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Abstract— Integration of large-scale renewable energy plants to
the power system is a challenge as the power generation is
variable, and energy management systems require accurate
prediction of weather parameters applicable to the sustainable
generation of the renewable resources. Frequency control,
economic dispatch and unit commitment problems in power
system operations depend on forecasted renewable energy
generation and power consumption as the renewable energy
penetration increases. The weather measurements for this study
were taken from four weather stations located on Clemson
University buildings. Due to the lack of sustaining winds, wind
power is not an option in the area. Therefore, solar irradiance and
temperature are considered as the parameters that affect the
power system operation. In this paper, computational approaches
implemented in Cellular Computational Networks (CCNs) are
discussed. CCN is effective in weather parameter estimation due
to its capability to simultaneously capture spatial-temporal
characteristics of the respective weather parameter. CCN
predictions are compared against their temporal counterparts. In
this paper, particle swarm optimization (PSO) based
computational unit input selection is discussed.

Index Terms— Cellular computational networks, spatial-
temporal characteristics, solar irradiance prediction,
temperature prediction

1. INTRODUCTION

Weather predictions are required for operations that are
affected by weather variations such as agriculture and power
system control. For agriculture, long term predictions are more
suitable and short term variations does not create a huge impact
unless it is an emergency weather condition. However, the
power system control function is both affected by long term and
short term weather variations. Weather parameters such as
rainfall, wind speed and solar irradiation affect the power
system functions such as annual generator maintenance
schedule and power generation planning in long-term. With the
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increased weather dependent renewable energy generation in
the power system, the impact of short term weather variations
to the power system reliability has become high.

A study done by National Renewable Energy Laboratory
(NREL) [1] on the impacts of variability and uncertainty of
solar photovoltaic generation has shown that the improved day-
ahead PV forecast reduces production costs with only a little
effect on the load-generation balance. The NREL report further
concludes that a faster dispatch (5-minute) frequency can
provide more economic gain in solar PV integration than
conventional 1-hour intervals. Therefore, short term predictions
have a stronger impact to the power system with the uncertainty
in weather parameters. Temperature is also an important
weather parameter for energy management function of the
power system. This is due to its impact on the load. The heating
and cooling loads of the power system depends on the ambient
temperature. Solar irradiance and temperature are increasingly
becoming important weather parameters in load centers. The
‘duck-curve’ [2] is one of the challenging consequence of
increasing solar power penetration. Therefore, predictability of
solar power generation and ambient temperature related electric
load consumption could be advantageous for the energy
management of load centers with a high solar power
penetration.

Physical model based weather parameter predictions such
as Numerical Weather Prediction (NWP) and statistical
methodologies such as neural networks are used in literature to
develop weather prediction tools. In [3], 1 minute rain
distribution is predicted with numerical weather prediction
data. Challenges in NWP in complex terrains are discussed in
[4]. In [5], weather forecasting analysis of different
connectionist and statistical models is done. The authors have
implemented multi-layer perceptron (MLP), elman recurrent
neural network (ERNN) and radial basis function network
(RBNN) to analyze the efficiencies of wind speed and
temperature forecast.

NWP based forecasts evaluates physical properties of the
terrain in a fine resolution in order to infer predicted weather
parameters. However, a typical statistical weather prediction
does not use sufficient spatial information to improve
predictions. This drawback can be compensated by the use of a
cellular computational networks (CCN) [6,7] which can
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integrate a number of weather prediction stations effectively. It
can communicate spatial data among the stations in the network
in order to increase the spatial awareness.

In [8], prediction of solar irradiance of utility scale solar PV
plants are discussed. An echo state network (ESN) based CCN
of the solar irradiance sensors is used to predict the solar
irradiance for very short term predictions. In [9, 10], the authors
describe a number of computational approaches entailing the
use of neural networks including CCNs for wind speed
prediction using spatio-temporal wind speed and wind
direction. The authors analyzed wind speed predictions of 15
minute, 30 minute and one hour ahead for possible applications
in economic dispatch of power systems with wind plants. Wind
speed predictions are done using multilayer perceptron and
recurrent neural networks as computational units of the CCN.

Human brain consists of billions of neurons without
permanent connections. Our learning involves making and
breaking of synaptic links among neurons in our brain.
Researchers have made effort in demonstrating this
phenomenon in learning systems. In [11], author discusses a
number of learning systems which possess evolving
connections as oppose to permanent synaptic weights. An
evolving self-organizing map is discussed in [12]. In [13],
evolving fuzzy neural networks are introduced and they are
capable of adapting the network structure and the functionality.

CCN based short term solar irradiance and temperature
predictions are presented in this paper. Multilayer perceptron
neural network architecture is used in developing CCN. The
rest of this paper is structured as follows. CCN architecture is
discussed in Section II. The hardware setup of the weather
stations located around Clemson University is discussed in
Section III. Computational units of the CCN is presented in
Section IV. In Section V, particle swarm optimization based
CCN input optimization approach is discussed. Results and
discussions are provided in Section VI and concluding remarks
are made in Section VII.

The main contributions of this paper are as follows:

1. Multi-time horizon solar irradiance
temperature predictions using CCN
2. Input selection of the CCN using PSO.

and

II.  CELLULAR COMPUTATIONAL NETWORK (CCN)

Cellular computational network is a distributed and scalable
architecture for studying complex interconnected systems [6]-
[7]. Spatially distributed large solar power plants and weather
dependent power system load can be modeled using CCN in
predicting weather, energy generation and power consumption.
The CCN utilizes spatial-temporal information of the power
stations in predicting solar irradiance and temperature.

A CCN consists of connected cells, where each cell
represents a distinct component in the system. A cell consist of
a computational unit, a learning unit and a communication unit.
The computational unit is chosen based on the purpose of the
CCN designed. Computational intelligence (CI) paradigms
such as, neural networks, fuzzy logic, swarm intelligence and
evolutionary algorithm approaches are more suitable in
implementing the computational unit.

The purpose of the computational unit is to produce an
output by utilizing available information. The learning unit
improve the performance with time by learning from historic
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data. The communication unit facilitates the communication
among interconnected cells. The unit includes input/output
interface for sending and receiving information from the other
cells. The connectivity among the cells is defined based on the
structure of the system.

In this study, two CCNs are implemented to predict the solar
irradiance and temperature in spatially distributed weather
stations. Neural networks have been used as the computational
unit of each cell. Section IV describes the neural network
architectures implemented in CCNs.

III. HARDWARE SETUP

Weather stations are located in four locations around
Clemson University and broadcast weather information to real-
time power and intelligent systems (RTPIS) laboratory through
internet. In RTPIS lab the weather prediction is done using
CCN framework. Each weather station sends the following
weather data:

t) = [Ir(t), Ti(t t), D;(t 1
where L; (tS( )Irl (D), (T)l(t) (T%/ (tl)( zmd (D)](t) are Weaghe):r
parameters, solar irradiance, temperature, wind speed and wind
direction of location i at time t respectively.

Fig. 1 shows the hardware setup of weather stations using
TCP/IP protocol and the stacked predictions of solar irradiance
and temperature. Spatial distribution of the weather stations is
also depicted. Wind speed prediction is infeasible due to the
erratic nature in measurements.

IV. COMPUTATIONAL UNITS IN CCN

The computational units are homogeneous [6] in
construction for the purpose of multi-location weather
predictions. The inputs of all the computational units of a
weather parameter are common and comprises of spatial and
temporal information of the respective weather parameter. The
proposed framework can easily be scaled up to a higher
number of weather stations as each cell is capable of learning
spatial dynamics without the knowledge of the internal units of
the neighboring cells. Only respective weather parameters of
the neighboring cells are used to extract spatial dynamics.

In this study, the performance of two neural architectures
are compared, namely, multilayer perceptron (MLP) and
Elman recurrent neural network. The MLP neural network is
designed to have two time delayed inputs addition to the
current time inputs to constitute the temporal information in
the network. In Fig. 1, the neural network computational unit
of a weather parameter prediction of site 1, when all the cells
are connected with all the neighbors, is depicted. The
computational unit is implemented as a multilayer perceptron
with ten hidden layer neurons. The inputs are indicated at each
input neuron. y; (k) is the predicted parameter for location i at
discrete time k, y;(k) is the measured parameter for location
i atdiscrete time k and A is the prediction horizon.

It could be inefficient to use all the cells as neighbors due to
potential uncorrelated cells and added computational burden.
Therefore, measures are taken to optimize the cell inputs as
discussed in the next section.
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V. CCN CONFIGURATION OPTIMIZATION

The communication unit of cells configure the input/ output
connectivity of the CCN framework. In [9,10], a homogeneous
cell connectivity is considered. It could be effective for small
amount of cells. However, as the cell population grows, it
could be ineffective in prediction accuracy as well as
inefficient in computations. Therefore, a heterogeneous cell
network is studied in this paper.
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In a cellular network with n cells and m possible input
parameters, there are 2™ (=1 possible input combinations
for all the cells. It is challenging to determine the optimal cell
configuration when n and m increase. In this study, a binary
particle swarm optimization (BPSO) algorithm [14] is
implemented to choose the optimum network connections.
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Figure 1.

BPSO[15] algorithm is an adaptation of the Particle Swarm
Optimization algorithm for the discrete scenario. PSO is a
nature-inspired algorithm that mimics a flock of birds to carry
out its optimization. BPSO employs a set of particles spread
through the search space each of which computes the objective
value at its current location. These particles would move
through the search space at each iteration according to two
main equations of PSO.

A particle would initiate itself at a random location of the
search space initially and would retain two major pieces of
information as it moves. First, it would memorize the ‘personal
best’, the best objective value the particle has calculated during
all iterations so far and its location. Second, it would maintain
a ‘velocity’ using which, the next location of the particle in its
next iteration to be decided. The velocity of each particle is
calculated using the following formula:

kK _ ok K k k k
Vaesr = Wi X Vg +¢4 X Tande,t(Xp,d,t - Xd.t)
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+cp X rand§ 4, ¥ (X;;,d,t — X5 (2)

Here, Vé‘_t is the velocity of the dth dimension of the kth
particle at iteration t. wf is the ‘inertia’ of the kth particle at
iteration t. In the current study, the inertia value is chosen to
start at 0.9 and then linearly reduce to 0.4 at the end of the set
number of iterations. c;is the ‘cognitive constant’ and c, is the
‘social constant’ for the PSO system. These values are
generally set to values between 1 and 2. rand’f,d‘t and
rand’z"d't are random values between 0 and 1 generated at each
iteration. Xj , is the current location of the particle. X 4 ,is the
current personal best and X !’;'d_tis the current ‘global best’. That
is, the location of the best objective value found so far by any
particle in the system. At the beginning the velocity of every
particle is initiated to zero.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on May 15,2021 at 12:22:40 UTC from IEEE Xplore. Restrictions apply.



The next position each particle moves to in the next
iteration is decided in BPSO by calculating a value between 0
and 1 using the velocity and comparing it with a generated
random value. The function used to convert the velocity to a
value between 0 and 1 in this study is the log-sigmoid function.
Since the next position of each dimension can only be either 0
or 1 for binary PSO, the next location is decided as follows:

k 1
1, randid,t - —V’:it <0
k — 1+e &
Xdp+1 = k 1 ©)
0, rands 4, — — >0
1+e dt

Fig. 2 illustrates the flowchart of the BPSO algorithm. A
particle of the BPSO algorithm corresponds to a possible input
selection for the cells. Therefore, each dimension would
correspond to the selection/ omission of an parameter that is
available for the cells. The fitness function of the BPSO is as
follows:

fitness = — 3 SF; (©))
SF. = ( _ MAPEi,prediction) (5)
' MAPEi,temporal

where SF; is the skill factor (SF) of the i*" weather station’s
measurements and MAPE is the mean absolute percentage
error. SF compares the predictions with the temporal
predictions, which uses only temporal parameter values. The
temporal reference is used to measure the capability of CCN in
inferring spatial trending which is absent in the temporal
network.

As it could be seen from Fig. 1, weather stations are located
irregularly which is similar to the practical situation due to the
constraints in siting.

The challenge is to infer weather predictions from the
available weather measurements and previous predictions. The
irregularly distributed weather stations suggest different
spatio-temporal correlation among the weather stations. Three
different time horizon predictions are studied in this paper to
investigate the spatial correlation’s dependence on the
prediction time horizon. The prediction time horizons
considered are 5-minute, 10-miinute and 15-minute.

VI. RESULTS AND DISCUSSION

The data used for this study is extracted from four sites
shown in Fig. 1. The input data is measured in five second
intervals. However, the data is averaged over a one-minute
time period to filter the noise. The data samples received in the
server computer needs to be synchronously generated.
Therefore, an hourly time reset done in each data logger
according to network time protocol [16].

The optimum inputs selected by the BPSO algorithm for 5,
10 and 15 minute ahead predictions of solar irradiance and
temperature are shown in Fig. 3. Value one in squares indicate
a contribution from a site to the prediction of a cell. Eg:- for the
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5 minute ahead solar irradiance predictions of cell 1, site 2 and
4 data are used. Site 3 is less frequently used. In Fig. 1, it could
be seen that sites 1 and 3 are closely located. Therefore, this
result could be due to non-availability of new information to
infer from site 3. On the other hand, for cell 2 predictions, none
of the other sites are dominantly contributing. It is clear from
the figure that site 2 is quite isolated from other sites.

Initialize particles (input vectors)
and velocities

l

| Train neural network for each particle |

| Compute fitness and set pBest and gBest |

—

Update velocities and particles |

| Train neural network for each particle ‘

|

Compute fitness and update pBest and
gBest

l

Maximum iteration

Yes

‘ Return optimum cell configuration

Figure 2. Flowchart of the PSO based optimum cell configuration
estimation.
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Figure 3. The optimum input combinations for predictions
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Cell 3 predictions have the least contribution from site 1
and most of the contribution from sites 2 and 4. It is consistent
with the observation in cell 1 predictions. Cell 4 predictions
does not have much contribution from other sites with some
predictions having inputs from sites 2 and 3 measurements.
The evolution of the PSO global best is shown in Fig. 9 for
solar irradiance and temperature prediction networks.

To compare the performance of the predictions, Skill
Factor and MAPE values are used. The MAPE of CCN and
temporal predictions are shown in TABLE I. Relevant SFs of
CCN predictions are shown in Table II which are calculated

positive skill factor indicates better prediction capability of
spatio-temporal (CCN) compared to temporal networks. For
solar irradiance prediction, sites 1 and 4 have the best SF in 10
minutes ahead prediction while sites 2 and 3 have the best SF
in 5 minutes ahead predictions. For temperature prediction,
sites 1 and 2 have the best SF in 15 minutes ahead prediction,
site 3 has the best SF in 10 minutes ahead prediction and site 4
has the best SF in 5 minutes ahead predictions.

80.00

70.00
using (5). Graphical representations of 15- minute ahead 60.00
predictions of solar irradiance and ambient temperature B
. . . . 40.00
depicted in Fig. 5 and .6 respectively. . i
The weather stations used for this study are located 20,00
approximately 1.5m above a building. Therefore, the 10.00
0.00
tll.rb(lillencedcreated due to thfl: ClO.SCneSS ;‘0 a Surficf malfles the Site 1 Site 2 Site 3 Site 4 |Site 1 Site 2 Site 3 Site 4 Site 1 Site 2 Site 3 Site 4
Win Spee measurements ¢ anglng too fast. SuC astc anges 5 minutes ahead 10 minutes ahead 15 minutes ahead
cannot even be filtered by taking the average over one minute predictions predintions patictons
period. On the other hand, cut in speed of a typical wind turbine ()
is 3-4 ms™. As it could be seen in the wind speed curves, none
1 . . 90.00
of them surpass 3 ms"'. Therefore, wind speed is not a ./,
significant weather parameter for the chosen area as far as 7000
distributed energy resources are considered. gggg
Solar irradiance is more dependent on time of the day, day 54
of the year and clearness of the atmosphere. The clearness of  30.00
the atmosphere is measured in terms of clearness index. Data iggg I I
used for this study were recorded in November, 2019. The 0.00 |
Cleamess index for the month Of November in Clemson and Site 1 Site 2 Site 3 Site 4 Site 1 Site 2 Site 3 Site 4/ Site 1 Site 2 Site 3 Site 4
surrounding area is 0.51 [17]. Temperature is also a result of SIminites shead A0minites ahedd 15iTiALES shiead
. . . predictions predictions predictions
solar irradiance, the cloud cover and wind. However, the
temperature variation is lower compared to the solar irradiance (b)
due to the ‘thermal inertia’ of the air mass and low wind speeds Figure 4. Comparison of prediction SFs of (a) solar irradiance and (b)
in Clemson and suburbs. temperature.
A comparison of the skill factors is depicted in Fig. 4. A
TABLEI

MAPE OF THE WEATHER PREDICTIONS USING SPATIO-TEMPORAL AND TEMPORAL NETWORKS

Weather 5 minutes ahead predictions 10 minutes ahead predictions 15 minutes ahead predictions
Parameter Predictor Site ] |Site2 |Site3 |Site4 |Sitel |Site2 |[Site3 |[Site4 |Sitel |Site2 |Site3 |Site 4
Spatio-temporal | 0.0237| 0.0643| 0.0259| 0.0104| 0.0218| 0.0876| 0.0413| 0.0096| 0.0193| 0.0832| 0.032] 0.02
Solar Irradiance |Temporal 0.0397| 0.1241| 0.0761| 0.0227| 0.0841| 0.1432| 0.0591| 0.0383| 0.0382] 0.1568| 0.0889| 0.0783
Spatio-temporal | 0.0239| 0.0254| 0.0185] 0.0367| 0.0499| 0.0432| 0.0357| 0.0497| 0.0551| 0.0588| 0.0448| 0.059
Temperature | Temporal 0.0494| 0.0284| 0.0305| 0.174| 0.0692| 0.0576| 0.1506| 0.1188| 0.1786| 0.146| 0.0663| 0.1733
TABLE II
SF OF THE WEATHER PREDICTIONS USING SPATIO-TEMPORAL NETWORKS
Weather 5 minutes ahead predictions 10 minutes ahead predictions 15 minutes ahead predictions
Parameter Site 1 Site 2 Site 3 Site 4 Site 1 Site 2 Site 3 Site 4 Site 1 Site 2 Site 3 Site 4
Solar Irradiance 40.30| 48.19| 6597 54.19| 74.08] 38.83| 30.12| 7493 4948 4694 064.00 7446
Temperature 51.62 10.56 39.34 78.91 27.89 25.00 76.29 58.16 69.15 59.73 32.43 65.95
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Figure 6. Temperature predictions of (a) site 1, (b) site 2, (c) site 3 and (d) site 4.
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Hinton maps of the neural networks are shown in Fig.
7 and 8. Positive weights are shown in green and negative
weights are shown in red. Inputs are organized as shown in
the computational unit depicted in Fig. 1 and the inputs
contributing to the predictions can be viewed in Fig. 3.

VII. CONCLUSION

In this study, effectiveness of CCN in weather parameters,
namely, solar irradiance and temperature are examined.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Weather station sites are located around Clemson University
and weather measurements are brought to the RTPIS lab
located in the Riggs building.

A binary particle swarm optimization algorithm is
implemented to find the optimum input combinations of the
cells. Predictions for 5, 10 and 15 minutes ahead predictions
studied to check if there is a pattern in parameter correlation
and prediction accuracy. A PSO algorithm is used to select the
optimum inputs of the CCN computational units.
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Temperature measurements have low variations and solar
irradiance measurements have the highest variation.. However,
CCN predictions of solar irradiance and temperature
measurements could outperform temporal predictions.
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