝑑,𝑡
𝑘 − 𝑋𝑑,𝑡

𝑘 ) 

 

             +𝑐2 × 𝑟𝑎𝑛𝑑2,𝑑,𝑡
𝑘 × (𝑋𝑔,𝑑,𝑡

𝑘 − 𝑋𝑑,𝑡
𝑘 )                     (2) 

 

Here, 𝑉𝑑,𝑡
𝑘  is the velocity of the 𝑑th dimension of the 𝑘th 

particle at iteration 𝑡. 𝑤𝑡
𝑘 is the ‘inertia’ of the 𝑘th particle at 

iteration 𝑡. In the current study, the inertia value is chosen to 

start at 0.9 and then linearly reduce to 0.4 at the end of the set 

number of iterations.  𝑐1is the ‘cognitive constant’ and 𝑐2 is the 

‘social constant’ for the PSO system. These values are 

generally set to values between 1 and 2. 𝑟𝑎𝑛𝑑1,𝑑,𝑡
𝑘  and 

𝑟𝑎𝑛𝑑2,𝑑,𝑡
𝑘  are random values between 0 and 1 generated at each 

iteration. 𝑋𝑑,𝑡
𝑘  is the current location of the particle. 𝑋𝑝,𝑑,𝑡

𝑘 is the 

current personal best and 𝑋𝑔,𝑑,𝑡
𝑘 is the current ‘global best’. That 

is, the location of the best objective value found so far by any 

particle in the system. At the beginning the velocity of every 

particle is initiated to zero.  
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 The next position each particle moves to in the next 

iteration is decided in BPSO by calculating a value between 0 

and 1 using the velocity and comparing it with a generated 

random value. The function used to convert the velocity to a 

value between 0 and 1 in this study is the log-sigmoid function. 

Since the next position of each dimension can only be either 0 

or 1 for binary PSO, the next location is decided as follows: 

 

       𝑋𝑑,𝑡+1
𝑘 = {

1, 𝑟𝑎𝑛𝑑3,𝑑,𝑡
𝑘 −

1

1+𝑒
𝑉𝑑,𝑡

𝑘 ≤ 0

0, 𝑟𝑎𝑛𝑑3,𝑑,𝑡
𝑘 −

1

1+𝑒
𝑉𝑑,𝑡

𝑘 > 0
                    (3) 

 

 

Fig. 2 illustrates the flowchart of the BPSO algorithm. A 

particle of the BPSO algorithm corresponds to a possible input 

selection for the cells. Therefore, each dimension would 

correspond to the selection/ omission of an parameter that is 

available for the cells. The fitness function of the BPSO is as 

follows: 

                    𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  − ∑ 𝑆𝐹𝑖                                     (4) 

 

                                   𝑆𝐹𝑖 =  (1 −
𝑀𝐴𝑃𝐸𝑖,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑀𝐴𝑃𝐸𝑖,𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙
)           (5) 

 

where 𝑆𝐹𝑖 is the skill factor (SF) of the 𝑖𝑡ℎ weather station’s 
measurements and MAPE is the mean absolute percentage 
error. SF compares the predictions with the temporal 
predictions, which uses only temporal parameter values. The 
temporal reference is used to measure the capability of CCN in 
inferring spatial trending which is absent in the temporal 
network. 

As it could be seen from Fig. 1, weather stations are located 

irregularly which is similar to the practical situation due to the 

constraints in siting.   

The challenge is to infer weather predictions from the 

available weather measurements and previous predictions. The 

irregularly distributed weather stations suggest different 

spatio-temporal correlation among the weather stations. Three 

different time horizon predictions are studied in this paper to 

investigate the spatial correlation’s dependence on the 

prediction time horizon. The prediction time horizons 

considered are 5-minute, 10-miinute and 15-minute.  

 

VI. RESULTS AND DISCUSSION 

The data used for this study is extracted from four sites 

shown in Fig. 1. The input data is measured in five second 

intervals. However, the data is averaged over a one-minute 

time period to filter the noise. The data samples received in the 

server computer needs to be synchronously generated. 

Therefore, an hourly time reset done in each data logger 

according to network time protocol [16]. 
The optimum inputs selected by the BPSO algorithm for 5, 

10 and 15 minute ahead predictions of solar irradiance and 
temperature are shown in Fig. 3. Value one in squares indicate 
a contribution from a site to the prediction of a cell. Eg:- for the 

5 minute ahead solar irradiance predictions of cell 1, site 2 and 
4 data are used. Site 3 is less frequently used. In Fig. 1, it could 
be seen that sites 1 and 3 are closely located. Therefore, this 
result could be due to non-availability of new information to 
infer from site 3. On the other hand, for cell 2 predictions, none 
of the other sites are dominantly contributing. It is clear from 
the figure that site 2 is quite isolated from other sites. 

 

Figure 2.  Flowchart of the PSO based optimum cell configuration 

estimation. 

     

Figure 3.  The optimum input combinations for predictions 
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Cell 3 predictions have the least contribution from site 1 

and most of the contribution from sites 2 and 4. It is consistent 

with the observation in cell 1 predictions. Cell 4 predictions 

does not have much contribution from other sites with some 

predictions having inputs from sites 2 and 3 measurements. 

The evolution of the PSO global best is shown in Fig. 9 for 

solar irradiance and temperature prediction networks. 

To compare the performance of the predictions, Skill 

Factor and MAPE values are used. The MAPE of CCN and 

temporal predictions are shown in TABLE I. Relevant SFs of 

CCN predictions are shown in Table II which are calculated 

using (5). Graphical representations of 15- minute ahead 

predictions of solar irradiance and ambient temperature 

depicted in Fig. 5 and 6 respectively.  

The weather stations used for this study are located 

approximately 1.5m above a building. Therefore, the 

turbulence created due to the closeness to a surface makes the 

wind speed measurements changing too fast. Such fast changes 

cannot even be filtered by taking the average over one minute 

period. On the other hand, cut in speed of a typical wind turbine 

is 3-4 ms-1. As it could be seen in the wind speed curves, none 

of them surpass 3 ms-1. Therefore, wind speed is not a 

significant weather parameter for the chosen area as far as 

distributed energy resources are considered. 

Solar irradiance is more dependent on time of the day, day 

of the year and clearness of the atmosphere. The clearness of 

the atmosphere is measured in terms of clearness index. Data 

used for this study were recorded in November, 2019. The 

clearness index for the month of November in Clemson and 

surrounding area is 0.51 [17]. Temperature is also a result of 

solar irradiance, the cloud cover and wind. However, the 

temperature variation is lower compared to the solar irradiance 

due to the ‘thermal inertia’ of the air mass and low wind speeds 

in Clemson and suburbs. 

A comparison of the skill factors is depicted in Fig. 4. A 

positive skill factor indicates better prediction capability of 

spatio-temporal (CCN) compared to temporal networks. For 

solar irradiance prediction, sites 1 and 4 have the best SF in 10 

minutes ahead prediction while sites 2 and 3 have the best SF 

in 5 minutes ahead predictions. For temperature prediction, 

sites 1 and 2 have the best SF in 15 minutes ahead prediction, 

site 3 has the best SF in 10 minutes ahead prediction and site 4 

has the best SF in 5 minutes ahead predictions. 

 

  

(a) 

 

(b) 

Figure 4.  Comparison of prediction SFs of (a) solar irradiance and (b) 

temperature. 

TABLE I 

MAPE OF THE WEATHER PREDICTIONS USING SPATIO-TEMPORAL AND TEMPORAL NETWORKS 

 
 

 
TABLE II 

SF OF THE WEATHER PREDICTIONS USING SPATIO-TEMPORAL NETWORKS 
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Figure 5.  Solar irradiance predictions of (a) site 1, (b) site 2, (c) site 3 and (d) site 4. 

 

Figure 6.  Temperature predictions of (a) site 1, (b) site 2, (c) site 3 and (d) site 4. 

(d)

(d)

(a)

(b)

(c)

(a)

(b)

(c)
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Figure 7.  Hinton maps of solar irradiance predictions. 

 

Figure 8.  Hinton maps of temperature predictions. 

  Hinton maps of the neural networks are shown in Fig. 

7 and 8. Positive weights are shown in green and negative 

weights are shown in red. Inputs are organized as shown in 

the computational unit depicted in Fig. 1 and the inputs 

contributing to the predictions can be viewed in Fig. 3. 

VII. CONCLUSION  

In this study, effectiveness of CCN in weather parameters, 

namely, solar irradiance and temperature are examined. 

Weather station sites are located around Clemson University 

and weather measurements are brought to the RTPIS lab 

located in the Riggs building. 

A binary particle swarm optimization algorithm is 

implemented to find the optimum input combinations of the 

cells. Predictions for 5, 10 and 15 minutes ahead predictions 

studied to check if there is a pattern in parameter correlation 

and prediction accuracy. A PSO algorithm is used to select the 

optimum inputs of the CCN computational units. 
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(a) 

 

(b)  

Figure 9.  Evolution of best input combination for (a) solar irradiance and 

(b) temperature CCNs.. 

Temperature measurements have low variations and solar 

irradiance measurements have the highest variation.. However, 

CCN predictions of solar irradiance and temperature 

measurements could outperform temporal predictions.  
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