A Novel Algorithm for Training Hidden Markov
Models with Positive and Negative Examples

Jiefu Li
Computer and Information Sciences
University of Delaware
Newark, United States
lijiefu@udel.edu

Abstract—In this paper, we present a novel training method
based on Baum-Welch algorithm for hidden Markov models
(HMM), named as Comprehensive HMM (CompHMM), which
changes the traditional approach of training HMM from positive
examples only to be able to utilize both positive and nega-
tive examples in training HMMs. By comparison, our method
outperformed the standard Baum-Welch method and another
HMM discriminative training method significantly through both
synthetic and real data in membership prediction task.

Index Terms—HMM, negative examples

I. INTRODUCTION

Hidden Markov models (HMM) [1]-[5] are a well known
statistical tool for modelling sequential data. HMMs have been
successfully applied to many problems in the fields of nature
language processing and bioinformatics, such as speech recog-
nition [6], biological sequence alignment [7], and CpG island
prediction [8]. In applications, HMMSs are commonly used
for two different tasks. One task is membership prediction:
to compute the probability of a given sequence belonging
to a certain group, which is modelled by the HMM. The
other task is called decoding: to compute the most probably
hidden path for the given sequence. In the field of nature
language processing, HMMs are mainly used for decoding.
One example is speech recognition: translate human voice
(observable sequence) to plain text (hidden path). In the field
of bioinformatics, HMMs have been used for both membership
prediction and decoding. One successful example is HMMER
[7], which is a special case of HMM called profile HMM
(pHMM). HMMER is used for two purposes: sequence align-
ment and remotely homologous detection. Sequence alignment
task uses HMMER for decoding: HMMER computes the
insertion, deletion, or mutation state (hidden path) for the
given sequence (observable sequence) position wise. Remote
homologous detection task uses HMMER for membership pre-
diction: HMMER computes the likelihood score of a sequence
belonging to certain protein family. Over the years, HMMs
have had great successful applications in different domains,
like most methods in machine learning, their successes rely
to a large degree on both the quantity and quality of data.
Meanwhile, there are still many situations where both quantity

978-1-7281-6215-7/20/$31.00 ©2020 IEEE

Jung-Youn Lee
Plant and Soil Sciences
University of Delaware
Newark, United States

Jjylee@udel.edu

Li Liao(®<)

Computer and Information Sciences
University of Delaware
Newark, United States

liliao@udel.edu

and quality of the data are poor, preventing any machine
learning tools to fully capture the knowledge of the data,
especially for ongoing biological research [9]. And the fact
that HMMs use only positive examples for training exacerbates
the issue of limited training data, by leaving out negative
examples with no use. To tackle this issue, in this paper, we
develop a novel Baum-Welch based training algorithm, which
utilizes both positive and negative data to train HMMs in
order to enhance the membership prediction task for biological
sequences, when the number of positive examples is limited.

This work is inspired by our recent research on detecting
novel Plasmodesmata-located proteins (PDLPs) [9]. PDLPs
are type I transmembrane proteins, which are targeted to
intercellular pores called plasmodesmata that form at the
cellular junctions in plants [10]. Currently, only 8§ PDLPs
have been verified in Arabidopsis thaliana experimentally, and
their PD-targeting signal regions have been narrowed down
to extracellular juxtamembrane domain (JMe). In [9], a 3-
state HMM called PDHMM was designed to model PDLPs’
JMe region for detecting de novo PD-targeting signal and
identifying novel PDLPs. By wet-lab experiments, several
predicted PD-targeting signals have been successfully verified.
However, identifying de novo PDLPs still remains a challenge:
for those proteins ranked highly by PDHMM as PD-targeting
candidates, some are found to be none-PD as reported in the
literature and many others are still unknown. Due to the high
cost of wet-lab experiments, an improved HMM for PDLP
prediction has become even more imperative for this ongoing
research. One way to improve the model is having more data,
and due to the limited number of positive data, an HMM
training algorithm of utilizing both positive and negative data
is urgently needed.

In this paper, we proposed a novel training method to
utilize both positive and negative data for training a “compre-
hensive” HMM, or CompHMM for short. Hereafter, without
confusion, we use CompHMM to refer to both the training
method and the model thus trained. CompHMM train the
HMM in a discriminative fashion: the positive and negative
examples are separated in its measure space. In contrast,
conventional training algorithms for HMMs, such as Baum-
Welch, Viterbi training, and maximum likelihood, are con-
sidered as a positive-only approach, because they use only

positive data for training. As such, HMMs belong to a category
of models, called generative models in the field of machine
learning, which means that the trained model can be used to
generate synthetic examples with varied likelihood of being a
positive example, but cannot give a clear decision boundary,
although in practice 50% likelihood may be used as a de facto
threshold. On the other hand, classifiers such as support vector
machines that give a clear decision boundary are often referred
to as discriminative model. Note that, although trained in a
discrinimative manner, the trained CompHMM is a hidden
Markov model nonetheless, and hence does not give a clear
decision boundary. While there have been efforts to remedy
the positive-only training limitation of HMMs by combining
it with another discriminative classifier such as SVM [11]
[12], our goal here is to modify the training within HMMs
so that both positive and negative examples can be used
without resorting to another discriminative classifier. The most
relevant work to ours was the one carried out Mamitsuka
[13]. This method, named as "MA”, also attempts to have
a discriminative manner training for HMM but is based on
gradient descent technique developed in [14]. One apparent
advantage of CompHMM over MA method is that it has
fewer hyper-parameters to select. In MA method, there are
four hyper-parameters, and CompHMM only has one, which
will be defined in section II-D. More importantly, based on
experimental results from both synthetic and real data, our
method outperformed standard Baum-Welch and MA method
significantly.

The rest of this paper is organized as the following. In the
Method section, a brief review of HMMs is first given, mainly
to introduce the notations and revisit the standard Baum-Welch
algorithm. What follows is a key step in our new method,
called reverse Baum-Welch. Then the whole procedure of
CompHMM is presented and explained. In the results section,
we describe in details the generation of synthetic data and
the setup of experiments for testing the methods with both
synthetic and real data, and compare the performance of
our CompHMM with that of standard Baum-Welch and MA
methods.

II. METHOD

A. Introduction to HMM

HMMs are a well known tool in machine learning field for
modeling sequential data, mainly to discover underlying struc-
tures and patterns. One of the concepts in modeling sequential
data with HMMs is to define hidden states corresponding to
those underlying structures/patterns, besides the data, which is
called “observable”. For example, given a genomic sequence
(observable), we want to know whether a nucleotide is in a
gene (hidden state) or an intergenic region (another hidden
state). The core assumption of modeling data in such a way is
that the observation is emitted from the hidden states by some
probabilities and the a hidden state can transition to another
hidden state with certain probability, and the path of state to
state transitions forms a Markov chain. And as the name of

HMM suggested, it is designed to capture this observable and
hidden relationship of sequential data.

A hidden Markov model is referred to by its parameters, de-
noted as 6 collectively, which contains three sets of parameters
0 = (m, A, B). 7 is called initial probability over the N states
of the model, from which the hidden Markov chain starts with,
in other words, 7’s element 7; stands for the probability of
being state ¢ at time ¢t = 1. A is called transition matrix with
dimension of N x N whose elements denoted as a; ; gives
the probability of transition from state 4 to state j. B is called
emission matrix with dimension of N X K whose elements
denoted as b;(k), which stands for the probability of being at
state j and emitted observation (symbol) k£, where K is the
size of alphabets (or symbols) of the observable data.

With a HMM 6 and a sequence of observation O whose
elements are O; € K, where t = 1..T. There are three
tasks in data modeling with HMMs. One task is to compute
Pr(0|0), namely, the probability that sequence O is a member
of the sequence family described by HMM 6. This probability,
also called likelihood when considered as a function of 6,
is computed by the so-called Forward algorithm efficiently.
The second task is to train the HMM so that for m se-
quences, .-, Pr(O%|0) is maximized. When the sequence
of hidden states or hidden path is given, this is done simply
by maximum likelihood approach, namely by counting the
numbers of various transitions and emissions, followed by
proper normalization. When only observation is available, one
popular method for training is Baum-Welch algorithm. The
third task is called decoding task. This task is to find the most
probable hidden state sequence X* for a given observation
sequence O and model §: X* = argmaxy Pr(O, X|0). This
task is carried out using Viterbi algorithm and is not the
focus of this paper. For readers who are interested in knowing
more about HMM, a comprehensive introduction can be found
in [15]. In this paper, the focus is on the second task as
discussed above. In the second task, Baum-Welch algorthim
trains the HMM (i.e., adjusting its parameters) by maximizing
the total probability over a set of observed sequences whose
hidden state path are not available. Let this particular set of
sequences called positive set. The assumption is that these
sequences share commonalities in a way that they can be
collectively described by a hidden Markov model. As such,
the training is to fix the model parameters § to maximize
the likelihood, which is the principle of maximum likelihood.
When the data are unlabeled, namely, the hidden state paths
are latent, the technique for maximizing the likelihood is called
Expectation-Maximization, see next subsection for details.
After the training, one can use the trained HMM to calculate
the log-likelihood of any given sequence and use this log-
likelihood as a score metric to determine how likely the
sequence belongs to this positive set. The focus of this paper
is to train the HMM discriminatively so that the model can
separate the target positive set from some negative sets and
gain additional differentiating power. In table I, all notations
used throughout this paper are listed with explanations.

TABLE I
NOTATIONS
Symbols Explanations

0 Hidden Markov model: § = (7, A, B)
N States’ number in hidden Markov model.
K Symbolic Number in hidden Markov model.
A Transition matrix with dimension N X N.
aij Probability of state i transition to state j.
B Emission matrix with dimension NV X K.

b; (k) Probability of symbol k emitted from state j.
T Initial probability of states with dimension N X 1.
o5 The s*™ sequence with length T

X State sequence of O°
m Total number of sequences

B. Baum-Welch Revisit

Since CompHMM is built based on Baum-Welch algorithm,
a revisit of it will be helpful as the first step, though only the
parts necessary for our discussion are presented here. More
details of Baum-Welch algorithm can be found in [15].

Baum-Welch algorithm is an expectation-maximization
(EM) algorithm, which has two steps: expectation (E) and
maximization (M) steps. The E-step’s calculation needs two
matrices with dimension of N xT" given HMM’s state number
N, and a sequence with length 7. These two matrices are
called forward and backward matrices and denoted as o and
B respectively. Forward matrix’s element «;(t) stands for
the probability of the symbol O; being emitted from state
i at time t given the hidden Markov model 6 and the sub-
sequence before time t: Oy—1.. +. Backward matrix’s element
B;(t) stands for the probability of the symbol O, being emitted
from state ¢ at time ¢ given model 6 and the sub-sequence
after time ¢: Og—¢41...7. They are all calculated recursively
by forward-backward procedure as follows.

Baum-Welch algorithm starts with initial guesses of tran-
sition and emission matrices A and B. Then for each state
1 € N, the value of « at time ¢ = 1 is initialized by =:

With the above initialization, the remaining values of « are
calculated recursively:

N
a;(t+1) = b;(Opy1) Z t)aj;)

Similar to «a’s recursion calculation, 3’s calculation is back-
ward of the time and initialized with all ones at time ¢t = T

Bi(T) =1 3)

Then, the remaining values of [are calculated backward
recursively:

(t) =D Bt + 1)ayb; (O(t + 1)) (4)

With « and /3, we can calculate the posterior state probabilities
~ whose element ;(¢) stands for the probability of the symbol
O visit state ¢ at time ¢ given the full sequence O.

. P(X(t) =1,0]0)
i(t) = P(X(t) =16,0) =
%i(t) = P(X(t) = il6,0) PO
Z] 1 O‘J()ﬂj()
And also &;;(t), which stands for the summed probability of
all possible hidden paths with the restrict that at time t the
symbol O; is emitted from state ¢ and at time t+1 Og4q is
emitted from state j.
(1) POXW =i X(+1) = 5,00
v P(010)
_ it)ai; B (E+ 1)bj(O(t + 1))
P(010)
At this point, the expectation information is captured in 7y and
&. The next step is M-step: maximization.

In case of multiple sequences, the updated probability of
state ¢ transit to state j, which denoted as a, o and updated
probability of observing symbol oj given at state ¢, which
denoted as b} (o) are calculated as the follows.

m T°—1 45
D DMIED Dribiy 310!

Gij = Sm =T -1 ©)

Dot 2= (D)

m T°—1 ¢
b (op) = Dot 2ot Vi o5 (t)=0,

@ - m Ts—1 ¢
D1 2= (D)

where 1os(4)—o,, is 1 if O°(t) = o, and is zero otherwise.
Replace the elements of A and B by aj;, b (ox) correspond-
ingly. Repeat above steps ((1) to (10)) and updating of A and

B until " Pr(O*|f) converges with certain threshold or
reaches the maximum iterations set by the user.

C. Reverse Baum-Welch

The reverse task of training HMM can be described as
finding HMM parameters 6~ so that >.* | Pr(O~5|07) is
minimized with m~™ number of sequences denoted as O~%.
Our reverse Baum-Welch is not precisely defined for such a
task as the goal, rather it is defined a procedure to incorporate
negative examples in order to combine with the parameters
trained by standard Baum-Welch algorithm so that the training
can be “comprehensive”, namely, taking into account of both
positive and negative examples.

The E-step is identical to standard Baum-Welch: calcula-
tions of «, 3, 7, and £&. And we denoted them as o=, 87,
~v~, and £~ correspondingly in order to differentiate reverse
Baum-Welch from the standard Baum-Welch. The difference
is in M-step:

,*_O Zs lzt

®)

(7

®)

(10)

&)

a;; m— Ts— s (1])
! Dosm1 Dote1 1%‘ (t)
C m- 1 —s t I . .
b (ox) = & 2= — = s (,) O tW=or (1)
D1 2=t Vi (D)

Where C' is a constant defined as C = """ | Length(O~%).
The constant C' makes sure that a;;" and b; "(oy) are all
positive values. Because of the usage of C, a;;" and b; (o)
need to be normalized to stand for probabilities as the ones in
(10):

—%

a:

— % 17

Gj = SN —» (13)

! Zq:l aiq

= b; " (ox)

by (o) = =g —— (14)
Yo by (04)

Then the iterations part and stopping criterion are same as
standard Baum-Welch algorithm.

The rationale of reverse Baum-Welch is simple. One way to
interpret it is to think of the constant C' as a uniform pseudo
count for emissions and transitions, and the training effect
from a negative example O~ for each iteration is to negatively
“engrave” this background, namely subtracting C by the actual
counts from O~ .This is in contrast to standard Baum-Welch
algorithm, which can be considered as “embossing” on an
flat empty background. Or one can understand reverse Buam-
Welch as there are sequences O* as opposite of O~ implicitly,
with the initial guess of/ last updated model, sequences O*

lead to the updated a;;" and b; “(o;) with standard Baum-
Welch algorithm, and try to fit model parameters 6~ with O*.

There are a few points we like to emphasize. First, it is
not necessary to develop a reverse version of Baum-Welch
algorithm to find 6~ to minimize) .-, Pr(O~*%|~); such
minimization can be achieved using gradient descent technique
[14]. Rather, the reverse Baum-Welch is a part of CompHMM,
not meant to be used stand-alone for the aforementioned mini-
mization. Second, the reverse Baum-Welch cannot guarantee a

monotonous decrease of ZZ; Pr(O~*2]67), the reason of this
directly follows reverse Baum-Welch’s second interpretation:
the imaged sequences O* are different for each iteration.

D. CompHMM

Equipped with the standard Baum-Welch and reverse Baum-
Welch, it is now quite straightforward to describe CompHMM.
First, let us define the task. Given m™* number of positive
sequences denoted as O, and m™ number of negative se-
quences denoted as O~. The task is to find a HMM @ so

¥ -
that Y7" | Pr(O*#|6)—>"" | Pr(O~*|6) is maximized. Such
a HMM is CompHMM, since it is trained comprehensively,
taking into account of both positive and negative examples.

With initial parameters 6 and positive sequences O, obtain
its updated transition and emission probabilities:

+ T5—1 o+
—— YD S i (1) (15)
o T Te-1
Z;n:1 t=1 ’Y;rs(t)
T T -1
ZT:l t=1 VJS(t)IO“(t):Ok
+ T
Z;n:l t=1 ’Yjs(ﬂ
Then, with 6 and negative sequences O, using reverse Baum-
Welch to obtain its updated transition and emission proba-

bilities: a,;" and b; (o). Finally, with a hyper-parameter 7,

bit(og) = (16)

chosen by user in range of (0,1), is used as a weighting
factor to combine “embossing” effect from positive examples
and “emgraving” effect from negative examples. So the final
updating equation is:

r X aff +(1-r)x a;kj_

r= (17)
! ZN_l r X a;-ijr + (1 —7r) xaj;

b op) = — W ow) + (1= 1) < B (o)
S S o)+ () < B (o)
For each iteration, update 6 according to (17) and (18).
Repeat this procedures to update 6, until Z:fl Pr(0*5)0) —
> Pr(O~*]6) converges with certain tolerance or reaches
the maximum iteration set by users. Note that for membership
prediction task, the scoring metric for HMM is the log-
likelihood of P(O|f), which decided majorly by emission
matrix B, therefore, it is reasonable to just make a;‘j =a;
In our experiment section, this method is adopted.

Even though due to similar reason of reverse Baum-
Welch, CompHMM cannot guarantee monotonous increase of
Z;”:l Pr(O*#10) — >, Pr(O~*|0) for each iteration, it
happens in majority iterations. By experiments, only its few
beginning iterations show decrease or oscillation behaviors.

(18)

III. EXPERIMENTS AND RESULTS

In this section, we will first present a training validation
check of CompHMMs in order to have an intuitive under-
standing of the CompHMM. Then, a series of experiments of
both synthetic and real data will be performed.

A. Training validation check

The primary goal here is to set up experiment to monitor
CompHMM’s training phase in order to validate that training
procedure indeed increases the separation of positive and
negative examples in their measured space, or equivalently,
ZT; Pr(O*#0) — >, Pr(O~*|0) is maximized.

In the experiment, we randomly initialized two hidden
Markov models with state number of 3, alphabetic number of
20. One of them served as positive model, the other served as
negative model. Each of them generates 50 sequences, each
of which has a length of 30. Together they form a dataset
containing 50 positive sequences and 50 negative sequences.
The initial guess of transition and emission matrices were
generated randomly with same size as the positive/negative
model. We trained the CompHMM with a maximum number
of 1500 iterations, tolerance of convergence set to be le — 6,
hyper-parameter » = 0.5. The experiment shows that the
algorithm reaches convergence at 635" iteration. The tracking
of log(P(O™"0)), log(P(O~|6)) are shown in Fig. 1, and the
tracking of log(P(OT0)) —log(P(O~|0)) is shown in Fig. 2
as the following.

The above results indicate that CompHMM meets the de-
signing purpose, which utilize both positive and negative data
and separate them gradually iteration by iteration, measured
by log-likelihood.

-2700
-2720 =

2740 TS v=e—ee.

-2760 1

Log-likelihood

22780

. .
0 100 200 300 400 500 600 700
Iteration

Fig. 1. Log-likelihood track of positive (blue) and negative (black) examples.

B. Comparison study on synthetic data

After the training validation check of CompHMM, in this
subsection, we designed a series of experiments with synthetic
data to test CompHMM’s performance on membership predic-
tion task.

For each trial of experiments, the synthetic data generated
by 1 positive model randomly generated, and 5/10 negative
models, which are generated from positive model by injecting
random noise. We vary the injected noise level in order to
control the difficulty levels of membership prediction, which
are “calibrated” with the positive model being used as ground
truth. That is, as the injected noise increases, we expect to
see that the ground truth model has better performance in
membership prediction, i.e., recognizing its own sequences
out of the sequences generated by the negative models. The
synthetic data contains 120 sequences in total, all with length
of 30. 50% of these sequences are used as training and the
others are used as testing. Among both training and testing
sets, the numbers of positive and negative sequences are equal.

We also test training difficulty levels in terms of the model
complexity. We chose state number to be 3, 5, and 7, all with
alphabetic length of 20 to mimic amino acids in biological
field. When state number is fixed, the state number of positive
model, negative models, and learning models are the same. The
prediction results are evaluated using AUC-ROC as evaluation
metric [12]. The sequences in a test set is ranked by their
log-likelihood score from the trained model, and a sliding
threshold goes from the top to the bottom of the ranked list,
one sequence on a time. At each time, the sequences at and

&
T

\,
L

Log-likelihood

O T

. ,
100 200 300 . 400 500 600 700
Iteration

Fig. 2. Log-likelihood track of the difference between positive and negative
examples.

TABLE II
COMPARISONS FOR THE METHODS OF COMPHMM,MA, BW, GROUND
TRUTH IN DIFFERENT SETTINGS

of state / # of CompHMM MA BW ground truth

negative models
3/5 0.7752 0.6683 | 0.7080 0.7987
3/10 0.7758 0.6551 | 0.7065 0.8003
5/5 0.7121 0.6012 | 0.6049 0.7455
5/10 0.7100 0.5963 | 0.6071 0.7446
7/5 0.6549 0.5601 | 0.5453 0.6922
7/10 0.6590 0.5649 | 0.5563 0.6990

above the threshold are predicted as positive and sequences
below the threshold are predicted as negative. The predictions
are checked with the ground truth label to be determined as
true positive or false positive. The ROC curve is a plot of the
true positive rate as a function of the false positive rate as the
sliding threshold scans through the list. AUC-ROC is the area
under the ROC curve, ranging from O to 1. A random classifier
with no differentiating power would receive a AUC-ROC value
of 0.5, and the higher the value the more differentiating power
a classifier has, with AUC-ROC of 1.0 for a perfect classifier.
In this study, each experiment is repeated for 30 times to
mitigate random effects. Fig. 3 shows the performances of
various methods from experiments with the synthetic data
generated by state number of 5, and 10 negative models. As it
can be seen, as the “easiness” increases — negative data easier
to be differentiated from the positive data, the performance
increases for the ground truth model, as expected. Across the
whole range of “easiness”, our method performs closely to the
ground truth model and significantly outperforms the standard
Baum-Welch and the MA method.

The complete results of the synthetic experiments are sum-
marized in table II. Like Fig. 3, table II shows that: (1)
CompHMM performs strictly better than both BW and MA,
and closely to ground truth model; (2) MA performs actually
worse than standard BW with the synthetic data when negative
sequences come from an ensemble of many different negative
models, a situation that is more closely mimic to the reality.

2 3 4 5 6 7 8 9 10
Easiness

Fig. 3. AUC-ROC comparison for CompHMM (blue), BW (red), MA (green),
and ground truth model (black) for state number = 5, with 10 negative models
in different easiness level for membership prediction.

C. Applying on real data: plasmodesmata-associated protein
membership prediction

To further test our method, we have applied CompHMM
to real data. In our previous work [9], we used a simple 3-
state HMM called PDHMM to model Plasmodesmata-located
proteins (PDLP)’ juxta membrane region, which contains the
Plasmodesmata targeting signals, to perform PD vs none-PD
classification. Later, 13 additional Plasmodesmata-associated
proteins are noticed in literature. Plasmodesmata-associated
proteins (PAP) are PD-targeting proteins but have different
topology from PDLPs and are very likely from different gene
families. Therefore PDHMM, trained on PDLPs, is expected
to have lesser performance of predicting PAPs than predicting
PDLPs. This can be a good case study of the improvements
gained by applying CompHMM.

In this experiment, 8 PDLPs are used as positive sequences
for training, and 13 additional Plasmodesmata-associated pro-
teins are used as positive sequences for testing. There are also
365 other type I transmembrane proteins served as negative
sequences for both training and testing. A 20 folds cross-
validation performed, and each fold only splits the 365 other
type I transmembrane proteins into negative training set and
negative testing set. Positive training’s 8 PDLPs and positive
testing’s 13 Plasmodesmata-associated proteins are used re-
peatedly for each fold.

The graphic result is shown in Fig. 4. The AUC-ROC
of CompHMM, MA, and BW are 0.7125, 0.6254, 0.6005
respectively, which once again shows ComHMM’s significant
improvement over both MA and BW.

IV. CONCLUSION AND FUTURE WORK

In conclusion, based on the standard Baum-Welch algo-
rithm, we developed a novel method for training HMM that
enables the use of both positive and negative examples to build
a more reliable model. Experiments in membership prediction
task with synthetic data and real data show that our method
significantly outperformed both the standard Baum-Welch
algorithm and the MA method. The latter is a gradient-descent
based method to use both positive and negative examples to
train HMMs.

While the improvements gained by utilizing negative ex-
amples shown in this study are remarkable, a few issues

0 i "ﬂwl - 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
False Positive Rate

Fig. 4. ROC curves of CompHMM (blue), BW (red), MA (green) for
Plasmodesmata-associated protein membership prediction.

remain to be further investigated in the future. First, the effect
of hyper-parameters 7, which is used as a weighting factor
between positive and negative examples, needs to be studied.
Second, as mentioned in II-C, convergence of CompHMM
cannot be guaranteed like standard Baum-Welch algorithm.
Therefore, future study will focus on how to improve the
algorithm so that the convergence is guaranteed or what can
be done practically to mitigate the issue when its convergence
cannot be guaranteed theoretically. Moreover, CompHMM will
be deployed to our ongoing research of discovering de novo
Plasmodesmata-located proteins.

ACKNOWLEDGMENT

The work is funded by National Science Foundation NSF-
MCB1820103.

REFERENCES

[1] L. E. Baum and T. Petrie, “Statistical inference for probabilistic
functions of finite state markov chains,” The annals of mathematical
statistics, vol. 37, no. 6, pp. 1554-1563, 1966.

[2] L. E. Baum and J. A. Eagon, “An inequality with applications to
statistical estimation for probabilistic functions of markov processes and
to a model for ecology,” Bulletin of the American Mathematical Society,
vol. 73, no. 3, pp. 360-363, 1967.

[3] L. E. Baum and G. Sell, “Growth transformations for functions on
manifolds,” Pacific Journal of Mathematics, vol. 27, no. 2, pp. 211-
227, 1968.

[4] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximization
technique occurring in the statistical analysis of probabilistic functions
of markov chains,” The annals of mathematical statistics, vol. 41, no. 1,
pp. 164-171, 1970.

[5] L. Baum, “An inequality and associated maximization technique in
statistical estimation of probabilistic functions of a markov process,”
Inequalities, vol. 3, pp. 1-8, 1972.

[6] L. Bahl, P. Brown, P. De Souza, and R. Mercer, “Maximum mutual
information estimation of hidden markov model parameters for speech
recognition,” in ICASSP’86. IEEE International Conference on Acous-
tics, Speech, and Signal Processing, vol. 11. 1EEE, 1986, pp. 49-52.

[71 R.D. Finn, J. Clements, and S. R. Eddy, “Hmmer web server: interactive
sequence similarity searching,” Nucleic acids research, vol. 39, no.
suppl_2, pp. W29-W37, 2011.

[8] A. Barazandeh, M. Mohammadabadi, M. Ghaderi-Zefrehei, and
H. Nezamabadipour, “Predicting cpg islands and their relationship with
genomic feature in cattle by hidden markov model algorithm,” Iranian
Journal of Applied Animal Science, vol. 6, no. 3, pp. 571-579, 2016.

[9] J. Li, J.-Y. Lee, and L. Liao, “Detecting de novo plasmodesmata
targeting signals and identifying pd targeting proteins,” in International
Conference on Computational Advances in Bio and Medical Sciences.
Springer, 2019, pp. 1-12.

[10] J.-Y. Lee, X. Wang, W. Cui, R. Sager, S. Modla, K. Czymmek,
B. Zybaliov, K. van Wijk, C. Zhang, H. Lu et al., “A plasmodesmata-
localized protein mediates crosstalk between cell-to-cell communication
and innate immunity in arabidopsis,” The Plant Cell, vol. 23, no. 9, pp.
3353-3373, 2011.

[11] T. Jaakkola and D. Haussler, “Exploiting generative models in discrimi-
native classifiers,” in Advances in neural information processing systems,
1999, pp. 487—493.

[12] J. A. Hanley and B. J. McNeil, “The meaning and use of the area under a
receiver operating characteristic (roc) curve.” Radiology, vol. 143, no. 1,
pp. 29-36, 1982.

[13] H. Mamitsuka, “A learning method of hidden markov models for
sequence discrimination,” Journal of Computational Biology, vol. 3,
no. 3, pp. 361-373, 1996.

[14] P. Baldi and Y. Chauvin, “Smooth on-line learning algorithms for hidden
markov models,” Neural Computation, vol. 6, no. 2, pp. 307-318, 1994.

[15] L. Rabiner and B. Juang, “An introduction to hidden markov models,”
ieee assp magazine, vol. 3, no. 1, pp. 4-16, 1986.

